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Triangulable Of-analytic
(¢4, )-modules of rank 2

Lionel Fourquaux and Bingyong Xie

The theory of (¢, I')-modules is a generalization of Fontaine’s theory of (¢, I')-
modules, which classifies Gp-representations on Op-modules and F-vector
spaces for any finite extension F of Q,. In this paper following Colmez’s
method we classify triangulable Op-analytic (¢4, I')-modules of rank 2. In the
process we establish two kinds of cohomology theories for Og-analytic (¢4, I')-
modules. Using them, we show that if D is an étale Op-analytic (¢,, I')-module
such that D%=""I'=! = ( (i.e., V9 = 0, where V is the Galois representation
attached to D), then any overconvergent extension of the trivial representation of
Gp by V is Op-analytic. In particular, contrary to the case of F = Q,, there are
representations of G that are not overconvergent.

Introduction

This paper depends heavily on the theory of (¢, [')-modules for Lubin—Tate exten-
sions, a generalization of Fontaine’s theory of (¢, I')-modules. The existence of this
generalization was more or less implicit in [Fontaine 1990; Colmez 2002]. See also
[Fourquaux 2005; Scholl 2006, Remark 2.3.1]. Kisin and Ren [2009] provided de-
tails, where (¢, I')-modules for Lubin—Tate extensions are called (¢,, I')-modules.

To recall this theory, let F be a finite extension of Q,, O the ring of integers in
F, and 7 a uniformizer of O. Fix an algebraic closure of F denoted by F, and put
Gr = Gal(F/F). Let k¢ be the residue field of F and set ¢ =#kp. Let W =W (kp)
be the ring of Witt vectors over kr. Then Fy := W[1/p] is the maximal absolutely
unramified subfield of F. Let F be a Lubin—Tate group over F corresponding to
the uniformizer 7. Then F is a formal Or-module. Let X be a local coordinate
on F. Then the formal Hopf algebra O, may be identified with Of[[X]]. For any
a € O, let [a]z € Of[[X] be the power series giving the endomorphism a of F.
If n > 1, let F, C F be the subfield generated by the "-torsion points of F. Write
Feo = U, Fu. T = Gal(F/F) and Gr,, = Gal(F/Fx). For any integer n > 0,
let T, C T" be the subgroup Gal(F/F,). Let TF be the Tate module of F. It
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is a free Op-module of rank 1. The action of Gg on T F factors through I" and
induces an isomorphism y : I' — Op. For any a € Of we write o, := xz La).
Using the periods of T F, one can construct a ring Oy with actions of ¢, = @12 4
and I". We will recall the construction in Section 1. Kisin and Ren [2009] defined
étale (¢,, I')-modules over O¢ and classified Gr-representations on Or-modules
in terms of these modules.

Here we are interested in triangulable O r-analytic (¢, I')-modules over a Robba
ring R, where L is a finite extension of F'. A triangulable (¢,, I')-module over Ry
means a (¢4, I')-module D that has a filtration consisting of (¢, I')-submodules
0=DyC Dy C---C D;= D such that D;/D;_; is free of rank 1 over R, .

In the spirit of [Colmez 2008] on the classification of triangulable (¢, I')-modules
of rank 2, in the present paper we will classify triangulable Or-analytic (¢,, I')-
modules over R, of rank 2. One motivation for doing this is our belief that under
the hypothetical p-adic local Langlands correspondence these (¢4, I')-modules
should correspond to certain unitary principal series of GL,(F). Colmez [2010a]
and Liu, Xie, and Zhang [Liu et al. 2012] determined the spaces of locally analytic
vectors of the unitary principal series of GL,(Q,) based on this kind of (¢, I')-
module. Our computations of dimensions of Extl match those of [Kohlhaase
2011] on extensions of locally analytic representations. Nakamura [2009] gave a
generalization of Colmez’s work in another direction. But we think that Nakamura’s
point of view is probably not the best one for applications to the p-adic local
Langlands correspondence.

For our purpose we consider two kinds of cohomology theories for Og-analytic
(¢4, I')-modules.

For a (¢,, I')-module D over R, , we define H*(D) by the cohomology of the
semigroup %r]\J x I as in [Colmez 2010a]. Then the first cohomology group H'(D)
is isomorphic to Ext(®R, D), the L-vector space of extensions of R by D in the
category of (¢4, I')-modules.

If D is Op-analytic, we consider the complex

cvDd): 0-DApepB Do,

where f1: D — D @ D is the map defined as m — ((¢;, — 1)m, Vm), and f; :
D®D — Dis (m,n)— Vm— (¢, —1)n. The operator V is defined in Section 1C.
Put H;q’V(D) = H."(C(;q’V(D)A), fori =0, 1, 2. Each of these modules admits a
["-action. We set H, (D) = H;q,v (D)F.

Theorem 0.1. Let D be an Or-analytic (¢,, I')-module over Ry. Then there is a
natural isomorphism Extyy (R, D) — Haln(D), where Exta, (R, D) is the L-vector
space that consists of extensions of Ry, by D in the category of Of-analytic (¢4, I')-
modules.
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The proof of Theorem 0.1 is given in Section 4; it is due to the referee, and is
much simpler than that in our original version.

Theorem 0.2. Let D be an Op-analytic (¢q4, I')-module over R . The codimension
of Extyn(R 1, D) in Ext(Rr, D) is ([F : Q,] — 1) dim; D%=T=1 In particular, if
D¥%=1T=1 = 0, then Exty, (R, D) = Ext(R, D).

To prove this, we will construct a (noncanonical) projection from Ext(R, D)
onto Exty, (R, D) whose kernel is of dimension ([F : Q,] — 1) dimy D¢a=1.T=1

If V is an overconvergent L-representation of G (in the sense of Definition 1.4),
Ais the (¢4, I')-module over %2 attachedto V,and D=%R, ®%2 A, then Ext(R, D)
measures the set of extensions of the trivial representation by V that are over-
convergent (see Proposition 1.5 and Proposition 1.6). Theorem 0.2 tells us that if
VOr = p%=1.I=1 =, then any such extension is O -analytic.

Let $(L) (resp. $an (L)) be the set of continuous (resp. locally F-analytic) charac-
ters 8 : F* — L*. Let 8, denote the character of F* such that 8, (7) = ¢! and
8unr|0; = 1. Then 8y, is a locally F-analytic character. If § € $(L), let R (8) be
the (¢4, I')-module over R, of rank 1 that has a basis es such that ¢, (es) = 6()es
and o,(es) = d8(a)es. If § € $an(L), then Ry (§) is Op-analytic.

For locally F-analytic characters we have the following:

Theorem 0.3. For any 6 € $.,(L), we have

2 i]‘S:x_i,ieNorxi(Sunr,ieZ+,
1 otherwise,

[F:Q,]+1 ifd=x""ieN,
dim; H'(@®.(8) = {2 if 8§ = xSy, i € Z4,

1 otherwise.

dim; HL (R (8)) = {

For the proof of Theorem 0.3 we follow Colmez’s method. Colmez [2008] used
the theory of p-adic Fourier transform for Z,. For our case we use the p-adic Fourier
transform for O developed by Schneider and Teitelbaum [2001] instead. But this
transform can not be applied to our situation directly because, except for the case
of F =Q,, itis defined over C, and can not be defined over any finite extension L
of F. We overcome this difficulty by applying it to %¢, and then descending
certain results to R, . As a result, we obtain that if §; and 8, are in $,,(L), then
R (81)Y=" and Ry (8,)¥=0 are isomorphic to each other as L[I"]-modules. This
is exactly what we need. In fact, we will show that S5 := (R e;s /%Zea)wzo’rzl is
1-dimensional over L for any § € $,,(L), and that Haln(QRL (8)) is isomorphic to Ss
when v, (8()) < 1 — v, (g) and § is not of the form x'.

For characters that are not locally F-analytic we have the following:

Theorem 0.4. For any § € $(L)\Fan(I) we have H (R (8)) = 0. Consequently,
every extension of Ry by R (8) splits.
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To state our result on the classification, we need some parameter spaces. These
parameter spaces are analogues of Colmez’s parameter spaces [Colmez 2008]. Let &
be the analytic variety over $,,(L) X $,,(L) whose fiber over (81, 87) is isomorphic
to Proj(H e 165 1)), Y an the analytic variety over $,,(L) X $an(L) whose fiber over
(81, 82) is isomorphic to Proj(Haln(Sléz_ 1)). There is a natural inclusion ¥, — <.
Let .y, 920, S8, 91, #5L, 94 and ¢! be the subsets of & defined in Section 6.
We can assign to any s € & (resp. s € Fup) a triangulable (resp. triangulable and
Op-analytic) (¢,, I')-module D(s).

Theorem 0.5. (a) Fors € ¥, D(s) is of slope zero if and only if s is in ¥y — S,
D(s) is of slope zero and the Galois representation attached to D(s) is ir-
reducible if and only if s is in $5 — (FUYU L™ D(s) is of slope zero and
Op-analytic if and only if s is in S — H’?fl.

(b) Let s = (61,62, %) and 5" = (67,8, L") be in S — H’B‘fl. If 81 = 8|, then
D(s) = D(s") ifand only if s = 5. If 81 # 8}, then D(s) = D(s’) if and only if
s, 8" € FTSUST, with §) = xV08,, 8y = x 7 Os),

In the case when F' = Q,, this becomes Colmez’s result [Colmez 2008]. The
proof of Theorem 0.5 will be given at the end of Section 6.

We give another application of Theorem 0.3. In the case of ' = Q, —the
cyclotomic extension case — Cherbonnier and Colmez [1998] showed that all
representations of G, are overconvergent. But our following result shows that this
is not the case when [F : Q,] > 2.

Theorem 0.6. Suppose that [F : Qp,] > 2. Then there exist 2-dimensional L-
representations of Gr that are not overconvergent (in the sense of Definition 1.4).

By Kedlaya’s theorem [2004], any (¢,, I')-module of slope zero D(s) in Theorem
0.5(a) comes from a 2-dimensional L-representation of G that is overconvergent.

We outline the structure of this paper. We recall Fontaine’s rings, the theory of
(¢4, I')-modules and the relation between (¢,, I')-modules and Galois representa-
tions in Section 1A and Section 1B, and then define Op-analytic (¢,, I')-modules
over the Robba ring R, in Section 1C. We define ¥ in Section 2A, and study
the properties of 9 and Res in Section 2B. In Section 3A we extend ¥ to %¢,, in
Section 3B we define operators m, on %c,, and then in Section 3C we study the
I"-action on %7 (8)Y=C for all § € $,,(L). The cohomology theories for O g-analytic
(¢4, I')-modules are given in Section 4. In Section 5 we compute Haln (R (8)) and
H" (R (8)) for all § € $,,(L). After providing preliminary lemmas in Section 5A,
we compute H°(8) for all § € $(L) in Section 5B and Haln(cS) for all § € $,,(L)
satisfying v; (§(;r)) < 1 — v;(g) in Section 5C. For the purpose of computing
Haln(S) for all § € $,n(L), we construct a transition map 9 : Haln(x_lé) — Haln((S),
which is done in Section 5D. The computation of H_\ (8) is given in Section 5E.
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In Section 5F we define two maps t; and ¢ an. Applying results in Section 5, we
classify triangulable Or-analytic (¢,, I')-modules in Section 6.

1. (¢4, I')-modules and O r-analytic (¢,, I')-modules

In this section we recall the theory of (¢4, I')-modules built in [Colmez 2002;
Fourquaux 2005; Kisin and Ren 2009]. We keep using notation from the introduc-
tion.

1A. The rings of formal series. Put Et = 11m Op/p with the transition maps
glven by Frobenius, and let E be the fractional ﬁeld of ET. We may also identify
E* with l(ln Opg /7 with the transition maps given by the g- Frobenuis @q = (pl"gp .
Evaluation of X at 7*-torsion points induces a map ¢ : TF — ET. Precisely,
if v = ()0 € TF, with v, € F[n"](Of), and 7 - v,41 = v,, then we have
L(v) = (Vi (X) + 7 OF)n=o0. N _ N

Let { -} be the unique lifting map ET — W(E™)r := W(E™) Q0 r, OF such that
@g{x} = []-({x}) (see [Colmez 2002, Lemma 9.3]). When F is the cyclotomic
Lubin-Tate group Gy,, we have {x} = [1 + x] — 1, where [1 + x] is the Teichmiiller
lifting of 1 4+ x. This map respects the action of Gg. If v € T F is an Op-generator,
there is an embedding Of[[u]] — W(E+)p sending ur to {t(v)} which identifies
Orlluz]l with a Gp-stable and ¢,-stable subring of W(E™')r. The Gp-action on
OFr[luz] factors through I". By [Colmez 2002, Lemma 9.3] we have

Dq (M]:) [m }'(M]:) Oq (M]:) = [a]]_—(u}—).

In the case of F = G, uz is denoted by T in [Colmez 2008]. Here T is used to
denote the Tate module of a Lubin—Tate group.

Let O¢ be the w-adic completion of Of[uz]l[1/ur]. Then O¢ is a complete
discrete valuation ring with uniformizer 7 and residue field kr((ur)). The topology
induced by this valuation is called the strong topology. Usually we consider the
weak topology on Ok, i.e., the topology with {7’ O + u]jEOF[[u]_-]] 11, j €N}, as
a fundamental system of open neighborhoods of 0. Let € be the field of fractions
of Og. Let €T be the subring F ®o, Orl[ux]l of €.

For any r € Ry U {+o00}, let )%"] be the ring of Laurent series f =Y, , aju’
with coefficients in F that are convergent on the annulus 0 < v, (uz) < r. For any
0 < s < r we define the valuation v} on €1°"1 by

v(f) = inf(v, (a;) +is) € RU {£00}.

We equip ¢1%"1 with the Fréchet topology defined by the family of valuations
(vl :0 <5 <r}. Then €1%"1 is complete. We equip the Robba ring % := U, o ¢lor]
with the inductive limit topology. The subring of % consisting of Laurent series of

the form Y a;u’- is denoted by R
i>0
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Put €7 :={ > aiu}e% } a; is bounded as i — +oo}. This is a field contained in €
and in ®R. €/

Put €071 = €T N el%r1. Let v[%] be the valuation defined by V01 =
ming<s<, v} (f). Let Ogon be the ring of integers in €’ for the valuation
v1%71. We equip Ogo.1[1/uz] with the topology induced by the valuation v{"} and
then equip

€O.r] — mLéJN n—mc(g(o,r][l/u}_]
with the inductive limit topology. The resulting topology on €1 is called the
weak topology [Colmez 2010b]. Note that the restriction of the weak topology to
the subset
{fup) =X ansee®:a=0if i = 0]
ieZ

coincides with the topology defined by the valuation v{"}, and its restriction to ¢+
coincides with the weak topology on €*. Then we equip ¢" = | J €1 with the
inductive limit topology. r=0

We extend the actions of ¢, and I" on OFp[[u,] to ¢, O, €, ¢" and R continu-
ously.

Put 1 = logr(ur), where logz is the logarithmic of F. Then 7 is in R but not
in €¢". When F = Gy, tr coincides with the usual 7 in [Colmez 2008]. Note that
@q(tr) =ty and o, (1) = aty for any a € Op. Put Q = Q(uz) = []-(uz)/ur.

We have the following analogue of [Berger 2004, Lemma 1.3.2].

Lemma 1.1. If I is a ['-stable principal ideal of R, then I is generated by an
element of the form

R e'e) .
Uy r=[0 (00 (Quz)/QO)) . (1-1)

Furthermore, if R* - ¢ (I) C I, then the sequence { j,}n>0 is decreasing, and if
R -y (I) D 1, then the sequence {j,}n>0 is increasing.

Proof. The argument is similar to the proof of [Berger 2004, Lemma 1.3.2]. Let
f(ur) be a generator of I. Put V,(I) ={z € C,: f(z) =0,0 < |z| < p} for any
p € (0, 1). If I is stable by I', then V,(I) is stable by [a] for any a € (9;. As
V,(I) is finite, for any z € V,(I) there must be some element a € (9;, a # 1 such
that [a](z) = z. Note that [ ](z) satisfies [a]-([7](2)) = [7]£(2) if [a]z(2) =z.
But the cardinal number of the set {z € C), : [a]-(z) = z, [z| < p} is finite. Thus
for any z € Vy(p) there exists a positive integer m = m(p) such that [7"]-(z) = 0.
Therefore I is generated by an element of the form (1-1).

The last assertion is easy to prove. (]

Corollary 1.2. We have (tz) = iz [193(Q(1z)/ Q(0) ) in the ring "
n>0
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Proof. Because the ideal (¢-) is I'-invariant and R @q(tr) = (tr), by Lemma 1.1

there exists j € N such that (1) = (u]_- ]_[ goq(Q(u]_-)/Q(O))f) Since (tx/ury) =1
mod u Rt we obtain j = 1. O

If ' is another Lubin-Tate group over F corresponding to 7, by the theory
of Lubin-Tate groups there exists a unique continuous ring isomorphism nr _z :
(’)%r — (’)%r with

£ r 8

nr,7 (ur) =uy + higher degree terms in Op[[u 7l

such that nr 7 o[alr = [alr onF r foralla € OF. We extend 1z 7 to isomor-
phisms

Oty = O, € >k, €r—>Cr, €r>€h, Rr—Rp.

By abuse of notation these isomorphisms are again denoted by nr 7.
Let £, = logu, be a variable over R[1/1,]. We extend the ¢,, '-actions to

R[1/tx, £4] by

0yt = gt +1og TEED 1, = 0, 1109 D)
ur Ur
1B. Galois representations and (¢4, I')-modules. Let L be a finite extension of
F. Let Rep; GF be the category of finite-dimensional L-vector spaces V equipped
with a linear action of G.

If A is any of €7, €, €T, R, we put A, = AQ®r L. Then we extend the ¢,
["-actions on A to Ay by L-linearity. Let R denote any of €, %2 and Ry. For a
(¢4, I')-module over R, we mean a free R-module D of finite rank together with
continuous semilinear actions of ¢, and I' commuting with each other such that ¢,
sends a basis of D to a basis of D. When R = €, we say that D is étale if D has
a ¢ -stable (’)% ,-lattice M such that the linear map ;M — M is an isomorphism.
When R = %L, we say that D is étale if %L®%, D is étale. When R = R, we
say that D is étale or of slope O if there ex1sts an étale (¢g4, I')-module A over %T
such that D = R; ®. 5 A. Let Modg/a;’e " be the category of €étale (¢, I')- modules
over R.

Put B = W(E)F[l/ m]. Let B be the completion of the maximal unramified
extension of € in B for the r-adic topology. Both B and B admit actions of ®q
and Gp. We have BCr~ = €.

For any V € Rep; Gr, put D¢(V) = (B®p V) =, For any D € Modw" T et, put
V(D) = (B®¢ D)%=".

Theorem 1.3 [Kisin and Ren 2009, Theorem 1.6]. The [junctors V and Dy are
¥q-
quasi-inverse equivalences of categories between Mod 1€, and Rep; Gr.



2552 Lionel Fourquaux and Bingyong Xie

As usual, let BT be the subring of B consisting of overconvergent elements, and
put B' =BNBT. Then (B")¢r~ =¢T.

Definition 1.4. If V is an L-representation of Gr, we say that V is overconvergent
if Dy (V) 1= (BT ®F V)%~ contains a basis of Dg(V).

When F = Q,, according to the Cherbonnier—Colmez theorem [1998], all L-
representations are overconvergent. But in general this is not true. For details, see
Remark 5.21.

Proposition 1.5. (a) If A is an étale (¢,, I')-module over %2, then
V(&L @y A) = (BT @t A~

(b) The ﬁmctor A+ €L ®¢; A is a fully faithful functor from the category
Mo d/%f " 1o the category Mod et

(c) The functor Dy is an eqmvalence of categorles between the category of
ét
overconvergent L-representations of Gr and Mod% /c(g't re

Proof. Without loss of generality we may assume that L = F. Put B@ = W(E)[l /p]
and BT = B@ NB'. The technique of almost étale descent as in [Berger and
Colmez 2008] allows us to show that the functor A — B@ ®s;, A from the category
of étale (¢, Gp)-modules over B to the category of étale ((p, GF) modules over
B@ is an equivalence. For any (goq, Gp) module D over B (resp. B) we can attach
a (¢, Gr)-module D over B@ (resp. B@ ) to D by letting D= @l -0 <p‘*(D) with
the map

F=1
¢*(D) = @w’*ww@w’*(m
i=1 i=0

that sends ¢'*(D) identically to ¢**(D) fori =1, ..., f — 1 and sends ¢/*(D) =
(pq(D) to D using ¢,. Here f =log, q. Thus the functor a:A—B Qg+ A from
the category of étale (¢,, Gr)-modules over BT to the category of étale (¢,, Gr)-
modules over B is an equivalence. Now let A be an étale (¢,, I')-module over €T,
and put V =V (€®¢: A). As a(B'®@rV)=B®rV =B®q A =a(B Bz A), we
have Bf @ p V = BY ®¢t A. Thus V is contained in Bt Rzt ANB Qg A =B ®gt A,
and V = (B" ®¢: A)#=!. This proves (a).

Next we prove (b). Let A; and A, be two objects in Mod
to show is that the natural map

@g,T,ét

st What we have

Hom
Mod‘{q

ra(Ar, A) > Hom o, ra( @ AL % @ A2)
od/%

is an isomorphism. For this we reduce the problem to showing that

(Al Rt Az)%:l,l—‘:l N (% R (Al gt Az))<pq=l,I‘=1
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is an isomorphism. Here Al is the ¢f-module of ¢'-linear maps from A; to €7,
which is equipped with a natural étale (¢, I')-module structure. We have

(% Ot (A Qi AZ))%:LFZI = (B Rt (A, gt Az))(pq:LGF=1
= V(€@ (A1 ®¢r £)
= (BT ®¢ (A1 ®g: Ap))
= (A ®gi Ap)¥e=1T=1, (1-2)
Finally, (c) follows from (a), (b) and Theorem 1.3. 0

Proposition 1. 6 The functor A — R ®% A is an equivalence of categories

between Mod(;% " and Mo d% r et.

Proof. Let D be an étale (¢, F) module over %, . By Kedlaya’s slope filtration
theorem [2004], there exists a unique ¢, -stable %1 -submodule A of D that is étale
as a ¢,-module such that D = R, ®%2 A. For any y € I', y(A) also has this
property. Thus, by uniqueness of A, we have y(A) = A. This means that A is
["-invariant. ([

1C. Og-analytic (¢4, I')-modules. For any r > s > 0, let vI*1 be the valuation
defined by v*"1(f) = inf, ¢, v (f). Note that

W) = Zie%f vp(f (2)).

14
s<vp(z)<r

Lemma 1.7. For any r > s > 0, there exists a sufficiently large integer n = n(s, r)
such that, if y € Ty, then we have v[”]((l - )/)Z) >S5 (2) + 1 forall z € %]Lo’r].

Proof. It suffices to consider z = uJ’f—_, keZ. If k>0, then

y(u;)_u;:u;(””f) —1)(V(”f D +1>

u]_— u]__

—k —k _  —k[ Ur 1 “kl 1
y(ur") —uzr =uzp (y(uf)— )(—y( )+ -+ )

As v (yz) > v871(y) +v197)(2), the lemma follows from the fact that y(ug)/ur

and

approaches 1 as y — 1. U

Let D be an ob]ect in Mod(p“:et We choose a basis {eq, ..., e;} of D and
write D071 = EB, | %]O 1. ¢;. Our definition of D1] depends on the choice of
{e1, ..., eq}; however, 1f {el, R ed} is another basis, then

d d
TR DA
i=1 i=1
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for sufficiently small > 0. When r > 0 is sufficiently small, D'®"1 is stable under I".
By Lemma 1.7 and the continuity of the I'-action on D!*"1, the series

logy =Y (y—D'(=1""/i

i=1
converges on D% when y — 1. It follows that the map
dI' : Liel’ — End; D", g log(exp B)

is well defined for sufficiently small B, and we extend it to all of LieI" by Z,,-
linearity. As a result, we obtain a Z,-linear map dI'p : LieI'’ — End; D. For any
p eLiel’, dI'g, (B) is a derivation of R, and dI"p () is a differential operator over
dI'g, (B), which means that for any a € R, m € D and B € LieI" we have

d'p(B)(am) = dTg, (B)(a)m +a -dT"p(B)(m). (1-3)

The isomorphism x, : I' = OF induces an Op-linear isomorphism LieI" — OF.
We will identify LieI" with OF via this isomorphism.

We say that D is Op-analytic if the map dI'p is not only Z,-linear, but also
Op-linear. If D is Op-analytic, the operator dI"p(8)/8, B € OF, 8 # 0, does not
depend on the choice of 8. The resulting operator is denoted by Vp or just V if
there is no confusion. Note that the I"-action on R, is Op-analytic and by [Kisin
and Ren 2009, Lemma 2.1.4]

V:tf-%(uf, 0)-d/dug, (1-4)
where F(X, Y) is the formal group law of F. Put 8 = (0 F/0Y)(ur, 0) - d/du,.
From the relation o, (1) = at we obtain Vi =, and 37 = 1. When F =Gy, V
and 9 are already defined in [Berger 2002]. In this case F(X,Y) =X +Y + XY
and s0 0 = (1 +uyr)d/dug.

We end this section by classification of (¢,, I')-modules over %, of rank 1.

Let $(L) be the set of continuous characters § : F'* — L* and $,,(L) the subset
of locally F-analytic characters. If § is in $,,(L), the quotient log é (a) /loga, for
a € OF (which makes sense when loga # 0) does not depend on a. This number,
denoted by ws, is called the weight of §. Clearly ws = 0 if and only if § is locally
constant; ws is in Z if and only if § is locally algebraic.

If § € $(L), let R (5) be the (¢,, I')-module over R, (of rank 1) that has a
basis es such that ¢, (es) = 8()es and o, (es) = §(a)es. It is easy to check that, if
8 € $an(L), then R (8) is Op-analytic and Vs = Vg, (s) = -0 +w; (more precisely
Vs(zes) = (1x0z7 + wsz)es). If Ry (§) is €tale, that is, v, (5(r)) = 0, we will use
L($) to denote the Galois representation attached to Ry ().
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Remark 1.8. All 1-dimensional L-representations of G are overconvergent. In fact,
such a representation comes from a character of F* and thus is of the form L ().

Proposition 1.9. Let D be a (¢,, I')-module over R of rank 1. Then there exists
a character 6 € $(L) such that D is isomorphic to Ry (8). Furthermore, D is
OF-analytic if and only if § € $4,(L).

Proof. The argument is similar to the proof of [Colmez 2008, Proposition 3.1].
We first reduce to the case that D is étale. Then by Proposition 1.6 there exists an
étale (¢, I')-module A over % such that D =R ®%1 A. Now the first assertion
follows from Proposition 1.5 and Remark 1.8. The second assertion is obvious. [J

2. The operators ¥ and 9

2A. The operator y. We define an operator ¥ and study its properties.
Note that {u}'_-}osigq,l is a basis of €, over ¢, (€,). So €, is a field extension
of ¢, (€,) of degree g. Put tr = tre, /o, (L)
Lemma 2.1. (a) There is a unique operator  : € — €1, such that g, 0y = g~ .
(b) Forany a, b € €1 we have ¥ (¢,(a)b) = ayy(b). In particular, o ¢, = id.
(¢c) ¥ commutes with T'.

Proof. Assertion (a) follows from the fact that ¢, is injective. Assertion (b) follows
from the relation

0q (¥ (0g(@b)) = tr(pg(a)b) /q = @g(@)tr(b) /q = @4 (@)@ (Y (D)) = pq(ayyr (b))

and the injectivity of ¢,. As ¢, commutes with I", ¢, (€.) is stable under I'. Thus
yotroy~! =trforall y € I". This ensures that 1/ commutes with I". Assertion (c)
follows. O

We first compute ¥ in the case of the special Lubin—Tate group.
Proposition 2.2. Suppose that F is the special Lubin—Tate group.
(@) I €= 0, then yr(ul) = Y108 ag jule with vy (a) = [/q)+1—i = vr(q).
() If € <0, then ¥ (us) = Y1 by jule with vy (bei) > [€/q]+ 1 —i — vr(q)-

Proof. First we prove (a) by induction on £. As the minimal polynomial of uy is
X9 +7X — (u} + muz), by Newton’s formula we have

; 0 if l <i<g-—-2
tr(uy) = LoD =ame
A—qg)r ifi=qg—1.
It follows that
; 0 ifl1<i<qg-2,
V() = o=
1—q)m/q ifi=q—1.
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Thus the assertion holds when 0 < ¢ < g — 1. Now we assume that £ = j > g and
the assertion holds when 0 < ¢ < j — 1. We have

Vs =y ((uk+ ﬂu;)uf;q) — w(nuﬁ_q“) = M]:lﬂ(uﬁ_-_q) _ nW(uﬁ:_q+1)
[£/q] [(e+1)/q]—1

= E Ap—g i—1UF — E Tag_gi1,ilUy-
i=1 i=0
Thus ag; =ap_g,i—1 —mwas—441,;- By the inductive assumption we have

Ur(ar—q,i-1) Z [l =q)/q]+1 -G = 1) —vr(g) =[€/q]+1—i—vz(q)

and

Vr(@r—g+1,) Z [ —q+1D/ql+1—i—v:(q) = [£/q] —i —vz(q).

It follows that vy (ag;) > [£/q]+ 1 —i — v (g).
Next we prove (b). We have

=07 ity

B Iﬂ Z - qu T l—j

w(u§)=¢(<u§c 1+”)£) <j=0[ J] d )
@q(ur) ¢

[—€g—1/q] —¢

_E Y .
= 2 X e
i=0 j=0

—L
Ur

[¢/q] —¢

= Z Z [_f]”_l_jam—l),i—e ‘Ul

i=t j=0

—£ (—0)! Lr_p1 . .
H ,[-zf.Th bei = [ g i
ere J] J(—2— ! us o, jg) J]n ajg—1y.i—¢- Since

e (m ™ ajgoni-0) = €= j+ (i@ = D/ql+ 1= =0 — vz (9))
=[—Jj/q)+1—i—vx(q)
>[l/q]+1—i—vy(q),
we obtain vy (be;) > [£/ql+1—i —v(q). U
Let €, be the subset of € consisting of elements of the form Zi <14 u}.
Corollary 2.3. Suppose that F is the special Lubin-Tate group. Then {(€;) C €.
Proof. This follows directly from Proposition 2.2. U
Proposition 2.4. (a) ¥(¢}) =], Y (Ogr) C 204+ and Y(Og,) C 7 Ox,.
(b) ¥ is continuous for the weak topology on €.

(©) %2 is stable under \r, and the restriction of Y on %2 is continuous for the weak
topology of %2
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@ Iffe %(0 ] , then the sequence ( w) (f),neN,is bounded in %(O r]for the
weak topology

Proof. Let Fg be the special Lubin-Tate group over F corresponding to 7. Observe

that Y r = n}; FYFRNF.F- Since ng, F(ur,) equals u, times a unit in Op[u],
we have

Nr.F ( %;]L [1/u 0]) %()Ffi[l/uf] for any r > 0,

and 17, 7 respects the valuation l0-7] Thus NFo.F %(0 ’] ‘6(0 1 is a topological

isomorphism. It follows that c3 Fol % 7., and its 1nverse are contlnuous for the
weak topology. Similarly nr, 7 : €5, — €r,. and its inverse are continuous
for the weak topology. Hence we only need to consider the case of the special
Lubin-Tate group. Assertions (a) and (b) follow from Proposition 2.2. For (c) we
only need to show that, for any r > 0, we have ¥ (€ (©. r]) C %(0 "1 and the restriction
/28 %(0 ] %(O "1 is continuous. By (b) the restriction of i to % is continuous. By
Proposition 2. 2(b) and Corollary 2.3, if f isin €, N %(O ] , then W( f)isin€; and
VI () = v (f) +v,p(/q). Thus ¢ 1€, ﬂ%‘é( AN € ﬂ%(o "1is contlnuous
which proves (¢). As (q/m)¥(Ogt) C o%+ and v'"}((¢ /n)zﬁ( f)) > v (f) for
any f €€, N€EY", (d) follows. O

Next we extend ¢ to Ry.

Proposition 2.5. We can extend tr continuously to Ry. The resulting operator tr
satisfies tr|g @) = q -id and tr(RL) = @4 (RL).

Proof. Let %?_OO denote the subset of €, consisting of f € €, of the form
> o0 Gnl. If f € €77, then

()= Y. flgtzn.

neker[n]]_-

If n is in ker[7 ], then v,(n) > m, where e = [F : Fy]. Thus, if r and
s € Ry satisfy 1/((¢ — D)er) > r > s, the morphisms ur > ur +n (n € ker[r]5)
keep the annulus {z € C, : p™" < |z| < p™°} stable. So for any f € %?700
we have vI71(f (ur 45 1)) = vI71(f) and vI7)(tr(f)) > vI71(f). Hence there
exists a unique continuous operator Tr : R, — R such that Tr(f) = tr(f) for
any f € %z>_°°. (For any f € R, choosing a positive real number r such that
f €€, we can find a sequence { fi};>1 in €.~ such that f; — f in €%’ then
{tr(fi)}i>1 is a Cauchy sequence in %[L”] for any s satisfying 0 < s <r, and we let
Tr(f) be their limit in €1%’1; it is easy to show that Tr( f) does not depend on any
choice.) From the continuity of Tr we obtain that Trl%r = tr and Trly, @,) = ¢ -id.
By Lemma 2.6 below, ¢, : QR L — %L is strict and thus has a closed i image. Since
%L is dense in R, and Tr(% ) =@y (‘6 ) Coy(Rr), we have Tr(Ry) C @y (Rp). U
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Lemma 2.6. If >r>s>0and f € %f’r], then we have

(q— 1) er
o VN Y () =87 f) forall y €T
o 0N, () =0l ifr < 1/((g — Der).

Proof. Since [x(y)]z(ur) € M];OF[[M]_—]], we have v, ([x£(y)]£(2)) = v, (z) forall
z€C, such that v, (z) > 0. By the same reason we have vp([xf(y_l)]f(z)) 2 v,(2)
and thus v, ([ (1)1£(2) < V(). S0 v, ([ (1)) = v, (2).

If z € C,, satisfies

—S

1
p WDer <« p7" Lz| < p~t < 1,

then v,([7]-(z)) = qvp(z). Thus, the image by z — [7]z(z) of the annulus
{zeC,:p™" <z| < p~°}is inside the annulus {z € C, : p79" < |z| < p~¥°}.
Conversely, if w € C,, is such that p™9" < |w| < p~ %, then v, (w) < g /((g — Der).
The Newton polygon of the polynomial —w + [ ] (uz) shows that this polynomial
has g roots of valuation évp(w). If z € C, is such a root, we have p™" < [z| < p~*.

Thus, the image of the annulus p~"

Wedeﬁnex//:%L—WRLbylﬂ:é%_l

<zl < p~fistheannulus p~ 9" < |z| < p~9%. O

Lemma 2.7. If g/((g — 1)er) >r>s>0and f € %]Lo’r], then

o () 2 o) — ().
Proof. By Lemma 2.6 it suffices to show that

ol (g (9 () = 0P G T () 2 T — wy ().
But this follows from Proposition 2.5 and its proof. U
As a consequence, ¥ : R — Ry is continuous.

Corollary 2.8. (a) {u]_-}o<,<q 1 Is a basis of %T over (% ), and

tr|%z = tr%L/(pq @)

(b) {u-}o<i<q—1 is a basis of Ry, over gg(Ry).

Proof. Let {b;}o<i<q—1 be the dual basis of {M}}sz‘fq—l relative to e, /g, (€L)- Let
B be the inverse of the matrix (tr(u’fﬂ ))i.j- Then B € GL,, (%;) and

(bg, by, ..., bq_l)t =B, uz, ..., u;]_._l)[.

S0 bo, b1, ..., by_1 are in €. Then f = Y1\ uby(b; f) for any f € €y, €]
or Ry,. (For the former two cases, this follows from the definition of {b;}o<j<4—1;
for the last case, we apply the continuity of i.) Thus {M}}0<i<q | generate %T
(resp. Ry ) over @ (‘é ) (resp. ¢, (R1)). In either case, to prove the independence of
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{u}}ogigq,l, we only need to use the fact w(biu]{.) =8; (i, jef0,1,...,qg—1}),
where §;; is the Kronecker sign. Finally we note that the second assertion of (a)
follows from the first one. Ul

We apply the above to (¢, I')-modules.

Proposition 2.9. If D is a (¢, I')-module over R where R =€, %z or Ry, then
there is a unique operator  : D — D such that

V(apy(x)) =y (a)x and Y (pq(a)x) =ay(x) (2-D
forany a € R and x € D. Moreover \ commutes with T".
Proof. Let {ey, e, ..., eq) be a basis of D over R. By the definition of (¢, I')-

modules, {¢,(e1), ¢4(e2), ..., ¢ (eq)} is also a basis of D. For any m € D, writing
m=ap,(e1) +axpq(e2) +- - -+ aapq(eq), we put

Y(m)=y(a)er +y(az)er+-- -+ V(aq)eq.

Then  satisfies (2-1). It is easy to prove the uniqueness of 1. Observe that for any
y €T, yyy~! also satisfies (2-1). Thus yy~! = 4 by uniqueness of . This
means that ¢ commutes with I". ([l

2B. The operator 3 and the map Res. Recall that = (0 F-/dY)(uz, 0) - d/du.
So dty = (0F£/9Y) (uz, 0) duy and (dix/duz) = ((0Fx/0Y)(uz, 0)) .

Lemma 2.10. [fr > s > 0and f € R)"), then v571(@f) > v 1(f) — .

Proof. Observe that v, ((aFf/BY)(z, O)) = 0 for all z in the disk |z| < 1. Thus
v @) = vl f/duy). Write f =3, ., anu’. Then we have
v[”](d—f> = inf vp(nanz"_l)

du]_- r2v,(z)2s
neZ

> _inf -
r}vlpr%z)% (vp (@) + "o @ op (Z))
neZ

> inf  (vp(an) +nvp2) —r =) —r,
r2vp(z)2s
nez

as desired. O

Lemma 2.11. We have
doo,=a0,00, 0do@;=mp,00, aow:n—lwoa.

Proof. From the definition of V we see that V =1,9 commutes with I', ¢, and .
Hence the lemma follows from the equalities

oulty) =aty, @ (tr)=7ntr, V) =y@ Q) =n""tz. O
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Let res : Rpduy — L be the residue map res(ziEZ a,-u} duf) =a_1, and let
Res: R — L be the map defined by Res(f) =res(f dr).
Proposition 2.12. We have the exact sequence

0> LR >, 5L -0,

where L — Ry is the inclusion map.

Proof. The kernel of 9 is just the kernel of d/du, and thus is L. For any a € L
we have Res((a/uz) - (dtz/duz)"") = a, which implies that Res is surjective. If
f =0g, then fdzr =dg and so Res(f) =res(dg) = 0. It follows that Reso d = 0.
Conversely, if f € R satisfies Res(f) =0, then f can be written as

dr
f
(du}-> Z di u]_-

i#E—1

Putg= ) i’lu’;l Then f = dg. O
i#— 1!

Proposition 2.13. (a) Resoo, =a~'Res.
(b) Resog, = (q/m)Res and Res o Y = (7r/q)Res.
Proof. First we prove (a). Let g be in R and put f = dg. By Lemma 2.11 we have

0a(f) =0a00(g) =a~'0(0a(g)), Y (f)=vo0d(g) =7d(Y ().

Thus by Proposition 2.12 we have Resoo, =a~'Res =0 and Reso ¢ = %Res =0

on 0% . From

__ . _1 +
o.(1/ur) = [l (i) — auy mod R/,

we see that Reso o, (1/ur) = a‘lRes(l/uf). Assertion (a) follows.

To prove Res o v = (;r/g)Res, without loss of generality we suppose that
JF is the special Lubin-Tate group. In this case ¥ (1/uz) = 7/(quz), and so
Res(¥(1/uz)) = (w/q)Res(1/uz). It follows that Reso ¢ = (7r/g)Res. Finally we
have Res(g,(z)) = (q/n)Res(g/f((pq (z))) = (¢/m)Res(z) for any z € R;. In other
words, Reso ¢, = (g/m)Res. O

Using Res we can define a pairing {-, -} : R x R — L by {f, g} = Res(fg).

Proposition 2.14. The pairing { -, - } is perfect and induces a continuous isomor-
phism from Ry to its dual. Moreover we have

{oa(f) oa(@Y=a"" {1 g}, {9q(f)0y(9))= %{f,g}, {fiv(@}= g{wq(f),g}-

Proof. The first assertion follows from [Colmez 2010d, Remark 1.1.5]; the formulas
from Proposition 2.13. (]
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3. Operators on ¢,

3A. The operator ¥ on Rc,. First we define R¢,. For any r > 0, let
10,r] ._ 10,51 5
%CP =¢"""rC,

be the topological tensor product, i.e., the Hausdorff completion of the projective
tensor product ¢! @ C, (see [Schneider 2002]). Then %]0 "1 is the ring of
Laurent series f =) . a;uy with coefficients in C, that are convergent on the
annulus 0 < v, (uz) < r. We also write 97{+ for %]0 +°°] . Then we define 97%@ to
be the inductive limit lim, _,¢ %]o ] K

We recall how the p-adic Fourler theory of [Schneider and Teitelbaum 2001]
shows that QRgp is isomorphic to the ring 2(OF, C,) of C,-valued locally F-analytic
distributions on OF. From that reference we know that there exists a rigid analytic
group variety X such that X(L), for any extension L C C, of F, is the set of
L-valued locally F-analytic characters. For A € @(Op, L), put F5(x) = *(x),
x € X(L). Then F; is in O(X/L), and the map @G (Op, L) - O(X/L), A — F,,
is an isomorphism of L-Fréchet algebras.

Let F’ be the p-divisible group dual to F and T F' the Tate module of F’. Then
TF is a free Op-module of rank 1; the Galois action on T F' is given by the
continuous character 7 := xcye * X7 1, where xcyc is the cyclotomic character. By
Cartier duality, we obtain a Galois equivariant pairing ( , ) : F(C,) o, TF' —
B(C,), where B1(C,) is the multiplicative group {z € C,, : |z — 1| < 1}. Fixing a
generator ¢ of T F', we obtain a map F(C,) — B(C,). As a formal series, this
morphism can be written as B-(X) := exp(£2logz(X)) for some €2 € C,, and it
lies in 1 + XOc, [ X]. Moreover, we have

1
p—1 (g—Der
(see the appendix of [Schneider and Teitelbaum 2001] or [Colmez 1993]) and

0(R2) = t(0)R for all ¢ € Gg. Using (-, -) we obtain an isomorphism of rigid
analytic group varieties

vp(82) =

K F(Cp) > X(Cp), 2> k(i) := (', [ilr(2)) = Br([i](2)).
Passing to global sections, we obtain the desired isomorphism
PD(OF, Cp) =O(X/Cp) = %gp.

We extend ¢;, ¥ and the I'-action C-linearly and continuously to %¢,. By
continuity we have ¥ (¢,(f)g) = f¥(g) for any f, g € Rc,. All these actions
keep %gp invariant.
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Lemma 3.1. We have

0u(Br(li1p) = Br(laile),
0aBr(li1e) = B(lmile),

2w |0 ifi ¢ tOF,
Al it {ﬁfqi/n];) ifi e xOF,
d(B(li1) = 1Bl ])-

Proof. The formulae for o, and ¢, are obvious. The formula for d follows from
0 exp(iQ2logr(uzr)) = exp(i2logr(ur)) - 0(iQr) =iQ2exp(i2logr(ur)).

If i € 7OF, then ¥ (B-([i]x)) = ¥ 0 ¢, (Bx(li/7]z)) = Br(li /7 ]z). For any
i ¢ 1O, we have

wﬁf([i]f)):éw;‘( > ﬂ;([i]f(uf+fn>>>
1 neker[n]f (3_ ! )
=C—I<p;1(;8f<[i];) > ﬁfqi]f(n))) =0

neker[r]-
because {B-([11-(n)) : n € ker[w]-} = {Br(n) : n € ker[r]-} take values in the set
of p-th roots of unity and each of these p-th roots of unity appears g/p times. [J

The isomorphism %gp = %(Or, C)) transfers the actions of ¢,, ¥ and I'" to
D(OF, Cp).

Lemma 3.2. For any i € 9(OF, C,), we have

o (W) (f) =u(fa-), @) =nlf(m-)).

Proof. Note that the action of ¢, and I" on QRE[’ comes, by passing to global sections,
from the (¢,, I')-action on F(C,) with ¢, =[] and 0, = [a]. The isomorphism
k transfers the action to X(C,): ¢, (x)(x) = x (wx) and o, (x ) (x) = x (ax). Passing
to global sections yields what we want. ([

Lemma 3.3. The family (ﬂf([i]f))feop/n is a basis of R, over ¢,(Rc,). More-
over, if

f= > Brilpeg(f).

ITGOF/T[

then the terms of the sum do not depend on the choice of the liftings i, and

Ji =¥ Br(=ilp) f).
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Proof. What we need to show is that
=Y Brilp) - 0g 0¥ (Br(—ilp) /) (3-2)
lTEOF/n’

for all f € Rc,. Indeed, (3-2) implies that {B-([i I}eo, /= generate R, over
g (Re ,)- On the other hand, if

f=Y" Brilpeq(f).

lTEOF/ﬂ

using (3-1) we obtain f; = ¥ (B-([—i]z) f), which implies the linear independence
of {ﬁ]_-([i]]_-)};eoF/” over @ (Rc,). As the map

fro Y Belily) - @ 0 ¥ (Br(—ilp) f)

lTEOF/n’

is ¢4 (Re p)-linear and continuous, we only need to prove (3-2) for a subset that
topologically generates QRCP over ¢ (97{@1,). For example, {u'r}o<i<4—1 is such a
subset. So it is sufficient to prove (3-2) for f € gtgp. For any i € OF, let §; be the
Dirac distribution such that ; (f) = f(i). Then k*(8;) = B-([i]z). Indeed, we have

K (8i)(z) = 8i(2) = iz (i) = Br([ilx(2))-
Itis easy to see that (§;);cp,./ Is a basis of B(OF, Cp) over ¢, (D(OF, Cp)). Thus
every f € %gﬂ can be written uniquely in the form f = Zz"eop 1z Bri1p)eq (fi)

with f; € @tgﬂ. As observed above, from (3-1) we deduce that f; =¥ (B-([—ilx) f).
]

Next we define operators Resy, analogous to the operators defined in [Colmez
2010d].
For any f € Rc,, i € O and integer m > 0, put

Resi 7m0, (f) = Br(lilp) (9 o v"™) (Br([—ilp) f)-

Lemma 3.3 says that

f= ) Resitzo.(f).

ITEOF/H

This implies that the operators Res; =, are well defined (i.e., independent of the
choice of i in the ball i + 7™ OF). Applying Lemma 3.3 recursively we get

f= D Resizmo.(f).
ZTGOF/Um

Finally, if U is a compact open subset of Op, it is a finite disjoint union of balls
ir + 1"*OF. Define Resy = ), Resj, 1z 0,. The map Resy : Re, — %@p does
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not depend on the choice of these balls, and we have Resp, = 1, Resgz = 0 and
Resyuy’ +Resyny = Resy + Resyr.

3B. The operator my. Let o : Op — C, be a locally (F-)analytic function. In
this subsection, we define an operator m, : R, — R, similar to the one defined
in [Colmez 2010c, V.2].

Since « is a locally analytic function on Op, there is an integer m > 0 such that

+00
a(x) = Zai,n(x —i)" forallx ei+n"OF,
n=0
with a; , = (1/n!)(d"/dx")a(x)|y=;. Let £ > m be an integer. Define

+00
mo(f)= ) ﬂf([i]f)<<p§o <Zai,nnf"9—"a") oW)(ﬂf([—i]f)-f).
n=0

lTEOF/T[[’

(Formally, this definition can be seen as saying that m, = «(27'9)). According to
Lemmas 2.6, 2.7 and 2.10, if r < 1/(q€_1(q — 1)er) then we have

(g 0 Q70" 0 ) (9)) = —ngr —nv,(Q) + v (g) — v, (g),

and thus Y "% a,, ;7" ((pf]Z 0 Q279" o %) (g) converges when £ and r satisfy

L ¢ 1 1

er 1T p * (g—Der > er’
If we choose £ > m +ep/(p—1) —1/(q — 1) and r close enough to O, then
this condition is satisfied. Hence, we have indeed defined a continuous operator
My . giqu — giqu.

Now, let us prove that m, (f) neither depend on the choice of ¢, nor on that

of the liftings i for i € Op/m’. By linearity and continuity, we may assume that
f=lizpmo,(x — i)¥. Note that we have

k _ _
Ajygmyn = |:I’l T[(k ”)mvk n,

It suffices to show that

k
Y. Br(a"vlx) <<p§ o (Z ai+nmv,nn‘"sr”a”> o W) (Be([—7"v]) - f)

560}.‘/7‘!’@”” n=0

= (¢ o (@™ Q7 8 ) oy ™) £,

and for this it is sufficient to prove that
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k

2, (¢§_m ’ <Z famta TS 3") ° W_m) (Br(—vp)- 1)
iGOF/T[[’m n=0
="k k aky.
As
k k .
ZO aiJanv,nﬂan_n " = ZO |:nj| ﬂ(k_”)muk—n . y-ﬂn Q" gn
n= n—=

— 7ka (n[—mg—l P + U)k ,
it suffices to prove that

QFoff= > Bl (e Mo @ T o+ ) o ) (Br(—v1R) f).
veQpmt—m

Since (" Q7 1+ v) oyt =t 0 (271 9 + v)X and

Q'3+ 0)(Br(—v]p) ) = Br(l—v]pQ' of
(which follows from Lemma 3.1), the problem reduces to proving
f= 2 BrI@ " oy M (Br(—v]R) ).
TeOR [rt—m
But this can be deduced from Lemma 3.1 and Lemma 3.3.
Lemma 3.4. Ifo, : O — C, are locally analytic functions, then mq omg = mqg.

Proof. We can choose ¢ sufficiently large, so that the same value can be used to
define my (f) and mg(f). Since vlo <p£ = 1, the equality in the lemma reduces to
the expression of the product of two power series. U

Lemma 3.5.
o my =1id.
 If U is a compact open subset of O, then Resy = my,,.
o IfAeCp, then m) o = Amyg.
® YgOMay =Myl 0, (ar'x) © Py
. YoMy = Maaaa) 0 V-
e Foranya € Of, we have 6, 0mq =m 4415 © Oa.
. QREFP is stable under my,.

Proof. These are easy consequences of the definition of m,. (]
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Remark 3.6. The notation m, stands for “multiply by «”: for any u € 9(Opf, C,)
we have mqk*(F,) = k*(Fy,), where o is the distribution such that (au)(f) =
w(af) for all locally F-analytic function f.

The operator m, has been defined over %, using a period 2 € C, that is
transcendental over F'. However, in some cases, it is possible to construct related
operators over Rz, for L smaller than C,. This is done using the following lemma.

Lemma 3.7. Let o be in G . Consider the action of o over R¢, given by

foup) =Y ol if fup) =Y ault€Re,.

neZ neZ
o _ o _ Xg(0) |
Then my ()7 =mg(f°) for B(x) =0 |« (a)
Proof. This can be deduced easily from the definition of m, and the action of o
on 2. U

3C. The L[T]-module 5 (8)?=°. Lets: F* — L* be a locally F-analytic char-
acter. Then the map x — 10; (x)8(x) is locally analytic on Op. Thus, we have an
operator mloX s on %I;p.

Lemma 3.8. Let f be in Ry. Ifmlox,g(f) Znez anUy € gi@ , the coefficients
a, are all on the same line of the L- véctor space C,. Moreover, thls line does not
depend on f.

Proof. Let o be in G. From Lemma 3.7 and Lemma 3.5 we see that

o Xr(0)
Mg s(f) =5<X;ﬂ(0)>mloéa<f>,

and thus o (a,) = 8( oGl )an for all n.
XGn(0)

The Ax—Sen-Tate theorem (see [Ax 1970] or [Le Borgne 2010], for example)
says that CSL = L. Hence,

xz(0)

:z €Cp:0(2) :S(XG,H(U))Z forall o € GL}

is an L-vector subspace of C, with dimension O or 1, which proves the lemma. []

Since
mlo;(g om10;5_1 = ResO; =l—g 0

is not null, there is a unique L-line in C,, (which depends only on §) in which all
the coefficients of the series my X(;( ), for f € Ry, lie. Choose some nonzero as
on this line.
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Since ¢, 0 omy, s =mi
F

_ c . =0
2O 10;3 =0 and ¢, is injective, mlo;g(f) is in QRCP .

Lemma 3.9. Define
M; :QRZZO — Qtfzo, fe atg_lmlo;a(f)-
(These maps are defined up to homothety, with ratio in L, because of the choice of
constants as).
o M, is a homothety (with ratio in L™) of%%:().
o Ms, o Ms, = Ms,s,, up to homothety.
o M5 is a bijection, and its inverse is Ms—1 up to homothety.
e Forally e ', we have §(y)y o Ms = Mso y.
. (%z)‘/’zo is stable under M.
Proof. This follows from Lemma 3.5 and the equalities
ImResy« = KerReszo, = %g:o. O
If § is in $4n(L), we put R, (8) =R (8)/R ] (8). Since R} (8) is ¢, , v, T-stable,
%R, (8) also has ¢, ¥, I'-actions.
Lemma 3.10. We have an exact sequence
0— RV = R (V" - R, (6)V" — 0.
Proof. This follows from the snake lemma and the surjectivity of the map
Vi RE(S) = R (). O
Observe that %, (8)V=" = R) =" ¢; and R (5)?=0 = R])V=" ¢5. As ¥
commutes with I, R (8)V=0, QRZ (8)¥=% and R, (8)¥Y=0 are all I'-invariant.

Proposition 3.11. Let 8; and &, be two locally F-analytic characters F* — L*.
Then as L[T')-modules, Ry (8;)V=0 is isomorphic to Ry (82)V=0, 97{2(81)‘#:0 is
isomorphic to QRI (82)Y=°, and R, (81)¥=0 is isomorphic to R, (82)V=0.

Proof. All of the isomorphisms in question are induced by M 5718, ([
Proposition 3.12. The map 0 induces I"-equivariant isomorphisms

(R (3)V ™" — (R (x8),

REENV™ — @ (x8)" =,

(R @)V — @R (x8)" .

Proof. We first show that the maps in question are bijective. For this we only need
to consider the case of § = 1. Since Kerd = L, 9 is injective on 9{%:0. For any
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Z € 9{%:0, Res(z) = (¢/m)Res(¥(z)) = 0. Thus by Proposition 2.12 there exists
7/ € Ry such that 37’ = z. As d(Y(Z)) = %w(az/) = 0, we have ¥ (z) = ¢ for
some c € L. Thenz —c € QRKZO and 9(z' — ¢) = z. This shows that the map
Y =" — #Y=" is bijective. It is clear that, for any z € %Y =", 9z € &} if and only
if z € ®}. Thus the restriction 3 : (R})Y=0 — (®])¥=" and the induced map
3: RV — R,V are also bijective.
That these isomorphisms are ["-equivariant follows from Lemma 2.11. ([
Put
S5 =Ry (§)T=1V=0. (3-3)

As before, let V; be the operator on QRZF or Ry such that (Vsa)es = V(aes), i.e.,
Vs =10 + ws. The set 971;(8) / VSQRX (8) also admits actions of I', ¢, and . Put
Ty := (R} (8)/VsR] (8) =V=".

Both S5 and T are L-vector spaces and only depend on §|px.

Lemma 3.13. S5 = 97{2(8)‘/’:0’%:0’ P=1. that is, S5 coincides with the set of

[-invariant solutions of Vsz =0in R, (8)V=0,

Proof. In fact, if z e R (8)'=!, then Vsz = 0. O

Corollary 3.14. dim; Ss = dim; S| and dim; Ty = dimy T} for all § € $,,(L).

Proof. This follows directly from Proposition 3.11. ([

Corollary 3.15. The map z +— 0"z induces isomorphisms Ss — Sxns and Ts — Tyns.

Proof. This follows directly from Proposition 3.12. ([
We determine dim;, S5 and dim;, T5 below.

Lemma 3.16. The map Vs induces an injection Vs : S5 — Tj.

Proof. By Proposition 3.11 we only need to consider the case of § = 1.

Let z be an element of S;. Let Z € QRKZO be a lifting of z. By Lemma 3.13, Vz is
in R;. We show that the image of VZ in R} /VR] belongs to T;. Since ¥ (Z) =0,
¥ (VZ) =V(¥(2)) =0. For any y €T there exists a,, € %{ such that yz =2 +a,.
Thus ¥ (VZ) = VZ + Va,. Hence the image of 7 in R} /VR] (8) is fixed by T.
Furthermore, the image only depends on z: if 7' € 97{{:0 is another lifting of z, then
V(' —2)isin V?RZ. Therefore we obtain a map V : §; — Tj.

We prove that V is injective. Suppose that z € S; satisfies Vz = 0. Let 7 € %f:o
be a lifting of z. Since V7 is in VR, there exists y € 97{2“ such that Vy = Vz.
Thus V(Z — y) =0. Then Z — y is in L, which implies that 7 € ], or equivalently
z=0. O

Lemma 3.17. dim; T; = 1.
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Proof. Note that T} = (%z /%zt]_-)rzl"/’zo. As 9{{ is a Fréchet—Stein algebra, from
the decomposition of the ideal (¢-) given by Corollary 1.2 we obtain an isomorphism

1R R S RE /() x [ [R5 /(02(0)). (3-4)

n>1

The operator ¥ induces maps
Vo R/ leup) = R /Rfur  and i, RE /(9 (Q) — R /(95 (Q)),

for n > 1. Thus j (R} /R t-)"=1V=%) is exactly the subset of the codomain of
(3-4) consisting of (y,)n=0 such that yo € (R} /([T ]=(ur))", ¥o(y0) =0, and

yn € QT /@)@, Yu(ya) =0, foralln>1.

If n > 1, then %Jg /9y (Q) is a finite extension of F and the action of I' factors
through the whole Galois group of this extension. Thus (97{ / (goq O =F and
R/ (@p (@) =L. Since Y, (a) =aforany a € L, (R /(¢ (Q)" Nker(¥,) =
for any n > 1. Similarly (R} /([ 1-u))" = R} /)" x (RF/(0)F has
dimension 2 over L. As ¥(1) =1 and the image E’RJLF /%Zu}_ of vy has dimension 1
over L, the kernel of ]+ J (UL )T is of dimension 1. It follows that 77 =

(R} R} 1) =1¥=0 is of dimension 1. O
Corollary 3.18. dim; S; = 1.
Proof. The map V injects S into 77 with image of dimension 1. ]

Remark 3.19. If z € T; is nonzero, then any lifting z € 97i+ of z is not in uFQRJLr,
or equivalently z|,,.—o # 0. We only need to Verlfy this for the special Lubin—Tate
group. In this case, ?R*/([Tr Ir(uz)) = @ Luf We have

(%z/([ﬂ];(uf))) =L® Lu}i_-_

Indeed, an element of QR+ /(1 (uz)) is fixed by I" if and only if it is fixed by the

operators z — 0 (2) w1th$ € g—1; but oz (uy) =[§] (u]_-) =&uyr,s00¢ (u]_-) —S’u]_-
for any i € N. Then (R} /([ ] () =1=0= L. 4" = (1 — g)7/q).

Proposition 3.20. For any 8 € $,,(L), dim; S5 = dim; Ts = 1 and the map Vs is
an isomorphism.

Proof. Use Corollary 3.14, Lemma 3.16, Lemma 3.17 and Corollary 3.18. ([

4. Cohomology theories for (¢4, I')-modules

For a (¢4, I')-module D over R, the (¢4, I')-module structure induces an action of
the semigroup G+ := <,0£>J x I" on D. Following [Colmez 2010a] we define H*(D)
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as the cohomology of the semigroup G*. Let C*(G™, D) be the complex
0 C%GT, D)L c'(GT, D) B

where C°(G*, D) = D, C"(G™, D) for n > 1 is the set of continuous functions
from (G)" to D, and d,, 1 is the differential

dpnt106(80s -+, 8n) =

g0-c(gn, s &)+ Y (=D e, -, gigitt, - g) + (=1 e(go, - gnm).
i=1

Then H (D) = H' (C*(G™, D)).

If Dy and D; are (¢,, I')-modules over %, we use Ext(Dy, D) to denote
the set, in fact an L-vector space, of extensions of D; by D in the category of
(¢4, I')-modules over R .

We construct a natural map OP :Ext(®R., D) — HY(D) for any (¢4, I')-module
D. Let D be an extension of Rp by D. Lete € D be a lifting of 1 € ;. Then
g+ g(e)—e, g€ GT,isa l-cocycle, and induces an element of HY(D) independent
of the choice of e. Thus we obtain the desired map

®% :Ext(@®., D) — H'(D).
Proposition 4.1. For any (¢4, I')-module D over R, OP is an isomorphism.

Proof. Let D be an extension of R, by D in the category of (¢,, I')-modules
whose image under ® is zero. Let e € Dbea lifting of 1 € R;. As the image
of g+ g(e) —e, g € GT,in H' (D) is zero, there exists some d € D such that
(g—De=(g—1d forall g € G™'. Then g(e —d) =e —d forall g € GT. Thus
D=DoR, (e —d) as a (¢,, I')-module. This proves the injectivity of OP. Next
we prove the surjectivity of ®@”. Given a 1-cocycle g — ¢(g) € D, correspondingly
we can extend the (¢,, I')-module structure on D to the R -module D=D DRLe
such that ¢, (e) =e+c(¢,) and y(e) =e+c(y) fory €I O

If Dy and D; are O p-analytic (¢,,I")-modules over R, we use Exty, (D1, D3) to
denote the L-vector space of extensions of D by D, in the category of O p-analytic
(¢4, I')-modules over ;. We will introduce another cohomology theory H; (—),
wherein for any Op-analytic (¢, I')-module D the first cohomology group H) (D)
coincides with Ext,, (R, D).

If D is Op-analytic, we consider the complex

¢, v0): 0-DLpepipo,
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where fi: D — D@ D is the map m +— ((¢; —1)m, Vm) and fo: D® D — D is
(m,n)— Vm—(p,—Dn. As fi and f; are I'-equivariant, I" acts on the cohomology
groups H;q’V(D) =H' (Cy,w(D)),i=0,1,2. Put H! (D) := H’ V(D)F

By a simple calculation we obtain

H"(D) = Hy,(D) = D#="=1,

Note that D%=! is finite-dimensional over L, and so is H(D). If D is étale and if
V is the L-linear Galois representation of G attached to D, then

H(D) = H)(D) = H*(GF, V) = V",

We introduce some convenient notation. Put Z1 V(D) =ker( f,) and BY (D) :=
im( f1). For any (m, ny) and (m,, ny) in Z V(D) we write (mq, ny) ~ (my, ny)
if (my—mp,ny—ny) € B! (D). Put

Z' (D) :={(m,n) € Z;,q,V(D) : (m, n) ~ y(m,n) for any y € I'}.

Then H} (D) = Z'(D)/B'(D).

Let D be an Op-analytic extension of R by D. Let e € D be a lifting of
1 € Rp. Then ((p;, — 1)e,Vpe) belongs to ZY(D) and induces an element of
H] (D) independent of the choice of e. In this way we obtain a map

OF : Exty(Rr, D) — H) (D).

Theorem 4.2 (= Theorem 0.1). For any Op-analytic (¢4, I')-module D over R,
@D is an isomorphism.

The proof below is due to the referee and is much simpler than that in our original
version.

Proof. First we show that ®F is injective. Let D be an Op-analytic extension of
%R by D whose image under @an is zero. Let e € D be a lifting of 1 € R. As the
image of ((¢, — e, Vpe) in H;qﬁv(D) is zero, there exists some d € D such that
(¢ — 1)e = (¢, — 1)d and Ve = Vzd. Then e —d is in D%="Y=0, The I'-action
on D¥=1Y=0 jg locally constant and thus is semisimple. So 1 € R has a lifting
¢ € D¥=1V=0 fixed by I". This proves the injectivity of ®2

Next we prove the surjectivity of ©L2

Let z be in Haln(D) and let (x, y) represent z, so that Vx = (¢, — 1)y. The
invariance of z by I" ensures the existence of y, € D for each o € I' such that
(0 —1)(x,y) = ((p; — Dy, Vys). As Y, is unique up to an element of D¥=1V=0,
the 2-cocycle yo.r = yor — 0 yr — Yo takes values in D¥=1V=0_f 7 =0, then there
exists a € D such that x = (¢, — 1)a and y = Va. We have V(y, — (o0 — 1)a) =0.
In other words, we can write y, = (6 — 1)a + a, with a, € D%:=1V=0_ Then
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Yo.r =0t —0a; —d, and thus y, , is a coboundary. So we obtain a map Haln(D) —
H2(T, D¥a=1V=0),

We will show that the image of z by this map is zero. Fix a basis {ey, ..., e4} of
D over Ry. Let r > 0 be sufficiently small such that the matrices of ¢, and o € I"
relative to {e;}_, are all in GLd(%]LO’r]). Put D101 = @le %]Lo’r]ei; if s € (0, 7]
put D1 = @?:1 %[L“]e,-. Then D1%"1 and D!*"1 are stable by I". As the matrix of
@, is invertible in My(€1"), (g, (e:)}L_, is also a basis of DI®’1. Shrinking r if
necessary we may assume that ¢, maps D51 to DIs/4:7/4]; we may also suppose
that x and y are in D'*’], and that t € €}". By the relation V = 7,9 on €},
Lemma 2.10 and the fact that V is a differential operator, that is, satisfies a relation
similar to (1-3), we can show that the action of I" induces a bounded infinitesimal
action V on the Banach space D!*"1. We leave this to the reader. Let us denote
£(0) =log(xx(0)). For o close enough to 1 (depending on D and s, r) the series
of operators

2 3
E@0) =)+ v+ L0 v
converges on D'’ and also on DI*/¢"/41 Note that for o close enough to 1 we
have o = exp(£(c)V) on DI/4-7/41 Let I be an open subgroup of I" such that for
o € I'’ the above two facts hold. Then for o € I'" we have

(g —D(E(0)y) = E(0)(¢g—1)y=E(0)Vx=VE(o)x = (c — Dx. (4-1)
Note that ¢, (E(0)y) is in D1$/4:7/4] So by (4-1) we have
E(o)y € pB/arial A pls:rl — pls/q.r

if 5 is chosen such that s < r/g. Doing this repeatedly we will obtain E(c)y € D101,
Taking y, = E(0)y for 0 € I'" we will have y, ; =0 for o, T € I'". In other words,
the restriction to I'” of the image of z in H>(I", D%«='V=0) is 0. Since I'/ I"’ is finite
and D¥=1V=0 is a Q-vector space, the image of z is itself 0. So we can modify
yo by an element of D%='V=0 50 that vy, , is identically 0. But this means that
(0 —1Dy: = (t — 1)ys, so the 1-cocycle ¢, — x, 0 > y, defines an element of
H'(D), hence also an extension of R, by D.

We will show that the resulting extension in fact belongs to Ext. (®,, D). AsT is
locally constant on D¥="V=0_shrinking I'’ if necessary we may assume that I'” acts
trivially on D¥='V=0_ Then o > y, — E(0)y is a continuous homomorphism from
I'" to D¥=1V=0_ Note that any continuous homomorphism from I’ to D%¢=1V=0
can be extended to I'. Thus y, — E(0)y = A(c) for some A € Hom(I", D%<=1V=0)
and all o € I'". If S is a set of representatives of I'/I"” in I', the map

1
Tg =
S |F:F/|ZG

ogeS
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is the identity on H. (D) and a projection from D%=!V=0to H°(D); moreover it
commutes with ¢,, V and I'. This means that we can apply Ts to (x, y) and y,;
then we have y, — E(0)y = A(0) for some A € Hom(I', H(D)) and all o € I
As 0 — E(0)y is analytic, the extension in question is Op-analytic. U

As above, let Hom(T", H%(D)) be the set of continuous homomorphisms of
groups from I" to H°(D). An element & : ' — H°(D) of this set is said to be
locally analytic it h(exp(ap)) = ah(exp 8) for all a € Of and B € Liel". Let
Hom,, (I, H°(D)) be the subset of Hom(I", H(D)) consisting of locally analytic
homomorphisms. We have natural injections

Hom,, (I', H%(D)) — Ext. (®;, D) and Hom(T, H’(D)) — Ext' (%, D).

Theorem 4.3. Assume that D is an Op-analytic (¢,, I')-module over R . Then we
have an exact sequence

0 — Hom,, (I', H(D)) — Hom(I'", H*(D))®Ext. (®,, D) — Ext' (%, D) — 0.

For the proof we introduce an auxiliary cohomology theory. Let y be an element
of T of infinite order, i.e., log(x-(y)) # 0. We consider the complex

Cs, (D) 0->DE peDE Do,

where g1 : D — D® D is the map m — ((¢, — Dm, (y —1)m) and g, : D& D — D
is (m,n) = (y — Dm — (¢, — Dn. As gy and g are I'-equivariant, I acts on

(D) = H"(C' ,(D)),i=0,1,2. Put Hy, (D) := ;q,y(D)F. A simple
calculatlon shows that H® (D)= H° H,, (D).

an,y \’

For any y € I' we use (y) to denote the closed subgroup of I' topologically
generated by y. If y is of infinite order and if D is an % -module together
with a semilinear (y)-action, let V, be the operator on D that can be written as
lim7 (log(y")/log(xx(y’))) formally, where y’ runs through all elements of )
with log x(y") # 0. (For a precise definition we only need to imitate the definition
of V.)

Let D be an Op-analytic extension of ®; by D. Let e € D be a lifting of
1 € R. Then ((¢; — De, (y — D)e) induces an element of Haln },(D) independent
of the choice of e. This yields a map @an’y tExtan (Rr, D) - Hy, y(D) Given
an element of Haln (D), we can attach to it an extension D of %y by D in the
category of free R -modules of finite rank together with semilinear actions of ¢,
and {y). Let e € D be alifting of 1 € %, Then ((¢, — 1)e,V,e) belongs to Z' (D)
and 1nduces an element of H! (D) 1ndependent of the choice of e. This gives a map
T£ v Han y(D) — H]} (D). Observe that T an y© @31 y = = OP By an argument

similar to the proof of the injectivity of ®2 we can show that both @31 , and

any
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b ., are injective. Hence it follows from Theorem 4.2 that @an , and ng y
isomorphisms.

If ¢ is a 1-cocycle representing an element z of H (D), then (c(@q), c(y))
induces an element in Haln , (D) which only depends on z. This yields a map
TD HY(D)— H an, y(D) Hence, ®dn ! :Exty (R, D) —> H an, V(D) extends to a
map Ext(Rr, D) — Haln , (D), which will also be denoted by @an - We have the
following commutative diagram:

Ext(®., D) H'(D)

b,
\ lTVD (4-2)

Extan(Rr, D) —— — D)

Fan,y

any(

The composition (®D y‘l) I'o TD ©P is a projection from Ext(®, D) to
Extan (R, D), which depends ony.

Proof of Theorem 4.3. We only need to prove the surjectivity of
Hom(I", H'(D)) ® Ext. (®,, D) — Ext' (%, D).

Let D be in Ext! (R, D). Without loss of generality we may assume that the
image of D by the projection (631’}/,1)_1 o YP o®P is zero. Lete € D be
a lifting of 1 € R;. Then let ¢ be the 1-cocycle defined by ¢, + (¢, — De,
o+ (0 — 1)e for o € T, so that ¢, the class of ¢ in H!(D), corresponds to D. So
the image of ¢ by the map T)f’ is zero. This means that there exists d € D such that
(g —Dd = c(py) and (y —1)d = c(y). Replacing e by e —d, we may assume that
c(¢q) =c(y) =0. Then for any o € I', we have (¢, — )c(0) = (0 — D)c(py) =0
and (y — Dec(o) = (6 — 1)c(y) = 0. This means that c(o') € D%=17=!_ Note that
M := D%=17r=1 {5 of finite rank over L. We write M = H°(D) & @j M; as a
I'-module, where each M; is an irreducible I'-module. Write ¢ = ¢'+ 3, ¢; by
this decomposition. Observe that ¢’ and c; are all 1-cocycles. As M; is irreducible
and the I"-action on M| is nontrivial, there exists some y; € I" such that y; — 1 is
invertible on M. Then there exists m; € M; such that ¢;(y;) = (y; — Dm;. A
simple calculation shows that cj(0) = (o0 — 1)m; for all 0 € I". Replacing e by
e— Zj m j, we may assume that ¢ =¢’. Then c(¢,) =0 and ¢|r is a homomorphism
from I' to H(D). U

Corollary 4.4 (= Theorem 0.2). Ext,, (R, D) is of codimension
([F : Qp]— 1)dim; H°(D)

in Ext(Rp, D). In particular, ifHO(D) =0, then Exty, (R, D) = Ext(R, D); in
other words, all extensions of Ry by D are Op-analytic.
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Proof. This follows from Theorem 4.3 and the equalities dim; Hom(I", H O(D)) =
[F :Q,]dim; H°(D) and dim; Hom,,(I", H%(D)) = dim; H*(D). O

5. Computation of H] (§) and H'(5)

In the case of F =Q,, Colmez [2008] computed H ! for not necessarily étale (¢, I')-
modules of rank 1 over the Robba ring. In this case, Liu [2008] computed H? for
this kind of (¢, I')-modules, and used it and Colmez’s result to build analogues, for
not necessarily étale (¢, I')-modules over the Robba ring, of the Euler—Poincaré
characteristic formula and Tate local duality. Later, Chenevier [2013] obtained the
Euler—Poincaré characteristic formula for families of triangulable (¢, I')-modules
and some related results.

In this section we compute H) (8) = HL (R (8)) (for § € $,,(L)) and H'(§) =
H'(R1(8)) (for § € $(L)) following Colmez’s approach. In Sections 5B and 5E
we assume that § is in $(L); in Sections 5C, 5D and 5F we assume that § is in
Fan(L).

S5A. Preliminary lemmas.
Lemma5.1. (a) Ifa € L™ isnotof the formn i €N, thenap, —1: R} — R}
is an isomorphism.

() Ifa =~ with i € N, then the kernel of apy —1: QRZ — QRZ is L - t}_-, and
ac QR“LL is in the image of ag, — 1 if and only ifa"a|uf=0 =0. Further, ag, —1
is bijective on the subset {a € 9]%}5 : 8ia|uf:0 =0}.

Proof. The argument is similar to the proof of [Colmez 2008, Lemma A.1]. If
k > —vy;(a), then — :ﬁf’)(ozgoq)” is the continuous inverse of ag, — 1 on uﬁ%z
The assertions follow from the fact that Q{JLF = @f;& L. t_;_- &) u}‘:%z and the formula
¢q(ty-) = 7't;.. We just need to remark that 8'al,_—o = 0 if and only if a is in
@By Lt euit' ], O
Lemma 5.2. If o € L satisfies v;(a) <1 — Ux (q), then for any b € %z there exists
c €€} suchthatb' = b — (g, — Dc is in (€})V=0.

Proof. By Proposition 2.4(d), c = ,j:o? a~Kyk(b) is convergent in ‘éz It is easy
to check that «c — ¥ (¢) = ¥ (b), which proves the lemma. O
Corollary 5.3. If « € L satisfies v; (@) < 1 — v;(q), then for any b € Ry there
exists c € Ry, such that b’ = b — (apy — 1)cisin (%Z)‘”ZO.

Proof. Let k be an integer > —v, (o). By Lemma 5.1, there exists ¢; € R such
that b — (ag, — 1)cy is of the form Zi<k aiu} and thus is in %2 Then we apply
Lemma 5.2. (|
Lemma 5.4. Ifa € L satisfies v, (@) < 1—v,(q), and if 7 € R, satisfies Y (z)—az €
RY, then z € R
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Proof. Write z in the form ), _, akué‘t andputy =) ,__, akuﬁ € %2 If y 40,
multiplying z by a scalar in L we may suppose that inf;<_; v, (ax) = 0. Then

y—a 'y =a ez =y @)+ ) ale” Y wup) —uf)
k>0

belongs to ng N QRZF = O_[[uz]l. But this is a contradiction since y — a ()=
y mod 7. Hence y =0. ([

Corollary 5.5. If a € L satisfies vz (o) < 1 —v;(q) and if z € Ry, is such that
(apy — Dz € QRf=O, then z is in 9{2’

Proof. We have ¥ (z) —az =¥ (z — ag,(z)) =0. Then we apply Lemma 5.4. [J

5B. Computation of H°(§). Recall that if § € $,,(L), then HO, (8) = H(S).
Proposition 5.6. Let § be in $(L).
(a) If § is not of the form x~ withi € N, then H°(8) = 0.
(b) Ifi € N, then H(x~") = Ltk
Proof. Observe that
RL (&)= = @)= e5 =0,

where R (8) = R (8)/R} (8). Thus Ry (8)%=1T=1 = RT(8)%=1T=1 1t §(mr) is
not of the form %, with i € N, by Lemma 5.1(a) we have QRZF((S)“"I:] =0 and so

RE(8)#=1T=1 = 0. If §() = 7, then
e , _ Lti.es ifs=x""
Rt(s p=1,I'=1 _ Lil.e r=1 _ r ,
() (Lt -es) 0 otherwise,

as desired. O

Corollary 5.7. If 5| and 8, are two different characters in $(L), then Ry (8;) is not
isomorphic to Ry (87).

Proof. We only need to show that R (8,6, 1) is not isomorphic to R;. By
Proposition 5.6, Ry (8168, 1 is not generated by H(8 165 by, but Ry is generated by
H°(1). Thus %L(Slc?z_l) is not isomorphic to Ry . O

5C. Computation of Haln(S)for 8 € $an(L) with v, (6(r)) <1—v;(q). Until the
end of Section 5 we will write %/ (§) as R, with the twisted (¢,, I')-action given
by

Pg:6(x) =8(M)pg(x),  04;5(x) = (a)oa(x).

Recall that Vs = 10 + ws. Write §(0,) = é(a).
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Lemma 5.8. Suppose that § € $,,(L) satisfies v;(5(w)) < 1 — v, (q). For any
(a,b) € Z;q’v((S), there exists (m,n) € zjaq’v((S) with m € (€;)V=0 and n € R}
such that (a, b) ~ (m, n).

Proof. As v;(6()) < 1—v,(q), by Corollary 5.3 there exists ¢ € Ry such that
m=a— (§(m)p, — Dc

is in (€])¥=0. Putn = b — Vsc. Then (m, n) i 1s 1n z1 ,v(8) and (m,n) ~ (a, b). As
(0(m)pg — )n = Vsm = t-0m + wsm is in QR by Corollary 5.5, n is in 97i+ U
Lemma 5.9. Suppose that v, (8()) < 1 — v, (q) and 8 is not of the form x . Let
(m, n) be in Z(})q’v(S) with m € (%2)11’:0 andn € QRZF Then (m, n) is in B'(8) if
and only if

emEe€ (%zr)«//zo when 8 () is not of the form n7ieN;

eme€ (%ZF)I/’ZO and 8im|uF:0 = 0 when 8(n) = n~! and ws # —i for some

ieN;

o mE€E (%J[)wzo and al’m|uF:0 = 8in|uf:0 =0 when 8(n) =~ and ws = —i

for some i € N.
Proof. We only prove the assertion for the case that §(7) = 7~ and ws # —i for
some i € N. The arguments for the other two cases are similar.

If (m, n) is in B'(8), then there exists z € R, such that (§(;r)p, — 1)z =m and
Vsz = n. Since m is in 97?,1/’ , by Corollary 5.5 we have z € 97{+. It follows that m
is in % N} =€} . By Lemma 5.1(b), we have 8'm,, o = 0.

Now we assume that m is in %ZF and aim|uf=0 = 0. By Lemma 5.1(b), there
exists z € %z with 8iz|uf:o = 0 such that (§(7)¢, — 1)z =m. Then

(8(m)pg — D(Vsz —n) = Vs(§(m)pg — Dz — (8(m)gg — Dn
= Vsm — (§(m)py, — n =0.
Again by Lemma 5.1(b), we have Vsz —n = ¢ t]’E for some ¢ € L. Put 7/ =

z— ct}/(w(g +1i). Then (8(w)p, — 1)z’ = m and Vsz’ = n. Hence (m, n) is in
BL($). O

Recall that S5 = % (§)"=1V=0,
Proposition 5.10. Suppose that v; (5()) <1 —v;(q).

(a) If 8 is not of the form x ™', then Haln (8) is isomorphic to the L-vector space Ss
and is 1-dimensional.

(b) If§ =x", then H, ! 1 (8) is 2-dimensional over L and is generated by the images
of (¢, 0) and (0. t&).
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Proof. For (a) we only consider the case that §(7) = 7~ and ws = —i for some
i € N. The arguments for the other cases are similar. As § # x~/, there exists an
element y; € I' of infinite order such that §(y;) # Xf(yl)_i .

We give two useful facts: for any z € 97%2’, aizlufzo =0 if and only if

" G(1)v1 — Dzlu—0 =0;

if 8"z|ufzo =0, then 3/ (§(y)y — l)zlufzo = 0 for any y € I'. Both of these two
facts follow from Lemma 5.1(b). We will use them freely below.

Let (m, n) be in Z'(8) with m € (%Z)‘/’ZO and n € 97%{ For any y € I, since
y(m,n) — (m,n) € B'(8), by Lemma 5.9, (§(y)y — l)m is in R ; i.e., the image
of m in R (8) belongs to S;.

We will show that, for any m € S, there exists a lifting m € (%2)11':0 of m such
that 3'(8(y)y — Dmly,—o =0 forall y e T. Let m’ € (%2)‘/’=0 be an arbitrary
lifting of m. Assume that d* (6(y1)y1 — l)m/|,,F=o =c. Put

;1 cty

13y xz(y)' —1

Then §' byDy1—Dm |“]-':O =0 and thus 8’ Vsm |“f=0 =0. Hence, by Lemma 5.1(b)
there exists n € Qtzr with ain|uf:0 = 0 such that (§ ()@, — 1)n = Vsm. This means
that (m, n) € Z;;q,v (8). For any y €T, since

Gy — DEG)Y — Dmly—0 =" @)y — D)V — Dmly,.—0 =0,

we have 3" (8(y)y — l)mlufzo =0. In a word, for any y € I', (6(y)y — )m is
in % and ' (8(y)y — Dmly.—o = 8'(8(y)y — Dnly,—o = 0. This means that
y(m,n) — (m, n) is in B'(8) for any y € I'. In other words, (m, n) is in Z'(8).

Now let (m1, n1) and (m3, ny) be two elements of Z'(8) with my, m, € (€] )¥V=0
and ny,ny € %Z By Lemma 5.9,

' (D) y1 — Dmiluy—=0 = 3" S (yD)y1 — Dmalu—o0 = ' S (y1)y1 — Dnilu,=o
= 9"y — Dnalu—0 =0.
Suppose that the image of m; in S5 coincides with that of m,, which implies that
mp—mjy € %JLF From

' (yny1 — Dmy —m)lu=0 =" (y)y1 — (1 —n2)lup=0 =0

we obtain 8’ (m1 —m2)|u,=0 = 8" (11 —n2)lu,=0 = 0. Thus (my, n1) ~ (ma, na).

Combining all of the above discussions, we obtain an isomorphism Ss = H&ln (5).
Then by Proposition 3.20, dimy, Ha]n () =dim;, S5 = 1.
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Next we prove (b). Again let (m, n) be in Z'(8) withm € (%2)‘”:0 andn € QRZF
Then the image of m in R (§), denoted by m, is in Ss. We show that m in
fact belongs to (®})¥=0, i.e., m = 0. By Corollary 3.15, 3’ : S5 — S is an
isomorphism. So we only need to prove that the image of d'm in S is zero. By
Remark 3.19, it suffices to show that Vaim|ufzo =0. But Vd'm = 3" Vsm. Since
Vsm = (8()p, — Dn, by Lemma 5.1(b) we have 8’V5m|uf=0 =0.

Write m = at- +m’ with a € L and m’ € R} satisfying 8im’|uf:0 = 0.
By Lemma 5.1(b) there exists z € % such that (§(m)¢, — 1)z = m’. Then
(m,n) ~ (at]’;, n — Vsz). Thus we may suppose that m = at}. Then

((m)@g — Dn = Vs(atp) =0

So, by Lemma 5.1(b), we have n = bt]ir for some b € L. Suppose that (at}, bt}) is in
B'(8). Then there exists z € R, such that (M, — Dz = at} and Vsz = bt]’;. So
Y (2)—8(m)z=v((1-8(m)py)z) = ¥ (—atr) € R} . By Lemma 5.4 we get z € R} .
By Lemma 5.1(b) again we have a = 0 and z € Lt. Then bt = Vsz = 0. O

5D. 9: H1 V(x‘16) — quv(6) and § : HL (x~18) - H] (5). Observe that,
if (m n) i< in zlq (x~18) (resp. B (x*ls)) then (dm, an) is in Z, ,v(8) (resp.

B'(8)). Thus we have a map 9 : v(x_1<3) — H1 v(5) Further the map is
["-equivariant and thus induces a map 8 (x 18) —> (8)
Put

Z;q,v(a) ={(m,n) € zéq,v(s) : Res(m) = Res(n) =0},
B'(8) := {(m, n) € B'(8) : Res(m) = Res(n) = 0}.
Then H,, (5) = Z,, (8)/B,, v() is a subspace of H, y(5).
Lemma 5.11. If§() #m/q or ws # 1, then for any (m, n) € Z(lpq’v(é), there exists
(my,ny) € Z;q’V(S) such that (m, n) ~ (m1, n1), and so Héq’v((S) = ﬁ}aq’v(é).

Proof. Let (m, n) be in Zéq’v(zS). Then Vsm = (8(m)p, — Dn. If §() #m/q, by
Proposition 2.13 and the definition of Res we have

Res(m —(6(m)py — 1)<Res(m)(8(((1:f)/%d—bifi)_;:>) =0.
Replacing (m, n) by
(m—((s(ﬂ)qu—l)(ReS(m)(S(((izgl—bfi)l;), n—Vs (RGS(m)((S(((i;/%(i—LE?)I;))
we may assume that Res(m) = 0. Then
(£8(r) — 1)Res(n) = Res((8()p, — 1)n) = Res(Vsm)
= Res(d(tzm) + (w5 — 1)m) = (w5 — 1)Res(m) =
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and so Res(n) = 0.
The argument for the case of ws # 1 is similar. U
Themap 9: H, o(x~'6)— H, (8) factorsthroughd: H) o(x~'8)— Hy o(),
since Resod = 0.
Lemma 5.12. (a) If () # m or ws # 1, then d : Héq’v(x_léi) — H;q,v(a) is
surjective.

(b) If §(r) =7 and ws = 1, then we have an exact sequence of I'-modules
H! o(x™16) 5 HL o(8) > L(x'8) — 0.

Proof. Let (m, n) be in Z 7! V(5) Then there exist m’ and n’ such that dm’ = m
and dn’ = n. Then V, 15m — (rr*15(n)<pq Dn' =cisin L. If §(r) # 7, we
replace n’ by n —|—c/(7r*18(n) —1). If ws # 1, we replace m’ by m’ — ¢/(ws — 1).
Then (m’,n’) is in Zéqu(x*&). This proves (a). When 5(71) = and ws = 1,
Vm — (¢4 — 1)n’ does not depend on the choice of m’ and n’. This induces a map

V(6) — L whose kernel is exactly BH1 V(x 18). We show that Hl v(5) — L
is sur]ectlve Put m’ =log(g, (ur)/ u]_-) A 51mple calculation shows that

() N +
Vm _( Gl () qu]) dur = (1 —q) mod uzR; .

Thus by Lemma 5.1(b) there exists n’ € uf% such that (9, —1)n' =Vm' — (1 —q).
Put m = 0m’ and n = dn’. Then (m, n) is in Z1 v(8), whose image in L is nonzero.
The I'-action on H H! (8) induces an action on L. From

(8(a)oa(m), 5<a>oa<n>) = (3(a™'8(a)aq(m)), d(a~"8(a)o,(n')))
and
V(a~'8(a)o,(m") — (g, — D(a '8(a)o,(n) = a~'8(a)o, (Vm' — (g, — D)
=a"'8(a)(1 — q) mod uzR;,

we see that the induced action comes from the character x ~'8. O
Sublemma 5.13. Leta, b be in L. If (a, b) is in qu)q’v(x_IB) but not in B (x~16),
then §(w) = m and ws = 1.

V._
Proof. Tf 8(rr) # 7, then (a,b) ~ (0,b— ——*° 4. So
a-18(m) -1

a-1§(m) —1 q T18(r) —1

=0.
V-1

As § ,wehave b - —————
s 8(m) # m, we have T80 —1

a = 0. Similarly, if ws # 1, then (a, b) is
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in Zéq’v(x_I(S) if and only if (a, b) ~ (0, 0). O
Recall that 8y is the character of F* such that 8u,.(77) = ¢! and 8um|O; =1.

Sublemma 5.14. The pair

1 10
(m,n):= (—log —(pq(ZF), £ uf)
q Ur Ur

induces a nonzero element of Ha]n (8unr)-

Proof. Note that m = (Sunr(7)@q — 1) loguz and n = Vlogu,. Thus (m,n) is in
Z(i)q,v((sunr)' For any y € I' we have y (m, n) ~ (m, n). Indeed,

y(m,n) — (m,n) = <(5um(7r)g0q —1)log Viuf) Vlog Viuf)).
F F

So (m, n) is in Z'(8unr). We show that (m, n) is not in B! (8,n;). Otherwise there
exists z € Ry such that m = (Synr(w)¢y, — 1)z and n = Vz. This implies that
V(oguyr —z) =0, or equivalently log ur — z is in L, a contradiction. ([
Corollary 5.15. If §(w) = n/q and ws = 1, then (é log(pq (uz)/uk), tz0ur/uz)
isin Z;)qu(x_l(S) but not in B'(x~18).
Lemma 5.16. (a) If 8() #m, 7w/q orif ws # 1, then d :Hqiq’v(x_lcS) — ﬁ;q’v(a)
is injective.
(b) If 6(w) = and ws = 1, then we have an exact sequence of T'-modules
_ _ _ 3 =
0= L' @ L8~ H) o(x7'6) > H), 4(8).
(¢) If §(mw) =n/q and ws = 1, then we have an exact sequence of I'-modules

0— L(x18) > HL o(x™18) > HY o(3).

Proof. Let (m, n) be in Z(Lq’v(x_l(ﬁ), and suppose that (3m, dn) € B'(8). Let z be
an element of R such that (§()@, — 1)z = dm and Vsz = dn. If Res(z) =0, then
there exists 7/ € R such that 9z’ =z. Then m — (8 (rr)rfl(pq —1)z andn—V, 157
arein {(a,b) :a,b e L}, ie., (m,n)isin B1(x~18) ® L(0, 1)@ L(l, 0).
If either 8 () # % or ws # 1, we always have Res(z) = 0. Indeed, this follows
from
(8(71)% — DRes(z) = Res((8(n)<pq — l)z) =Res(dm) =0

and
(ws — 1)Res(z) = Res(a(tfz) + (ws — l)z) = Res(Vsz) = Res(dn) = 0.

In the case of §(;r) = % and ws = 1, if z € L(dur/uz), then (m, n) is in
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L(0,1) ® L(1,0) @L<l log 22442). Eﬂz)
q ur Ur

Now our lemma follows from Sublemma 5.13 and Corollary 5.15. ([
Proposition 5.17. (a) If§(;w) £, w/q orif ws # 1, then
9: Hy o(x~'8) > Hy o(5)

is an isomorphism of I'-modules.

) If §() = and ws = 1, then we have an exact sequence of I'-modules
0> Lx ') @®L(x"'8)—> H, V(x*la) = H, v(8) = L(x~'8) - 0.
(¢) If () =m/q and ws = 1, then we have an exact sequence of I'-modules
_ _ 3 _ _
0— L(x"'8) —> H(;q’v(x 8 S H;q,V(S) > L") eLx"18) —o0.

Proof. Assertions (a) and (b) follow from Lemmas 5.11, 5.12 and 5.16. Based on
these lemmas, for (c) we only need to show that we have an exact sequence of
["-modules

0— H) () — H ()5 L&' @ Lx~'6) — 0,
where Res is induced by (m, n) — (Res(m), Res(n)), which is I'-equivariant by
Proposition 2.13. Here we prove this under the assumption that g is not a power
of m. We will see in Section 5F that it also holds without this assumption. Put
my = 1/ury. Then Vsm| =t 9(1/uz) + 1/uyr = 0(tx/uy) is in %JL’ As g is not
a power of 7, the map ¢, — 1 : R} — R is an isomorphism. Let n; be the
unique solution of (£ A2 Dny = tz0my +m; in 9R+ Then ¢y = (m1,ny) is in
Z1 V(8) and Res(ml,nl) = (1,0) # 0. For any £ € N we choose a root & of
Qg 1(Q) For any f(ur) € RT, the value of f at & is an element f(£,) in
LQr Fg By (3-4) there exists an element z € QRJ“ whose value at & is 1 ® log&,.
Put m, = tf_l(q_lgoq — 1) (loguy —z) and ny = d(logur — z). Then (m2, ny) is in
Z,, v(8) and Res(nz) = 1. O

Proposition 5.18. (a) If'§ # X, X8unr, then 3 : HL (x718) — H] (8) is an isomor-
phism.
®) If§=x,then 0 : Haln(x_I(S) — Haln((S) is zero, and dimj, Haln((S) =1.
(¢) If 8 = X8unr, then 8 : HL. (x~18) — H] (8) is zero, and dim; H] (8) = 2.
Proof. We apply Proposition 5.17. There is nothing to prove for the case that

8(w)#m, w/q or ws # 1. Combining the assertions in this case and Proposition 5.10
we obtain that dim,, H n(8unr) = 1. This fact is useful below.
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Next we consider the case of §(m7) = w/q and ws = 1. The argument for the
case of 6(;r) = and ws = 1 is similar

Let M be the image of 0 : V(16_15) — H (;q v (x). Then we have two short
exact sequences of ['-modules

0— L(x18) > HL o(x™18) > M — 0
and
0> M — H;q,v(a) —> L") L8 — 0.

We will show that taking I'-invariants yields two exact sequences

0— L' - HL"'6) > M" >0
and
0—>M" - HLG) - L 'HT @ Lx '8 — 0.

If the I'-actions on H (/}q v (x~'8) and H (jq v (8) are semisimple, then there is nothing
to prove. However we will avoid this by an alternative argument. It suffices to prove
the surjectivity of H, ¢(x~'&)" — M" and H) ()" — L' @ LGx1)".
The latter follows from the proof of Proposition 5.17. In fact, if § = x8yp;, then
(m1,ny) and (m2, n») constructed there are in Z'(8). Now let ¢ be any element
of M". Then the preimage d~!(Lc) is two-dimensional over L and I'-invariant.
From the definition of H > We obtain that the induced V-action on 3~ (Lc) is
zero and thus 3~ (Lc¢) is a semisimple ["-module, as wanted.

If § = x8unr, then dimy L(x~18)' = dim; H} (x718) = 1, and so M" = 0.
Thus 9 : HL (x718) — H] (8) is zero and dim; H} (§) = 2. If § # x8ynr, then
d : H1 (x_lé) — H! H,, (8) is an isomorphism since both Haln(x_lé) — M" and
MU — H, ! L (8) are 1somorphlsms [l

5E. Dimension of H'(8) for § € $(L).
Theorem 5.19. (= Theorem 0.3) Let § be in $,,(L).

(a) If § is not of the form x U withi € N, or the form X 8ynr With i € 74, then
H_ (8) and H'(8) are 1-dimensional over L.

(b) If § = x'8un with i € Z.,., then H) H,, (8) and H'(8) are 2-dimensional over L.

(c) If § = x~" with i € N, then H1 . (8) is 2-dimensional over L and H'(8) is
(d + 1)-dimensional over L, where d = [F : Q,].
Proof. The assertions for H\ () follow from Propositions 5.10 and 5.18. By
Proposition 5.6 we have
dimy %, (8)¥=1T=1 = 1 if$é =).c_’ withi e N,
0 otherwise.

So the assertions for H'!(8) come from those for Haln((S) and Corollary 4.4. O
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When § = x~% withi € N, Haln(é) is generated by the classes of (t]i;, 0) and
(0, t]’}). Let p; i =1,...,d) be a basis of Hom(T", Lt]i;). Then the class of the
1-cocycle co with co(@,) = t]‘: and ¢o|I" = 0, and the classes of 1-cocycles ¢; with
ci(pg) =0and ¢;|T = p; (i =1,...,d), form a basis of H'(8).

Theorem 5.20. (= Theorem 0.4) If 6 € $(L) is not locally F-analytic, then
H'(6) =0.
Proof. Asthemaps y—1,y €T, are null on H'(8), by the definition of H'!, so are the

maps dl'g, 5)(B), B € Liel" and the differences B~'dl"g, 5)(8) — B/~ 'dlq, 5 (B)-
Note that B~1dT'g, (5(8) — B'~'dT'g, 5)(B’) are Ry -linear on Ry (8). So

B~ 'dlg, 5)(B) — B~ g, 5)(B)

are multiplications by scalars in L, since B~'dTg, s (8)es — B~ 'dla, 5 (B )es
is in Les. If the intersection of their kernels is null, then the cohomology H'(§)
vanishes. Thus, either the intersection of their kernels is 0 and so the cohomology
vanishes, or they are all null and § is of the form x — x" for x close to 1 with
w= % for B close to 1 (i.e., § is locally F-analytic). ]

Remark 5.21. Suppose that [F : Q,] > 2. Let § # 1 be a character of F* with
3(m) € OF, and let L(8) be the L-representation of Gr induced by §. Suppose that
8 # X280y when [F : Q p] =2. Combining Theorem 5.19 and the Euler—Poincaré
characteristic formula [Tate 1963] we obtain that there exist Galois representations
in Ext(L, L(5)) that are not overconvergent. Theorem 5.20 tells us that if further §
is not locally analytic, then there is no nontrivial overconvergent extension of L
by L(6).

SF. The maps 1, : H'(8) —» H'(x7%8) and v an : HL (8) > HL (x7%5). Letk
be a positive integer.
Proposition 5.22. Let § be in $,,(L).

(@) Ifws ¢ {1 —k. ..., 0}, then HY (R(8)/15RL(8)) =0.

®) Ifws e {1—k,...,0}, then H&(%L(S)/IJIEQ{L(S)) is a 1-dimensional L-vector

space.

Proof. We have R} /t;%{ =R}/ (uh) x [[02, R /(<pg—1(Q))k_. As I'-modules,
RY/Wk) = @2y Lti- and R} /(92(Q)* = B\ (L ®F Fa)tg-. Thus as a I-
module, QRZ / t}@tz is isomorphic to @i-:(; (97)12r /%zt}-) ®r L. Note that the
natural map 9{2’ /%zt]’f. — R /%Ltjﬁ_ is surjective. Furthermore, two sequences
(¥n)n>0 and (z,)p>0 in QRZF/QRZM} X ]_[flozl %Z/(go;’_] (Q))k have the same image
in %L/%Lt]'é, if and only if there exists N > O such that y, =z, whenn > N.

Since the action of I" on (9{2r / thRZ)t} twisted by the character x ~ is smooth,
(a) follows.
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For (b) we only need to consider the case of ws = 0 and k = 1. The opera-
tor ¢, induces injections %“LL / ((p;’(Q)) — %Z / ((,0;”rl (Q)) denoted by ¢, ,. The
action of @, on Ry /Rpt- is given by @y (yn)n = (94.0(Yn))n+1. For any n > 0,
the I"-action on L ® F), factors through I'/ I',,, and the resulting I'/ I';,-module
L ®F F, is isomorphic to the regular one. Thus for any discrete character § of I,
dim; (L ®F Fn)F:‘S_1 =1 when 7 is sufficiently large. Then from the fact that the
@q.n (n > 1) are injective, we obtain dim;, (%L/t]__%L)an—‘,qua(n)—l =1. O

Corollary 5.23. Let § be in $,,(L).
@) ffws ¢ {1, ..., k}, then HY, (i7" R (8) /R (8)) = 0.

M) If ws € {1, ..., k}, then H;)n(t]?k%L (8)/R1(8)) is a 1-dimensional L-vector
space.

Note that R (x*8) is canonically isomorphic to 7 k%L (8). When k > 1, the
inclusion Ry (§) — t]_TkQRL((S) induces maps tx an : Haln((S) — Ha]n(x_kS) and ( :
H'(8) - H'(x7%8). If y e I is of infinite order, then we have this commutative
diagram:

H'(8) —> H'(x7*6)
jTefn.yoT;E jT'xksoTik(S (5'1)

oy
HL (8) —2 HL (x~*s).
Lemma 5.24. We have the exact sequence
0— HY(8) — HY(58) - HY (175 RL(8)/RL(8)) — HY(8) S Hy(x78).

Proof. From the short exact sequence

0— RL(S) = R (x*8) > Ry (x7*8) /R (8) = 0, (5-2)
we deduce an exact sequence
0— HY o) > HY o(x7™*8) = HY otz R1(85)/R.(5))

— H, g(8) — Hy y(x7*8). (5-3)

Being finite-dimensional, ng,v (8) and ng’v (x%8) are semisimple I'-modules;
since tz*R 1, (8) /R (8) is a semisimple ['-module, so is ng,v (t=" R (8) /R L (5)).

Hence, taking I'-invariants of each term in (5-3), we obtain the desired exact
sequence. U

Proposition 5.25. Let § be in $an(L), k € Z4. If ws ¢ {1, ..., k}, then iy an and i
are isomorphisms.
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Proof. We only prove the assertion for ¢ .. The proof of the assertion for ¢ is
similar. By Theorem 5.19, dim; H\ (8) = dim; H} (x7*8) when ws ¢ {1, ..., k}.
Combining Lemma 5.24 with the fact that Hegl(t];k%L (8)/RL(6)) = 0 and that
dim; H) (8) = dim; H} (x7%8), we obtain the assertion. d

We assign to any nonzero ¢ € Haln (8) an $-invariant in P'(L) = L U {oo}. In
the case of § = x % with k € N, put SB((at]’é, bt]’é)) =a/b. If § = x8uyy, then any
c € H] (8) can be written as

c=17"'((¢7 g = DAG, 1) + p(logur —2)), (LG (1, 1) + p(loguz — 2)))

with A, u € L. Here G(1,1) is an element of ®; which induces a basis of
(%L/Q{Ltjr)F and whose value at §, is 1 ® 1 € L ® F,, when n is large enough;
z is an element of R, whose value at &, is 1 ® log(&€,) € L Qf F,, for any n. We
put £(c) = —(er(qg —1)/q) - (A/). In the case of § = x*8yne With k > 2, for any
cE Haln(xkéunr), put £(c) = L(44-1(c)). In the case that § is not of the form xk
with k € N or the form x¥8,,, with k € 7, we put £(c) = oo.

Proposition 5.26. Let 6 be in $n(L), k € Z .

@ If wse{l,..., k}Yand if § #x"°, x"*8ynr, then . an and i are zero.

(b) If 8 = x"8ynr with 1 < ws <k, then iy an and v are surjective, and the kernel
Of tk.an is the 1-dimensional subspace {c € Haln((S) c=0o0r¥(c) =00}

(c) If 6 = x™s with 1 < ws < k, then iy an and v are injective, and the image of
lean 1S {c € Haln(x*ké) :c=0o0r%(c) =00}

Proof. We will use Lemma 5.24 frequently without mentioning it.

First we prove (a). From dim an(t]?k%L((S)/QRL (8)) = dimy, Haln((S) =1 and
Ha?n (x~*8) =0 we obtain the assertion for tk.an- The assertion for ¢4 follows from this
and the commutative diagram (5-1), where the two vertical maps are isomorphisms.

Next we prove (b). From HY (x7*8) = 0, dim; H)(tz*R1(8)/RL(8)) = 1,
dim;, Haln(é) =2, and dimy, Haln(x_ké) =1, we obtain the surjectivity of tx an. The
surjectivity of ¢ follows from this and the commutative diagram (5-1), where the
two vertical maps are isomorphisms. We show that if ¢ € Haln (8) satisfies £(c) = o0,
then t an(c) = 0. AS L(ty;—1,an(c)) = 00 and (g an = tk+1—w;,anlws—1,an, W€ reduce
to the case of § = x8yy,. In this case, ¢ = t]_Tl)L((q_l(pq -G, 1),VG(1, 1))
with & € L. Thus t1 a(c) = A((¢ "¢y — DG(1, 1), VG(1, 1)) ~ (0, 0). Hence
tk.an(c) = 0 for any integer k > 1.

Finally we prove (c). From the equalities H? (§) = 0 and dim; HO, (x*8) =
dim;, an (tr k@]tL (8)/R(8)) = 1, we obtain the injectivity of ; 4n. The injectivity
of ( follows from this and the commutative diagram (5-1), where the vertical map

Ta‘fn’y o T;E is an isomorphism. For the second assertion, let (2, n) be in Z!(x"»).



Triangulable Op-analytic (¢q,I)-modules of rank 2 2587

Then

ws—1

Lws—1(m, n) = (t° " "m, t}”a_]n) e Z'(x).

In other words, 8 (12°m) = V. (12>~ 'm) = (m o, — 1) (1~ 'n). Thus Res ()"~ 'n) =0
and there exists z € R such that 9z = t;rln or equivalently Vz = t}’an. It follows
that V.« (tr "z) = (V + (ws — k) (15 "°2) = 15"’ Vz = tkn. Thus

toan(m, n) = (tfm, tgn) ~ (tkm — (0" F g, — (15 "2), 0).

So we have tx an(m, n) = (atﬁ_w‘s, 0). If ty an(m, n) # 0, or equivalently a # 0, then
L(tk,an(m, n)) = oo. O

6. Triangulable (¢,, I')-modules of rank 2

Colmez [2008] classified 2-dimensional trianguline representations of the Galois
group Gq,. Generalizing his work, Nakamura [2009] classified 2-dimensional
trianguline representations of the Galois group of a p-adic local field that is finite
over Q.

In this section we classify triangulable O r-analytic (¢,, I')-modules of rank 2
following Colmez’s method. First we recall the definition.

Definition 6.1. A (¢,, I')-module over R, is called triangulable if there exists a
filtration of D consisting of (¢,, I')-submodules 0 = Dy C Dy C --- C Dy =D
such that D;/D;_ is free of rank 1 over R .

Note that if D is Op-analytic, then so is D;/D;_ for any i.

I£ 61,80 € $an (L), then Ext(R 1 (62),R 1 (81)) is isomorphic to Ext(Ry , R (8182_1))
or H' (8165 l). The isomorphism only depends on the choices of es,, ¢s, and e L
Thus it is unique up to a nonzero multiple and induces an isomorphism from
Proj (Ext(?]iL (82), R (8 1))) to Proj(H ! (610, 1)) independent of the choices of e, ,
es, and e 5155 Similarly, there is a natural isomorphism from

Proj (Extan (R L (82), RL(81)))

to Proj(Haln(S 165 1)). Hence the set of triangulable (resp. triangulable and Op-
analytic) (¢4, I')-modules D of rank 2 satisfying the following two conditions is
classified by Proj(H'(818; ")) (resp. Proj(H} (8185 1))):

e R (1) is a saturated (¢, I')-submodule of D and R (8,) is the quotient
module.

e D is not isomorphic to Ry (§1) B R (82).
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Let ¥ = $*"(L) be the analytic variety obtained by blowing up (&1, §2) €
Fan(L) X $4n(L) along the subvarieties 8182_1 = xSy fori € Z and the sub-
varieties 8182_1 = x~ for i € N. The fiber over the point (81, 6) is isomor-
phic to Proj (Haln (618, 1)). Similarly, let ¥ = (L) be the analytic variety over
Fan(L) x $an (L) whose fiber over (81, 62) is isomorphic to Proj(H1(8182_1)). The
inclusions Ext,, (R (81), R (82)) <> Ext(RL(81), R (8;)) for 1, 8 € $an(L) in-
duce a natural injective map " <— &. We write points of & (resp. ") in the form
(81, 82, ¢) with ¢ € Proj(H ' (8185 1)) (resp. ¢ € Proj(H,\ (818, 1))). If (81, 82, ¢) € S
is in the image of ¥,,, for our convenience we use c,, to denote the element in
Proj(Haln (8185 ) corresponding to ¢. For (81, 83, ¢) € $*", since the $-invariant
induces an inclusion Proj(H;n(SlrSz_])) — PI(L), we also use (81, 82, £(c)) to
denote (81, 62, ¢).

If s € &, we assign to s the invariant w(s) € L by w(s) = w;, — w;,. Let ¥ be
the subset of & consisting of elements s € ¥ with

U (81(77)) + v (82()) =0, v (81(7)) = 0.
If s € ¥, we assign to s the invariant u(s) € Q4 by
u(s) = vz (81()) = —vz (82()).
PutFo={secFy|u(s)=0}and ¥, ={s € ¥+ | u(s) > 0}. Then ¥ is the disjoint
union of ¥ and ¥,. For ? € {+, 0, *} we put #5" = F*" N F5. We decompose the
set 5" as S5 = H’I;g A 9’$ris a3 1 S’E;rd A 9";“, where
S’f_,lg ={s € ¥9 | w(s) is not an integer > 1},
S’C?ris ={s € ¥ | w(s) is an integer > 1, u(s) < w(s), £ = oo},
9"?; ={s € P9 | w(s) is an integer > 1, u(s) < w(s), &£ # oo}
9"7’“1 ={s € ¥ | w(s) is an integer > 1, u(s) = w(s)},
yﬁ}d ={s € ¥ | w(s) is an integer > 1, u(s) > w(s)}.
Note that ngrd and Efgd are empty.
Let D be an extension of Ry (82) by Ry (81). For any k € N, the preimage of

t}?RL (82) is a (¢4, I')-submodule of D, which is denoted by D’. Then D’ is an
extension of Ry (x*85) by R (81). If D is Op-analytic, then so is D'.

Lemma 6.2. (a) The class of D' in H 1(818; lx*k) coincides with 1 (c) up to a
nonzero multiple, where c is the class of D in H' (5152_] ).
(b) If D is Op-analytic, the class of D' in Haln(5182_1x_k) coincides with ty_an(c)
up to a nonzero multiple, where c is the class of D in Haln (8185 h.

Proof. We only prove (b). The proof of (a) is similar. Let e be a basis of R (5,)
such that ¢, (e) = 6>()e and o,e = 82(a)e. Let € be a lifting of e in D. The class
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of D, or the same, c, coincides with the class of ((Sz(n)_lqoq —1De, (V— wgz)é) up
to a nonzero multiple. Similarly, up to a nonzero multiple, the class of D’ coincides
with the class of

(T *82(0) oy — D (A58), (V — ws, — k) (1E))
= (t£(82(m) " pg — DE, t-(V — w5,)é),
which is exactly tx an(c). O

Proposition 6.3. Put D = D(s) with s = (81, 82, ¢) € &. The following two condi-
tions are equivalent:

(@) D(s) has a (¢q, I')-submodule M of rank 1 such that M N R (81) = 0.
(b) s isin F*" and satisfies w(s) € Z, 8182_1 £ x¥®) and F(can) = 00.

Among all such M there exists a unique one, Mgy, that is saturated; Mgy is isomor-
phic to Ry (x9)8,). For any M that satisfies condition (a), there exists some i € N
such that M = tr My

Proof. Assume that D(s) satisfies (a). Since the intersection of M and R (8;) is
zero, the image of M in R (8>) is a nonzero (¢,, I')-submodule of R/ (8,), and
so must be of the form tf-@t 1(62) with k € N. Since D(s) does not split, we have
k > 1. The preimage of t]’f-gtL((Sz) in D is exactly M @ R (61). Since M & R (51)
splits, by Lemma 6.2 we have t;(c) = 0. By Proposition 5.26 this happens only
if w(s) € {1,...,k} and 88, # x"©. Note that, when w(s) € {1, ..., k} and
316, P £ x| D(s) is automatically Op-analytic. Again by Proposition 5.26 we
obtain £(c,,) = 0o. This proves (a)<(b).

If (a) holds, then the preimage of ¢ ®ap, (8,) splits as Ry (81) & Mo, where
M is isomorphic to Ry (x*)8,). We show that M is saturated. Note that M
is not included in 7-D(s). Otherwise, the preimage of t}” ) _I%L (62) will split,
which contradicts Proposition 5.26. Let e (resp. e, ¢) be a basis of Ry (51) (resp.
R (82), Mp) such that Ley (resp. Le;, Le) is stable under ¢, and I'. Let e; be a
lifting of e,. Write e = ae; +bé,. Then a ¢ ;R and b € 1'%, . Observe that
the ideal I generated by a and t}’ ©) satisfies psI)=1Tand y(I)=1forally €T.
Thus by Lemma 1.1, I = R;. It follows that My is saturated. If M is another
(¢4, I')-submodule of D(s) such that M N R, (61) = 0, then the image of M in
R (5) is t]"EQRL(Sz) for some integer k > w(s). Then M C R (8;) & Myp. Since
81 # 8V, Ry (81) has no nonzero (¢4, I')-submodule isomorphic to R, (x¥8,).
It follows that M C M and thus M = 5" M. 0

Corollary 6.4. Let s = (61, 62, ¢) be in &. If s is in ™ and satisfies w(s) € Z4,
8182_1 # x"®) and $(can) = 00, then D(s) has exactly two saturated (pq, I)-
submodules of D(s) of rank 1, one being Ry (81) and the other isomorphic to
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R (x*$)8,y). Otherwise, D(s) has exactly one saturated (¢q, I')-submodule of
rank 1, which is R (7).

Corollary 6.5. Let s = (81, 82, ¢) and s = (81, 85, ¢') be in F(L).
(a) If 81 =8, then D(s) = D(s') if and only if s = s'.

(b) If 81 # &, then D(s) = D(s") if and only if s and s’ are in S** and satisfy
w(s) € Zy, 8 = x5, 8y = x93 and L(can) = L(cy,) = 0.

Proof. Assertion (a) is clear. We prove (b). Since D(s) = D(s’), there exists
a (¢q4, I')-submodule M of D(s) such that M = R (8]) and D(s)/M = R (85).
Since both % (§1) and M are saturated (¢4, I')-submodules of D, R (6;) "M =0.
By Proposition 6.3 we have w(s) € Z, 8162_1 #£ X" P(can) =00 and 8 =x"()§,.
Similarly, §; = x*¢)8}. As 8,8, = &85, we have w(s) = w(s’). O

Proposition 6.6. Let s = (81, 62, ¢) be in F. Then D(s) is of slope zero if and only
ifsedy — Ef‘jfl; D(s) is of slope zero and the Galois representation attached to
D (s) is irreducible if and only if s is in &, — (8’:“1 U S’QCI); D(s) is of slope zero
and Op-analytic if and only if s € F' — Hnjfl.

Proof. By Kedlaya’s slope filtration theorem, D(s) is of slope zero if and only
if v;(81(w)d2(r)) = 0 and D(s) has no (¢4, I')-submodule of rank 1 that is of
slope < 0. In particular, if D(s) is of slope zero, then v, (§;(7r)) > 0 and thus
s € ¥1.. Hence we only need to consider the case of s € ¥,. Assume that
D(s) has a (¢4, I')-submodule of rank 1, say M, that is of slope < 0. Then
the intersection of M and R (8;) is zero. By Proposition 6.3, we may suppose that
M is saturated. By Corollary 6.4, this happens if and only if s is in $*" and satisfies
w(s) € Zy, 818, # xP®), P(can) = 00 and w(s) < u(s). Note that §;8; ' # x*)
and £(c,,) = oo automatically hold when 0 < w(s) < u(s). The first assertion
follows. Similarly, D(s) has a saturated (¢4, I")-submodule of rank 1 that is of slope
zero if and only if u(s) = 0 or u(s) = w(s). By Proposition 1.5(c) and Remark 1.8,
we know that the Galois representation attached to an étale (¢,, I')-module D over
Ry of rank 2 is irreducible if and only if D has no étale (¢4, I')-submodule of
rank 1. This shows the second assertion. The third assertion follows from the first
one. U

Proof of Theorem 0.5. Assertion (a) follows from Proposition 6.6, and (b) follows
from Corollary 6.5. O

Remark 6.7. Let s # s” be as in Theorem 0.5(b). Then s € ¥ if and only if
s’ € 99 5 € $9 if and only if 5" € SIS
Remark 6.8. By an argument similar to that in [Colmez 2008] one can show that

if s is in Sﬁris (resp. gord, 9’1), then D(s) comes from a crystalline (resp. ordinary,
semistable but noncrystalline) L-representation twisted by a character.
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