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Triangulable OF -analytic
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L
)-modules of rank 2

Lionel Fourquaux and Bingyong Xie

The theory of (ϕq , 0)-modules is a generalization of Fontaine’s theory of (ϕ, 0)-
modules, which classifies GF -representations on OF -modules and F-vector
spaces for any finite extension F of Qp. In this paper following Colmez’s
method we classify triangulable OF -analytic (ϕq , 0)-modules of rank 2. In the
process we establish two kinds of cohomology theories for OF -analytic (ϕq , 0)-
modules. Using them, we show that if D is an étale OF -analytic (ϕq , 0)-module
such that Dϕq=1,0=1

= 0 (i.e., V GF = 0, where V is the Galois representation
attached to D), then any overconvergent extension of the trivial representation of
GF by V is OF -analytic. In particular, contrary to the case of F =Qp, there are
representations of GF that are not overconvergent.

Introduction

This paper depends heavily on the theory of (ϕ, 0)-modules for Lubin–Tate exten-
sions, a generalization of Fontaine’s theory of (ϕ, 0)-modules. The existence of this
generalization was more or less implicit in [Fontaine 1990; Colmez 2002]. See also
[Fourquaux 2005; Scholl 2006, Remark 2.3.1]. Kisin and Ren [2009] provided de-
tails, where (ϕ, 0)-modules for Lubin–Tate extensions are called (ϕq , 0)-modules.

To recall this theory, let F be a finite extension of Qp, OF the ring of integers in
F , and π a uniformizer of OF . Fix an algebraic closure of F denoted by F , and put
GF =Gal(F/F). Let kF be the residue field of F and set q = #kF . Let W=W(kF )

be the ring of Witt vectors over kF . Then F0 :=W[1/p] is the maximal absolutely
unramified subfield of F . Let F be a Lubin–Tate group over F corresponding to
the uniformizer π . Then F is a formal OF -module. Let X be a local coordinate
on F . Then the formal Hopf algebra OF may be identified with OF [[X ]]. For any
a ∈OF , let [a]F ∈OF [[X ]] be the power series giving the endomorphism a of F .
If n ≥ 1, let Fn ⊂ F be the subfield generated by the πn-torsion points of F . Write
F∞ =

⋃
n Fn , 0 = Gal(F∞/F) and GF∞ = Gal(F/F∞). For any integer n ≥ 0,

let 0n ⊂ 0 be the subgroup Gal(F∞/Fn). Let TF be the Tate module of F . It
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is a free OF -module of rank 1. The action of GF on TF factors through 0 and
induces an isomorphism χF : 0→ O×F . For any a ∈ O×F we write σa := χ

−1
F (a).

Using the periods of TF , one can construct a ring OE with actions of ϕq = ϕ
logp q

and 0. We will recall the construction in Section 1. Kisin and Ren [2009] defined
étale (ϕq , 0)-modules over OE and classified GF -representations on OF -modules
in terms of these modules.

Here we are interested in triangulable OF -analytic (ϕq , 0)-modules over a Robba
ring RL , where L is a finite extension of F . A triangulable (ϕq , 0)-module over RL

means a (ϕq , 0)-module D that has a filtration consisting of (ϕq , 0)-submodules
0= D0 ⊂ D1 ⊂ · · · ⊂ Dd = D such that Di/Di−1 is free of rank 1 over RL .

In the spirit of [Colmez 2008] on the classification of triangulable (ϕ, 0)-modules
of rank 2, in the present paper we will classify triangulable OF -analytic (ϕq , 0)-
modules over RL of rank 2. One motivation for doing this is our belief that under
the hypothetical p-adic local Langlands correspondence these (ϕq , 0)-modules
should correspond to certain unitary principal series of GL2(F). Colmez [2010a]
and Liu, Xie, and Zhang [Liu et al. 2012] determined the spaces of locally analytic
vectors of the unitary principal series of GL2(Qp) based on this kind of (ϕ, 0)-
module. Our computations of dimensions of Ext1an match those of [Kohlhaase
2011] on extensions of locally analytic representations. Nakamura [2009] gave a
generalization of Colmez’s work in another direction. But we think that Nakamura’s
point of view is probably not the best one for applications to the p-adic local
Langlands correspondence.

For our purpose we consider two kinds of cohomology theories for OF -analytic
(ϕq , 0)-modules.

For a (ϕq , 0)-module D over RL , we define H•(D) by the cohomology of the
semigroup ϕN

q ×0 as in [Colmez 2010a]. Then the first cohomology group H 1(D)
is isomorphic to Ext(RL , D), the L-vector space of extensions of RL by D in the
category of (ϕq , 0)-modules.

If D is OF -analytic, we consider the complex

C•ϕq ,∇
(D) : 0→ D

f1
→ D⊕ D

f2
→ D→ 0,

where f1 : D→ D ⊕ D is the map defined as m 7→ ((ϕq − 1)m,∇m), and f2 :

D⊕D→ D is (m, n) 7→∇m−(ϕq−1)n. The operator ∇ is defined in Section 1C.
Put H i

ϕq ,∇
(D) := H i (C•ϕq ,∇

(D)), for i = 0, 1, 2. Each of these modules admits a
0-action. We set H i

an(D)= H i
ϕq ,∇

(D)0.

Theorem 0.1. Let D be an OF -analytic (ϕq , 0)-module over RL . Then there is a
natural isomorphism Extan(RL , D)→H 1

an(D), where Extan(RL , D) is the L-vector
space that consists of extensions of RL by D in the category of OF -analytic (ϕq , 0)-
modules.
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The proof of Theorem 0.1 is given in Section 4; it is due to the referee, and is
much simpler than that in our original version.

Theorem 0.2. Let D be an OF -analytic (ϕq , 0)-module over RL . The codimension
of Extan(RL , D) in Ext(RL , D) is ([F :Qp]− 1) dimL Dϕq=1,0=1. In particular, if
Dϕq=1,0=1

= 0, then Extan(RL , D)= Ext(RL , D).

To prove this, we will construct a (noncanonical) projection from Ext(RL , D)
onto Extan(RL , D) whose kernel is of dimension ([F :Qp] − 1) dimL Dϕq=1,0=1.

If V is an overconvergent L-representation of GF (in the sense of Definition 1.4),
1 is the (ϕq , 0)-module over E†

L attached to V , and D=RL⊗E†
L
1, then Ext(RL , D)

measures the set of extensions of the trivial representation by V that are over-
convergent (see Proposition 1.5 and Proposition 1.6). Theorem 0.2 tells us that if
V GF = Dϕq=1,0=1

= 0, then any such extension is OF -analytic.
Let I(L) (resp. Ian(L)) be the set of continuous (resp. locally F-analytic) charac-

ters δ : F×→ L×. Let δunr denote the character of F× such that δunr(π)= q−1 and
δunr|O×F = 1. Then δunr is a locally F-analytic character. If δ ∈ I(L), let RL(δ) be
the (ϕq , 0)-module over RL of rank 1 that has a basis eδ such that ϕq(eδ)= δ(π)eδ
and σa(eδ)= δ(a)eδ. If δ ∈ Ian(L), then RL(δ) is OF -analytic.

For locally F-analytic characters we have the following:

Theorem 0.3. For any δ ∈ Ian(L), we have

dimL H 1
an(RL(δ))=

{
2 if δ = x−i , i ∈ N or x iδunr, i ∈ Z+,
1 otherwise,

dimL H 1(RL(δ))=


[F :Qp] + 1 if δ = x−i , i ∈ N,

2 if δ = x iδunr, i ∈ Z+,

1 otherwise.

For the proof of Theorem 0.3 we follow Colmez’s method. Colmez [2008] used
the theory of p-adic Fourier transform for Zp. For our case we use the p-adic Fourier
transform for OF developed by Schneider and Teitelbaum [2001] instead. But this
transform can not be applied to our situation directly because, except for the case
of F =Qp, it is defined over Cp and can not be defined over any finite extension L
of F . We overcome this difficulty by applying it to RCp and then descending
certain results to RL . As a result, we obtain that if δ1 and δ2 are in Ian(L), then
RL(δ1)

ψ=0 and RL(δ2)
ψ=0 are isomorphic to each other as L[0]-modules. This

is exactly what we need. In fact, we will show that Sδ := (RLeδ/R+L eδ)ψ=0,0=1 is
1-dimensional over L for any δ ∈ Ian(L), and that H 1

an(RL(δ)) is isomorphic to Sδ
when vπ (δ(π)) < 1− vπ (q) and δ is not of the form x i .

For characters that are not locally F-analytic we have the following:

Theorem 0.4. For any δ ∈ I(L)\Ian(I ) we have H 1(RL(δ)) = 0. Consequently,
every extension of RL by RL(δ) splits.
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To state our result on the classification, we need some parameter spaces. These
parameter spaces are analogues of Colmez’s parameter spaces [Colmez 2008]. Let S

be the analytic variety over Ian(L)×Ian(L) whose fiber over (δ1, δ2) is isomorphic
to Proj(H 1(δ1δ

−1
2 )), San the analytic variety over Ian(L)×Ian(L) whose fiber over

(δ1, δ2) is isomorphic to Proj(H 1
an(δ1δ

−1
2 )). There is a natural inclusion San ↪→ S.

Let S+,San
+
,S

ng
+ ,Scris

+
,Sst
+
,Sord
+

and Sncl
+

be the subsets of S defined in Section 6.
We can assign to any s ∈ S (resp. s ∈ San) a triangulable (resp. triangulable and
OF -analytic) (ϕq , 0)-module D(s).

Theorem 0.5. (a) For s ∈ S, D(s) is of slope zero if and only if s is in S+−Sncl
+

;
D(s) is of slope zero and the Galois representation attached to D(s) is ir-
reducible if and only if s is in S∗ − (S

ord
∗
∪Sncl
∗
); D(s) is of slope zero and

OF -analytic if and only if s is in San
+
−Sncl

+
.

(b) Let s = (δ1, δ2,L) and s ′ = (δ′1, δ
′

2,L′) be in S+ − Sncl
+

. If δ1 = δ
′

1, then
D(s)∼= D(s ′) if and only if s = s ′. If δ1 6= δ

′

1, then D(s)∼= D(s ′) if and only if
s, s ′ ∈ Scris

+
∪Sord
+

, with δ′1 = xw(s)δ2, δ′2 = x−w(s)δ1.

In the case when F =Qp, this becomes Colmez’s result [Colmez 2008]. The
proof of Theorem 0.5 will be given at the end of Section 6.

We give another application of Theorem 0.3. In the case of F = Qp — the
cyclotomic extension case — Cherbonnier and Colmez [1998] showed that all
representations of GQp are overconvergent. But our following result shows that this
is not the case when [F :Qp] ≥ 2.

Theorem 0.6. Suppose that [F : Qp] ≥ 2. Then there exist 2-dimensional L-
representations of GF that are not overconvergent (in the sense of Definition 1.4).

By Kedlaya’s theorem [2004], any (ϕq , 0)-module of slope zero D(s) in Theorem
0.5(a) comes from a 2-dimensional L-representation of GF that is overconvergent.

We outline the structure of this paper. We recall Fontaine’s rings, the theory of
(ϕq , 0)-modules and the relation between (ϕq , 0)-modules and Galois representa-
tions in Section 1A and Section 1B, and then define OF -analytic (ϕq , 0)-modules
over the Robba ring RL in Section 1C. We define ψ in Section 2A, and study
the properties of ∂ and Res in Section 2B. In Section 3A we extend ψ to RCp , in
Section 3B we define operators mα on RCp , and then in Section 3C we study the
0-action on RL(δ)

ψ=0 for all δ ∈Ian(L). The cohomology theories for OF -analytic
(ϕq , 0)-modules are given in Section 4. In Section 5 we compute H 1

an(RL(δ)) and
H 1(RL(δ)) for all δ ∈ Ian(L). After providing preliminary lemmas in Section 5A,
we compute H 0(δ) for all δ ∈ I(L) in Section 5B and H 1

an(δ) for all δ ∈ Ian(L)
satisfying vπ (δ(π)) < 1 − vπ (q) in Section 5C. For the purpose of computing
H 1

an(δ) for all δ ∈ Ian(L), we construct a transition map ∂ : H 1
an(x

−1δ)→ H 1
an(δ),

which is done in Section 5D. The computation of H 1
an(δ) is given in Section 5E.
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In Section 5F we define two maps ιk and ιk,an. Applying results in Section 5, we
classify triangulable OF -analytic (ϕq , 0)-modules in Section 6.

1. (ϕq, 0)-modules and OF-analytic (ϕq, 0)-modules

In this section we recall the theory of (ϕq , 0)-modules built in [Colmez 2002;
Fourquaux 2005; Kisin and Ren 2009]. We keep using notation from the introduc-
tion.

1A. The rings of formal series. Put Ẽ+ = lim
←−

OF/p with the transition maps
given by Frobenius, and let Ẽ be the fractional field of Ẽ+. We may also identify
Ẽ+ with lim

←−
OF/π with the transition maps given by the q-Frobenius ϕq = ϕ

logp q .
Evaluation of X at π∞-torsion points induces a map ι : TF → Ẽ+. Precisely,
if v = (vn)n≥0 ∈ TF , with vn ∈ F[πn

](OF ), and π · vn+1 = vn , then we have
ι(v)= (v∗n(X)+πOF )n≥0.

Let { · } be the unique lifting map Ẽ+→W(̃E+)F :=W(̃E+)⊗OF0
OF such that

ϕq{x} = [π ]F ({x}) (see [Colmez 2002, Lemma 9.3]). When F is the cyclotomic
Lubin–Tate group Gm, we have {x} = [1+ x]− 1, where [1+ x] is the Teichmüller
lifting of 1+ x . This map respects the action of GF . If v ∈ TF is an OF -generator,
there is an embedding OF [[uF ]] ↪→W(̃E+)F sending uF to {ι(v)} which identifies
OF [[uF ]] with a GF -stable and ϕq-stable subring of W(̃E+)F . The GF -action on
OF [[uF ]] factors through 0. By [Colmez 2002, Lemma 9.3] we have

ϕq(uF )= [π ]F (uF ), σa(uF )= [a]F (uF ).

In the case of F = Gm, uF is denoted by T in [Colmez 2008]. Here T is used to
denote the Tate module of a Lubin–Tate group.

Let OE be the π-adic completion of OF [[uF ]][1/uF ]. Then OE is a complete
discrete valuation ring with uniformizer π and residue field kF ((uF )). The topology
induced by this valuation is called the strong topology. Usually we consider the
weak topology on OE, i.e., the topology with {π iOE+ u j

FOF [[uF ]] : i, j ∈ N}, as
a fundamental system of open neighborhoods of 0. Let E be the field of fractions
of OE. Let E+ be the subring F ⊗OF OF [[uF ]] of E.

For any r ∈ R+ ∪ {+∞}, let E]0,r ] be the ring of Laurent series f =
∑

i∈Z ai ui
F

with coefficients in F that are convergent on the annulus 0< vp(uF )≤ r . For any
0< s ≤ r we define the valuation v{s} on E]0,r ] by

v{s}( f )= inf
i∈Z
(vp(ai )+ is) ∈ R∪ {±∞}.

We equip E]0,r ] with the Fréchet topology defined by the family of valuations
{v{s} :0< s≤ r}. Then E]0,r ] is complete. We equip the Robba ring R :=

⋃
r>0 E]0,r ]

with the inductive limit topology. The subring of R consisting of Laurent series of
the form

∑
i≥0

ai ui
F is denoted by R+.
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Put E†
:=
{∑

i∈Z

ai ui
F∈R

∣∣ai is bounded as i→+∞
}
. This is a field contained in E

and in R.
Put E(0,r ] = E†

∩ E]0,r ]. Let v[0,r ] be the valuation defined by v[0,r ]( f ) =
min0≤s≤r v

{s}( f ). Let OE(0,r ] be the ring of integers in E(0,r ] for the valuation
v[0,r ]. We equip OE(0,r ][1/uF ] with the topology induced by the valuation v{r} and
then equip

E(0,r ] =
⋃

m∈N

π−mE(0,r ][1/uF ]

with the inductive limit topology. The resulting topology on E(0,r ] is called the
weak topology [Colmez 2010b]. Note that the restriction of the weak topology to
the subset {

f (uF )=
∑
i∈Z

ai ui
F ∈ E(0,r ] : ai = 0 if i ≥ 0

}
coincides with the topology defined by the valuation v{r}, and its restriction to E+

coincides with the weak topology on E+. Then we equip E†
=
⋃

r>0
E(0,r ] with the

inductive limit topology.
We extend the actions of ϕq and 0 on OF [[uF ]] to E+, OE, E, E† and R continu-

ously.
Put tF = logF (uF ), where logF is the logarithmic of F . Then tF is in R but not

in E†. When F = Gm, tF coincides with the usual t in [Colmez 2008]. Note that
ϕq(tF )= π tF and σa(tF )= atF for any a ∈O×F . Put Q = Q(uF )= [π ]F (uF )/uF .

We have the following analogue of [Berger 2004, Lemma I.3.2].

Lemma 1.1. If I is a 0-stable principal ideal of R+, then I is generated by an
element of the form

u j0
F

+∞∏
n=0

(
ϕn

q (Q(uF )/Q(0))
) jn+1

. (1-1)

Furthermore, if R+ · ϕq(I ) ⊆ I , then the sequence { jn}n≥0 is decreasing, and if
R+ ·ϕq(I )⊇ I , then the sequence { jn}n≥0 is increasing.

Proof. The argument is similar to the proof of [Berger 2004, Lemma I.3.2]. Let
f (uF ) be a generator of I . Put Vρ(I ) = {z ∈ Cp : f (z) = 0, 0 ≤ |z| ≤ ρ} for any
ρ ∈ (0, 1). If I is stable by 0, then Vρ(I ) is stable by [a]F for any a ∈ O×F . As
Vρ(I ) is finite, for any z ∈ Vρ(I ) there must be some element a ∈O×F , a 6= 1 such
that [a]F (z)= z. Note that [π ]F (z) satisfies [a]F ([π ]F (z))= [π ]F (z) if [a]F (z)= z.
But the cardinal number of the set {z ∈ Cp : [a]F (z) = z, |z| ≤ ρ} is finite. Thus
for any z ∈ VI (ρ) there exists a positive integer m = m(ρ) such that [πm

]F (z)= 0.
Therefore I is generated by an element of the form (1-1).

The last assertion is easy to prove. �

Corollary 1.2. We have (tF )=
(

uF
∏

n≥0
ϕn

q
(
Q(uF )/Q(0)

))
in the ring R+.



Triangulable OF -analytic (ϕq,
L
)-modules of rank 2 2551

Proof. Because the ideal (tF ) is 0-invariant and R+ ·ϕq(tF )= (tF ), by Lemma 1.1
there exists j ∈ N such that (tF )=

(
u j
F
∏

n≥0
ϕn

q (Q(uF )/Q(0)) j
)
. Since (tF/uF )≡ 1

mod uFR+ we obtain j = 1. �

If F ′ is another Lubin–Tate group over F corresponding to π , by the theory
of Lubin–Tate groups there exists a unique continuous ring isomorphism ηF ,F ′ :

O+EF
→O+EF ′

with

ηF ,F ′(uF )= uF ′ + higher degree terms in OF [[uF ′]]

such that ηF ,F ′ ◦ [a]F = [a]F ′ ◦ ηF ,F ′ for all a ∈OF . We extend ηF ,F ′ to isomor-
phisms

OEF
∼
−→OEF ′ , E+F

∼
−→ E+F ′, EF

∼
−→ EF ′, E†

F → E†
F ′, RF →RF ′ .

By abuse of notation these isomorphisms are again denoted by ηF ,F ′ .
Let `u = log uF be a variable over R[1/tF ]. We extend the ϕq , 0-actions to

R[1/tF , `u] by

ϕq(`u)= q`u + log
[π ]F (uF )

uq
F

, σa(`u)= `u + log
[a]F (uF )

uF
.

1B. Galois representations and (ϕq, 0)-modules. Let L be a finite extension of
F . Let RepL GF be the category of finite-dimensional L-vector spaces V equipped
with a linear action of GF .

If A is any of E+, E, E†, R, we put AL = A⊗F L . Then we extend the ϕq ,
0-actions on A to AL by L-linearity. Let R denote any of EL , E†

L and RL . For a
(ϕq , 0)-module over R, we mean a free R-module D of finite rank together with
continuous semilinear actions of ϕq and 0 commuting with each other such that ϕq

sends a basis of D to a basis of D. When R = EL , we say that D is étale if D has
a ϕq -stable OEL -lattice M such that the linear map ϕ∗q M→ M is an isomorphism.
When R = E†

L , we say that D is étale if EL⊗E†
L

D is étale. When R = RL , we
say that D is étale or of slope 0 if there exists an étale (ϕq , 0)-module 1 over E†

L
such that D =RL⊗E†

L
1. Let Modϕq ,0,ét

/R be the category of étale (ϕq , 0)-modules
over R.

Put B̃ = W(̃E)F [1/π ]. Let B be the completion of the maximal unramified
extension of E in B̃ for the π-adic topology. Both B̃ and B admit actions of ϕq

and GF . We have BGF∞ = E.
For any V ∈ RepL GF , put DE(V )= (B⊗F V )GF∞ . For any D ∈Modϕq ,0,ét

/EL
, put

V(D)= (B⊗E D)ϕq=1.

Theorem 1.3 [Kisin and Ren 2009, Theorem 1.6]. The functors V and DE are
quasi-inverse equivalences of categories between Modϕq ,0,ét

/EL
and RepL GF .
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As usual, let B̃† be the subring of B̃ consisting of overconvergent elements, and
put B†

= B∩ B̃†. Then (B†)GF∞ = E†.

Definition 1.4. If V is an L-representation of GF , we say that V is overconvergent
if DE†(V ) := (B†

⊗F V )GF∞ contains a basis of DE(V ).

When F = Qp, according to the Cherbonnier–Colmez theorem [1998], all L-
representations are overconvergent. But in general this is not true. For details, see
Remark 5.21.

Proposition 1.5. (a) If 1 is an étale (ϕq , 0)-module over E†
L , then

V(EL ⊗E†
L
1)= (B†

⊗E† 1)ϕq=1.

(b) The functor 1 7→ EL ⊗E†
L
1 is a fully faithful functor from the category

Modϕq ,0,ét
/E†

L
to the category Modϕq ,0,ét

/EL
.

(c) The functor DE† is an equivalence of categories between the category of
overconvergent L-representations of GF and Modϕq ,0,ét

/E†
L

.

Proof. Without loss of generality we may assume that L= F . Put B̃Qp =W(̃E)[1/p]
and B̃†

Qp
= B̃Qp ∩ B̃†. The technique of almost étale descent as in [Berger and

Colmez 2008] allows us to show that the functor1 7→ B̃Qp⊗B̃†
Qp
1 from the category

of étale (ϕ,GF )-modules over B̃†
Qp

to the category of étale (ϕ,GF )-modules over
B̃Qp is an equivalence. For any (ϕq ,GF )-module D over B̃† (resp. B̃), we can attach
a (ϕ,GF )-module D over B̃†

Qp
(resp. B̃Qp ) to D by letting D =

⊕ f−1
i=0 ϕ

i∗(D) with
the map

ϕ∗(D)=
f⊕

i=1

ϕi∗(D)→
f−1⊕
i=0

ϕi∗(D)= D

that sends ϕi∗(D) identically to ϕi∗(D) for i = 1, . . . , f − 1 and sends ϕ f ∗(D)=
ϕ∗q (D) to D using ϕq . Here f = logp q. Thus the functor α :1 7→ B̃⊗B̃† 1 from
the category of étale (ϕq ,GF )-modules over B̃† to the category of étale (ϕq ,GF )-
modules over B̃ is an equivalence. Now let 1 be an étale (ϕq , 0)-module over E†,
and put V =V(E⊗E†1). As α(B̃†

⊗F V )= B̃⊗F V = B̃⊗E†1= α(B̃†
⊗E†1), we

have B̃†
⊗F V = B̃†

⊗E†1. Thus V is contained in B̃†
⊗E†1∩B⊗E†1=B†

⊗E†1,
and V = (B†

⊗E† 1)ϕq=1. This proves (a).
Next we prove (b). Let 11 and 12 be two objects in Modϕq ,0,ét

/E† . What we have
to show is that the natural map

Hom
Mod

ϕq ,0,ét

/E†
(11,12)→ Hom

Mod
ϕq ,0,ét
/E

(E⊗E† 11,E⊗E† 12)

is an isomorphism. For this we reduce the problem to showing that

(1̌1⊗E† 12)
ϕq=1,0=1

→
(
E⊗E† (1̌1⊗E† 12)

)ϕq=1,0=1
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is an isomorphism. Here 1̌1 is the E†-module of E†-linear maps from 11 to E†,
which is equipped with a natural étale (ϕq , 0)-module structure. We have(

E⊗E† (1̌1⊗E† 12)
)ϕq=1,0=1

=
(
B⊗E† (1̌1⊗E† 12)

)ϕq=1,GF=1

= V
(
E⊗E† (1̌1⊗E† 12)

)GF=1

=
(
B†
⊗E† (1̌1⊗E† 12)

)ϕq=1,GF=1

= (1̌1⊗E† 12)
ϕq=1,0=1. (1-2)

Finally, (c) follows from (a), (b) and Theorem 1.3. �

Proposition 1.6. The functor 1 7→ RL ⊗E†
L
1 is an equivalence of categories

between Modϕq ,0,ét

/E†
L

and Modϕq ,0,ét
/RL

.

Proof. Let D be an étale (ϕq , 0)-module over RL . By Kedlaya’s slope filtration
theorem [2004], there exists a unique ϕq -stable E†

L -submodule 1 of D that is étale
as a ϕq-module such that D = RL ⊗E†

L
1. For any γ ∈ 0, γ (1) also has this

property. Thus, by uniqueness of 1, we have γ (1) = 1. This means that 1 is
0-invariant. �

1C. OF-analytic (ϕq, 0)-modules. For any r ≥ s > 0, let v[s,r ] be the valuation
defined by v[s,r ]( f )= infr ′∈[s,r ] v

{r ′}( f ). Note that

v[s,r ]( f )= inf
z∈Cp

s≤vp(z)≤r

vp( f (z)).

Lemma 1.7. For any r > s > 0, there exists a sufficiently large integer n = n(s, r)
such that, if γ ∈ 0n , then we have v[s,r ]

(
(1− γ )z

)
≥ v[s,r ](z)+ 1 for all z ∈ E]0,r ]L .

Proof. It suffices to consider z = uk
F , k ∈ Z. If k ≥ 0, then

γ (uk
F )− uk

F = uk
F

(
γ (uF )

uF
− 1

)(
γ (uk−1

F )

uk−1
F

+ · · ·+ 1
)

and

γ (u−k
F )− u−k

F = u−k
F

(
uF

γ (uF )
− 1

)(
uk−1
F

γ (uk−1
F )
+ · · ·+ 1

)
.

As v[s,r ](yz)≥ v[s,r ](y)+v[s,r ](z), the lemma follows from the fact that γ (uF )/uF
approaches 1 as γ → 1. �

Let D be an object in Modϕq ,0,ét
/RL

. We choose a basis {e1, . . . , ed} of D and
write D]0,r ] =

⊕d
i=1 E]0,r ]L · ei . Our definition of D]0,r ] depends on the choice of

{e1, . . . , ed}; however, if {e′1, . . . , e′d} is another basis, then

d⊕
i=1

E]0,r ]L · ei =

d⊕
i=1

E]0,r ]L · e′i
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for sufficiently small r > 0. When r > 0 is sufficiently small, D]0,r ] is stable under 0.
By Lemma 1.7 and the continuity of the 0-action on D]0,r ], the series

log γ =
∞∑

i=1

(γ − 1)i (−1)i−1/ i

converges on D]0,r ] when γ → 1. It follows that the map

d0 : Lie0→ EndL D]0,r ], β 7→ log(expβ)

is well defined for sufficiently small β, and we extend it to all of Lie0 by Zp-
linearity. As a result, we obtain a Zp-linear map d0D : Lie0→ EndL D. For any
β ∈ Lie0, d0RL (β) is a derivation of RL and d0D(β) is a differential operator over
d0RL (β), which means that for any a ∈RL , m ∈ D and β ∈ Lie0 we have

d0D(β)(am)= d0RL (β)(a)m+ a · d0D(β)(m). (1-3)

The isomorphism χF :0→O×F induces an OF -linear isomorphism Lie0→OF .
We will identify Lie0 with OF via this isomorphism.

We say that D is OF -analytic if the map d0D is not only Zp-linear, but also
OF -linear. If D is OF -analytic, the operator d0D(β)/β, β ∈OF , β 6= 0, does not
depend on the choice of β. The resulting operator is denoted by ∇D or just ∇ if
there is no confusion. Note that the 0-action on RL is OF -analytic and by [Kisin
and Ren 2009, Lemma 2.1.4]

∇ = tF ·
∂FF
∂Y

(uF , 0) · d/duF , (1-4)

where FF (X, Y ) is the formal group law of F . Put ∂ = (∂FF/∂Y )(uF , 0) · d/duF .
From the relation σa(tF )= atF we obtain ∇tF = tF and ∂ tF = 1. When F =Gm, ∇
and ∂ are already defined in [Berger 2002]. In this case FF (X, Y )= X + Y + XY
and so ∂ = (1+ uF ) d/duF .

We end this section by classification of (ϕq , 0)-modules over RL of rank 1.
Let I(L) be the set of continuous characters δ : F×→ L× and Ian(L) the subset

of locally F-analytic characters. If δ is in Ian(L), the quotient log δ(a)/log a, for
a ∈O×F (which makes sense when log a 6= 0) does not depend on a. This number,
denoted by wδ, is called the weight of δ. Clearly wδ = 0 if and only if δ is locally
constant; wδ is in Z if and only if δ is locally algebraic.

If δ ∈ I(L), let RL(δ) be the (ϕq , 0)-module over RL (of rank 1) that has a
basis eδ such that ϕq(eδ)= δ(π)eδ and σa(eδ)= δ(a)eδ . It is easy to check that, if
δ ∈Ian(L), then RL(δ) is OF -analytic and ∇δ =∇RL (δ)= tF∂+wδ (more precisely
∇δ(zeδ) = (tF∂z +wδz)eδ). If RL(δ) is étale, that is, vp(δ(π)) = 0, we will use
L(δ) to denote the Galois representation attached to RL(δ).
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Remark 1.8. All 1-dimensional L-representations of GF are overconvergent. In fact,
such a representation comes from a character of F× and thus is of the form L(δ).

Proposition 1.9. Let D be a (ϕq , 0)-module over RL of rank 1. Then there exists
a character δ ∈ I(L) such that D is isomorphic to RL(δ). Furthermore, D is
OF -analytic if and only if δ ∈ Ian(L).

Proof. The argument is similar to the proof of [Colmez 2008, Proposition 3.1].
We first reduce to the case that D is étale. Then by Proposition 1.6 there exists an
étale (ϕq , 0)-module 1 over E†

L such that D =RL ⊗E†
L
1. Now the first assertion

follows from Proposition 1.5 and Remark 1.8. The second assertion is obvious. �

2. The operators ψ and ∂

2A. The operator ψ . We define an operator ψ and study its properties.
Note that {ui

F }0≤i≤q−1 is a basis of EL over ϕq(EL). So EL is a field extension
of ϕq(EL) of degree q. Put tr= trEL/ϕq (EL ).

Lemma 2.1. (a) There is a unique operator ψ :EL→EL such that ϕq ◦ψ = q−1tr.

(b) For any a, b ∈ EL we have ψ(ϕq(a)b)= aψ(b). In particular, ψ ◦ϕq = id.

(c) ψ commutes with 0.

Proof. Assertion (a) follows from the fact that ϕq is injective. Assertion (b) follows
from the relation

ϕq
(
ψ(ϕq(a)b)

)
= tr(ϕq(a)b)/q = ϕq(a)tr(b)/q = ϕq(a)ϕq(ψ(b))= ϕq(aψ(b))

and the injectivity of ϕq . As ϕq commutes with 0, ϕq(EL) is stable under 0. Thus
γ ◦ tr ◦ γ−1

= tr for all γ ∈ 0. This ensures that ψ commutes with 0. Assertion (c)
follows. �

We first compute ψ in the case of the special Lubin–Tate group.

Proposition 2.2. Suppose that F is the special Lubin–Tate group.

(a) If `≥ 0, then ψ(u`F )=
∑[`/q]

i=0 a`,i ui
F with vπ (a`,i )≥ [`/q] + 1− i − vπ (q).

(b) If ` < 0, then ψ(u`F )=
∑[`/q]

i=` b`,i ui
F with vπ (b`,i )≥ [`/q] + 1− i − vπ (q).

Proof. First we prove (a) by induction on `. As the minimal polynomial of uF is
Xq
+πX − (uq

F +πuF ), by Newton’s formula we have

tr(ui
F )=

{
0 if 1≤ i ≤ q − 2,
(1− q)π if i = q − 1.

It follows that

ψ(ui
F )=

{
0 if 1≤ i ≤ q − 2,
(1− q)π/q if i = q − 1.
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Thus the assertion holds when 0≤ `≤ q − 1. Now we assume that `= j ≥ q and
the assertion holds when 0≤ `≤ j − 1. We have

ψ(u`F )= ψ
(
(uq

F +πuF )u
`−q
F

)
−ψ(πu`−q+1

F )= uFψ(u
`−q
F )−πψ(u`−q+1

F )

=

[`/q]∑
i=1

a`−q,i−1ui
F −

[(`+1)/q]−1∑
i=0

πa`−q+1,i ui
F .

Thus a`,i = a`−q,i−1−πa`−q+1,i . By the inductive assumption we have

vπ (a`−q,i−1)≥ [(`− q)/q] + 1− (i − 1)− vπ (q)= [`/q] + 1− i − vπ (q)

and

vπ (a`−q+1,i )≥ [(`− q + 1)/q] + 1− i − vπ (q)≥ [`/q] − i − vπ (q).

It follows that vπ (a`,i )≥ [`/q] + 1− i − vπ (q).
Next we prove (b). We have

ψ(u`F )= ψ
(
(uq−1

F +π)−`

ϕq(uF )−`

)
=

ψ

( −∑̀
j=0

[
−`

j

]
u j (q−1)
F π−`− j

)
u−`F

=

[−`(q−1)/q]∑
i=0

−∑̀
j=0

[
−`

j

]
π−`− j a j (q−1),i · ui+`

F

=

[`/q]∑
i=`

−∑̀
j=0

[
−`

j

]
π−`− j a j (q−1),i−` · ui

F .

Here,
[
−`

j

]
=

(−`)!

j !(−`− j)!
. Thus b`,i =

−∑̀
j=0

[
−`

j

]
π−`− j a j (q−1),i−`. Since

vπ (π
−`− j a j (q−1),i−`)≥−`− j +

(
[ j (q − 1)/q] + 1− (i − `)− vπ (q)

)
= [− j/q] + 1− i − vπ (q)

≥ [`/q] + 1− i − vπ (q),

we obtain vπ (b`,i )≥ [`/q] + 1− i − vπ (q). �

Let E−L be the subset of EL consisting of elements of the form
∑

i≤−1 ai ui
F .

Corollary 2.3. Suppose that F is the special Lubin–Tate group. Then ψ(E−L )⊂E−L .

Proof. This follows directly from Proposition 2.2. �

Proposition 2.4. (a) ψ(E+L )= E+L , ψ(OE+L
)⊂ π

q OE+L
and ψ(OEL )⊂

π
q OEL .

(b) ψ is continuous for the weak topology on EL .

(c) E†
L is stable under ψ , and the restriction of ψ on E†

L is continuous for the weak
topology of E†

L .
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(d) If f ∈ E(0,r ]L , then the sequence
( q
π
ψ
)n
( f ), n ∈ N, is bounded in E(0,r ]L for the

weak topology.

Proof. Let F0 be the special Lubin–Tate group over F corresponding to π . Observe
that ψF = η

−1
F0,FψF0ηF0,F . Since ηF0,F (uF0) equals uF times a unit in OF [[uF ]],

we have
ηF0,F

(
O(0,r ]

EF0,L
[1/uF0]

)
=O(0,r ]

EF ,L
[1/uF ] for any r > 0,

and ηF0,F respects the valuation v[0,r ]. Thus ηF0,F : E
(0,r ]
F0,L→ E(0,r ]F ,L is a topological

isomorphism. It follows that E†
F0,L → E†

F ,L and its inverse are continuous for the
weak topology. Similarly ηF0,F : EF0,L → EF ,L and its inverse are continuous
for the weak topology. Hence we only need to consider the case of the special
Lubin–Tate group. Assertions (a) and (b) follow from Proposition 2.2. For (c) we
only need to show that, for any r > 0, we have ψ(E(0,r ]L )⊂ E(0,r ]L and the restriction
ψ :E(0,r ]L →E(0,r ]L is continuous. By (b) the restriction of ψ to E+L is continuous. By
Proposition 2.2(b) and Corollary 2.3, if f is in E−L ∩E(0,r ]L , then ψ( f ) is in E−L and
v{r}(ψ( f ))≥ v{r}( f )+vp(π/q). Thus ψ : E−L ∩E(0,r ]L → E−L ∩E(0,r ]L is continuous,
which proves (c). As (q/π)ψ(OE+L

) ⊂ OE+L
and v{r}

(
(q/π)ψ( f )

)
≥ v{r}( f ) for

any f ∈ E−L ∩E(0,r ]L , (d) follows. �

Next we extend ψ to RL .

Proposition 2.5. We can extend tr continuously to RL . The resulting operator tr
satisfies tr|ϕq (RL ) = q · id and tr(RL)= ϕq(RL).

Proof. Let E�−∞L denote the subset of EL consisting of f ∈ EL of the form∑
n�−∞ anun

F . If f ∈ E�−∞L , then

tr( f )=
∑

η∈ker[π ]F

f (uF +F η).

If η is in ker[π ]F , then vp(η) ≥
1

(q−1)eF
, where eF = [F : F0]. Thus, if r and

s ∈ R+ satisfy 1/((q−1)eF ) > r ≥ s, the morphisms uF 7→ uF +F η (η ∈ ker[π ]F )
keep the annulus {z ∈ Cp : p−r

≤ |z| ≤ p−s
} stable. So for any f ∈ E�−∞L

we have v[s,r ]( f (uF +F η)) = v
[s,r ]( f ) and v[s,r ](tr( f )) ≥ v[s,r ]( f ). Hence there

exists a unique continuous operator Tr : RL → RL such that Tr( f ) = tr( f ) for
any f ∈ E�−∞L . (For any f ∈ RL , choosing a positive real number r such that
f ∈E]0,r ]L , we can find a sequence { fi }i≥1 in E�−∞L such that fi→ f in E]0,r ]; then
{tr( fi )}i≥1 is a Cauchy sequence in E[s,r ]L for any s satisfying 0< s ≤ r , and we let
Tr( f ) be their limit in E]0,r ]; it is easy to show that Tr( f ) does not depend on any
choice.) From the continuity of Tr we obtain that Tr|E†

L
= tr and Tr|ϕq (RL ) = q · id.

By Lemma 2.6 below, ϕq :RL →RL is strict and thus has a closed image. Since
E†

L is dense in RL and Tr(E†
L)= ϕq(E

†
L)⊂ ϕq(RL), we have Tr(RL)⊆ ϕq(RL). �
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Lemma 2.6. If q
(q−1)eF

> r ≥ s > 0 and f ∈ E]0,r ]L , then we have

• v[s,r ](γ ( f ))= v[s,r ]( f ) for all γ ∈ 0;

• v[s,r ](ϕq( f ))= v[qs,qr ]( f ) if r < 1/((q − 1)eF ).

Proof. Since [χF (γ )]F (uF )∈ uFOF [[uF ]], we have vp([χF (γ )]F (z))> vp(z) for all
z ∈Cp such that vp(z)>0. By the same reason we have vp([χF (γ

−1)]F (z))>vp(z)
and thus vp([χF (γ )]F (z))6 vp(z). So vp([χF (γ )]F (z))= vp(z).

If z ∈ Cp satisfies

p
−

1
(q−1)eF < p−r 6 |z|6 p−s < 1,

then vp([π ]F (z)) = qvp(z). Thus, the image by z 7→ [π ]F (z) of the annulus
{z ∈ Cp : p−r 6 |z| 6 p−s

} is inside the annulus {z ∈ Cp : p−qr 6 |z| 6 p−qs
}.

Conversely, if w ∈Cp is such that p−qr 6 |w|6 p−qs , then vp(w)< q/((q−1)eF ).
The Newton polygon of the polynomial −w+[π ]F (uF ) shows that this polynomial
has q roots of valuation 1

q vp(w). If z ∈Cp is such a root, we have p−r 6 |z|6 p−s .
Thus, the image of the annulus p−r 6 |z|6 p−s is the annulus p−qr 6 |z|6 p−qs . �

We define ψ :RL →RL by ψ = 1
q ϕ
−1
q ◦ tr.

Lemma 2.7. If q/((q − 1)eF ) > r ≥ s > 0 and f ∈ E]0,r ]L , then

v[s,r ](ψ( f ))> v[s/q,r/q]( f )− vp(q).

Proof. By Lemma 2.6 it suffices to show that

v[s/q,r/q](ϕq(ψ( f ))
)
= v[s/q,r/q](q−1tr( f ))≥ v[s/q,r/q]( f )− vp(q).

But this follows from Proposition 2.5 and its proof. �

As a consequence, ψ :RL →RL is continuous.

Corollary 2.8. (a) {ui
F }0≤i≤q−1 is a basis of E†

L over ϕq(E
†
L), and

tr|E†
L
= trE†

L/ϕq (E
†
L )
.

(b) {ui
F }0≤i≤q−1 is a basis of RL over ϕq(RL).

Proof. Let {bi }0≤i≤q−1 be the dual basis of {ui
F }0≤i≤q−1 relative to trEL/ϕq (EL ). Let

B be the inverse of the matrix (tr(ui+ j
F ))i, j . Then B ∈ GLq(E

†
L) and

(b0, b1, . . . , bq−1)
t
= B(1, uF , . . . , uq−1

F )t .

So b0, b1, . . . , bq−1 are in E†
L . Then f =

∑q−1
i=0 ui

Fψ(bi f ) for any f ∈ EL , E†
L

or RL . (For the former two cases, this follows from the definition of {bi }0≤i≤q−1;
for the last case, we apply the continuity of ψ .) Thus {ui

F }0≤i≤q−1 generate E†
L

(resp. RL ) over ϕq(E
†
L) (resp. ϕq(RL)). In either case, to prove the independence of
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{ui
F }0≤i≤q−1, we only need to use the fact ψ(bi u

j
F )= δi j (i, j ∈ {0, 1, . . . , q − 1}),

where δi j is the Kronecker sign. Finally we note that the second assertion of (a)
follows from the first one. �

We apply the above to (ϕq , 0)-modules.

Proposition 2.9. If D is a (ϕq , 0)-module over R where R = EL , E†
L or RL , then

there is a unique operator ψ : D→ D such that

ψ(aϕq(x))= ψ(a)x and ψ(ϕq(a)x)= aψ(x) (2-1)

for any a ∈ R and x ∈ D. Moreover ψ commutes with 0.

Proof. Let {e1, e2, . . . , ed} be a basis of D over R. By the definition of (ϕq , 0)-
modules, {ϕq(e1), ϕq(e2), . . . , ϕq(ed)} is also a basis of D. For any m ∈ D, writing
m = a1ϕq(e1)+ a2ϕq(e2)+ · · ·+ adϕq(ed), we put

ψ(m)= ψ(a1)e1+ψ(a2)e2+ · · ·+ψ(ad)ed .

Then ψ satisfies (2-1). It is easy to prove the uniqueness of ψ . Observe that for any
γ ∈ 0, γψγ−1 also satisfies (2-1). Thus γψγ−1

= ψ by uniqueness of ψ . This
means that ψ commutes with 0. �

2B. The operator ∂ and the map Res. Recall that ∂ = (∂FF/∂Y )(uF , 0) · d/duF .
So dtF = (∂FF/∂Y )(uF , 0) duF and (dtF/duF )=

(
(∂FF/∂Y )(uF , 0)

)−1.

Lemma 2.10. If r ≥ s > 0 and f ∈R]0,r ]L , then v[s,r ](∂ f )> v[s,r ]( f )− r .

Proof. Observe that vp
(
(∂FF/∂Y )(z, 0)

)
= 0 for all z in the disk |z| < 1. Thus

v[s,r ](∂ f )= v[s,r ](d f/duF ). Write f =
∑

n∈Z anun
F . Then we have

v[s,r ]
( d f

duF

)
= inf

r>vp(z)>s
n∈Z

vp(nanzn−1)

> inf
r>vp(z)>s

n∈Z

(
vp(an)+ nvp(z)− vp(z)

)
> inf

r>vp(z)>s
n∈Z

(
vp(an)+ nvp(z)

)
− r > v[s,r ]( f )− r,

as desired. �

Lemma 2.11. We have

∂ ◦ σa = aσa ◦ ∂, ∂ ◦ϕq = πϕq ◦ ∂, ∂ ◦ψ = π−1ψ ◦ ∂.

Proof. From the definition of ∇ we see that ∇ = tF∂ commutes with 0, ϕq and ψ .
Hence the lemma follows from the equalities

σa(tF )= atF , ϕq(tF )= π tF , ψ(tF )= ψ(π
−1ϕq(tF ))= π

−1tF . �
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Let res : RLduF → L be the residue map res
(∑

i∈Z ai ui
F duF

)
= a−1, and let

Res :RL → L be the map defined by Res( f )= res( f dtF ).

Proposition 2.12. We have the exact sequence

0→ L→RL
∂
→RL

Res
→ L→ 0,

where L→RL is the inclusion map.

Proof. The kernel of ∂ is just the kernel of d/duF and thus is L . For any a ∈ L
we have Res

(
(a/uF ) · (dtF/duF )

−1
)
= a, which implies that Res is surjective. If

f = ∂g, then f dtF = dg and so Res( f )= res(dg)= 0. It follows that Res ◦ ∂ = 0.
Conversely, if f ∈RL satisfies Res( f )= 0, then f can be written as

f =
( dtF

duF

)−1
·

∑
i 6=−1

ai ui
F .

Put g =
∑

i 6=−1

ai
i+1

ui+1
F . Then f = ∂g. �

Proposition 2.13. (a) Res ◦ σa = a−1Res.

(b) Res ◦ϕq = (q/π)Res and Res ◦ψ = (π/q)Res.

Proof. First we prove (a). Let g be in RL and put f = ∂g. By Lemma 2.11 we have

σa( f )= σa ◦ ∂(g)= a−1∂(σa(g)), ψ( f )= ψ ◦ ∂(g)= π∂(ψ(g)).

Thus by Proposition 2.12 we have Res◦σa = a−1Res= 0 and Res◦ψ = π
q Res= 0

on ∂RL . From

σa(1/uF )=
1

[a]F (uF )
≡

1
auF

mod R+L ,

we see that Res ◦ σa(1/uF )= a−1Res(1/uF ). Assertion (a) follows.
To prove Res ◦ ψ = (π/q)Res, without loss of generality we suppose that

F is the special Lubin–Tate group. In this case ψ(1/uF ) = π/(quF ), and so
Res(ψ(1/uF ))= (π/q)Res(1/uF ). It follows that Res◦ψ = (π/q)Res. Finally we
have Res(ϕq(z))= (q/π)Res

(
ψ(ϕq(z))

)
= (q/π)Res(z) for any z ∈RL . In other

words, Res ◦ϕq = (q/π)Res. �

Using Res we can define a pairing { · , · } :RL ×RL → L by { f, g} = Res( f g).

Proposition 2.14. The pairing { · , · } is perfect and induces a continuous isomor-
phism from RL to its dual. Moreover we have

{σa( f ),σa(g)}=a−1
{ f,g}, {ϕq( f ),ϕq(g)}=

q
π
{ f,g}, { f,ψ(g)}=

π

q
{ϕq( f ),g}.

Proof. The first assertion follows from [Colmez 2010d, Remark I.1.5]; the formulas
from Proposition 2.13. �
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3. Operators on RC p

3A. The operator ψ on RC p . First we define RCp . For any r ≥ 0, let

E]0,r ]
Cp
:= E]0,r ] ⊗̂F Cp

be the topological tensor product, i.e., the Hausdorff completion of the projective
tensor product E]0,r ] ⊗F Cp (see [Schneider 2002]). Then E]0,r ]

Cp
is the ring of

Laurent series f =
∑

i∈Z ai ui
F with coefficients in Cp that are convergent on the

annulus 0< vp(uF ) ≤ r . We also write R+
Cp

for E]0,+∞]
Cp

. Then we define RCp to
be the inductive limit limr→0 E]0,r ]

Cp
.

We recall how the p-adic Fourier theory of [Schneider and Teitelbaum 2001]
shows that R+

Cp
is isomorphic to the ring D(OF ,Cp) of Cp-valued locally F-analytic

distributions on OF . From that reference we know that there exists a rigid analytic
group variety X such that X(L), for any extension L ⊆ Cp of F , is the set of
L-valued locally F-analytic characters. For λ ∈ D(OF , L), put Fλ(χ) = λ(χ),
χ ∈ X(L). Then Fλ is in O(X/L), and the map D(OF , L)→ O(X/L), λ 7→ Fλ,
is an isomorphism of L-Fréchet algebras.

Let F ′ be the p-divisible group dual to F and TF ′ the Tate module of F ′. Then
TF ′ is a free OF -module of rank 1; the Galois action on TF ′ is given by the
continuous character τ := χcyc · χ

−1
F , where χcyc is the cyclotomic character. By

Cartier duality, we obtain a Galois equivariant pairing 〈 , 〉 : F(Cp)⊗OF TF ′→
B1(Cp), where B1(Cp) is the multiplicative group {z ∈ Cp : |z− 1|< 1}. Fixing a
generator t ′ of TF ′, we obtain a map F(Cp)→ B1(Cp). As a formal series, this
morphism can be written as βF (X) := exp(� logF (X)) for some � ∈ Cp, and it
lies in 1+ XOCp [[X ]]. Moreover, we have

vp(�)=
1

p− 1
−

1
(q − 1)eF

(see the appendix of [Schneider and Teitelbaum 2001] or [Colmez 1993]) and
σ(�) = τ(σ )� for all σ ∈ GF . Using 〈 · , · 〉 we obtain an isomorphism of rigid
analytic group varieties

κ : F(Cp)
∼
−→ X(Cp), z 7→ κz(i) := 〈t ′, [i]F (z)〉 = βF ([i]F (z)).

Passing to global sections, we obtain the desired isomorphism

D(OF ,Cp)∼=O(X/Cp)∼=R+
Cp
.

We extend ϕq , ψ and the 0-action Cp-linearly and continuously to RCp . By
continuity we have ψ(ϕq( f )g) = fψ(g) for any f, g ∈ RCp . All these actions
keep R+

Cp
invariant.
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Lemma 3.1. We have

σa(βF ([i]F ))= βF ([ai]F ),

ϕq(βF ([i]F ))= βF ([π i]F ),

ψ(βF ([i]F ))=
{

0 if i /∈ πOF ,

βF ([i/π ]F ) if i ∈ πOF ,

∂(βF ([i]F ))= i�βF ([i]F ).

Proof. The formulae for σa and ϕq are obvious. The formula for ∂ follows from

∂ exp(i� logF (uF ))= exp(i� logF (uF )) · ∂(i�tF )= i� exp(i� logF (uF )).

If i ∈ πOF , then ψ(βF ([i]F )) = ψ ◦ ϕq(βF ([i/π ]F )) = βF ([i/π ]F ). For any
i /∈ πOF , we have

ψ(βF ([i]F ))=
1
q
ϕ−1

q

( ∑
η∈ker[π ]F

βF ([i]F (uF +F η))
)

=
1
q
ϕ−1

q

(
βF ([i]F )

∑
η∈ker[π ]F

βF ([i]F (η))
)
= 0

(3-1)

because {βF ([i]F (η)) : η ∈ ker[π ]F } = {βF (η) : η ∈ ker[π ]F } take values in the set
of p-th roots of unity and each of these p-th roots of unity appears q/p times. �

The isomorphism R+
Cp
∼= D(OF ,Cp) transfers the actions of ϕq , ψ and 0 to

D(OF ,Cp).

Lemma 3.2. For any µ ∈ D(OF ,Cp), we have

σa(µ)( f )= µ( f (a · )), ϕq(µ)( f )= µ( f (π · )).

Proof. Note that the action of ϕq and 0 on R+
Cp

comes, by passing to global sections,
from the (ϕq , 0)-action on F(Cp) with ϕq = [π ]F and σa = [a]F . The isomorphism
κ transfers the action to X(Cp): ϕq(χ)(x)=χ(πx) and σa(χ)(x)=χ(ax). Passing
to global sections yields what we want. �

Lemma 3.3. The family (βF ([i]F ))i∈OF/π
is a basis of RCp over ϕq(RCp). More-

over, if

f =
∑

i∈OF/π

βF ([i]F )ϕq( fi ),

then the terms of the sum do not depend on the choice of the liftings i , and

fi = ψ(βF ([−i]F ) f ).
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Proof. What we need to show is that

f =
∑

ī∈OF/π

βF ([i]F ) ·ϕq ◦ψ(βF ([−i]F ) f ) (3-2)

for all f ∈ RCp . Indeed, (3-2) implies that {βF ([i]F )}ī∈OF/π
generate RCp over

ϕq(RCp). On the other hand, if

f =
∑

ī∈OF/π

βF ([i]F )ϕq( fi ),

using (3-1) we obtain fi =ψ(βF ([−i]F ) f ), which implies the linear independence
of {βF ([i]F )}ī∈OF/π

over ϕq(RCp). As the map

f 7→
∑

ī∈OF/π

βF ([i]F ) ·ϕq ◦ψ(βF ([−i]F ) f )

is ϕq(RCp)-linear and continuous, we only need to prove (3-2) for a subset that
topologically generates RCp over ϕq(RCp). For example, {ui

F }0≤i≤q−1 is such a
subset. So it is sufficient to prove (3-2) for f ∈R+

Cp
. For any i ∈OF , let δi be the

Dirac distribution such that δi ( f )= f (i). Then κ∗(δi )= βF ([i]F ). Indeed, we have

κ∗(δi )(z)= δi (z)= κz(i)= βF ([i]F (z)).

It is easy to see that (δi )ī∈OF/π
is a basis of D(OF ,Cp) over ϕq(D(OF ,Cp)). Thus

every f ∈R+
Cp

can be written uniquely in the form f =
∑

ī∈OF/π
βF ([i]F )ϕq( fi )

with fi ∈R+
Cp

. As observed above, from (3-1) we deduce that fi =ψ(βF ([−i]F ) f ).
�

Next we define operators ResU , analogous to the operators defined in [Colmez
2010d].

For any f ∈RCp , i ∈OF and integer m > 0, put

Resi+πmOF ( f )= βF ([i]F )(ϕ
m
q ◦ψ

m)(βF ([−i]F ) f ).

Lemma 3.3 says that
f =

∑
i∈OF/π

Resi+πOF ( f ).

This implies that the operators Resi+πmOF are well defined (i.e., independent of the
choice of i in the ball i +πmOF ). Applying Lemma 3.3 recursively we get

f =
∑

i∈OF/πm

Resi+πmOF ( f ).

Finally, if U is a compact open subset of OF , it is a finite disjoint union of balls
ik +π

mkOF . Define ResU =
∑

k Resik+π
mkOF . The map ResU :RCp →RCp does
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not depend on the choice of these balls, and we have ResOF = 1, Res∅ = 0 and
ResU∪U ′ +ResU∩U ′ = ResU +ResU ′ .

3B. The operator mα. Let α : OF → Cp be a locally (F-)analytic function. In
this subsection, we define an operator mα :RCp →RCp similar to the one defined
in [Colmez 2010c, V.2].

Since α is a locally analytic function on OF , there is an integer m > 0 such that

α(x)=
+∞∑
n=0

ai,n(x − i)n for all x ∈ i +πmOF ,

with ai,n = (1/n!)(dn/dxn)α(x)|x=i . Let `> m be an integer. Define

mα( f )=
∑

i∈OF/π`

βF ([i]F )
(
ϕ`q ◦

( +∞∑
n=0

ai,nπ
`n�−n∂n

)
◦ψ`

)
(βF ([−i]F ) · f ).

(Formally, this definition can be seen as saying that mα = α(�
−1∂)). According to

Lemmas 2.6, 2.7 and 2.10, if r < 1/(q`−1(q − 1)eF ) then we have

v[s,r ]
(
(ϕ`q ◦�

−n∂n
◦ψ`)(g)

)
>−nq`r − nvp(�)+ v

[s,r ](g)− `vp(q),

and thus
∑
+∞

n=0 an,iπ
`n(ϕ`q ◦�

−n∂n
◦ψ`)(g) converges when ` and r satisfy

`

eF
− q`r − 1

p−1
+

1
(q−1)eF

> m
eF
.

If we choose ` > m + eF/(p − 1) − 1/(q − 1) and r close enough to 0, then
this condition is satisfied. Hence, we have indeed defined a continuous operator
mα :RCp →RCp .

Now, let us prove that mα( f ) neither depend on the choice of `, nor on that
of the liftings i for i ∈OF/π

`. By linearity and continuity, we may assume that
f = 1i+πmOF (x − i)k . Note that we have

ai+πmv,n =

[
k
n

]
π (k−n)mvk−n.

It suffices to show that

∑
v∈OF/π`−m

βF ([π
mv]F )

(
ϕ`q ◦

( k∑
n=0

ai+πmv,nπ
`n�−n∂n

)
◦ψ`

)(
βF ([−π

mv]F ) · f
)

=
(
ϕm

q ◦ (π
mk�−k∂k) ◦ψm) f,

and for this it is sufficient to prove that
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∑
v∈OF/π`−m

βF ([v]F )

(
ϕ`−m

q ◦

( k∑
n=0

ai+πmv,nπ
`n�−n ∂n

)
◦ψ`−m

)(
βF ([−v]F ) · f

)
= πmk�−k ∂k f.

As
k∑

n=0

ai+πmv,nπ
`n�−n ∂n

=

k∑
n=0

[
k
n

]
π (k−n)mvk−n

·π`n�−n ∂n

= πmk (π`−m�−1 ∂ + v
)k
,

it suffices to prove that

�−k ∂k f =
∑

v∈OFπ`−m

βF ([v]F )
(
ϕ`−m

q ◦ (π`−m�−1 ∂ + v)k ◦ψ`−m)(βF ([−v]F ) f
)
.

Since (π`−m�−1 ∂ + v)k ◦ψ`−m
= ψ`−m

◦ (�−1 ∂ + v)k and

(�−1 ∂ + v)(βF ([−v]F ) f )= βF ([−v]F )�
−1 ∂ f

(which follows from Lemma 3.1), the problem reduces to proving

f =
∑

v∈OF/π`−m

βF ([v]F )(ϕ
`−m
◦ψ`−m)(βF ([−v]F ) f ).

But this can be deduced from Lemma 3.1 and Lemma 3.3.

Lemma 3.4. If α, β :OF→Cp are locally analytic functions, then mα ◦mβ =mαβ .

Proof. We can choose ` sufficiently large, so that the same value can be used to
define mα( f ) and mβ( f ). Since ψ` ◦ϕ`q = 1, the equality in the lemma reduces to
the expression of the product of two power series. �

Lemma 3.5.

• m1 = id.

• If U is a compact open subset of OF , then ResU = m1U .

• If λ ∈ Cp, then mλα = λmα.

• ϕq ◦mα = mx 7→1πOF (x)α(π
−1x) ◦ϕq .

• ψ ◦mα = mx 7→α(πx) ◦ψ .

• For any a ∈O×F , we have σa ◦mα = mx 7→α(a−1x) ◦ σa .

• R+
Cp

is stable under mα.

Proof. These are easy consequences of the definition of mα. �
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Remark 3.6. The notation mα stands for “multiply by α”: for any µ ∈D(OF ,Cp)

we have mακ
∗(Fµ)= κ∗(Fαµ), where αµ is the distribution such that (αµ)( f )=

µ(α f ) for all locally F-analytic function f .

The operator mα has been defined over RCp , using a period � ∈ Cp that is
transcendental over F . However, in some cases, it is possible to construct related
operators over RL , for L smaller than Cp. This is done using the following lemma.

Lemma 3.7. Let σ be in GL . Consider the action of σ over RCp given by

f σ (uF )=
∑
n∈Z

σ(an)un
F if f (uF )=

∑
n∈Z

anun
F ∈RCp .

Then mα( f )σ = mβ( f σ ) for β(x)= σ
(
α

(
χF (σ )

χGm(σ )
x
))

.

Proof. This can be deduced easily from the definition of mα and the action of σ
on �. �

3C. The L[0]-module RL(δ)
ψ=0. Let δ : F×→ L× be a locally F-analytic char-

acter. Then the map x 7→ 1O×F (x)δ(x) is locally analytic on OF . Thus, we have an
operator m1O×F

δ on RCp .

Lemma 3.8. Let f be in RL . If m1O×F
δ( f ) =

∑
n∈Z anun

F ∈ RCp , the coefficients
an are all on the same line of the L-vector space Cp. Moreover, this line does not
depend on f .

Proof. Let σ be in GL . From Lemma 3.7 and Lemma 3.5 we see that

m1O×F
δ( f )σ = δ

(
χF (σ )

χGm(σ )

)
m1O×F

δ( f ),

and thus σ(an)= δ

(
χF (σ )

χGm(σ )

)
an for all n.

The Ax–Sen–Tate theorem (see [Ax 1970] or [Le Borgne 2010], for example)
says that CGL

p = L . Hence,{
z ∈ Cp : σ(z)= δ

(
χF (σ )

χGm(σ )

)
z for all σ ∈ GL

}
is an L-vector subspace of Cp with dimension 0 or 1, which proves the lemma. �

Since
m1O×F

δ ◦m1O×F
δ−1 = ResO×F = 1−ϕq ◦ψ

is not null, there is a unique L-line in Cp (which depends only on δ) in which all
the coefficients of the series m1O×F

δ( f ), for f ∈RL , lie. Choose some nonzero aδ
on this line.
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Since ϕq ◦ψ ◦m1O×F
δ =m1πOF 1O×F

δ = 0 and ϕq is injective, m1O×F
δ( f ) is in R

ψ=0
Cp

.

Lemma 3.9. Define

Mδ :R
ψ=0
L →R

ψ=0
L , f 7→ a−1

δ m1O×F
δ( f ).

(These maps are defined up to homothety, with ratio in L , because of the choice of
constants aδ).

• M1 is a homothety (with ratio in L×) of R
ψ=0
L .

• Mδ1 ◦Mδ2 = Mδ1δ2 , up to homothety.

• Mδ is a bijection, and its inverse is Mδ−1 up to homothety.

• For all γ ∈ 0, we have δ(γ )γ ◦Mδ = Mδ ◦ γ .

• (R+L )
ψ=0 is stable under Mδ.

Proof. This follows from Lemma 3.5 and the equalities

Im ResO×F = Ker ResπOF =R
ψ=0
Cp

. �

If δ is in Ian(L), we put R−L (δ)=RL(δ)/R
+

L (δ). Since R+L (δ) is ϕq , ψ, 0-stable,
R−L (δ) also has ϕq , ψ , 0-actions.

Lemma 3.10. We have an exact sequence

0→R+L (δ)
ψ=0
→RL(δ)

ψ=0
→R−L (δ)

ψ=0
→ 0.

Proof. This follows from the snake lemma and the surjectivity of the map

ψ :R+L (δ)→R+L (δ). �

Observe that RL(δ)
ψ=0
= R

ψ=0
L · eδ and R+L (δ)

ψ=0
= (R+L )

ψ=0
· eδ. As ψ

commutes with 0, RL(δ)
ψ=0, R+L (δ)

ψ=0 and R−L (δ)
ψ=0 are all 0-invariant.

Proposition 3.11. Let δ1 and δ2 be two locally F-analytic characters F×→ L×.
Then as L[0]-modules, RL(δ1)

ψ=0 is isomorphic to RL(δ2)
ψ=0, R+L (δ1)

ψ=0 is
isomorphic to R+L (δ2)

ψ=0, and R−L (δ1)
ψ=0 is isomorphic to R−L (δ2)

ψ=0.

Proof. All of the isomorphisms in question are induced by Mδ−1
1 δ2

. �

Proposition 3.12. The map ∂ induces 0-equivariant isomorphisms

(RL(δ))
ψ=0
→ (RL(xδ))ψ=0,

(R+L (δ))
ψ=0
→ (R+L (xδ))

ψ=0,

(R−L (δ))
ψ=0
→ (R−L (xδ))

ψ=0.

Proof. We first show that the maps in question are bijective. For this we only need
to consider the case of δ = 1. Since Ker ∂ = L , ∂ is injective on R

ψ=0
L . For any
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z ∈ R
ψ=0
L , Res(z) = (q/π)Res(ψ(z)) = 0. Thus by Proposition 2.12 there exists

z′ ∈ RL such that ∂z′ = z. As ∂(ψ(z′)) = 1
π
ψ(∂z′) = 0, we have ψ(z) = c for

some c ∈ L . Then z′ − c ∈ R
ψ=0
L and ∂(z′ − c) = z. This shows that the map

R
ψ=0
L →R

ψ=0
L is bijective. It is clear that, for any z ∈R

ψ=0
L , ∂z ∈R+L if and only

if z ∈ R+L . Thus the restriction ∂ : (R+L )
ψ=0
→ (R+L )

ψ=0 and the induced map
∂ : (R−L )

ψ=0
→ (R−L )

ψ=0 are also bijective.
That these isomorphisms are 0-equivariant follows from Lemma 2.11. �

Put
Sδ :=R−L (δ)

0=1,ψ=0. (3-3)

As before, let ∇δ be the operator on R+L or RL such that (∇δa)eδ = ∇(aeδ), i.e.,
∇δ = tF∂ +wδ. The set R+L (δ)/∇δR

+

L (δ) also admits actions of 0, ϕq and ψ . Put

Tδ := (R+L (δ)/∇δR
+

L (δ))
0=1,ψ=0.

Both Sδ and Tδ are L-vector spaces and only depend on δ|O×F .

Lemma 3.13. Sδ = R−L (δ)
ψ=0,∇δ=0, 0=1; that is, Sδ coincides with the set of

0-invariant solutions of ∇δz = 0 in R−L (δ)
ψ=0.

Proof. In fact, if z ∈R−L (δ)
0=1, then ∇δz = 0. �

Corollary 3.14. dimL Sδ = dimL S1 and dimL Tδ = dimL T1 for all δ ∈ Ian(L).

Proof. This follows directly from Proposition 3.11. �

Corollary 3.15. The map z 7→ ∂nz induces isomorphisms Sδ→ Sxnδ and Tδ→ Txnδ .

Proof. This follows directly from Proposition 3.12. �

We determine dimL Sδ and dimL Tδ below.

Lemma 3.16. The map ∇δ induces an injection ∇δ : Sδ→ Tδ.

Proof. By Proposition 3.11 we only need to consider the case of δ = 1.
Let z be an element of S1. Let z̃ ∈R

ψ=0
L be a lifting of z. By Lemma 3.13, ∇ z̃ is

in R+L . We show that the image of ∇ z̃ in R+L /∇R+L belongs to T1. Since ψ(z̃)= 0,
ψ(∇ z̃)=∇(ψ(z̃))= 0. For any γ ∈ 0 there exists aγ ∈R+L such that γ z̃ = z̃+aγ .
Thus γ (∇ z̃) = ∇ z̃ +∇aγ . Hence the image of z̃ in R+L /∇R+L (δ) is fixed by 0.
Furthermore, the image only depends on z: if z̃′ ∈R

ψ=0
L is another lifting of z, then

∇(z̃′− z̃) is in ∇R+L . Therefore we obtain a map ∇ : S1→ T1.
We prove that ∇ is injective. Suppose that z ∈ S1 satisfies ∇z = 0. Let z̃ ∈R

ψ=0
L

be a lifting of z. Since ∇ z̃ is in ∇R+L , there exists y ∈ R+L such that ∇ y = ∇ z̃.
Thus ∇(z̃− y)= 0. Then z̃− y is in L , which implies that z̃ ∈R+L , or equivalently
z = 0. �

Lemma 3.17. dimL T1 = 1.
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Proof. Note that T1= (R
+

L /R
+

L tF )
0=1,ψ=0. As R+L is a Fréchet–Stein algebra, from

the decomposition of the ideal (tF ) given by Corollary 1.2 we obtain an isomorphism

 :R+L /R
+

L tF
∼
−→R+L /([π ]F (uF ))×

∏
n≥1

R+L /(ϕ
n
q (Q)). (3-4)

The operator ψ induces maps

ψ0 :R
+

L /([π ]F (uF ))→R+L /R
+

L uF and ψn :R
+

L /(ϕ
n
q (Q))→R+L /(ϕ

n−1
q (Q)),

for n ≥ 1. Thus  ((R+L /R
+

L tF )
0=1,ψ=0) is exactly the subset of the codomain of

(3-4) consisting of (yn)n≥0 such that y0 ∈ (R
+

L /([π ]F (uF )))
0, ψ0(y0)= 0, and

yn ∈ (R
+

L /(ϕ
n
q (Q)))

0, ψn(yn)= 0, for all n ≥ 1.

If n ≥ 1, then R+F/ϕ
n
q (Q) is a finite extension of F and the action of 0 factors

through the whole Galois group of this extension. Thus (R+F/(ϕ
n
q (Q)))

0
= F and

(R+L /(ϕ
n
q (Q)))

0
= L . Sinceψn(a)=a for any a∈ L , (R+F/(ϕ

n
q (Q)))

0
∩ker(ψn)=0

for any n ≥ 1. Similarly (R+L /([π ]F (uF )))
0
= (R+L /(uF ))

0
× (R+L /(Q))

0 has
dimension 2 over L . As ψ0(1)= 1 and the image R+L /R

+

L uF of ψ0 has dimension 1
over L , the kernel of ψ0|(R+L /([π ]F (uF )))

0 is of dimension 1. It follows that T1 =

(R+L /R
+

L tF )
0=1,ψ=0 is of dimension 1. �

Corollary 3.18. dimL S1 = 1.

Proof. The map ∇ injects S1 into T1 with image of dimension 1. �

Remark 3.19. If z ∈ T1 is nonzero, then any lifting z̃ ∈ R+L of z is not in uFR+L ,
or equivalently z̃|uF=0 6= 0. We only need to verify this for the special Lubin–Tate
group. In this case, R+L /([π ]F (uF ))=

⊕q−1
i=0 Lui

F . We have(
R+L /([π ]F (uF ))

)0
= L ⊕ Luq−1

F .

Indeed, an element of R+L /([π ]F (uF )) is fixed by 0 if and only if it is fixed by the
operators z 7→σξ (z)with ξ ∈µq−1; but σξ (uF )=[ξ ]F (uF )=ξuF , so σξ (ui

F )=ξ
i ui

F
for any i ∈ N. Then (R+L /([π ]F (uF )))

0=1,ψ=0
= L · (uq−1

F − (1− q)π/q).

Proposition 3.20. For any δ ∈ Ian(L), dimL Sδ = dimL Tδ = 1 and the map ∇δ is
an isomorphism.

Proof. Use Corollary 3.14, Lemma 3.16, Lemma 3.17 and Corollary 3.18. �

4. Cohomology theories for (ϕq, 0)-modules

For a (ϕq , 0)-module D over RL , the (ϕq , 0)-module structure induces an action of
the semigroup G+ := ϕN

q ×0 on D. Following [Colmez 2010a] we define H•(D)
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as the cohomology of the semigroup G+. Let C•(G+, D) be the complex

0→ C0(G+, D)
d1
→ C1(G+, D)

d2
→ · · · ,

where C0(G+, D) = D, Cn(G+, D) for n ≥ 1 is the set of continuous functions
from (G+)n to D, and dn+1 is the differential

dn+1c(g0, . . . , gn)=

g0 ·c(g1, . . . , gn)+

n−1∑
i=1

(−1)i+1c(g0, . . . , gi gi+1, . . . gn)+(−1)n+1c(g0, . . . gn−1).

Then H i (D)= H i (C•(G+, D)).
If D1 and D2 are (ϕq , 0)-modules over RL , we use Ext(D1, D2) to denote

the set, in fact an L-vector space, of extensions of D1 by D2 in the category of
(ϕq , 0)-modules over RL .

We construct a natural map 2D
: Ext(RL , D)→ H 1(D) for any (ϕq , 0)-module

D. Let D̃ be an extension of RL by D. Let e ∈ D̃ be a lifting of 1 ∈ RL . Then
g 7→ g(e)−e, g∈G+, is a 1-cocycle, and induces an element of H 1(D) independent
of the choice of e. Thus we obtain the desired map

2D
: Ext(RL , D)→ H 1(D).

Proposition 4.1. For any (ϕq , 0)-module D over RL , 2D is an isomorphism.

Proof. Let D̃ be an extension of RL by D in the category of (ϕq , 0)-modules
whose image under 2D is zero. Let e ∈ D̃ be a lifting of 1 ∈ RL . As the image
of g 7→ g(e)− e, g ∈ G+, in H 1(D) is zero, there exists some d ∈ D such that
(g− 1)e = (g− 1)d for all g ∈ G+. Then g(e− d)= e− d for all g ∈ G+. Thus
D̃ = D⊕RL(e− d) as a (ϕq , 0)-module. This proves the injectivity of 2D . Next
we prove the surjectivity of 2D . Given a 1-cocycle g 7→ c(g) ∈ D, correspondingly
we can extend the (ϕq , 0)-module structure on D to the RL -module D̃ = D⊕RLe
such that ϕq(e)= e+ c(ϕq) and γ (e)= e+ c(γ ) for γ ∈ 0. �

If D1 and D2 are OF -analytic (ϕq ,0)-modules over RL , we use Extan(D1,D2) to
denote the L-vector space of extensions of D1 by D2 in the category of OF -analytic
(ϕq , 0)-modules over RL . We will introduce another cohomology theory H∗an(−),
wherein for any OF -analytic (ϕq , 0)-module D the first cohomology group H 1

an(D)
coincides with Extan(RL , D).

If D is OF -analytic, we consider the complex

C•ϕq ,∇
(D) : 0→ D

f1
→ D⊕ D

f2
→ D→ 0,
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where f1 : D→ D⊕ D is the map m 7→ ((ϕq − 1)m,∇m) and f2 : D⊕ D→ D is
(m, n) 7→∇m−(ϕq−1)n. As f1 and f2 are0-equivariant, 0 acts on the cohomology
groups H i

ϕq ,∇
(D) := H i (C•ϕq ,∇

(D)), i = 0, 1, 2. Put H i
an(D) := H i

ϕq ,∇
(D)0.

By a simple calculation we obtain

H 0(D)= H 0
an(D)= Dϕq=1,0=1.

Note that Dϕq=1 is finite-dimensional over L , and so is H 0(D). If D is étale and if
V is the L-linear Galois representation of GF attached to D, then

H 0(D)= H 0
an(D)= H 0(GF , V )= V GF .

We introduce some convenient notation. Put Z1
ϕq ,∇

(D) := ker( f2) and B1(D) :=
im( f1). For any (m1, n1) and (m2, n2) in Z1

ϕq ,∇
(D), we write (m1, n1)∼ (m2, n2)

if (m1−m2, n1− n2) ∈ B1(D). Put

Z1(D) := {(m, n) ∈ Z1
ϕq ,∇

(D) : (m, n)∼ γ (m, n) for any γ ∈ 0}.

Then H 1
an(D)= Z1(D)/B1(D).

Let D̃ be an OF -analytic extension of RL by D. Let e ∈ D̃ be a lifting of
1 ∈ RL . Then ((ϕq − 1)e,∇D̃e) belongs to Z1(D) and induces an element of
H 1

an(D) independent of the choice of e. In this way we obtain a map

2D
an : Extan(RL , D)→ H 1

an(D).

Theorem 4.2 (= Theorem 0.1). For any OF -analytic (ϕq , 0)-module D over RL ,
2D

an is an isomorphism.

The proof below is due to the referee and is much simpler than that in our original
version.

Proof. First we show that 2D
an is injective. Let D̃ be an OF -analytic extension of

RL by D whose image under 2D
an is zero. Let e ∈ D̃ be a lifting of 1 ∈RL . As the

image of ((ϕq − 1)e,∇D̃e) in H 1
ϕq ,∇

(D) is zero, there exists some d ∈ D such that
(ϕq −1)e= (ϕq −1)d and ∇D̃e=∇D̃d . Then e−d is in D̃ϕq=1,∇=0. The 0-action
on D̃ϕq=1,∇=0 is locally constant and thus is semisimple. So 1 ∈RL has a lifting
e′ ∈ D̃ϕq=1,∇=0 fixed by 0. This proves the injectivity of 2D

an.
Next we prove the surjectivity of 2D

an.
Let z be in H 1

an(D) and let (x, y) represent z, so that ∇x = (ϕq − 1)y. The
invariance of z by 0 ensures the existence of yσ ∈ D for each σ ∈ 0 such that
(σ −1)(x, y)= ((ϕq−1)yσ ,∇ yσ ). As yσ is unique up to an element of Dϕq=1,∇=0,
the 2-cocycle yσ,τ = yστ −σ yτ − yσ takes values in Dϕq=1,∇=0. If z = 0, then there
exists a ∈ D such that x = (ϕq − 1)a and y =∇a. We have ∇(yσ − (σ − 1)a)= 0.
In other words, we can write yσ = (σ − 1)a + aσ with aσ ∈ Dϕq=1,∇=0. Then
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yσ,τ = aστ−σaτ−aσ and thus y•,• is a coboundary. So we obtain a map H 1
an(D)→

H 2(0, Dϕq=1,∇=0).
We will show that the image of z by this map is zero. Fix a basis {e1, . . . , ed} of

D over RL . Let r > 0 be sufficiently small such that the matrices of ϕq and σ ∈ 0
relative to {ei }

d
i=1 are all in GLd(E

]0,r ]
L ). Put D]0,r ] =

⊕d
i=1 E]0,r ]L ei ; if s ∈ (0, r ]

put D[s,r ] =
⊕d

i=1 E[s,r ]L ei . Then D]0,r ] and D[s,r ] are stable by 0. As the matrix of
ϕq is invertible in Md(E

]0,r ]
L ), {ϕq(ei )}

d
i=1 is also a basis of D]0,r ]. Shrinking r if

necessary we may assume that ϕq maps D[s,r ] to D[s/q,r/q]; we may also suppose
that x and y are in D]0,r ], and that tF ∈ E]0,r ]L . By the relation ∇ = tF∂ on E[s,r ]L ,
Lemma 2.10 and the fact that ∇ is a differential operator, that is, satisfies a relation
similar to (1-3), we can show that the action of 0 induces a bounded infinitesimal
action ∇ on the Banach space D[s,r ]. We leave this to the reader. Let us denote
`(σ )= log(χF (σ )). For σ close enough to 1 (depending on D and s, r ) the series
of operators

E(σ )= `(σ )+ `(σ )
2

2
∇ +

`(σ )3

3!
∇

2
+ · · ·

converges on D[s,r ] and also on D[s/q,r/q]. Note that for σ close enough to 1 we
have σ = exp(`(σ )∇) on D[s/q,r/q]. Let 0′ be an open subgroup of 0 such that for
σ ∈ 0′ the above two facts hold. Then for σ ∈ 0′ we have

(ϕq − 1)(E(σ )y)= E(σ )(ϕq − 1)y = E(σ )∇x =∇E(σ )x = (σ − 1)x . (4-1)

Note that ϕq(E(σ )y) is in D[s/q,r/q]. So by (4-1) we have

E(σ )y ∈ D[s/q,r/q] ∩ D[s,r ] = D[s/q,r ]

if s is chosen such that s< r/q . Doing this repeatedly we will obtain E(σ )y ∈ D]0,r ].
Taking yσ = E(σ )y for σ ∈ 0′ we will have yσ,τ = 0 for σ, τ ∈ 0′. In other words,
the restriction to 0′ of the image of z in H 2(0, Dϕq=1,∇=0) is 0. Since 0/0′ is finite
and Dϕq=1,∇=0 is a Q-vector space, the image of z is itself 0. So we can modify
yσ by an element of Dϕq=1,∇=0 so that yσ,τ is identically 0. But this means that
(σ − 1)yτ = (τ − 1)yσ , so the 1-cocycle ϕq 7→ x , σ 7→ yσ defines an element of
H 1(D), hence also an extension of RL by D.

We will show that the resulting extension in fact belongs to Ext1an(RL , D). As 0 is
locally constant on Dϕq=1,∇=0, shrinking 0′ if necessary we may assume that 0′ acts
trivially on Dϕq=1,∇=0. Then σ 7→ yσ−E(σ )y is a continuous homomorphism from
0′ to Dϕq=1,∇=0. Note that any continuous homomorphism from 0′ to Dϕq=1,∇=0

can be extended to 0. Thus yσ − E(σ )y = λ(σ) for some λ ∈Hom(0, Dϕq=1,∇=0)

and all σ ∈ 0′. If S is a set of representatives of 0/0′ in 0, the map

TS =
1

|0 : 0′|

∑
σ∈S

σ
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is the identity on H 1
an(D) and a projection from Dϕq=1,∇=0 to H 0(D); moreover it

commutes with ϕq , ∇ and 0. This means that we can apply TS to (x, y) and yσ ;
then we have yσ − E(σ )y = λ(σ) for some λ ∈ Hom(0, H 0(D)) and all σ ∈ 0′.
As σ 7→ E(σ )y is analytic, the extension in question is OF -analytic. �

As above, let Hom(0, H 0(D)) be the set of continuous homomorphisms of
groups from 0 to H 0(D). An element h : 0 → H 0(D) of this set is said to be
locally analytic if h(exp(aβ)) = ah(expβ) for all a ∈ OF and β ∈ Lie0. Let
Homan(0, H 0(D)) be the subset of Hom(0, H 0(D)) consisting of locally analytic
homomorphisms. We have natural injections

Homan(0, H 0(D))→ Ext1an(RL , D) and Hom(0, H 0(D))→ Ext1(RL , D).

Theorem 4.3. Assume that D is an OF -analytic (ϕq , 0)-module over RL . Then we
have an exact sequence

0→Homan(0, H 0(D))→Hom(0, H 0(D))⊕Ext1an(RL , D)→Ext1(RL , D)→ 0.

For the proof we introduce an auxiliary cohomology theory. Let γ be an element
of 0 of infinite order, i.e., log(χF (γ )) 6= 0. We consider the complex

C•ϕq ,γ
(D) : 0→ D

g1
→ D⊕ D

g2
→ D→ 0,

where g1 : D→ D⊕D is the map m 7→ ((ϕq−1)m, (γ −1)m) and g2 : D⊕D→ D
is (m, n) 7→ (γ − 1)m − (ϕq − 1)n. As g1 and g2 are 0-equivariant, 0 acts on
H i
ϕq ,γ

(D) := H i (C•ϕq ,γ
(D)), i = 0, 1, 2. Put H i

an,γ (D) := H i
ϕq ,γ

(D)0. A simple
calculation shows that H 0

an,γ (D)= H 0
an(D).

For any γ ∈ 0 we use 〈γ 〉 to denote the closed subgroup of 0 topologically
generated by γ . If γ is of infinite order and if D is an RL -module together
with a semilinear 〈γ 〉-action, let ∇γ be the operator on D that can be written as
lim−→

γ ′
(log(γ ′)/ log(χF (γ

′))) formally, where γ ′ runs through all elements of 〈γ 〉
with logχF (γ

′) 6= 0. (For a precise definition we only need to imitate the definition
of ∇.)

Let D̃ be an OF -analytic extension of RL by D. Let e ∈ D̃ be a lifting of
1 ∈RL . Then ((ϕq − 1)e, (γ − 1)e) induces an element of H 1

an,γ (D) independent
of the choice of e. This yields a map 2D

an,γ : Extan(RL , D)→ H 1
an,γ (D). Given

an element of H 1
an,γ (D), we can attach to it an extension D̃ of RL by D in the

category of free RL -modules of finite rank together with semilinear actions of ϕq

and 〈γ 〉. Let e ∈ D̃ be a lifting of 1 ∈RL . Then
(
(ϕq−1)e,∇γ e

)
belongs to Z1(D)

and induces an element of H 1
an(D) independent of the choice of e. This gives a map

ϒD
an,γ : H 1

an,γ (D)→ H 1
an(D). Observe that ϒD

an,γ ◦2
D
an,γ =2

D
an. By an argument

similar to the proof of the injectivity of 2D
an, we can show that both 2D

an,γ and
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ϒD
an,γ are injective. Hence it follows from Theorem 4.2 that 2D

an,γ and ϒD
an,γ are

isomorphisms.
If c is a 1-cocycle representing an element z of H 1(D), then (c(ϕq), c(γ ))

induces an element in H 1
an,γ (D) which only depends on z. This yields a map

ϒD
γ : H

1(D)→ H 1
an,γ (D). Hence, 2D

an,γ : Extan(RL , D)→ H 1
an,γ (D) extends to a

map Ext(RL , D)→ H 1
an,γ (D), which will also be denoted by 2D

an,γ . We have the
following commutative diagram:

Ext(RL , D) 2D

∼
//

2D
an,γ

''

H 1(D)

ϒD
γ

��
Extan(RL , D) ∼

2D
an,γ

//
?�

OO

H 1
an,γ (D)

(4-2)

The composition (2D
an,γ−1)

−1
◦ ϒD

γ ◦ 2
D is a projection from Ext(RL , D) to

Extan(RL , D), which depends on γ .

Proof of Theorem 4.3. We only need to prove the surjectivity of

Hom(0, H 0(D))⊕Ext1an(RL , D)→ Ext1(RL , D).

Let D̃ be in Ext1(RL , D). Without loss of generality we may assume that the
image of D̃ by the projection (2D

an,γ−1)
−1
◦ ϒD

γ ◦ 2
D is zero. Let e ∈ D̃ be

a lifting of 1 ∈ RL . Then let c be the 1-cocycle defined by ϕq 7→ (ϕq − 1)e,
σ 7→ (σ − 1)e for σ ∈ 0, so that c̄, the class of c in H 1(D), corresponds to D̃. So
the image of c̄ by the map ϒD

γ is zero. This means that there exists d ∈ D such that
(ϕq−1)d = c(ϕq) and (γ −1)d = c(γ ). Replacing e by e−d , we may assume that
c(ϕq)= c(γ )= 0. Then for any σ ∈ 0, we have (ϕq − 1)c(σ )= (σ − 1)c(ϕq)= 0
and (γ − 1)c(σ )= (σ − 1)c(γ )= 0. This means that c(σ ) ∈ Dϕq=1,γ=1. Note that
M := Dϕq=1,γ=1 is of finite rank over L . We write M = H 0(D)⊕

⊕
j M j as a

0-module, where each M j is an irreducible 0-module. Write c = c′+
∑

j c j by
this decomposition. Observe that c′ and c j are all 1-cocycles. As M j is irreducible
and the 0-action on M j is nontrivial, there exists some γ j ∈ 0 such that γ j − 1 is
invertible on M j . Then there exists m j ∈ M j such that c j (γ j ) = (γ j − 1)m j . A
simple calculation shows that c j (σ ) = (σ − 1)m j for all σ ∈ 0. Replacing e by
e−

∑
j m j , we may assume that c= c′. Then c(ϕq)= 0 and c|0 is a homomorphism

from 0 to H 0(D). �

Corollary 4.4 (= Theorem 0.2). Extan(RL , D) is of codimension

([F :Qp] − 1) dimL H 0(D)

in Ext(RL , D). In particular, if H 0(D)= 0, then Extan(RL , D)= Ext(RL , D); in
other words, all extensions of RL by D are OF -analytic.
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Proof. This follows from Theorem 4.3 and the equalities dimL Hom(0, H 0(D))=
[F :Qp] dimL H 0(D) and dimL Homan(0, H 0(D))= dimL H 0(D). �

5. Computation of H1
an(δ) and H1(δ)

In the case of F =Qp, Colmez [2008] computed H 1 for not necessarily étale (ϕ, 0)-
modules of rank 1 over the Robba ring. In this case, Liu [2008] computed H 2 for
this kind of (ϕ, 0)-modules, and used it and Colmez’s result to build analogues, for
not necessarily étale (ϕ, 0)-modules over the Robba ring, of the Euler–Poincaré
characteristic formula and Tate local duality. Later, Chenevier [2013] obtained the
Euler–Poincaré characteristic formula for families of triangulable (ϕ, 0)-modules
and some related results.

In this section we compute H 1
an(δ)= H 1

an(RL(δ)) (for δ ∈ Ian(L)) and H 1(δ)=

H 1(RL(δ)) (for δ ∈ I(L)) following Colmez’s approach. In Sections 5B and 5E
we assume that δ is in I(L); in Sections 5C, 5D and 5F we assume that δ is in
Ian(L).

5A. Preliminary lemmas.
Lemma 5.1. (a) If α ∈ L× is not of the form π−i , i ∈N, then αϕq−1 :R+L →R+L

is an isomorphism.

(b) If α = π−i with i ∈ N, then the kernel of αϕq − 1 : R+L → R+L is L · t i
F , and

a ∈R+L is in the image of αϕq−1 if and only if ∂ i a|uF=0= 0. Further, αϕq−1
is bijective on the subset {a ∈R+L : ∂

i a|uF=0 = 0}.

Proof. The argument is similar to the proof of [Colmez 2008, Lemma A.1]. If
k >−vπ (α), then −

∑
+∞

n=0(αϕq)
n is the continuous inverse of αϕq − 1 on uk

FR+L .
The assertions follow from the fact that R+L =

⊕k−1
i=0 L · t i

F⊕uk
FR+L and the formula

ϕq(t i
F ) = π

i t i
F . We just need to remark that ∂ i a|uF=0 = 0 if and only if a is in⊕i−1

j=0 Lt j
F ⊕ ui+1

F R+L . �

Lemma 5.2. If α ∈ L satisfies vπ (α) < 1− vπ (q), then for any b ∈ E†
L there exists

c ∈ E†
L such that b′ = b− (αϕq − 1)c is in (E†

L)
ψ=0.

Proof. By Proposition 2.4(d), c =
∑
+∞

k=1 α
−kψk(b) is convergent in E†

L . It is easy
to check that αc−ψ(c)= ψ(b), which proves the lemma. �

Corollary 5.3. If α ∈ L satisfies vπ (α) < 1− vπ (q), then for any b ∈ RL there
exists c ∈RL such that b′ = b− (αϕq − 1)c is in (E†

L)
ψ=0.

Proof. Let k be an integer > −vπ (α). By Lemma 5.1, there exists c1 ∈ RL such
that b− (αϕq − 1)c1 is of the form

∑
i<k ai ui

F and thus is in E†
L . Then we apply

Lemma 5.2. �

Lemma 5.4. If α∈ L satisfies vπ (α)<1−vπ (q), and if z∈RL satisfiesψ(z)−αz∈
R+L , then z ∈R+L .
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Proof. Write z in the form
∑

k∈Z akuk
F and put y =

∑
k≤−1 akuk

F ∈ E†
L . If y 6= 0,

multiplying z by a scalar in L we may suppose that infk≤−1 vp(ak)= 0. Then

y−α−1ψ(y)= α−1(αz−ψ(z))+
∑
k≥0

ak(α
−1ψ(uk

F )− uk
F )

belongs to OE†
L
∩R+L =OL [[uF ]]. But this is a contradiction since y−α−1ψ(y)≡

y mod π . Hence y = 0. �

Corollary 5.5. If α ∈ L satisfies vπ (α) < 1− vπ (q) and if z ∈ RL is such that
(αϕq − 1)z ∈R

ψ=0
L , then z is in R+L .

Proof. We have ψ(z)−αz = ψ(z−αϕq(z))= 0. Then we apply Lemma 5.4. �

5B. Computation of H0(δ). Recall that if δ ∈ Ian(L), then H 0
an(δ)= H 0(δ).

Proposition 5.6. Let δ be in I(L).

(a) If δ is not of the form x−i with i ∈ N, then H 0(δ)= 0.

(b) If i ∈ N, then H 0(x−i )= Lt i
F .

Proof. Observe that

R−L (δ)
ϕq=1
= (R−L )

δ(π)ϕq=1
· eδ = 0,

where R−L (δ)=RL(δ)/R
+

L (δ). Thus RL(δ)
ϕq=1,0=1

=R+L (δ)
ϕq=1,0=1. If δ(π) is

not of the form π−i , with i ∈ N, by Lemma 5.1(a) we have R+L (δ)
ϕq=1
= 0 and so

R+L (δ)
ϕq=1,0=1

= 0. If δ(π)= π−i , then

R+L (δ)
ϕq=1,0=1

= (Lt i
F · eδ)

0=1
=

{
Lt i

F · eδ if δ = x−i ,

0 otherwise,

as desired. �

Corollary 5.7. If δ1 and δ2 are two different characters in I(L), then RL(δ1) is not
isomorphic to RL(δ2).

Proof. We only need to show that RL(δ1δ
−1
2 ) is not isomorphic to RL . By

Proposition 5.6, RL(δ1δ
−1
2 ) is not generated by H 0(δ1δ

−1
2 ), but RL is generated by

H 0(1). Thus RL(δ1δ
−1
2 ) is not isomorphic to RL . �

5C. Computation of H1
an(δ) for δ ∈Ian(L) with vπ (δ(π)) < 1−vπ (q). Until the

end of Section 5 we will write RL(δ) as RL with the twisted (ϕq , 0)-action given
by

ϕq;δ(x)= δ(π)ϕq(x), σa;δ(x)= δ(a)σa(x).

Recall that ∇δ = tF∂ +wδ. Write δ(σa)= δ(a).
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Lemma 5.8. Suppose that δ ∈ Ian(L) satisfies vπ (δ(π)) < 1− vπ (q). For any
(a, b) ∈ Z1

ϕq ,∇
(δ), there exists (m, n) ∈ Z1

ϕq ,∇
(δ) with m ∈ (E†

L)
ψ=0 and n ∈ R+L

such that (a, b)∼ (m, n).

Proof. As vπ (δ(π)) < 1− vπ (q), by Corollary 5.3 there exists c ∈RL such that

m = a− (δ(π)ϕq − 1)c

is in (E†
L)
ψ=0. Put n= b−∇δc. Then (m, n) is in Z1

ϕq ,∇
(δ) and (m, n)∼ (a, b). As

(δ(π)ϕq −1)n =∇δm = tF∂m+wδm is in R
ψ=0
L , by Corollary 5.5, n is in R+L . �

Lemma 5.9. Suppose that vπ (δ(π)) < 1− vπ (q) and δ is not of the form x−i . Let
(m, n) be in Z1

ϕq ,∇
(δ) with m ∈ (E†

L)
ψ=0 and n ∈ R+L . Then (m, n) is in B1(δ) if

and only if

• m ∈ (E+L )
ψ=0 when δ(π) is not of the form π−i , i ∈ N;

• m ∈ (E+L )
ψ=0 and ∂ i m|uF=0 = 0 when δ(π) = π−i and wδ 6= −i for some

i ∈ N;

• m ∈ (E+L )
ψ=0 and ∂ i m|uF=0 = ∂

i n|uF=0 = 0 when δ(π) = π−i and wδ = −i
for some i ∈ N.

Proof. We only prove the assertion for the case that δ(π)= π−i and wδ 6= −i for
some i ∈ N. The arguments for the other two cases are similar.

If (m, n) is in B1(δ), then there exists z ∈RL such that (δ(π)ϕq − 1)z = m and
∇δz = n. Since m is in R

ψ=0
L , by Corollary 5.5 we have z ∈R+L . It follows that m

is in R+L ∩E†
L = E+L . By Lemma 5.1(b), we have ∂ i m|uF=0 = 0.

Now we assume that m is in E+L and ∂ i m|uF=0 = 0. By Lemma 5.1(b), there
exists z ∈R+L with ∂ i z|uF=0 = 0 such that (δ(π)ϕq − 1)z = m. Then

(δ(π)ϕq − 1)(∇δz− n)=∇δ(δ(π)ϕq − 1)z− (δ(π)ϕq − 1)n

=∇δm− (δ(π)ϕq − 1)n = 0.

Again by Lemma 5.1(b), we have ∇δz − n = c t i
F for some c ∈ L . Put z′ =

z − c t i
F/(wδ + i). Then (δ(π)ϕq − 1)z′ = m and ∇δz′ = n. Hence (m, n) is in

B1(δ). �

Recall that Sδ =R−L (δ)
0=1,ψ=0.

Proposition 5.10. Suppose that vπ (δ(π)) < 1− vπ (q).

(a) If δ is not of the form x−i , then H 1
an(δ) is isomorphic to the L-vector space Sδ

and is 1-dimensional.

(b) If δ= x−i , then H 1
an(δ) is 2-dimensional over L and is generated by the images

of (t i
F , 0) and (0, t i

F ).
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Proof. For (a) we only consider the case that δ(π)= π−i and wδ =−i for some
i ∈ N. The arguments for the other cases are similar. As δ 6= x−i , there exists an
element γ1 ∈ 0 of infinite order such that δ(γ1) 6= χF (γ1)

−i .
We give two useful facts: for any z ∈R+L , ∂ i z|uF=0 = 0 if and only if

∂ i (δ(γ1)γ1− 1)z|uF=0 = 0;

if ∂ i z|uF=0 = 0, then ∂ i (δ(γ )γ − 1)z|uF=0 = 0 for any γ ∈ 0. Both of these two
facts follow from Lemma 5.1(b). We will use them freely below.

Let (m, n) be in Z1(δ) with m ∈ (E†
L)
ψ=0 and n ∈ R+L . For any γ ∈ 0, since

γ (m, n)− (m, n) ∈ B1(δ), by Lemma 5.9, (δ(γ )γ − 1)m is in R+L ; i.e., the image
of m in R−L (δ) belongs to Sδ.

We will show that, for any m̄ ∈ Sδ , there exists a lifting m ∈ (E†
L)
ψ=0 of m̄ such

that ∂ i (δ(γ )γ − 1)m|uF=0 = 0 for all γ ∈ 0. Let m′ ∈ (E†
L)
ψ=0 be an arbitrary

lifting of m̄. Assume that ∂ i (δ(γ1)γ1− 1)m′|uF=0 = c. Put

m = m′− 1
i !

ct i
F

δ(γ1)χF (γ1)i−1
.

Then ∂ i (δ(γ1)γ1−1)m|uF=0=0 and thus ∂ i
∇δm|uF=0=0. Hence, by Lemma 5.1(b)

there exists n ∈R+L with ∂ i n|uF=0= 0 such that (δ(π)ϕq−1)n=∇δm. This means
that (m, n) ∈ Z1

ϕq ,∇
(δ). For any γ ∈ 0, since

∂ i (δ(γ1)γ1− 1)(δ(γ )γ − 1)m|uF=0 = ∂
i (δ(γ )γ − 1)(δ(γ1)γ1− 1)m|uF=0 = 0,

we have ∂ i (δ(γ )γ − 1)m|uF=0 = 0. In a word, for any γ ∈ 0, (δ(γ )γ − 1)m is
in R+L and ∂ i (δ(γ )γ − 1)m|uF=0 = ∂

i (δ(γ )γ − 1)n|uF=0 = 0. This means that
γ (m, n)− (m, n) is in B1(δ) for any γ ∈ 0. In other words, (m, n) is in Z1(δ).

Now let (m1, n1) and (m2, n2) be two elements of Z1(δ) with m1,m2 ∈ (E
†
L)
ψ=0

and n1, n2 ∈R+L . By Lemma 5.9,

∂ i (δ(γ1)γ1− 1)m1|uF=0 = ∂
i (δ(γ1)γ1− 1)m2|uF=0 = ∂

i (δ(γ1)γ1− 1)n1|uF=0

= ∂ i (δ(γ1)γ1− 1)n2|uF=0 = 0.

Suppose that the image of m1 in Sδ coincides with that of m2, which implies that
m1−m2 ∈ E+L . From

∂ i (δ(γ1)γ1− 1)(m1−m2)|uF=0 = ∂
i (δ(γ1)γ1− 1)(n1− n2)|uF=0 = 0

we obtain ∂ i (m1−m2)|uF=0 = ∂
i (n1− n2)|uF=0 = 0. Thus (m1, n1)∼ (m2, n2).

Combining all of the above discussions, we obtain an isomorphism Sδ
∼
−→ H 1

an(δ).
Then by Proposition 3.20, dimL H 1

an(δ)= dimL Sδ = 1.
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Next we prove (b). Again let (m, n) be in Z1(δ) with m ∈ (E†
L)
ψ=0 and n ∈R+L .

Then the image of m in R−L (δ), denoted by m̄, is in Sδ. We show that m in
fact belongs to (R+L )

ψ=0, i.e., m̄ = 0. By Corollary 3.15, ∂ i
: Sδ → S1 is an

isomorphism. So we only need to prove that the image of ∂ i m in S1 is zero. By
Remark 3.19, it suffices to show that ∇∂ i m|uF=0 = 0. But ∇∂ i m = ∂ i

∇δm. Since
∇δm = (δ(π)ϕq − 1)n, by Lemma 5.1(b) we have ∂ i

∇δm|uF=0 = 0.
Write m = at i

F + m′ with a ∈ L and m′ ∈ R+L satisfying ∂ i m′|uF=0 = 0.
By Lemma 5.1(b) there exists z ∈ R+L such that (δ(π)ϕq − 1)z = m′. Then
(m, n)∼ (at i

F , n−∇δz). Thus we may suppose that m = at i
F . Then

(δ(π)ϕq − 1)n =∇δ(at i
F )= 0.

So, by Lemma 5.1(b), we have n= bt i
F for some b∈ L . Suppose that (at i

F , bt i
F ) is in

B1(δ). Then there exists z ∈RL such that (δ(π)ϕq − 1)z = at i
F and ∇δz = bt i

F . So
ψ(z)−δ(π)z=ψ

(
(1−δ(π)ϕq)z

)
=ψ(−at i

F )∈R+L . By Lemma 5.4 we get z ∈R+L .
By Lemma 5.1(b) again we have a = 0 and z ∈ Lt i

F . Then bt i
F =∇δz = 0. �

5D. ∂ : H1
ϕq,∇

(x−1δ)→ H1
ϕq,∇

(δ) and ∂ : H1
an(x−1δ)→ H1

an(δ). Observe that,
if (m, n) is in Z1

ϕq ,∇
(x−1δ) (resp. B1(x−1δ)), then (∂m, ∂n) is in Z1

ϕq ,∇
(δ) (resp.

B1(δ)). Thus we have a map ∂ : H 1
ϕq ,∇

(x−1δ)→ H 1
ϕq ,∇

(δ). Further, the map is
0-equivariant and thus induces a map ∂ : H 1

an(x
−1δ)→ H 1

an(δ).
Put

Z1
ϕq ,∇

(δ) := {(m, n) ∈ Z1
ϕq ,∇

(δ) : Res(m)= Res(n)= 0},

B1(δ) := {(m, n) ∈ B1(δ) : Res(m)= Res(n)= 0}.

Then H 1
ϕq ,∇

(δ) := Z1
ϕq ,∇

(δ)/B1
ϕq ,∇

(δ) is a subspace of H 1
ϕq ,∇

(δ).

Lemma 5.11. If δ(π) 6=π/q or wδ 6= 1, then for any (m, n)∈ Z1
ϕq ,∇

(δ), there exists

(m1, n1) ∈ Z1
ϕq ,∇

(δ) such that (m, n)∼ (m1, n1), and so H 1
ϕq ,∇

(δ)= H 1
ϕq ,∇

(δ).

Proof. Let (m, n) be in Z1
ϕq ,∇

(δ). Then ∇δm = (δ(π)ϕq − 1)n. If δ(π) 6= π/q, by
Proposition 2.13 and the definition of Res we have

Res
(

m− (δ(π)ϕq − 1)
(

Res(m)
(dtF/duF )

−1

(δ(π)
q
π
− 1)uF

))
= 0.

Replacing (m, n) by(
m−(δ(π)ϕq−1)

(
Res(m)

(dtF/duF )
−1

(δ(π)
q
π
− 1)uF

)
, n−∇δ

(
Res(m)

(dtF/duF )
−1

(δ(π)
q
π
− 1)uF

))
,

we may assume that Res(m)= 0. Then( q
π
δ(π)− 1

)
Res(n)= Res

(
(δ(π)ϕq − 1)n

)
= Res(∇δm)

= Res
(
∂(tFm)+ (wδ − 1)m

)
= (wδ − 1)Res(m)= 0,
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and so Res(n)= 0.
The argument for the case of wδ 6= 1 is similar. �

The map ∂ :H 1
ϕq ,∇

(x−1δ)→H 1
ϕq ,∇

(δ) factors through ∂ :H 1
ϕq ,∇

(x−1δ)→H 1
ϕq ,∇

(δ),
since Res ◦ ∂ = 0.

Lemma 5.12. (a) If δ(π) 6= π or wδ 6= 1, then ∂ : H 1
ϕq ,∇

(x−1δ)→ H 1
ϕq ,∇

(δ) is
surjective.

(b) If δ(π)= π and wδ = 1, then we have an exact sequence of 0-modules

H 1
ϕq ,∇

(x−1δ)
∂
→ H 1

ϕq ,∇
(δ)→ L(x−1δ)→ 0.

Proof. Let (m, n) be in Z1
ϕq ,∇

(δ). Then there exist m′ and n′ such that ∂m′ = m
and ∂n′ = n. Then ∇x−1δm′ − (π−1δ(π)ϕq − 1)n′ = c is in L . If δ(π) 6= π , we
replace n′ by n′+ c/(π−1δ(π)− 1). If wδ 6= 1, we replace m′ by m′− c/(wδ − 1).
Then (m′, n′) is in Z1

ϕq ,∇
(x−1δ). This proves (a). When δ(π) = π and wδ = 1,

∇m′− (ϕq − 1)n′ does not depend on the choice of m′ and n′. This induces a map
H 1
ϕq ,∇

(δ)→ L whose kernel is exactly ∂H 1
ϕq ,∇

(x−1δ). We show that H 1
ϕq ,∇

(δ)→ L
is surjective. Put m′ = log(ϕq(uF )/u

q
F ). A simple calculation shows that

∇m′ =
( tF ·[π ]

′

F (uF )
[π ]F (uF )

− q
tF
uF

)
∂uF ≡ (1− q) mod uFR+L .

Thus by Lemma 5.1(b) there exists n′ ∈ uFR+L such that (ϕq−1)n′=∇m′−(1−q).
Put m = ∂m′ and n= ∂n′. Then (m, n) is in Z1

ϕq ,∇
(δ), whose image in L is nonzero.

The 0-action on H 1
ϕq ,∇

(δ) induces an action on L . From(
δ(a)σa(m), δ(a)σa(n)

)
=
(
∂(a−1δ(a)σa(m′)), ∂(a−1δ(a)σa(n′))

)
and

∇(a−1δ(a)σa(m′))− (ϕq − 1)(a−1δ(a)σa(n′))= a−1δ(a)σa(∇m′− (ϕq − 1)n′)

≡ a−1δ(a)(1− q) mod uFR+L ,

we see that the induced action comes from the character x−1δ. �

Sublemma 5.13. Let a, b be in L. If (a, b) is in Z1
ϕq ,∇

(x−1δ) but not in B1(x−1δ),
then δ(π)= π and wδ = 1.

Proof. If δ(π) 6= π , then (a, b)∼
(

0, b−
∇x−1δ

π−1δ(π)− 1
a
)

. So

(π−1δ(π)− 1)
(

b−
∇x−1δ

π−1δ(π)− 1
a
)
= (π−1δ(π)ϕq − 1)

(
b−

∇x−1δ

π−1δ(π)− 1
a
)

= 0.

As δ(π) 6= π , we have b−
∇x−1δ

π−1δ(π)− 1
a = 0. Similarly, if wδ 6= 1, then (a, b) is
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in Z1
ϕq ,∇

(x−1δ) if and only if (a, b)∼ (0, 0). �

Recall that δunr is the character of F× such that δunr(π)= q−1 and δunr|O×F = 1.

Sublemma 5.14. The pair

(m, n) :=
(

1
q

log
ϕq(uF )

uq
F

,
tF∂uF

uF

)
induces a nonzero element of H 1

an(δunr).

Proof. Note that m = (δunr(π)ϕq − 1) log uF and n = ∇ log uF . Thus (m, n) is in
Z1
ϕq ,∇

(δunr). For any γ ∈ 0 we have γ (m, n)∼ (m, n). Indeed,

γ (m, n)− (m, n)=
(
(δunr(π)ϕq − 1) log

γ (uF )
uF

,∇ log
γ (uF )

uF

)
.

So (m, n) is in Z1(δunr). We show that (m, n) is not in B1(δunr). Otherwise there
exists z ∈ RL such that m = (δunr(π)ϕq − 1)z and n = ∇z. This implies that
∇(log uF − z)= 0, or equivalently log uF − z is in L , a contradiction. �

Corollary 5.15. If δ(π) = π/q and wδ = 1, then
( 1

q log(ϕq(uF )/u
q
F ), tF∂uF/uF

)
is in Z1

ϕq ,∇
(x−1δ) but not in B1(x−1δ).

Lemma 5.16. (a) If δ(π) 6=π, π/q or ifwδ 6= 1, then ∂ :H 1
ϕq ,∇

(x−1δ)→ H 1
ϕq ,∇

(δ)

is injective.

(b) If δ(π)= π and wδ = 1, then we have an exact sequence of 0-modules

0→ L(x−1δ)⊕ L(x−1δ)→ H 1
ϕq ,∇

(x−1δ)
∂
→ H 1

ϕq ,∇
(δ).

(c) If δ(π)= π/q and wδ = 1, then we have an exact sequence of 0-modules

0→ L(x−1δ)→ H 1
ϕq ,∇

(x−1δ)
∂
→ H 1

ϕq ,∇
(δ).

Proof. Let (m, n) be in Z1
ϕq ,∇

(x−1δ), and suppose that (∂m, ∂n) ∈ B1(δ). Let z be
an element of RL such that (δ(π)ϕq−1)z = ∂m and ∇δz = ∂n. If Res(z)= 0, then
there exists z′ ∈RL such that ∂z′= z. Then m−(δ(π)π−1ϕq−1)z′ and n−∇x−1δz′

are in {(a, b) : a, b ∈ L}, i.e., (m, n) is in B1(x−1δ)⊕ L(0, 1)⊕ L(1, 0).
If either δ(π) 6= π

q or wδ 6= 1, we always have Res(z)= 0. Indeed, this follows
from

(δ(π)
q
π
− 1)Res(z)= Res

(
(δ(π)ϕq − 1)z

)
= Res(∂m)= 0

and

(wδ − 1)Res(z)= Res
(
∂(tF z)+ (wδ − 1)z

)
= Res(∇δz)= Res(∂n)= 0.

In the case of δ(π)= π
q and wδ = 1, if z ∈ L(∂uF/uF ), then (m, n) is in
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L(0, 1)⊕ L(1, 0)⊕ L
(

1
q

log
ϕq(uF )

uq
F

,
tF∂uF

uF

)
.

Now our lemma follows from Sublemma 5.13 and Corollary 5.15. �

Proposition 5.17. (a) If δ(π) 6= π, π/q or if wδ 6= 1, then

∂ : H 1
ϕq ,∇

(x−1δ)→ H 1
ϕq ,∇

(δ)

is an isomorphism of 0-modules.

(b) If δ(π)= π and wδ = 1, then we have an exact sequence of 0-modules

0→ L(x−1δ)⊕ L(x−1δ)→ H 1
ϕq ,∇

(x−1δ)
∂
−→ H 1

ϕq ,∇
(δ)→ L(x−1δ)→ 0.

(c) If δ(π)= π/q and wδ = 1, then we have an exact sequence of 0-modules

0→ L(x−1δ)→ H 1
ϕq ,∇

(x−1δ)
∂
−→ H 1

ϕq ,∇
(δ)→ L(x−1δ)⊕ L(x−1δ)→ 0.

Proof. Assertions (a) and (b) follow from Lemmas 5.11, 5.12 and 5.16. Based on
these lemmas, for (c) we only need to show that we have an exact sequence of
0-modules

0→ H 1
ϕq ,∇

(δ)→ H 1
ϕq ,∇

(δ)
Res
→ L(x−1δ)⊕ L(x−1δ)→ 0,

where Res is induced by (m, n) 7→ (Res(m),Res(n)), which is 0-equivariant by
Proposition 2.13. Here we prove this under the assumption that q is not a power
of π . We will see in Section 5F that it also holds without this assumption. Put
m1 = 1/uF . Then ∇δm1 = tF ∂(1/uF )+ 1/uF = ∂(tF/uF ) is in R+L . As q is not
a power of π , the map π

q ϕq − 1 : R+L → R+L is an isomorphism. Let n1 be the
unique solution of (πq ϕq − 1)n1 = tF∂m1 +m1 in R+L . Then c1 = (m1, n1) is in
Z1
ϕq ,∇

(δ) and Res(m1, n1) = (1, 0) 6= 0. For any ` ∈ N we choose a root ξ` of
Q` = ϕ

`−1
q (Q). For any f (uF ) ∈R+L , the value of f at ξ` is an element f (ξ`) in

L ⊗F F`. By (3-4) there exists an element z ∈R+L whose value at ξ` is 1⊗ log ξ`.
Put m2 = t−1

F (q−1ϕq − 1)(log uF − z) and n2 = ∂(log uF − z). Then (m2, n2) is in
Z1
ϕq ,∇

(δ) and Res(n2)= 1. �

Proposition 5.18. (a) If δ 6= x, xδunr, then ∂ : H 1
an(x

−1δ)→ H 1
an(δ) is an isomor-

phism.

(b) If δ = x , then ∂ : H 1
an(x

−1δ)→ H 1
an(δ) is zero, and dimL H 1

an(δ)= 1.

(c) If δ = xδunr, then ∂ : H 1
an(x

−1δ)→ H 1
an(δ) is zero, and dimL H 1

an(δ)= 2.

Proof. We apply Proposition 5.17. There is nothing to prove for the case that
δ(π) 6=π, π/q orwδ 6=1. Combining the assertions in this case and Proposition 5.10
we obtain that dimL H 1

an(δunr)= 1. This fact is useful below.
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Next we consider the case of δ(π) = π/q and wδ = 1. The argument for the
case of δ(π)= π and wδ = 1 is similar.

Let M be the image of ∂ : H 1
ϕq ,∇

(x−1δ)→ H 1
ϕq ,∇

(x). Then we have two short
exact sequences of 0-modules

0→ L(x−1δ)→ H 1
ϕq ,∇

(x−1δ)
∂
−→ M→ 0

and
0→ M→ H 1

ϕq ,∇
(δ)→ L(x−1δ)⊕ L(x−1δ)→ 0.

We will show that taking 0-invariants yields two exact sequences

0→ L(x−1δ)0→ H 1
an(x

−1δ)
∂
−→ M0

→ 0
and

0→ M0
→ H 1

an(δ)→ L(x−1δ)0 ⊕ L(x−1δ)0→ 0.

If the 0-actions on H 1
ϕq ,∇

(x−1δ) and H 1
ϕq ,∇

(δ) are semisimple, then there is nothing
to prove. However we will avoid this by an alternative argument. It suffices to prove
the surjectivity of H 1

ϕq ,∇
(x−1δ)0→ M0 and H 1

ϕq ,∇
(δ)0→ L(x−1δ)0 ⊕ L(x−1δ)0.

The latter follows from the proof of Proposition 5.17. In fact, if δ = xδunr, then
(m1, n1) and (m2, n2) constructed there are in Z1(δ). Now let c be any element
of M0. Then the preimage ∂−1(Lc) is two-dimensional over L and 0-invariant.
From the definition of H 1

ϕq ,∇
, we obtain that the induced ∇-action on ∂−1(Lc) is

zero and thus ∂−1(Lc) is a semisimple 0-module, as wanted.
If δ = xδunr, then dimL L(x−1δ)0 = dimL H 1

an(x
−1δ) = 1, and so M0

= 0.
Thus ∂ : H 1

an(x
−1δ)→ H 1

an(δ) is zero and dimL H 1
an(δ) = 2. If δ 6= xδunr, then

∂ : H 1
an(x

−1δ) → H 1
an(δ) is an isomorphism since both H 1

an(x
−1δ) → M0 and

M0
→ H 1

an(δ) are isomorphisms. �

5E. Dimension of H1(δ) for δ ∈ I(L).

Theorem 5.19. (= Theorem 0.3) Let δ be in Ian(L).

(a) If δ is not of the form x−i with i ∈ N, or the form x iδunr with i ∈ Z+, then
H 1

an(δ) and H 1(δ) are 1-dimensional over L.

(b) If δ = x iδunr with i ∈ Z+, then H 1
an(δ) and H 1(δ) are 2-dimensional over L.

(c) If δ = x−i with i ∈ N, then H 1
an(δ) is 2-dimensional over L and H 1(δ) is

(d + 1)-dimensional over L , where d = [F :Qp].

Proof. The assertions for H 1
an(δ) follow from Propositions 5.10 and 5.18. By

Proposition 5.6 we have

dimL RL(δ)
ϕq=1,0=1

=

{
1 if δ = x−i with i ∈ N,

0 otherwise.

So the assertions for H 1(δ) come from those for H 1
an(δ) and Corollary 4.4. �
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When δ = x−i with i ∈ N, H 1
an(δ) is generated by the classes of (t i

F , 0) and
(0, t i

F ). Let ρi (i = 1, . . . , d) be a basis of Hom(0, Lt i
F ). Then the class of the

1-cocycle c0 with c0(ϕq)= t i
F and c0|0 = 0, and the classes of 1-cocycles ci with

ci (ϕq)= 0 and ci |0 = ρi (i = 1, . . . , d), form a basis of H 1(δ).

Theorem 5.20. (= Theorem 0.4) If δ ∈ I(L) is not locally F-analytic, then
H 1(δ)= 0.

Proof. As the maps γ−1, γ ∈0, are null on H 1(δ), by the definition of H 1, so are the
maps d0RL (δ)(β), β ∈ Lie0 and the differences β−1d0RL (δ)(β)−β

′−1d0RL (δ)(β
′).

Note that β−1d0RL (δ)(β)−β
′−1d0RL (δ)(β

′) are RL -linear on RL(δ). So

β−1d0RL (δ)(β)−β
′−1d0RL (δ)(β

′)

are multiplications by scalars in L , since β−1d0RL (δ)(β)eδ − β
′−1d0RL (δ)(β

′)eδ
is in Leδ. If the intersection of their kernels is null, then the cohomology H 1(δ)

vanishes. Thus, either the intersection of their kernels is 0 and so the cohomology
vanishes, or they are all null and δ is of the form x 7→ xw for x close to 1 with
w =

log δ(β)
logβ for β close to 1 (i.e., δ is locally F-analytic). �

Remark 5.21. Suppose that [F : Qp] ≥ 2. Let δ 6= 1 be a character of F× with
δ(π) ∈O×L , and let L(δ) be the L-representation of GF induced by δ. Suppose that
δ 6= x2δunr when [F :Qp] = 2. Combining Theorem 5.19 and the Euler–Poincaré
characteristic formula [Tate 1963] we obtain that there exist Galois representations
in Ext(L , L(δ)) that are not overconvergent. Theorem 5.20 tells us that if further δ
is not locally analytic, then there is no nontrivial overconvergent extension of L
by L(δ).

5F. The maps ιk : H1(δ)→ H1(x−kδ) and ιk,an : H1
an(δ)→ H1

an(x−kδ). Let k
be a positive integer.

Proposition 5.22. Let δ be in Ian(L).

(a) If wδ /∈ {1− k, . . . , 0}, then H 0
an(RL(δ)/tk

FRL(δ))= 0.

(b) If wδ ∈ {1− k, . . . , 0}, then H 0
an(RL(δ)/tk

FRL(δ)) is a 1-dimensional L-vector
space.

Proof. We have R+L /tk
FR+L = R+L /(u

k
F )×

∏
∞

n=1 R+L /(ϕ
n−1
q (Q))k . As 0-modules,

R+L /(u
k
F ) =

⊕k−1
i=0 Lt i

F and R+L /(ϕ
n
q (Q))

k
=
⊕k−1

i=0 (L ⊗F Fn)t i
F . Thus as a 0-

module, R+L /tk
FR+L is isomorphic to

⊕k−1
i=0 (R

+

L /R
+

L tF ) ⊗L Lt i
F . Note that the

natural map R+L /R
+

L tk
F → RL/RL tk

F is surjective. Furthermore, two sequences
(yn)n≥0 and (zn)n≥0 in R+L /R

+

L uk
F ×

∏
∞

n=1 R+L /(ϕ
n−1
q (Q))k have the same image

in RL/RL tk
F , if and only if there exists N > 0 such that yn = zn when n ≥ N .

Since the action of 0 on (R+L /tFR+L )t
i
F twisted by the character x−i is smooth,

(a) follows.
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For (b) we only need to consider the case of wδ = 0 and k = 1. The opera-
tor ϕq induces injections R+L /(ϕ

n
q (Q))→ R+L /(ϕ

n+1
q (Q)) denoted by ϕq,n . The

action of ϕq on RL/RL tF is given by ϕq(yn)n = (ϕq,n(yn))n+1. For any n ≥ 0,
the 0-action on L ⊗F Fn factors through 0/0n , and the resulting 0/0n-module
L ⊗F Fn is isomorphic to the regular one. Thus for any discrete character δ of 0,
dimL(L ⊗F Fn)

0=δ−1
= 1 when n is sufficiently large. Then from the fact that the

ϕq,n (n ≥ 1) are injective, we obtain dimL(RL/tFRL)
0=δ−1,ϕq=δ(π)

−1
= 1. �

Corollary 5.23. Let δ be in Ian(L).

(a) If wδ /∈ {1, . . . , k}, then H 0
an(t
−k
F RL(δ)/RL(δ))= 0.

(b) If wδ ∈ {1, . . . , k}, then H 0
an(t
−k
F RL(δ)/RL(δ)) is a 1-dimensional L-vector

space.

Note that RL(x−kδ) is canonically isomorphic to t−k
F RL(δ). When k ≥ 1, the

inclusion RL(δ) ↪→ t−k
F RL(δ) induces maps ιk,an : H 1

an(δ)→ H 1
an(x

−kδ) and ιk :
H 1(δ)→ H 1(x−kδ). If γ ∈ 0 is of infinite order, then we have this commutative
diagram:

H 1(δ)
ιk //

ϒδan,γ ◦ϒ
δ
γ

��

H 1(x−kδ)

ϒ x−k δ
an,γ ◦ϒ

x−k δ
γ

��
H 1

an(δ)
ιk,an // H 1

an(x
−kδ).

(5-1)

Lemma 5.24. We have the exact sequence

0→ H 0
an(δ)→ H 0

an(x
−kδ)→ H 0

an(t
−k
F RL(δ)/RL(δ))→ H 1

an(δ)
ιk,an
→ H 1

an(x
−kδ).

Proof. From the short exact sequence

0→RL(δ)→RL(x−kδ)→RL(x−kδ)/RL(δ)→ 0, (5-2)

we deduce an exact sequence

0→ H 0
ϕq ,∇

(δ)→ H 0
ϕq ,∇

(x−kδ)→ H 0
ϕq ,∇

(t−k
F RL(δ)/RL(δ))

→ H 1
ϕq ,∇

(δ)→ H 1
ϕq ,∇

(x−kδ). (5-3)

Being finite-dimensional, H 0
ϕq ,∇

(δ) and H 0
ϕq ,∇

(x−kδ) are semisimple 0-modules;

since t−k
F RL(δ)/RL(δ) is a semisimple 0-module, so is H 0

ϕq ,∇
(t−k
F RL(δ)/RL(δ)).

Hence, taking 0-invariants of each term in (5-3), we obtain the desired exact
sequence. �

Proposition 5.25. Let δ be in Ian(L), k ∈ Z+. If wδ /∈ {1, . . . , k}, then ιk,an and ιk
are isomorphisms.
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Proof. We only prove the assertion for ιk,an. The proof of the assertion for ιk is
similar. By Theorem 5.19, dimL H 1

an(δ)= dimL H 1
an(x

−kδ) when wδ /∈ {1, . . . , k}.
Combining Lemma 5.24 with the fact that H 0

an(t
−k
F RL(δ)/RL(δ)) = 0 and that

dimL H 1
an(δ)= dimL H 1

an(x
−kδ), we obtain the assertion. �

We assign to any nonzero c ∈ H 1
an(δ) an L-invariant in P1(L) = L ∪ {∞}. In

the case of δ = x−k with k ∈ N, put L((atk
F , btk

F )) = a/b. If δ = xδunr, then any
c ∈ H 1

an(δ) can be written as

c = t−1
F
(
(q−1ϕq − 1)(λG(1, 1)+µ(log uF − z)), tF∂(λG(1, 1)+µ(log uF − z))

)
with λ,µ ∈ L . Here G(1, 1) is an element of RL which induces a basis of
(RL/RL tF )

0 and whose value at ξn is 1⊗ 1 ∈ L ⊗F Fn when n is large enough;
z is an element of RL whose value at ξn is 1⊗ log(ξn) ∈ L ⊗F Fn for any n. We
put L(c)=−(eF (q − 1)/q) · (λ/µ). In the case of δ = xkδunr with k ≥ 2, for any
c ∈ H 1

an(x
kδunr), put L(c) = L(ιk−1(c)). In the case that δ is not of the form x−k

with k ∈ N or the form xkδunr with k ∈ Z+, we put L(c)=∞.

Proposition 5.26. Let δ be in Ian(L), k ∈ Z+.

(a) If wδ ∈ {1, . . . , k} and if δ 6= xwδ , xwδδunr, then ιk,an and ιk are zero.

(b) If δ = xwδδunr with 1≤ wδ ≤ k, then ιk,an and ιk are surjective, and the kernel
of ιk,an is the 1-dimensional subspace {c ∈ H 1

an(δ) : c = 0 or L(c)=∞}.

(c) If δ = xwδ with 1 ≤ wδ ≤ k, then ιk,an and ιk are injective, and the image of
ιk,an is {c ∈ H 1

an(x
−kδ) : c = 0 or L(c)=∞}.

Proof. We will use Lemma 5.24 frequently without mentioning it.
First we prove (a). From dimL H 0

an(t
−k
F RL(δ)/RL(δ)) = dimL H 1

an(δ) = 1 and
H 0

an(x
−kδ)=0 we obtain the assertion for ιk,an. The assertion for ιk follows from this

and the commutative diagram (5-1), where the two vertical maps are isomorphisms.
Next we prove (b). From H 0

an(x
−kδ) = 0, dimL H 0

an(t
−k
F RL(δ)/RL(δ)) = 1,

dimL H 1
an(δ)= 2, and dimL H 1

an(x
−kδ)= 1, we obtain the surjectivity of ιk,an. The

surjectivity of ιk follows from this and the commutative diagram (5-1), where the
two vertical maps are isomorphisms. We show that if c ∈ H 1

an(δ) satisfies L(c)=∞,
then ιk,an(c)= 0. As L(ιwδ−1,an(c))=∞ and ιk,an = ιk+1−wδ,anιwδ−1,an, we reduce
to the case of δ = xδunr. In this case, c = t−1

F λ
(
(q−1ϕq − 1)G(1, 1),∇G(1, 1)

)
with λ ∈ L . Thus ι1,an(c) = λ

(
(q−1ϕq − 1)G(1, 1),∇G(1, 1)

)
∼ (0, 0). Hence

ιk,an(c)= 0 for any integer k ≥ 1.
Finally we prove (c). From the equalities H 0

an(δ) = 0 and dimL H 0
an(x

−kδ) =

dimL H 0
an(t
−k
F RL(δ)/RL(δ))= 1, we obtain the injectivity of ιk,an. The injectivity

of ιk follows from this and the commutative diagram (5-1), where the vertical map
ϒδ

an,γ ◦ϒ
δ
γ is an isomorphism. For the second assertion, let (m, n) be in Z1(xwδ ).
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Then

ιwδ−1(m, n)= (twδ−1
F m, twδ−1

F n) ∈ Z1(x).

In other words, ∂(twδF m)=∇x(t
wδ−1
F m)= (πϕq−1)(twδ−1

F n). Thus Res(twδ−1
F n)=0

and there exists z ∈RL such that ∂z = twδ−1
F n or equivalently ∇z = twδF n. It follows

that ∇xwδ−k (tk−wδ
F z)=

(
∇ + (wδ − k)

)
(tk−wδ
F z)= tk−wδ

F ∇z = tk
Fn. Thus

ιk,an(m, n)= (tk
Fm, tk

Fn)∼
(
tk
Fm− (πwδ−kϕq − 1)(tk−wδ

F z), 0
)
.

So we have ιk,an(m, n)= (atk−wδ
F , 0). If ιk,an(m, n) 6= 0, or equivalently a 6= 0, then

L(ιk,an(m, n))=∞. �

6. Triangulable (ϕq, 0)-modules of rank 2

Colmez [2008] classified 2-dimensional trianguline representations of the Galois
group GQp . Generalizing his work, Nakamura [2009] classified 2-dimensional
trianguline representations of the Galois group of a p-adic local field that is finite
over Qp.

In this section we classify triangulable OF -analytic (ϕq , 0)-modules of rank 2
following Colmez’s method. First we recall the definition.

Definition 6.1. A (ϕq , 0)-module over RL is called triangulable if there exists a
filtration of D consisting of (ϕq , 0)-submodules 0 = D0 ⊂ D1 ⊂ · · · ⊂ Dd = D
such that Di/Di−1 is free of rank 1 over RL .

Note that if D is OF -analytic, then so is Di/Di−1 for any i .
If δ1,δ2∈Ian(L), then Ext(RL(δ2),RL(δ1)) is isomorphic to Ext(RL ,RL(δ1δ

−1
2 ))

or H 1(δ1δ
−1
2 ). The isomorphism only depends on the choices of eδ1 , eδ2 and eδ1δ

−1
2

.
Thus it is unique up to a nonzero multiple and induces an isomorphism from
Proj

(
Ext(RL(δ2),RL(δ1))

)
to Proj(H 1(δ1δ

−1
2 )) independent of the choices of eδ1 ,

eδ2 and eδ1δ
−1
2

. Similarly, there is a natural isomorphism from

Proj
(
Extan(RL(δ2),RL(δ1))

)
to Proj(H 1

an(δ1δ
−1
2 )). Hence the set of triangulable (resp. triangulable and OF -

analytic) (ϕq , 0)-modules D of rank 2 satisfying the following two conditions is
classified by Proj(H 1(δ1δ

−1
2 )) (resp. Proj(H 1

an(δ1δ
−1
2 ))):

• RL(δ1) is a saturated (ϕq , 0)-submodule of D and RL(δ2) is the quotient
module.

• D is not isomorphic to RL(δ1)⊕RL(δ2).
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Let San
= San(L) be the analytic variety obtained by blowing up (δ1, δ2) ∈

Ian(L) × Ian(L) along the subvarieties δ1δ
−1
2 = x iδunr for i ∈ Z+ and the sub-

varieties δ1δ
−1
2 = x−i for i ∈ N. The fiber over the point (δ1, δ2) is isomor-

phic to Proj(H 1
an(δ1δ

−1
2 )). Similarly, let S = S(L) be the analytic variety over

Ian(L)×Ian(L) whose fiber over (δ1, δ2) is isomorphic to Proj(H 1(δ1δ
−1
2 )). The

inclusions Extan(RL(δ1),RL(δ2)) ↪→ Ext(RL(δ1),RL(δ2)) for δ1, δ2 ∈ Ian(L) in-
duce a natural injective map San ↪→S. We write points of S (resp. San) in the form
(δ1, δ2, c) with c ∈ Proj(H 1(δ1δ

−1
2 )) (resp. c ∈ Proj(H 1

an(δ1δ
−1
2 ))). If (δ1, δ2, c) ∈S

is in the image of San, for our convenience we use can to denote the element in
Proj(H 1

an(δ1δ
−1
2 )) corresponding to c. For (δ1, δ2, c) ∈ San, since the L-invariant

induces an inclusion Proj(H 1
an(δ1δ

−1
2 )) ↪→ P1(L), we also use (δ1, δ2,L(c)) to

denote (δ1, δ2, c).
If s ∈ S, we assign to s the invariant w(s) ∈ L by w(s)= wδ1 −wδ2 . Let S+ be

the subset of S consisting of elements s ∈ S with

vπ (δ1(π))+ vπ (δ2(π))= 0, vπ (δ1(π))≥ 0.

If s ∈ S+, we assign to s the invariant u(s) ∈Q+ by

u(s)= vπ (δ1(π))=−vπ (δ2(π)).

Put S0 = {s ∈S+ | u(s)= 0} and S∗ = {s ∈S+ | u(s) > 0}. Then S+ is the disjoint
union of S0 and S∗. For ? ∈ {+, 0, ∗} we put San

? = San
∩S?. We decompose the

set San
? as San

? = S
ng
? qScris

? qSst
? qSord

? qSncl
? , where

S
ng
? = {s ∈ S? | w(s) is not an integer ≥ 1},

Scris
? = {s ∈ S? | w(s) is an integer ≥ 1, u(s) < w(s),L=∞},

Sst
? = {s ∈ S? | w(s) is an integer ≥ 1, u(s) < w(s),L 6= ∞}

Sord
? = {s ∈ S? | w(s) is an integer ≥ 1, u(s)= w(s)},

Sncl
? = {s ∈ S? | w(s) is an integer ≥ 1, u(s) > w(s)}.

Note that Sord
0 and Sncl

0 are empty.
Let D be an extension of RL(δ2) by RL(δ1). For any k ∈ N, the preimage of

tk
FRL(δ2) is a (ϕq , 0)-submodule of D, which is denoted by D′. Then D′ is an
extension of RL(xkδ2) by RL(δ1). If D is OF -analytic, then so is D′.

Lemma 6.2. (a) The class of D′ in H 1(δ1δ
−1
2 x−k) coincides with ιk(c) up to a

nonzero multiple, where c is the class of D in H 1(δ1δ
−1
2 ).

(b) If D is OF -analytic, the class of D′ in H 1
an(δ1δ

−1
2 x−k) coincides with ιk,an(c)

up to a nonzero multiple, where c is the class of D in H 1
an(δ1δ

−1
2 ).

Proof. We only prove (b). The proof of (a) is similar. Let e be a basis of RL(δ2)

such that ϕq(e)= δ2(π)e and σae = δ2(a)e. Let ẽ be a lifting of e in D. The class
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of D, or the same, c, coincides with the class of
(
(δ2(π)

−1ϕq−1)ẽ, (∇−wδ2)ẽ
)

up
to a nonzero multiple. Similarly, up to a nonzero multiple, the class of D′ coincides
with the class of(
(π−kδ2(π)

−1ϕq − 1)(tk
F ẽ), (∇ −wδ2 − k)(tk

F ẽ)
)

=
(
tk
F (δ2(π)

−1ϕq − 1)ẽ, tk
F (∇ −wδ2)ẽ

)
,

which is exactly ιk,an(c). �

Proposition 6.3. Put D = D(s) with s = (δ1, δ2, c) ∈ S. The following two condi-
tions are equivalent:

(a) D(s) has a (ϕq , 0)-submodule M of rank 1 such that M ∩RL(δ1)= 0.

(b) s is in San and satisfies w(s) ∈ Z+, δ1δ
−1
2 6= xw(s) and L(can)=∞.

Among all such M there exists a unique one, Msat, that is saturated; Msat is isomor-
phic to RL(xw(s)δ2). For any M that satisfies condition (a), there exists some i ∈N

such that M = t i
F Msat.

Proof. Assume that D(s) satisfies (a). Since the intersection of M and RL(δ1) is
zero, the image of M in RL(δ2) is a nonzero (ϕq , 0)-submodule of RL(δ2), and
so must be of the form tk

FRL(δ2) with k ∈ N. Since D(s) does not split, we have
k ≥ 1. The preimage of tk

FRL(δ2) in D is exactly M ⊕RL(δ1). Since M ⊕RL(δ1)

splits, by Lemma 6.2 we have ιk(c) = 0. By Proposition 5.26 this happens only
if w(s) ∈ {1, . . . , k} and δ1δ

−1
2 6= xw(s). Note that, when w(s) ∈ {1, . . . , k} and

δ1δ
−1
2 6= xw(s), D(s) is automatically OF -analytic. Again by Proposition 5.26 we

obtain L(can)=∞. This proves (a)⇔(b).
If (a) holds, then the preimage of tw(s)F RL(δ2) splits as RL(δ1)⊕ M0, where

M0 is isomorphic to RL(xw(s)δ2). We show that M0 is saturated. Note that M0

is not included in tF D(s). Otherwise, the preimage of tw(s)−1
F RL(δ2) will split,

which contradicts Proposition 5.26. Let e1 (resp. e2, e) be a basis of RL(δ1) (resp.
RL(δ2),M0) such that Le1 (resp. Le2, Le) is stable under ϕq and 0. Let ẽ2 be a
lifting of e2. Write e = ae1+ bẽ2. Then a /∈ tFRL and b ∈ tw(s)F RL . Observe that
the ideal I generated by a and tw(s)F satisfies ϕq(I )= I and γ (I )= I for all γ ∈ 0.
Thus by Lemma 1.1, I = RL . It follows that M0 is saturated. If M is another
(ϕq , 0)-submodule of D(s) such that M ∩RL(δ1) = 0, then the image of M in
RL(δ2) is tk

FRL(δ2) for some integer k ≥ w(s). Then M ⊂ RL(δ1)⊕ M0. Since
δ1 6= δ2xw(s), RL(δ1) has no nonzero (ϕq , 0)-submodule isomorphic to RL(xkδ2).
It follows that M ⊂ M0 and thus M = tk−w(s)

F M0. �

Corollary 6.4. Let s = (δ1, δ2, c) be in S. If s is in San and satisfies w(s) ∈ Z+,
δ1δ
−1
2 6= xw(s) and L(can) = ∞, then D(s) has exactly two saturated (ϕq , 0)-

submodules of D(s) of rank 1, one being RL(δ1) and the other isomorphic to
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RL(xw(s)δ2). Otherwise, D(s) has exactly one saturated (ϕq , 0)-submodule of
rank 1, which is RL(δ1).

Corollary 6.5. Let s = (δ1, δ2, c) and s ′ = (δ′1, δ
′

2, c′) be in S(L).

(a) If δ1 = δ
′

1, then D(s)∼= D(s ′) if and only if s = s ′.

(b) If δ1 6= δ
′

1, then D(s) ∼= D(s ′) if and only if s and s ′ are in San and satisfy
w(s) ∈ Z+, δ′1 = xw(s)δ2, δ′2 = x−w(s)δ1 and L(can)= L(c′an)=∞.

Proof. Assertion (a) is clear. We prove (b). Since D(s) ∼= D(s ′), there exists
a (ϕq , 0)-submodule M of D(s) such that M ∼= RL(δ

′

1) and D(s)/M ∼= RL(δ
′

2).
Since both RL(δ1) and M are saturated (ϕq , 0)-submodules of D, RL(δ1)∩M = 0.
By Proposition 6.3 we havew(s)∈Z+, δ1δ

−1
2 6= xw(s), L(can)=∞ and δ′1= xw(s)δ2.

Similarly, δ1 = xw(s
′)δ′2. As δ1δ2 = δ

′

1δ
′

2, we have w(s)= w(s ′). �

Proposition 6.6. Let s = (δ1, δ2, c) be in S. Then D(s) is of slope zero if and only
if s ∈ S+−Sncl

+
; D(s) is of slope zero and the Galois representation attached to

D(s) is irreducible if and only if s is in S∗ − (S
ord
∗
∪Sncl
∗
); D(s) is of slope zero

and OF -analytic if and only if s ∈ San
+
−Sncl

+
.

Proof. By Kedlaya’s slope filtration theorem, D(s) is of slope zero if and only
if vπ (δ1(π)δ2(π)) = 0 and D(s) has no (ϕq , 0)-submodule of rank 1 that is of
slope < 0. In particular, if D(s) is of slope zero, then vπ (δ1(π)) ≥ 0 and thus
s ∈ S+. Hence we only need to consider the case of s ∈ S+. Assume that
D(s) has a (ϕq , 0)-submodule of rank 1, say M , that is of slope < 0. Then
the intersection of M and RL(δ1) is zero. By Proposition 6.3, we may suppose that
M is saturated. By Corollary 6.4, this happens if and only if s is in San and satisfies
w(s) ∈ Z+, δ1δ

−1
2 6= xw(s), L(can)=∞ and w(s) < u(s). Note that δ1δ

−1
2 6= xw(s)

and L(can) = ∞ automatically hold when 0 < w(s) < u(s). The first assertion
follows. Similarly, D(s) has a saturated (ϕq , 0)-submodule of rank 1 that is of slope
zero if and only if u(s)= 0 or u(s)=w(s). By Proposition 1.5(c) and Remark 1.8,
we know that the Galois representation attached to an étale (ϕq , 0)-module D over
RL of rank 2 is irreducible if and only if D has no étale (ϕq , 0)-submodule of
rank 1. This shows the second assertion. The third assertion follows from the first
one. �

Proof of Theorem 0.5. Assertion (a) follows from Proposition 6.6, and (b) follows
from Corollary 6.5. �

Remark 6.7. Let s 6= s ′ be as in Theorem 0.5(b). Then s ∈ Scris
∗

if and only if
s ′ ∈ Scris

∗
; s ∈ Sord

+
if and only if s ′ ∈ Scris

0 .

Remark 6.8. By an argument similar to that in [Colmez 2008] one can show that
if s is in Scris

+
(resp. Sord

+
, Sst
+

), then D(s) comes from a crystalline (resp. ordinary,
semistable but noncrystalline) L-representation twisted by a character.
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