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for rank-one Iwasawa modules

Otmar Venjakob

This paper contains a complete proof of Fukaya and Kato’s ε-isomorphism con-
jecture for invertible 3-modules (the case of V = V0(r), where V0 is unramified
of dimension 1). Our results rely heavily on Kato’s proof, in an unpublished
set of lecture notes, of (commutative) ε-isomorphisms for one-dimensional rep-
resentations of GQp , but apart from fixing some sign ambiguities in Kato’s
notes, we use the theory of (φ, 0)-modules instead of syntomic cohomology.
Also, for the convenience of the reader we give a slight modification or rather
reformulation of it in the language of Fukuya and Kato and extend it to the
(slightly noncommutative) semiglobal setting. Finally we discuss some direct
applications concerning the Iwasawa theory of CM elliptic curves, in particular
the local Iwasawa Main Conjecture for CM elliptic curves E over the extension
of Qp which trivialises the p-power division points E(p) of E . In this sense the
paper is complimentary to our work with Bouganis (Asian J. Math. 14:3 (2010),
385–416) on noncommutative Main Conjectures for CM elliptic curves.

1. Introduction

The significance of local ε-factors à la Deligne and Tate, or more generally that of
the (conjectural) ε-isomorphism suggested in [Fukaya and Kato 2006, §3] is at least
twofold. First, they are important ingredients to obtain a precise functional equation
for L-functions or more generally for (conjectural) ζ -isomorphisms [loc. cit., §2]
of motives in the context of equivariant or noncommutative Tamagawa number
conjectures (see, e.g., Theorem 4.1). Secondly, they are essential in interpolation
formulae of (actual) p-adic L-functions and for the relation between ζ -isomorphisms
and (conjectural, not necessarily commutative) p-adic L-functions as discussed in
[loc. cit., §4]. Of course the two occurrences are closely related; for a survey on
these ideas see also [Venjakob 2007].

Our motivation for writing this article stems from Theorem 8.4 of [Burns and
Venjakob 2011] (see Theorem 4.2), which describes under what conditions the
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validity of a (noncommutative) Iwasawa Main Conjecture for a critical (ordinary
at p) motive M over some p-adic Lie extension F∞ of Q implies parts of the
equivariant Tamagawa number conjecture (ETNC) by Burns and Flach for M
with respect to a finite Galois extension F ⊆ F∞ of Q. Due to the second above
mentioned meaning it requires among others the existence of an ε-isomorphism

εp,Zp[G(F/Q)](T̂F ) : 1Zp[G F/Q]→ dZp[G F/Q](R0(Qp, T̂F ))dZp[G F/Q](T̂F ) (1)

in the sense of [Fukaya and Kato 2006, Conjecture 3.4.3], where the Iwasawa module
T̂F is related to the ordinary condition of M ; e.g., for an (ordinary) elliptic curve E
it arises from the formal group part of the usual Tate module of E . Unfortunately,
very little is known about the existence of such ε-isomorphisms in general. To the
knowledge of the author it is not even contained in the literature for T̂F attached to
a C M-elliptic curve E and the trivialising extension F∞ := F(E(p)), where E(p)
denotes the group of p-power division points of E . In principle a rough sketch of a
proof is contained in [Kato 1993b], which unfortunately has never been published.
Moreover there were still some sign ambiguities which we fix in this paper; in
particular, it turns out that one has to take −LK ,ε−1 , that is, −1 times the classical
Coleman map (6), in the construction of the epsilon isomorphism (17).

Benois and Berger [2008] have proved the conjecture CE P(L/K , V ) for arbitrary
crystalline representations V of G K , where K is an unramified extension of Qp and
L a finite subextension of K∞ = K (µ(p)) over K . Although they mention in their
introduction that “Les mêmes arguments, avec un peu plus de calculs, permettent de
démontrer la conjecture CE P(L/K , V ) pour toute extension L/K contenue dans
Qab

p . Cette petite généralisation est importante pour la version équivariante des
conjectures de Bloch et Kato”, they leave it as an “exercise” to the reader. In the
special case V =Qp(r), r ∈ Z, Burns and Flach [2006] proved a local ETNC using
global ingredients in a semilocal setting, while in the above example we need it for
V = Qp(η)(r), where η denotes an unramified character. Also we would like to
stress that the existence of the ε-isomorphisms à la Fukaya and Kato is a slightly
finer statement than the CE P(L/K , V )-conjecture or the result of Burns and Flach,
because the former one states that a certain family of certain precisely defined units
of integral group algebras of finite groups in a certain tower can be interpolated
by a unit in the corresponding Iwasawa algebra while in the latter ones “only” a
family of lattices is “interpolated” by one over the Iwasawa algebra.

The aim of this article, which also might hopefully serve as a survey into the
subject, is to provide detailed and complete arguments for the existence of the
ε-isomorphism

ε3(T(T )) : 13̃→ d3(R0(Qp,T(T )))3̃d3(T(T ))3̃,

where 3 = 3(G) is the Iwasawa algebra of G = G(K∞/Qp) for any (possibly
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infinite) unramified extension K of Qp, T = Zp(η)(r) and R0(Qp,T(T )) denotes
the complex calculating local Galois cohomology of T(T ), the usual Iwasawa
theoretic deformation of T (see (28)). Furthermore, for an associative ring R with
one, dR denotes the determinant functor with 1R = dR(0) (see Appendix B) while
3̃ is defined in (2). We are mainly interested in the case where G ∼= Z2

p ×1 for
a finite group 1— such extensions arise for example by adjoining the p-power
division points of a CM elliptic curve to the base field as above. This corresponds
to a (generalised) conjecture C I W (K∞/Qp) (in the notation of Benois and Berger)
originally due to Perrin-Riou. It is the first example of an ε-isomorphism associated
with a two-dimensional p-adic Lie group extension. Following Kato’s approach we
construct a universal ε-isomorphism ε3(T(Zp(1))), from which all the others arise
by suitable twists and descent. But while Kato constructs it first over cyclotomic
Zp-extensions and then takes limits, here we construct it directly over (Z2

p ×1)-
extensions (and then take limits). To show that they satisfy the right interpolation
property with respect to Artin (Dirichlet) characters of G, we use the theory of
(φ, 0)-modules and the explicit formulae in [Berger 2003], instead of the much
more involved syntomic cohomology and Kato’s reciprocity laws for formal groups.
In contrast to Kato’s unpublished preprint, in which he uses the language of étale
sheaves and cohomology, we prefer Galois cohomology as used also in [Fukaya and
Kato 2006]. In order to work out in detail Kato’s reduction argument [1993b] to
the case of trivial η we have to show a certain twist compatibility of Perrin-Riou’s
exponential map/Coleman map for T versus Zp(r) over a trivialising extension
K∞ for η, see Lemma A.4. Going over to semilocal settings we obtain the first
ε-isomorphism over a (slightly) noncommutative ring. In a forthcoming paper
[Loeffler et al. 2013], using the techniques of [Benois and Berger 2008] and [Loeffler
and Zerbes 2011], we are going to extend these results to the case of arbitrary
crystalline representations for the same tower of local fields as above. Of course it
would be most desirable to extend the existence of ε-isomorphism also to nonabelian
local extensions, but this seems to require completely new ideas and to be out of
reach at present (see [Izychev 2012] for some examples). Some evidence in that
direction has been provided by Fukaya (unpublished).

Combined with Yasuda’s work [2009] concerning ε-isomorphisms for l 6= p, we
also obtain in principle a purely local proof of the Burns–Flach result for V =Qp(r).

2. Kato’s proof for one-dimensional representations

Let p be a prime and let K be any unramified (possibly infinite) Galois extension
of Qp. We set Kn := K (µpn ) for 0≤ n ≤∞ and

0 = G(Qp,∞/Qp)∼= Z×p .
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Recall that the maximal unramified extension Qur
p and the maximal abelian extension

Qab
p of Qp are given as Qp(µ(p′)) and Qp(µ)=Qur

p (µ(p)), where µ(p) and µ(p′)
denote the p-primary and prime-to-p part of µ, the group of all roots of unity,
respectively. In particular, we have the canonical decomposition

G(Qab
p /Qp)= G(Qur

p /Qp)×G(Qp,∞/Qp)= Ẑ×Z×p ,

under which by definition τp corresponds to (φ, 1) (and by abuse of notation also to
its image in G below), where φ := Frobp denotes the arithmetic Frobenius x 7→ x p.
We put

H := HK := G(K/Qp)= 〈φ〉

and

G := G(K∞/Qp)∼= H ×0.

Assume that G is a p-adic Lie group, that is, H is the product of a finite abelian
group of order prime to p with a (not necessarily strict) quotient of Zp. By

3 :=3(G) := Zp[[G]]

we denote as usual the Iwasawa algebra of G. Also we write Ẑur
p for the ring of

Witt vectors W (Fp) with its natural action by φ and we set

3̃=3⊗̂Zp Ẑur
p = Ẑur

p [[G]]. (2)

By

Tun :=3
](1)

we denote the free 3-module of rank one with the Galois action

χun : GQp →3×, σ 7→ [Tun, σ ] := σ̄
−1κ(σ ),

where ¯ : GQp � G is the natural projection map and κ : GQp � Z×p is the
p-cyclotomic character. Furthermore, we write

U(K∞) := lim
←−L ,i O×L /pi

for the 3-module of local units, where L and i run through the finite subextensions
of K∞/Qp and the natural numbers, respectively, and the transition maps are
induced by the norm. Finally we fix once and for all a Zp-basis ε = (εn)n of
Zp(1)= lim

←−n µpn .
We set

3a = {x ∈ 3̃ | (1⊗φ)(x)= (a⊗ 1) · x} for a ∈3× = K1(3).
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Proposition 2.1. For a = [Tun, τp]
−1
= τp there is a canonical isomorphism

3a ∼=

{
OK [[0]] if H is finite,
lim
←−Qp⊆K ′⊆K finite, Tr OK ′[[0]] if H is infinite,

as 3-modules. All modules are free of rank one.

Proof. We first assume H = 〈τp〉 to be finite of order d and replace 0 by a finite
quotient without changing the notation. Then any element x ∈ 3̃= Ẑur

p [0][H ] can
be uniquely written as

∑d−1
i=0 aiτ

i
p with ai ∈ Ẑur

p [0] and φ acts coefficientwise on
the latter elements. The calculation

(1⊗φ)(x)− (τp⊗ 1)x =
d−1∑
i=0

φ(ai )τ
i
p −

d−1∑
i=0

aiτ
i+1
p

=

d−1∑
i=0

(
φ(ai )− ai−1

)
τ i

p

with a−1 := ad−1 shows that x belongs to 3a if and only if φd(ai ) = ai and
φ−i (a0)= ai for all i . As Ẑur

p
φd
=1
= OK , the canonical map

3a ∼= OK [0],
∑

aiτ
i
p 7→ a0,

is an isomorphism of 3-modules, the inverse of which is

x 7→
∑
h∈H

h⊗ h−1(x)

and which is obviously functorial in 0, whence the same result follows for the
original (infinite) 0.

Now, for a surjection π : H ′′� H ′ it is easy to check that the trace TrK ′′/K ′ :

OK ′′→ OK ′ induces a commutative diagram

3′′a′′

π

��

∼= // OK ′′[[0]]

TrK ′′/K ′

��
3′a′

∼= // OK ′[[0]],

(3)

whence the first claim follows. From the normal basis theorem for finite fields we
obtain (noncanonical) isomorphisms

OK ′ ∼= Zp[HK ′],

which are compatible with trace and natural projection maps. Indeed, the sets
SK ′ :={a∈OK ′ |Zp[HK ′]a=OK ′}∼=Zp[HK ′]

× are compact, since 1+Jac(Zp[HK ′])



2374 Otmar Venjakob

for the Jacobson radical Jac(Zp[HK ′]) is open in Zp[HK ′]
×, and thus lim

←−K ′ SK ′ is
nonempty. Hence the trace maps induce (noncanonical) isomorphisms

lim
←−K ′ OK ′ ∼= Zp[[H ]] and lim

←−K ′ OK ′[[0]] ∼= Zp[[G]]. �

We now review Coleman’s exact sequence [1979; 1983], which is one crucial
ingredient in the construction of the ε-isomorphism.

Assume first that K/Qp is finite. Then U(K∞) := lim
←−n,i O×Kn

/pi with Kn :=

K (µpn ), and the sequence

0 // Zp(1)
ι // U(K∞)

Col // OK [[0]]
π // Zp(1) // 0 (4)

of 3-modules is exact, where the maps are defined as follows:

• ι(ε)= ε.

• Col(u) := Colε(u) is defined by the rule

L(gu) :=
(

1− ϕ
p

)
log(gu)=

1
p

log
g p

u

ϕ(gu)
= Col(u) · (X + 1) (5)

in OK [[X ]], with gu := gu,ε ∈ OK [[X ]] the Coleman power series satisfying
gφ
−n
(εn − 1)= un for all n. Here φ is acting coefficientwise on gu = gu(X),

while ϕ : OK [[X ]]→ OK [[X ]] is induced by X 7→ (X+1)p
−1 and the action of

φ on the coefficients. Furthermore, the OK -linear action of OK [[0]] on OK [[X ]]
is induced by γ · X = (1+ X)κ(γ )− 1.

• π is the composite of OK [[0]]→OK , γ 7→ κ(γ ), followed by the trace TrK/Qp :

OK → Zp (and strictly speaking followed by Zp→ Zp(1), c 7→ cε).

Using Proposition 2.1 and the isomorphism

3[Tun,τp]−1 ∼= Tun ⊗33[Tun,τp]−1, a 7→ (1⊗ ε)⊗ a,

we thus obtain an exact sequence of 3-modules

0 // Zp(1) // U(K∞)
LK ,ε// Tun(K∞)⊗33[Tun,τp]−1 // Zp(1) // 0. (6)

In the end we actually shall need the analogous exact sequence

0 // Zp(1) // U(K∞)
−LK ,−ε // Tun(K∞)⊗33[Tun,τp]−1 // Zp(1) // 0, (7)

where we replace ε by −ε everywhere in the construction and where we multiply
(only) the middle map by −1. Note that the maps involving Zp(1) do not change
compared with (6).
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To deal with the case where K/Qp is infinite, that is, p∞ | [K :Qp], consider
finite intermediate extensions Qp ⊆ L ⊆ L ′ ⊆ K . We claim that the diagram

0 // Zp(1) //

NL′∞/L∞=[L
′
:L]·

��

U(L∞)
LL′,ε //

NL′∞/L∞

��

Tun(L ′∞)⊗33[Tun,τp]−1 //

prL′/L

��

// Zp(1)

=

��

// 0

0 // Zp(1) // U(L∞)
LL ,ε // Tun(L∞)⊗33[Tun,τp]−1 // Zp(1) // 0

(8)

commutes, where the norm maps NL ′∞/L∞ = NL ′/L are induced by NL ′n/Ln for all n,
which on Zp(1) amounts to multiplication by [L ′ : L] while NL ′∞/L∞ : U(L

′
∞
)→

U(L∞) is nothing else than the projection on the corresponding inverse (sub)system.
Recalling (3) this is equivalent to the commutativity of

0 // Zp(1) //

NL′∞/L∞=[L
′
:L]·
��

U(L ′
∞
)

ColL′,ε //

NL′∞/L∞
��

OL ′[[0]] //

TrL′/L

��

// Zp(1)

=

��

// 0

0 // Zp(1) // U(L∞)
ColL ,ε // OL [[0]] // Zp(1) // 0

(9)

where TrL ′/L : OL ′[[0]] → OL [[0]] is induced by the trace on the coefficients. While
the left and right square obviously commute, we sketch how to check this for the
middle one.

By the uniqueness of the Coleman power series we have

NL ′/L(gu′)= gNL′/L (u′) for u′ ∈ U(L ′
∞
),

where NL ′/L : OL ′[[X ]]→ OL [[X ]] is defined by f (X) 7→
∏
σ∈G(L ′/L) f σ (X), where

σ acts coefficientwise on f (see the proof of Lemma 2 in [Yager 1982] for a similar
argument). Next, one has

L(NL ′/L(g))= TrL ′/LL(g)

for g ∈ OL ′[[X ]]×, since NL ′/L and φ commute. So far we have seen that

TrL ′/LL(gu′)= L(gNL′/L (u′)),

which implies the claim

TrL ′/L(Col(u′))= Col(gNL′/L (u′))

using the defining equation (5) and the compatibility of TrL ′/L with the Mahler
transform M : OK [[0]] → OK [[X ]], λ 7→ λ · (1+ X).

Taking inverse limits of (8) we obtain the exact sequence

0 // U(K∞)
LK ,ε // Tun(K∞)⊗33[Tun,τp]−1 // Zp(1) // 0. (10)
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Similarly, starting with (7) we obtain the exact sequence

0 // U(K∞)
−LK ,−ε // Tun(K∞)⊗33[Tun,τp]−1 // Zp(1) // 0. (11)

Galois cohomology. The complex R0(Qp,Tun(K∞)) of continuous cochains has
only nontrivial cohomology groups for i = 1, 2:

H1(Qp,Tun(K∞))= lim
←−Qp⊆L⊆K∞finite H1(L ,Zp(1))= lim

←−L(L
×)∧p (12)

by Kummer theory and

H2(Qp,Tun(K∞))= lim
←−Qp⊆L⊆K∞finite H2(L ,Zp(1))= Zp (13)

by local Tate duality; here the sign of the trace map tr : H2(Qp,Tun(K∞))∼= Zp is
normalised according to [Kato 1993a, Chapter II, §1.4] as follows: If θ ∈H1(Qp,3)

denotes the character GQp

w // Ẑ
canon // 3, where w is the map which sends

Frobp to 1 and the inertia subgroup to 0, then we have a commutative diagram

Q×p

δ

��

v // Z
canon // Zp

H1(Qp,Zp(1))
−
⋃
θ

// H2(Qp,Zp(1)),

∼= tr

OO

(14)

where v denotes the normalised valuation map and δ is the Kummer map. The first
isomorphism (12) induces

• a canonical exact sequence

0 // U(K∞) // H1(Qp,Tun(K∞))
−v̂ // Zp // 0, (15)

if K/Qp is finite, v̂ being induced from the valuation maps vL : L×→ Z (the
sign before v̂ will become evident by the descent calculation (54));

• an isomorphism

U(K∞)∼= H1(Qp,Tun(K∞)), (16)

if p∞ | [K :Qp].

Determinants. Now we assume that K/Qp is infinite. Then

G ∼= G ′×1,

where 1 is a finite abelian group of order d prime to p and G ′ ∼= Z2
p. Thus

3(G)= Zp[1][[Z
2
p]]

is a product of regular, hence Cohen–Macaulay, rings. Set

O := Zp[µd ].
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Then
3(G)⊆3O(G)=

∏
χ∈Irr Qp(1)

3O(G ′)eχ ,

where eχ denotes the idempotent corresponding to χ , while Irr Qp
(1) denotes the set

of Qp-rational characters of 1. Since regular rings are normal (or by Wedderburn
theory) it follows that there is a product decomposition into local regular integral
domains

3(G)=
∏

χ∈IrrQp (1)

3Oχ (G
′)eχ ,

where now IrrQp(1) denotes the set of Qp-rational characters and Oχ is the ring of
integers of Kχ := EndZp[1](χ).

For the various rings R showing up like 3(G) for different G, we fix compatible
determinant functors dR : Dp(R)→ PR from the category of perfect complexes of
R-modules (consisting of (bounded) complexes of finitely generated R-modules
quasi-isomorphic to strictly perfect complexes, that is, bounded complexes of
finitely generated projective R-modules) into the Picard category PR with unit
object 1R = dR(0), see Appendix B) for the yoga of determinants used in this
article.

Lemma 2.2. For all r ∈ Z there exists a canonical isomorphism

13
canZp (r)// d3(Zp(r)).

Remark 2.3. The proof will show that the same result holds for G ∼=Zk
p×1, k ≥ 2

and any 3(G)-module M of Krull codimension at least 2.

Proof. Since

Exti3(G)(Zp(r),3(G))∼= Exti3(G ′)(Zp(r),3(G ′))= 0

for i 6= k (≥2) we see that the codimension of Zp(r) equals k + 1− 1 = k ≥ 2.
Setting M = Zp(r) we first show that the class [M] in G0(3)= K0(3) vanishes;
i.e., there exists an isomorphism c0 : 1∼= d(M) by the definition of PR in [Fukaya
and Kato 2006]. Since

K0(3)=
⊕
χ

K0(3Oχ (G
′))∼=

⊕
χ

Z,

where the last map is given by the rank, the claim follows because the eχM are
torsion 3Oχ (G

′)-modules. By the knowledge of the codimension we have Mp = 0
for all prime ideals p⊂3 of height at most 1. In particular, we obtain canonical
isomorphisms

cp : 13p
∼= d3p(Mp).
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Since Mor(13p,d3p(Mp)) is a (nonempty) K1(3p)-torsor, there exists for each p a
unique λp ∈3×p = K1(3p) such that

cp = (c0)p · λp,

where (c0)p =3p⊗3 c0. Now let q= qχ be a prime of height zero corresponding
to χ ∈ IrrQp(1). Then

cq =3q⊗3p cp

=3q⊗3 c0 · λp = (c0)qλp

for all prime ideals p⊃ q of height one, whence

λp = λq.

Thus
λq ∈

⋂
p⊃q,ht(p)=1

3×p =3Oχ (G
′)×

(3Oχ (G
′) being regular, that is,

⋂
p⊃q,ht(p)=13p =3Oχ (G

′)) and

canM := (c0 · λqχ )χ : 13→ d3(M)

is unique and independent of the choice of c0. Here we used the canonical decom-
position K1(3(G))∼=

⊕
χ K1(3Oχ (G

′)). �

Now we can finally define the ε-isomorphism for the pair (3(G),Tun):

ε3(Tun) := ε3,ε(Tun) : 13→ d3(R0(Qp,Tun))d3(Tun ⊗33τp). (17)

Since 3 is regular we obtain, by property (B.h) in the Appendix,

d3(R0(Qp,Tun))
−1 ∼= d3(H1(Qp,Tun))d3(H2(Qp,Tun))

−1

∼= d3(U(K∞))d3(Zp)
−1

∼= d3(Tun ⊗33τp)d3(Zp(1))−1d3(Zp)
−1

∼= d3(Tun ⊗33τp);

here we have used (13) and (16) for the second isomorphism, regularity and the
sequence (11) with its map −LK ,ε−1 (sic!) for the third, and the identifications
canZp(1) and canZp in the last step. This induces (17).

In the spirit of Fukaya and Kato, this can be reformulated in a way that also
covers noncommutative rings 3 later. For any a ∈ K1(3̃) define

K1(3)a := {x ∈ K1(3̃) | (1⊗φ)∗(x)= a · x},

which is nonempty by [Fukaya and Kato 2006, Proposition 3.4.5]. If 3 is the
Iwasawa algebra of an abelian p-adic Lie group, that is, K1(3̃)= 3̃

×, this implies
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in particular that 3a ∩ 3̃
×
= K1(3)a 6=∅, whence we obtain an isomorphism of

3̃-modules
3a ⊗3 3̃∼= 3̃, x ⊗ y 7→ x · y. (18)

Thus, one immediately sees that the map

U(K∞)→ Tun ⊗33τp ⊆ Tun ⊗3 3̃

extends to an exact sequence of 3̃-modules

0 // U(K∞)⊗3 3̃ // Tun ⊗3 3̃ // Ẑur
p (1) // 0, (19)

which in fact is canonically isomorphic to the base change of (10) from 3- to
3̃-modules. Therefore base changing (17) by 3̃⊗3 − and using (18) (tensored
with Tun(K∞)) we obtain

ε′3(Tun) := ε
′

3,ε(Tun) : 13̃→ d3(R0(Qp,Tun))3̃d3(Tun)3̃, (20)

which actually arises as base change from some

ε0 : 13→ d3(R0(Qp,Tun(K∞))d3(Tun(K∞))

plus a twisting by an element δ ∈ K1(3)τp , that is,

ε′3(Tun) ∈Mor(13,d3(R0(Qp,Tun(K∞))d3(Tun(K∞)))×K1(3) K1(3)τp .

Indeed, fixing an isomorphism ψ :3∼=3τp (see Proposition 2.1) sending 1 to δ,
(18) implies that δ ∈ K1(3)τp and the claim follows from the commutative diagram

Tun ⊗3 3̃
Tun⊗δ

−1
// Tun ⊗3 3̃

Tun ⊗33τp

Tun⊗ψ
−1

//
?�

OO

Tun ⊗33
?�

OO

(ε′3(Tun) equals δ times the base change of ε0 := (Tun ⊗ψ
−1) ◦ ε3(Tun)).

Twisting. We recall the following definition from [Fukaya and Kato 2006, §1.4]:

Definition 2.4. A ring R is of type 1 if there exists a two-sided ideal I of R such
that R/I n is finite of order a power of p for any n≥ 1 and such that R∼= lim

←−n R/I n .
A ring R is of type 2 if it is the matrix algebra Mn(L) of some finite extension L

over Qp, for some n ≥ 1.

By Lemma 1.4.4 in the same work, R is of type 1 if and only if the defining
condition above holds for the Jacobson ideal J = J (R). Such rings are always
semilocal and R/J is a finite product of matrix algebras over finite fields.
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Now let R be a commutative ring of type 1 and let T = Tχ be a free R-module
of rank one with Galois action given by

χ = χT : GQp → R×

which factors through G. By χ̃T we denote the induced ring homomorphism
3(G)→ R. Furthermore let Y = Yχ be the (R,3(G))-bimodule which is R as
R-module and where 3(G) is acting via

χY := χ̃
−1
T χcyc :3(G)→ R

(from the right), where
χcyc :3(G)→ Zp→ R

is induced by the cyclotomic character and the unique ring homomorphism Zp→ R.
Then the map

Y ⊗3(G) Tun
∼= // T, y⊗ t 7→ y ·χY (t),

is an isomorphism of R-modules which is Galois equivariant, where the Galois
action on the tensor product is given by σ(y⊗ t)= y⊗ σ(t) for σ ∈ GQp .

Let R̃ and Ra be defined in the same way as for3. Then, using the isomorphisms

Y ⊗3 d3(R0(Qp,Tun))∼= dR(R0(Qp, Y ⊗3 Tun))∼= dR(R0(Qp,T))

by [Fukaya and Kato 2006, 1.6.5] and

R⊗33a ∼= Rχ(a),

where χ :3→ R denotes a continuous ring homomorphism, we may define the
following ε-isomorphisms:

Definition 2.5. In the above situation we set

εR(T) := εR,ε(T) := Y ⊗3 ε3,ε(Tun) : 1R→ dR(R0(Qp,T))dR(T⊗R Rχ(τp))

and

ε′R(T) := ε
′

R,ε(T) := Y ⊗3 ε′3,ε(Tun) : 1R̃→ dR(R0(Qp,T))R̃dR(T)R̃.

By definition we have an important twist invariance property: if R and R′ are
commutative rings of type 1 or 2 and Y ′ is any (R′, R)-bimodule that is projective
as an R′-module and satisfies Y ′⊗R T ∼= T′, we have

Y ′⊗R εR(T)= εR′(T
′) and Y ′⊗R ε

′

R(T)= ε
′

R′(T
′). (21)

Indeed, to this end the definition extends to all pairs (R,T), where R is a (not
necessarily commutative) ring of type 1 or 2 and T stands for a projective R-module
such that there exists a (R,3)-bimodule Y which is projective as R-module and
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such that T∼=Y⊗3Tun . In this context we denote by [T, σ ], σ ∈GQp , the element in
K1(R) induced by the action of GQp on T; note that this induces a homomorphism
[T,−] : G(Qab

p )→ K1(R).

Example 2.6. Let ψ : G F → Z×p be a Grössencharacter of an imaginary quadratic
field F such that p is split in F and assume that its restriction to G Fν , ν a place
above p, factors through G. We write Tψ for the free rank-one 3(G)-module with
Galois action given by σ(λ)= λσ̄−1ψ(σ). Then we also write ε3(ψ) for ε3(Tψ).

The ε-conjecture. We fix K/Qp infinite and recall that G = G(K∞/Qp) as well
as 3 = 3(G) and 3O = 3O(G) for O = OL the ring of integers of some finite
extension L of Qp. If χ : G→ O×L denotes any continuous character such that the
representation

Vχ := L(χ),

whose underlying vector space is just L and whose GQp -action is given by χ , is
de Rham, hence potentially semistable by [Serre 1968] (in this classical case) or by
[Berger 2002] (in general) then we have

L ⊗OL ε
′

OL
(Tχ )= ε

′

L(Vχ )

by definition. The ε-isomorphism conjecture (Conjecture 3.4.3 of [Fukaya and
Kato 2006]) states that

ε′L(Vχ )= 0L(Vχ ) · εL ,ε,d R(Vχ ) · θL(Vχ ), (22)

where, for any de Rham p-adic representation V of G, the notation used is as
follows:

(a) 0L(V ) :=
∏

Z 0
∗( j)−h(− j) with h( j)= dimL gr j Dd R(V ) and

0∗( j)=
{
(−1) j (− j)!−1 for j ≤ 0,
0( j) for j > 0,

denotes the leading coefficient of the 0-function.

(b) The map

εd R(V ) := εL ,ε,d R(V ) : 1L̃ → dL̃(V )dL̃(Dd R(V ))−1,

with L̃ := Q̂ur
p ⊗Qp L , is defined in [Fukaya and Kato 2006, Proposition 3.3.5]. We

shall recall its definition after the proof of Lemma A.5.

(c) θL(V ) is defined as follows: Firstly, R0f (Qp, V ) is defined as a certain sub-
complex of the local cohomology complex R0(Qp, V ), concentrated in degrees 0
and 1, whose image in the derived category is isomorphic to

R0f (Qp, V )∼=
[
Dcris(V )

(1−ϕp,1) // Dcris(V )⊕ Dd R(V )/D0
d R(V )

]
. (23)
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Here ϕp denotes the usual Frobenius homomorphism and the induced map t (V ) :=
Dd R(V )/D0

d R(V )→ H 1
f (Qp, V ) is the exponential map expBK (V ) of Bloch–Kato,

where we write Hn
f (Qp, V ) for the cohomology of R0f (Qp, V ). Now

θL(V ) : 1L → dL(R0(Qp, V )) ·dL(Dd R(V )) (24)

is by definition induced from ηp(V ) · (ηp(V ∗(1))∗) (see Remark B.1 for the nota-
tion) — with

ηp(V ) : 1L → dL(R0f (Qp, V ))dL(t (V )) (25)

arising by trivialising Dcris(V ) in (23) by the identity — followed by an isomorphism
induced by local Tate duality

R0f (Ql, V )∼=
(
R0(Ql, V ∗(1))/R0f (Ql, V ∗(1))

)∗
[−2] (26)

and using D0
d R(V )= t (V ∗(1))∗.

More explicitly, θL(V ) is obtained from applying the determinant functor to the
following exact sequence:

0 // H0(Qp, V ) // Dcris(V ) // Dcris(V )⊕ t (V )
expBK (V ) // H1(Qp, V )

expBK (V
∗(1))∗
// Dcris(V ∗(1))∗⊕ t (V ∗(1))∗ // Dcris(V ∗(1))∗ // H2(Qp, V ) // 0,

which arises from joining the defining sequences of expBK (V ) with the dual se-
quence for expBK (V

∗(1)) by local duality (26).

Remark 2.7. (a) The ε-conjecture may analogously be formulated using εR(T)

instead of ε′R(T). In the following we will amply switch between the two versions.

(b) Since by definition of εOL (Tχ ) we have

L ⊗OL ε
′

OL
(Tχ )= L ⊗OL

(
Yχ ⊗3 ε′3(Tun)

)
= (L ⊗OL Yχ )⊗3 ε′3(Tun),

proving (22) amounts to showing that

L ⊗3 ε3(Tun)= εL(Vχ ), (27)

where 3 acts on L via χ−1χcyc : 3(G)→ OL ⊆ L . Once we have shown (27)
for all possible χ as above, it follows immediately by twisting that for example
ε3(TK∞(T )) for T = Zp(η)(r) as below satisfies the descent property

Vρ ⊗3 ε3(TK∞(T ))= εL(V (ρ∗))

with V (ρ∗) := V ⊗Qp Vρ∗ for all one-dimensional representations Vρ arising from
some continuous ρ : G→ O×L and its contragredient representation Vρ∗ .
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Note that by [Serre 1968] any Vχ as above is of the form

W = L(ηρ)(r)= Ltρη,r ,

where r is some integer, η : G → O×L is an unramified character and ρ : G �
G(K ′m/Qp) → O×L denotes an Artin character for some finite subextension K ′

of K/Qp and with m = a(ρ) chosen minimal, that is, pa(ρ) is the p-part of the
conductor of ρ.

In the following we fix η and r and we set T := Zp(η)(r), V := T ⊗Zp Qp and

TK∞ = TK∞(T )=3
]
⊗Zp T, (28)

the free 3-module on which σ ∈ GQp acts as σ̄−1ηκr (σ ).
Now we are going to make the map (24) explicit. First we describe the local

cohomology groups:

H0(Qp,W )=

{
L if r = 0 and ρη = 1,

0 otherwise.
(29)

By local Tate duality we have

H2(Qp,W )∼= H0(Qp,W ∗(1))∗ =
{

L if r = 1 and ρη = 1,

0 otherwise.
(30)

From the local Euler–Poincaré characteristic formula one immediately obtains

dimL H1(Qp,W )= dimL H1(Qp,W ∗(1))=
{

2 if r = 0 or 1 and ρη = 1,
1 otherwise.

(31)

Following the same reasoning used for Lemma 1.3.1 of [Benois and Nguyen
Quang Do 2002], one sees that

H1
f (Qp,W )∼=

(
H1(Qp,W ∗(1))/H1

f (Qp,W ∗(1))
)∗

=


H1(Qp,W ) if r ≥ 2, or r = 1 and ρη 6= 1,

im
(
U(Qp)⊗Zp Qp→ H1(Qp,Qp(1))

)
if r = 1 and ρη = 1,

H1(Fp,Qp) if r = 0 and ρη = 1,
0, r ≤−1, or r = 0 and ρη 6= 1,

where the map in the second line is the Kummer map. Hence we call the cases
where r = 0 or 1 and ρη = 1 exceptional and all the others generic.

For the tangent space we have by (61)

t (W )=

{
Dd R(W )= L if r > 0,
0 if r ≤ 0,

(32)

t (W ∗(1))=
{

0 if r > 0,
Dd R(W ∗(1))= L if r ≤ 0,

(33)
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and

Dcris(W )=

{
0 if a(ρ) 6= 0,
Leρη,r otherwise,

(34)

with Frobenius action given as φ(eρη,r )= p−rρη(τ−1
p )eρη,r .

The case r≥1. In this case we have0L(W )=0(r)−1
=

1
(r−1)!

and H0(Qp,W )=0,
whence

1−φ : Dcris(W )→ Dcris(W ) (35)

and

exp(W ) : Dd R(W )∼= H 1
f (Qp,W ) (36)

are bijections. Combined with the exact sequences

0 // H1
f (Qp,W ∗(1))∗

exp(W ∗(1))∗ // Dcris(W ∗(1))∗

1−φ∗ // Dcris(W ∗(1))∗ // H2(Qp,W ) // 0 (37)

and

0 // H1
f (Qp,W ) // H1(Qp,W ) // H1

f (Qp,W ∗(1))∗ // 0,

they induce the following isomorphism corresponding to θL(W )−1:

dL(Dd R(W ))→ dL(R0(Qp,W ))−1.

In the generic case this decomposes as

dL(exp(W )) : dL(Dd R(W ))→ dL(H1(Qp,W ))= dL(R0(Qp,W ))−1

times
det(1−φ∗ | Dcris(W ∗(1))∗)

det(1−φ | Dcris(W ))
: 1L → 1L ,

which equals

det(1−φ | Dcris(W ∗(1)))
det(1−φ | Dcris(W ))

=


1− pr−1ρη(τp)

1− p−rρη(τ−1
p )

if a(ρ)= 0,

1 otherwise.

(38)

Now let r = 1 and ρη= 1, that is, we consider the exceptional case W =Qp(1).
As now det(1−φ | Dcris(W ∗(1)))= 0 and the two occurrences of Dcris(W ∗(1))∗ in
(37) are identified via the identity, the map θL(W )−1 is also induced by (35), (36)
together with the (second) exact sequence in the commutative diagram
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0 // Z×p ⊗Qp

∼= δ

��

// Q̂×p ⊗Qp

δ∼=

��

−v̂⊗Qp // Qp // 0

0 // H1
f (Qp,Qp(1)) // H1(Qp,Qp(1)) // H2(Qp,Qp(1))

Tr∼=

OO

// 0

(39)

where the first two vertical maps δ are induced by Kummer theory, v denotes the
normalised valuation map and the dotted arrow is defined by commutativity; that is,
θL(W )−1 arises from

dQp(Dd R(Qp(1)))
expQp (1)// dQp(H

1
f (Qp,Qp(1)))∼= dQp(R0(Qp,W ))−1 (40)

times
det(1−φ | Dcris(Qp(1)))= (1− p−1). (41)

Combining (39), (40) and (41) this can rephrased as follows:

Proposition 2.8. The map θ(Qp(1)) is just induced by the single exact sequence

0 // t (Qp(1))∼=Qp

(1−p−1)−1 expQp (1) // H1(Qp,Qp(1))
−v̂⊗Qp // H2(Qp,Qp(1)) // 0.

Proof. Since t (Qp) = 0, it follows directly from its definition as a connecting
homomorphism that

expQp
:Qp = Dcris(Qp)→ H1

f (Qp,Qp)⊆ H1(Qp,Qp) (42)

sends α ∈ Qp to the character χα : GQp → Qp, g 7→ (g − 1)c, where c ∈ Q̂nr
p

satisfies (1− ϕ)c = α, that is, χα(φ) = −α. As noted in [Benois and Nguyen
Quang Do 2002, Lemma 1.3.1], we thus may identify H1

f (Qp,Qp)= H1(Fp,Qp).
Identifying the copies of Dcris(Qp) (in the dual of (37)) gives rise to a map

ψ :Qp = H0(Qp,Qp)→ H1
f (Qp,Qp), α 7→ χα.

By local Tate duality

H1(Qp,Qp(1))/H1
f (Qp,Qp(1))

ψ∗

��

× H1
f (Qp,Qp) // H2(Qp,Qp(1))∼=Qp

H2(Qp,Qp(1)) × H0(Qp,Qp) //

ψ

OO

H2(Qp,Qp(1))∼=Qp

we obtain for the dual map ψ∗ using the normalisation (14)

tr(ψ∗(δ(p))= tr(δ(p)∪χ1)= χ1(φ)=−1.

The dotted arrow in (39) being ψ∗, this diagram commutes as claimed. �

The case r ≤ 0. This case is dual to the previous one, replacing W by W ∗(1).
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The descent. Let K be infinite. In order to describe the descent of LK ,ε−1 in (10)
we set

LT := LT,ε−1 := Y ⊗3 LK ,ε−1 (43)

if the projective left 3′-module Y (with commuting right 3-module structure)
satisfies Y ⊗3Tun ∼= T as 3′-modules. Since LK ,ε−1 is the crucial ingredient in the
definition of ε′3(T), the following descent diagram will be important:

For fixed ρ as before we choose K ′ ⊆ K and n ≥ max{1, a(ρ)} such that ρ
factorises over Gn := G(K ′n/Qp). Setting 3′ := Qp[Gn] and V ′ := Qp[Gn]

]
⊗

Qp(η)(r) we first note that

Hi (Qp, V ′)∼= Hi (K ′n,Qp(η)(r))

by Shapiro’s lemma. Also, let Y ′ be the (3′,3)-bimodule such that Y ′⊗3Tun ∼= V ′.
We write eχ := (1/#Gn)

∑
g∈Gn

χ(g−1)g for the usual idempotent, which induces
a canonical decomposition 3′ ∼=

∏
Lχ into a product of finite extensions Lχ of Qp.

In particular, for L = Lρ we have W ∼= eρ−1 V ′ = Lρ(ρη)(r).
Then, for r ≥ 1 and with 0(V ′) :=

⊕
χ 0(eχV ′), we have a commutative diagram

Y ′⊗3 H1(Qp,Tun)

prn

��

−LV ′=−Y ′⊗3LK ,ε−1
// Y ′⊗3 Tun ⊗33[Tun,τ

−1
p ]

∼= prn

��
H1(K ′n,Qp(η)(r)) Dd R(V ′)

0(V ′)−1 expV ′oo V ′⊗3′ (3′)[V ′,τ−1
p ]

oo

of 3′-modules as will be explained in the Appendix, Proposition A.6.
Applying the exact functor Vρ∗ ⊗3′ − leads to the final commutative descent

diagram — at least for W 6=Qp(1)—

Y ′′⊗3 H1(Qp,Tun)

prn

��

−LW=−Y ′′⊗3LK ,ε−1
// Y ′′⊗3 Tun ⊗33[Tun,τ

−1
p ]

∼= prn

��
H1(Qp,W ) Dd R(W )

0(W )−1 expWoo W ⊗L L
[W,τ−1

p ]
,

det(1−ϕ|Dcris(W
∗(1)))

det(1−ϕ|Dcris(W ))
·εL ,ε,d R(W )−1

oo

(44)

where Y ′′ :=Vρ∗⊗3′Y ′=Vρ∗⊗3Y is a (L ,3)-bimodule. For W =Qp(1) the Euler
factor in the denominator and the map pr0 become zero, so we shall instead apply
a direct descent calculation in Lemma 2.9 using semisimplicity and a Bockstein
homomorphism.

For the descent we need

• the long Tor-exact sequence by applying Y ′′⊗3(G)− to the defining sequence
(10) for −LK ,ε−1 ;
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• the convergent cohomological spectral sequence

E i, j
2 := Tor3

−i (Y
′′, H j (Qp,Tun))⇒ Hi+ j (Qp,W ), (45)

which is induced from the isomorphism

Y ′′⊗L R0(Qp,Tun)∼= R0(Qp, Y ′′⊗3 Tun),

proved in [Fukaya and Kato 2006] and using W ∼= Y ′′⊗Tun;

• and the fact that the determinant functor is compatible with both these ingredients
[Venjakob 2012].

For T = T(T ) :=3]⊗Zp T ∼= Y ⊗3 Tun , we have

Hi (Qp,T)∼=


T if i = 0 and r = 0, η = 1,
H1(Qp,T) 6= 0 if i = 1,
T (−1) if i = 2 and r = 1, η = 1,
0 otherwise.

(46)

Hence we obtain for r ≥ 1 the following exact sequence of terms in lower degree:

0 // Tor31 (Y
′′,H1(Qp,Tun)) // H0(Qp,W ) // Tor32 (Y

′′,H2(Qp,Tun))

// Y ′′⊗3 H1(Qp,Tun) // H1(Qp,W ) // Tor31 (Y
′′,H2(Qp,Tun)) // 0, (47)

and we also obtain

Tor32 (Y
′′,H1(Qp,Tun))= 0 and Y ′′⊗3 H2(Qp,Tun)∼= H2(Qp,W ).

Since Y ′′⊗L
3 R0(Qp,Tun)∼= Vρ∗⊗L

3

(
Y ⊗3 R0(Qp,Tun)

)
∼= Vρ∗⊗L

3 R0(Qp,T),
the preceding sequence is canonically isomorphic to

0 // Tor31 (Vρ∗,H1(Qp,T)) // H0(Qp,W ) // Tor32 (Vρ∗,H2(Qp,T))

// Vρ∗ ⊗3 H1(Qp,T) // H1(Qp,W ) // Tor31 (Vρ∗,H2(Qp,T)) // 0, (48)

and we get

Tor32 (Vρ∗,H1(Qp,T))= 0 and Vρ∗ ⊗3 H2(Qp,T)∼= H2(Qp,W ).

In the generic case the spectral sequence boils down to the isomorphism

Y ′′⊗3 H1(Qp,Tun)∼= H1(Qp,W ). (49)

Considering the support of Zp(1), one easily sees that Tor3i (Y
′′,Zp(1))= 0 for

all i ≥ 0. Hence the long exact Tor-sequence associated with (10) combined with
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(16) degenerates to

Y ′′⊗3 H1(Qp,Tun)
−LW

∼=

// W ⊗L L [W,τp]−1, (50)

while for all i ≥ 0

Tor3i (Y
′′,H2(Qp,Tun))= Tor3i (Y

′′,Zp)= 0. (51)

Thus the conjectured equation (22) holds by (44), (49), (50) and the definition
(17) with −LK ,ε−1 .

For the exceptional case W = Zp(1) we set R = 3(0)p, where p denotes the
augmentation ideal of 3(0) and recall that R is a discrete valuation ring with
uniformising element π := 1−γ0, where γ0 is a fixed element in 0 sent to 1 under

0
κ // Z×p

logp // Zp,

and residue field R/π = Qp. The commutative diagram of homomorphisms of
rings

3=3(G)

��

// 3(0)

��

// R

��
Zp // Zp // Qp

induces with Y ′′ := R/π the isomorphism

R0(Qp,Qp(1))∼= Y ′′⊗L
3 R0(Qp,Tun(K∞))

∼=Qp⊗
L
3(0)

(
3(0)⊗L

3 R0(Qp,Tun(K∞))
)

∼=Qp⊗
L
R R⊗3(0)⊗L

3R0(Qp,Tun(Qp,∞))

∼=Qp⊗
L
R R0(Qp,Tun(Qp,∞))p. (52)

In particular, the descent calculation factorises over the cyclotomic level; that is,

ε′Qp
(Qp(1))= R/π ⊗R ε

′

R(R⊗3(0) Tun(Qp,∞))

is induced by ε′R(R⊗3(0) Tun(Qp,∞)), which in turn is induced by the localisation
at p of the exact sequences (6) and (15) for K =Qp, which are respectively

U(Qp,∞)p ∼=

−LTun (Qp,∞)p // Tun(Qp,∞)p⊗R R[Tun,τp]−1 (53)

(this arises as the long exact Tor-sequence from (10)) and

0 // U(Qp,∞)p // H1(Qp,Tun(Qp,∞))p
−v̂ // Qp ∼= H2(Qp,Tun(Qp,∞))p // 0.

(54)
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This last sequence arises from an analogue of the spectral sequence (45) above —
which gives with H= G(K∞/Qp,∞) an exact sequence

0 // H1(Qp,Tun(K∞))H // H1(Qp,Tun(Qp,∞)) // H2(Qp,Tun(K∞))H // 0,

and
H2(Qp,Tun(K∞))H = H2(Qp,Tun(Qp,∞))

— combined with (13) and an identification of H2(Qp,Tun(K∞))H = Zp with
H2(Qp,Tun(K∞))H = Zp induced by the base change of canZp . Indeed, it is easy
to check that the long exact H-homology (= Tor3i (3(0),−)) sequence associated
with (10) recovers (6), in particular H1(Qp,Tun(K∞))H ∼= U(K∞)H ∼= U(Qp,∞).
Moreover, the composite

β̃ : H1(Qp,Tun(Qp,∞))→ H2(Qp,Tun(K∞))H = H2(Qp,Tun(K∞))H

= H2(Qp,Tun(Qp,∞))

is via restriction and taking G(K H′
∞
/Qp,∞)-invariants by construction induced by

the Bockstein homomorphism β associated to the exact triangle in the derived
category

R0(Qp,Tun(K∞))
1−h0 // R0(Qp,Tun(K∞)) // R0(Qp,Tun(K H′

∞
)),

where H′ is the maximal pro-p quotient of H and h0 is the image of φ. By
[Flach 2004, Lemma 5.9] (and the argument following directly afterwards using
the projection formula for the cup product) it follows that β̃ is given by the cup
product θ ∪−, where

θ : GQp,∞ � H′ ∼= Zp

is the unique character such that h0 is sent to 1 under the second isomorphism.
Using our above convention of the trace map (14) one finds according to [Kato
1993a, Chapter II, §1.4.2] that the above composite equals −v̂. Indeed

tr(β̃(δ(p)))= tr(θ ∪ δ(p))=−θ(φ)=−θ(h0)=−1.

Now consider the element

u := (1− ε−1
n )n ∈ lim

←−n (Qp(µpn )×)∧ ∼= H1(Qp,Tun(Qp,∞))

and its image up in H1(Qp,Tun(K∞))p.

Lemma 2.9. H1(Qp,Tun(K∞))p ∼= Rup is a free R-module of rank one and
LTun(Qp,∞)p induces modulo π a canonical isomorphism

t (Qp(1)) U(Qp,∞)p/π
−LQp (1)oo // Qp // H1(Qp,Tun(K∞))p/π (55)
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which sends (1− p−1)e ∈ Qpe = t (Qp(1)) to ū, the image of up (but which is of
course not induced by the map U(Qp,∞)p→ H1(Qp,Tun(K∞))p as the latter map
becomes trivial modulo π !).

Proof. The natural inclusion H1(Qp,Tun(Qp,∞))p/π ⊆ H1(Qp,Qp(1)) maps ū to
the image of p under (Q×p )

∧
⊗Qp ∼=H1(Qp,Qp(1)), the isomorphism of Kummer

theory, because p is the image of the elements 1− ε−1
n under the norm maps. In

particular, ū is nonzero. By (15) the element uγ0−1 belongs to U(Qp,∞). In order to
calculate the image of the class uγ0−1 of uγ0−1

p modulo π under −LQp(1) we note
that

g(X)= guγ0−1,−ε(X)=
(1+X)κ(γ0)−1

X
≡ κ(γ0) mod (X),

whence we obtain from setting X = 0 in −(5) (i.e., Equation (5) multiplied by −1)
that

−(1− p−1)=−(1− p−1) log(κ(γ0))=−Col−ε(uγ0−1) · 1

equals the image of uγ0−1 in Qp = R/π ⊗3(0) Tun(Qp,∞)⊗3(0) 3(0)[Tun,τp]−1

under −LQp(1). In particular, uγ0−1 is a basis of U(Qp,∞)p/π , which is mapped to
zero in H1(Qp,Tun(Qp,∞))p/π , whence the long exact Tor-sequence associated
with (54) induces the isomorphisms

H1(Qp,Tun(Qp,∞))p/π
−v // Qp, ū 7→ −1

(since v(p)= 1) and

Qp // U(Qp,∞)p/π, 1 7→ uγ0−1,

where the latter formula follows from the snake lemma. By the first isomorphism
and Nakayama’s lemma the first statement is proven and therefore

H1(Qp,Tun(Qp,∞))p[π ] = U(Qp,∞)p[π ] = 0.

The second claim follows now from the composition of these isomorphisms. �

Finally, the exact triangle in the derived category of R-modules

R0(Qp,Tun(Qp,∞))p
1−γ0 // R0(Qp,Tun(Qp,∞))p

// Zp⊗
L
3(0) R0(Qp,Tun(Qp,∞))p //

combined with (52) induces the Bockstein map β = θ∪ sitting in the canonical
exact sequence (depending on γ0)

0 // H1(Qp,Tun(K∞))p/π // H1(Qp,Qp(1))

∼=

��

β // H2(Qp,Qp(1)) //

∼=

��

0,

(Q×p )
∧
⊗Qp

logp // Qp

(56)
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where θ denotes the composite GQp

κ // Z×p
logp// Zp considered as an element of

H1(Qp,Zp) (see [Flach 2004, Lemma 5.7-9; Burns and Venjakob 2006, §3.1; Burns
and Flach 2006, §5.3] and, for the commutativity of the square, [Kato 1993a, Ch. II,
1.4.5]). The last zero on the upper line comes from H3(Qp,Tun(K∞))p[π ] = 0.
Combining with (55) it follows that ε′

Qp
(Qp(1)) is induced from the exact sequence

0 // t (Qp(1))∼=Qp
(1−p−1)−1im(p)// H1(Qp,Qp(1))

β=logp // H2(Qp,Qp(1)) // 0,

which does not coincide at all with the sequence of Proposition 2.8 (not even up to
sign). Nevertheless they induce the same map on determinants: both induce a map

dQp(H
1(Qp,Qp(1)))→ dQp(H

2(Qp,Qp(1)))⊗dQp(t (Qp(1))
∼= dQp(Qp)⊗dQp(Qp) (57)

sending (1− p−1)−1 exp(1)∧−im(p)= (1− p−1)−1im(p)∧exp(1) to 1∧1. This
completes the proof in the exceptional case.

For r ≤ 0 one has symmetric calculations — at least in the generic case — using
a descent diagram analogous to (44), except that the left map on the bottom is now
induced by the dual Bloch–Kato exponential map 0(V ) exp∗V ∗(1) as indicated in
(67) (left to the reader). The exceptional case can be dealt with by using the duality
principle (generalised reciprocity law) as follows:

Let T be a free R-module of rank one with compatible GQp -action as above.
Then

T∗ := HomR(T, R)

is a free R◦-module of rank one — for the action h 7→ h(−)r , r in the opposite
ring R◦ of R — with compatible GQp -action given by h 7→ h ◦ σ−1. Recall that in
Iwasawa theory we have the canonical involution ι :3◦→3, induced by g 7→ g−1,
which allows us to consider (left) 3◦-modules again as (left) 3-modules; for
example, one has T∗(T )ι ∼= T(T ∗) as (3,GQp)-modules, where M ι

:=3⊗ι,3◦ M
denotes the 3-module with underlying abelian group M , but on which g ∈ G acts
as g−1 for any 3◦-module M .

Given ε′R◦,−ε(T
∗(1)) we may apply the dualising functor −∗ (compare (B.j) in

Appendix B) to obtain an isomorphism

ε′R◦,−ε(T
∗(1))∗ : (dR◦(R0(Qp,T∗(1)))R̃◦)

∗(dR◦(T
∗(1))R̃◦)

∗
→ 1R̃◦,

while the local Tate-duality isomorphism [Fukaya and Kato 2006, §1.6.12]

ψ(T) : R0(Qp,T)∼= RHomR◦(R0(Qp,T∗(1)), R◦)[−2]
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induces an isomorphism

dR(ψ(T))R̃
−1
:
(
(dR◦(R0(Qp,T∗(1)))R̃◦)

∗
)−1

∼= dR(RHomR◦(R0(Qp,T∗(1)), R◦))−1
R̃
→ dR(R0(Qp,T))−1

R̃
, (58)

in the notation of Remark B.1. Consider the product

ε′R,ε(T) · ε
′

R◦,−ε(T
∗(1))∗ ·dR(ψ(T))R̃

−1
: dR(T(−1))R̃

∼= dR(T
∗(1)∗)R̃→ dR(T)R̃

and the isomorphism T(−1) ·ε // T that sends t ⊗ ε⊗−1 to t .

Proposition 2.10 (duality). Let T be as above and such that T ∼= Y ⊗3 Tun for
some (R,3)-bimodule Y that is projective as R-module. Then

ε′R,ε(T) · ε
′

R◦,−ε(T
∗(1))∗ ·dR(ψ(T))R̃

−1
= dR

(
T(−1) ·ε // T

)
R̃.

Proof. The statement is stable under applying Y ′⊗R − for some (R′, R)-bimodule
Y ′, which is projective as an R′-module by the functoriality of local Tate duality and
the lemma below. This reduces the proof to the case (R,T) = (3,T(T )), where
T = Zp(r)(η) is generic. Since the morphisms between dR(T(−1))R̃ and dR(T)R̃
form a K1(3̃)-torsor and the kernel

SK1(3̃) := ker
(

K1(3̃)→
∏

ρ∈Irr G

K1(L̃ρ)
)
= 1

is trivial (because G is abelian), it suffices to check the statement for all (L , V (ρ)),
which is nothing else than the content of [Fukaya and Kato 2006, Proposition 3.3.8].
Here Irr G denotes the set of Qp-valued irreducible representations of G with finite
image. �

Lemma 2.11. Let Y be a (R′, R)-bimodule such that Y ⊗R T ∼= T′ as (R′,GQp)-
module and let Y ∗ = HomR′(Y, R′) the induced (R′◦, R◦)-bimodule. Then there is
a natural equivalence of functors

Y ⊗R HomR◦(−, R◦)∼= HomR′◦(Y ∗⊗R◦ −, R′◦)

on P(R◦), and a natural isomorphism Y ∗⊗R◦ T∗ ∼= (T′)∗ of (R′◦,GQp)-modules.

Proof. This is easily checked using the adjointness of Hom and ⊗. �

Proposition 2.12 (Change of ε). Let c ∈ Z×p and let σc be the unique element of
the inertia subgroup of G(Qab

p /Qp) such that σc(ε)= cε (in the Zp-module Zp(1),
whence written additively). Then

ε′R,cε(T)= [T, σc]ε
′

R,ε(T).
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Proof. As in the proof of Proposition 2.10 this is easily reduced to the pairs
(L , V (ρ)), for which the statement follows from the functorial properties of ε-
constants [Fukaya and Kato 2006, §3.2.2(2)]. �

Altogether we have proved this:

Theorem 2.13 (Kato, ε-isomorphisms). Let T be such that T ∼= Y ⊗3 Tun as
(R,GQp)-modules for some (R,3)-bimodule Y which is projective as R-module,
where 3 = 3(G) with G = G(L/Qp) for any L ⊆ Qab

p . Then a unique epsilon
isomorphism ε′R(T) exists satisfying the twist invariance property (21), the descent
property (22), the “change of ε” relation (Proposition 2.12) and the duality relation
(Proposition 2.10). In particular ε′3(T) exists for all pairs (3,T) with T ∼= 3

one-dimensional (free) as a 3-module.

Proof. For G a two-dimensional p-adic Lie group this has been shown explicitly
above. The general case follows by taking limits. �

We will indicate shortly how this result implies the validity of a local Main
Conjecture in this context. Here again we restrict to the universal case Tun , but we
point out that similar statements hold for general T as in the above theorem by the
twisting principle; in particular it applies to TE for the local representation given
by a CM elliptic curve as in Example 3.1 below.

We place ourselves in the situation described at the bottom of page 2376; in
particular, G is a two-dimensional p-adic Lie group. Denote by

S := {λ ∈3 |3/3λ is finitely generated over 3(G(K∞/Qp,∞))}

the canonical Ore set of 3 (see [Coates et al. 2005]) and by S̃ the canonical Ore
set of 3̃. Fix an element u of U(K∞) = H1(Qp,Tun(K∞)) such that the map
3→ H1(Qp,Tun(K∞)) taking 1 to u becomes an isomorphism after base change
to 3̃S̃ (such “generators” exist according to (19) and Proposition 2.1). Then, with
L := −LK ,ε−1 , the map

ε′3(Tun) : 13̃→ d3(R0(Qp,Tun))3̃d3(Tun)3̃

induces a map

13̃→ d3(H1(Qp,Tun)/3u)−1
3̃

d3(H2(Qp,Tun))3̃d3(Tun/L(u))3̃ (59)

whose base change followed by the canonical trivialisations

13̃S̃
→ d3(H1(Qp,Tun)/3u)−1

3̃S̃
d3(H2(Qp,Tun))3̃S̃

d3(Tun/3L(u))3̃S̃

∼= d3̃S̃
(Ẑur

p )d3̃S̃
(Ẑur

p (1))→ 13̃S̃

(here all arguments on the right are S̃-torsion modules!) equals the identity in
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Aut(13̃S̃
)= K1(3̃S̃) by Lemma 2.2. Let Eu be the element in K1(3̃S̃) such that

L(u)= E−1
u · (1⊗ ε).

Consider the connecting homomorphism ∂ in the exact localisation sequence

K1(3̃) // K1(3̃S̃)
∂ // K0(S̃-tor) // 0,

where S̃-tor denotes the category of finitely generated 3̃-modules which are S̃-
torsion. Then we obviously have

∂(Eu)=−[Tun/3L(u)] = [H2(Qp,Tun)] − [H1(Qp,Tun)/3u]

in K0(S̃-tor). Moreover one can evaluate Eu at Artin characters ρ of G as in [Coates
et al. 2005] and derive an interpolation property for E(ρ) from Theorem 2.13 by the
techniques of [Fukaya and Kato 2006, Lemma 4.3.10]; this is carried out in [Schmitt
≥ 2013]. These two properties build the local Main Conjecture as suggested by
Fukaya and Kato in a much more general, not necessarily commutative setting.
Kato (unpublished) has shown that 3̃S̃⊗3U(K∞)∼= 3̃S̃ does hold in vast generality
for p-adic Lie extensions.

3. The semilocal case

Let F∞/Q be a p-adic Lie extension with Galois group G and ν be any place of
F∞ above p such that Gν =G(F∞,ν/Qp) is the decomposition group at ν. For any
free Zp-module T of finite rank with continuous Galois action by GQ we define
the free 3(G)-module

T := T(T )F∞ :=3(G)
\
⊗Zp T

with the usual diagonal GQ-action. Similarly, we define the free 3(Gν)-module

Tloc
:=3(Gν)

\
⊗Zp T

with the usual diagonal GQp -action. Then we have the canonical isomorphism of
(3(G),GQp)-bimodules

T ∼=3(G)⊗3(Gν) Tloc.

Thus we might define

ε3(G)(Qp,T)

:=3(G)⊗3(Gν) ε
′

3(Gν)
(Tloc) : 1

3̃(G)
→ d3(G)(R0(Qp,T))

3̃(G)d3(G)(T)3̃(G).

Now let ρ : G → GLn(OL) be a continuous map and ρν its restriction to Gν ,
where L is a finite extension of Qp. By abuse of notation we shall denote the
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induced ring homomorphisms 3(G)→ Mn(OL) and 3(Gν)→ Mn(OL) by the
same letters. Since we have a canonical isomorphism

Ln
⊗ρ,3(G) T ∼= Ln

⊗ρν ,3(Gν) Tloc

of (L ,GQp)-bimodules, we obtain

Ln
⊗ρ,3(G) ε3(G)(Qp,T)

= Ln
⊗ρν ,3(Gν) ε

′

3(Gν)
(Tloc) : 1L̃ → dL(R0(Qp, V (ρ∗)))L̃dL(V (ρ∗))L̃ ,

where V = T ⊗Zp Qp.

Example 3.1. Let E be a elliptic curve defined over Q with CM by the ring of
integers of an imaginary quadratic extension K ⊆ F∞ of Q and let ψ denote the
Grössencharacter associated to E . Then TE ∼= IndK

Q Tψ , which is isomorphic to
Tψ ⊕ Tψc as representation of G K . Here Tψ equals Zp on which GQ acts via ψ ,
while ψc is the conjugate of ψ by complex multiplication c ∈ G(K/Q).

Assuming Kν = Qp and setting TE := T, Tloc
E := Tloc for T = TE as well as

Tψ :=3(G)\⊗Zp Tψ , Tloc
ψ :=3(Gν)

\
⊗Zp Tψ we obtain

TE ∼= Tψ ⊕Tψc

as (3(G),G K )-modules and hence

ε3(G)(Qp,TE)= ε3(G)(Qp,Tψ)ε3(G)(Qp,Tψc)

=3(G)⊗3(Gν)

(
ε3(Gν)(Qp,Tloc

ψ )ε3(Gν)(Qp,Tloc
ψc )
)
.

If F is a number field and F∞ a p-adic Lie extension of F again with Galois group
G, then, for a place p above p and a projective 3(G)-module T with continuous
G Fp-action, we define a corresponding ε-isomorphism

ε3(G)(Fp,T) : 1
3̃(G)
→ d3(G)(R0(Fp,T))

3̃(G)d3(G)(T)
[Fp:Qp]

3̃(G)

to be induced from

ε3(G)(Qp,Z[GQp ]⊗Z[G Fp ]
T)

: 1
3̃(G)
→ d3(G)(R0(Qp,Z[GQp ]⊗Z[G Fp ]

T))
3̃(G)d3(G)(Z[GQp ]⊗Z[G Fp ]

T)
3̃(G).

Finally we put

ε3(F ⊗Q Qp,T)= ε3

(
Qp,

⊕
p|p

Z[GQp ]⊗Z[G Fp ]
T

)
=

∏
p|p

ε3(Fp,T),

where p runs through the places of F above p.
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4. Global functional equation

In this section we would like to explain the applications addressed in the introduction.
In the same setting as in Example 3.1 we assume that p is a prime of good ordinary
reduction for the CM elliptic curve E and we set F∞ = Q(E(p)), as well as
G = G(F∞/Q) and 3 :=3(G). We write M = h1(E)(1) for the motive attached
to E and set εp,3(M)= ε3(Qp,TE). Using [Yasuda 2009] one obtains similarly
ε-isomorphisms over Ql , l 6= p, which we call analogously εl,3(M). Finally, one
can define ε∞,3(M) also at the place at infinity; this is done in [Fukaya and Kato
2006, §3.5, Conjecture] and, with a slightly different normalisation, at the end of
[Venjakob 2007, §5]. We choose the latter normalisation. Let S be the finite set of
places of Q consisting of p,∞ as well as the places of bad reduction of M .

Now, according to the conjectures of [Fukaya and Kato 2006] there exists a
ζ -isomorphism

ζ3(M) := ζ3(TE) : 13→ d3(R0c(U,TE))
−1

which is the global analogue of the ε-isomorphism concerning special L-values
(at motivic points in the sense of [Flach 2009]) instead of ε- and 0-factors; here
R0c(U,TE) denotes the perfect complex calculating étale cohomology with com-
pact support of TE with respect to U =Spec(Z)\S. Good evidence for the existence
of ζ3(M) is given in (loc. cit.) although Flach concentrates on the commutative case,
that is, he considers 3(G(F∞/K )) instead of 3(G); from this the noncommutative
version probably follows by similar techniques as in [Bouganis and Venjakob 2010],
but as a detailed discussion would lead us too far away from the topic of this article,
we just assume the existence here for simplicity. Then we obtain the following:

Theorem 4.1. There is the functional equation

ζ3(M)= (ζ3(M)∗)−1
·

∏
v∈S

εv,3(M).

This result is motivated by [Fukaya and Kato 2006, Conjecture 3.5.5]; for more
details see [Venjakob 2007, Theorem 5.11], and compare with [Burns and Flach
2001, §5]. Observe that we used the self-duality M = M∗(1) of M here.

Finally we want to address the application towards the descent result with Burns
mentioned in the introduction. If ω denotes the Neron differential of E , we obtain
the usual real and complex periods�±=

∫
γ±
ω by integrating along paths γ± which

generate H1(E(C),Z)±. We set R = {q prime : | j (E)|q > 1}∪ {p} and let u, w be
the roots of the characteristic polynomial of the action of Frobenius on the Tate
module TE of E , which is

1− apT + pT 2
= (1− uT )(1−wT ), u ∈ Z×p .
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Further let pfp(ρ) be the p-part of the conductor of an Artin representation ρ, while
Pp(ρ, T ) = det(1− Frob−1

p T |V Ip
ρ ) describes the Euler factor of ρ at p. We also

set d±(ρ) = dimC V±ρ and denote by ρ∗ the contragredient representation of ρ.
By ep(ρ) we denote the local ε-factor of ρ at p. In the notation of [Tate 1979]
this is ep(ρ, ψ(−x), dx1), where ψ is the additive character of Qp defined by
x→ exp(2π i x) and dx1 is the Haar measure that gives volume 1 to Zp. Moreover,
we write R∞(ρ∗) and Rp(ρ

∗) for the complex and p-adic regulators of E twisted by
ρ∗. Finally, in order to express special values of complex L-functions in the p-adic
world, we fix embeddings of Q̄ into C and Cp, the completion of an algebraic
closure of Qp.

In [Bouganis and Venjakob 2010, Theorem 2.14] we have shown that as a
consequence of the work of Rubin and Yager there exists LE ∈ K1(3Zp(G)S)

satisfying the interpolation property

LE(ρ)=
L R(E, ρ∗, 1)

�
d+(ρ)
+ �

d−(ρ)
−

ep(ρ)
Pp(ρ, u−1)

Pp(ρ∗, w−1)
u−fp(ρ)

for all Artin representations ρ of G. Moreover the (slightly noncommutative)
Iwasawa Main Conjecture (see [Coates et al. 2005] or Conjecture 1.4 in [loc.
cit.]) is true provided that the MH (G) conjecture (see [Coates et al. 2005] or
Conjecture 1.2 in [loc. cit.]) holds; for CM elliptic curves this conjecture is equivalent
to the vanishing of the cyclotomic µ-invariant of E . In [Burns and Venjakob 2011,
Conjecture 7.4/9 and Proposition 7.8] a refined Main Conjecture was formulated
requiring the following p-adic BSD-type formula:

At each Artin representation ρ of G (with coefficients in L) the leading term
L∗E(ρ) of LE (as defined in [Burns and Venjakob 2006]) equals

(−1)r(E)(ρ
∗) L∗R(E, ρ

∗)Rp(ρ
∗)

�
d+(ρ)
+ �

d−(ρ)
− R∞(ρ∗)

ep(ρ)
Pp(ρ, u−1)

Pp(ρ∗, w−1)
u−fp(ρ), (60)

where L∗R(E, ρ
∗) is the leading coefficient at s = 1 of the L-function L R(E, ρ∗, s)

obtained from the Hasse–Weil L-function of E twisted by ρ∗ by removing the
Euler factors at R. Here the number r(E)(ρ∗) is defined in [Burns and Venjakob
2011, (51)] (with M = h1(E)(1)) and equals dimCp(eρ∗(Cp⊗Z E(K ker(ρ)))) if the
Tate–Shafarevich group X(E/Fker(ρ)

∞ ) is finite.
We write X (E/F∞) for the Pontryagin dual of the (p-primary) Selmer group of

E over F∞.

Theorem 4.2. Let F be a number field contained in F∞ and assume that

(i) the MH (G) conjecture holds,

(ii) LE satisfies the refined interpolation property (60), and
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(iii) X (E/F∞) is semisimple at all ρ in Irr G F/Q (in the sense of [Burns and
Venjakob 2006, Definition 3.11]).

The p-part of the equivariant Tamagawa number conjecture for (E,Z[G(F/Q)])
is true in this situation. If , moreover, the Tate–Shafarevich group X(E/F) of E
over F is finite, this implies the p-part of a Birch–Swinnerton-Dyer type formula
(see, for example, [Venjakob 2007, §3.1]).

For more details on the “p-part” of the ETNC and the proof of this result, which
uses the existence of (1) as shown in this paper, see [Burns and Venjakob 2011,
Theorem 8.4]. Note that due to our semisimplicity assumption combined with
Remark 7.6 and Proposition 7.8 of [loc. cit.], formula (60) coincides with that of
[loc. cit., Conjecture 7.4]. Also Assumption (W) of Theorem 8.4 is valid for weight
reasons. Finally we note that by [Burns and Venjakob 2006, Lemma 3.13, 6.7]
X (E/F∞) is semisimple at ρ if and only if the p-adic height pairing

h p(Vp(E)⊗ ρ∗) : H 1
f (Q, Vp(E)⊗ ρ∗)× H 1

f (Q, Vp(E)⊗ ρ)→ L

from [Nekovář 2006, §11] (see also [Schneider 1982] or [Perrin-Riou 1992]) is
nondegenerate, where Vp(E)=Qp⊗TE is the usual p-adic representation attached
to E . As far as we are aware, the only theoretical evidence for nondegeneracy is a
result in [Bertrand 1982] that for an elliptic curve with complex multiplication, the
height of a point of infinite order is nonzero. Computationally, however, a lot of
work has been done recently by Stein and Wuthrich [Wuthrich 2004].

Appendix A: p-adic Hodge theory and (ϕ, 0)-modules

As before in the local situation K denotes a (finite) unramified extension of Qp. Let
η : GQp → Z×p (here Z×p can also be replaced by O×L , but for simplicity of notation
we won’t do that in this exposition) be an unramified character and let T0 be the
free Zp-module with basis tη,0 such that σ ∈ GQp acts via σ tη,0 = η(σ )tη,0. More
generally, for r ∈ Z, we consider the GQp-module

T := T0(r),

which is free as a Zp-module with basis tη,r := tη,0⊗ ε⊗r , where ε = (εn)n denotes
a fixed generator of Zp(1), that is, ε p

n = εn−1 for all n ≥ 1, ε0 = 1 and ε1 6= 1. Thus
we have σ(tη,r )= η(σ )κr (σ )tη,r , where κ : GQp → Z×p denotes the p-cyclotomic
character. Setting V :=Qp⊗ T = V0(r) we obtain for its de Rham filtration

Di
d R(V )=

{
Dd R(V )∼= K eη,r if i ≤−r ,
0 otherwise,

(61)

where eη,r := at−r
⊗ tη,r with a unique a = aη ∈ Ẑur

p
×, such that τp(a)= η−1(τp)a,

see [Serre 1968, Theorem 1, p. III-31]. Here as usual t = log[ε] ∈ Bcris ⊆ Bd R
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denotes the p-adic period analogous to 2π i . Furthermore we have

Dcris(V )= K eη,r
with

ϕ(eη,r )= p−rη−1(τp)eη,r .

If η is trivial, we also write tr and er for tη,r and eη,r , respectively.
Now consider the OK -lattices

M0 := OK eη,0 = (Ẑur
p ⊗Zp T0)

G K ⊆ Dcris(V0)

and
M := (t−r

⊗ ε⊗r )M0 = OK eη,r ⊆ Dcris(V ).

Using the variable X = [ε] − 1 we have t = log(1+ X) and on the rings

OK [[X ]] ⊆ B+rig,K :={
f (X)=

∑
k≥0

ak X k
∣∣∣ ak ∈ K , f (X) converges on {x ∈ Cp | |x |p < 1}

}
we have the following operations: ϕ is induced by the usual action of φ on the
coefficients and by ϕ(X) := (1+ X)p

−1, while γ ∈ 0 acts trivially on coefficients
and by γ (X)= (1+ X)κ(γ )−1; letting HK =G(K/Qp) act just on the coefficients
we obtain a 3(G)-module structure on OK [[X ]]. Moreover, ϕ has a left inverse
operator ψ uniquely determined via ϕ ◦ψ( f ) = (1/p)

∑
ζ p=1 f (ζ(1+ X)− 1).

The differential operator D := (1+ X) d/d X satisfies

Dϕ f = pϕD f and Dγ f = κ(γ )γ D f. (62)

It is well-known [Perrin-Riou 1994, Lemma 1.1.6] that D induces an isomorphism
of OK [[X ]]ψ=0. Furthermore, setting 1i f := Di f (0) for f ∈ OK [[X ]]ψ=0, we have
an exact sequence [loc. cit., §2.2.7, (2.1)]

0 // tr
⊗ Dcris(V )ϕ=p−r // (B+rig,K ⊗K Dcris(V ))ψ=1 1−ϕ //

(B+rig,K )
ψ=0
⊗K Dcris(V )

1r // (Dcris(V )/(1− prϕ))(r) // 0, (63)

where ϕ (and ψ) acts diagonally on B+rig,K ⊗K Dcris(V ), while D operates just on
the first tensor factor. We set

DM := OK [[X ]]ψ=0
⊗OK M,

and denote by
D(T )= (A⊗Zp T )G K∞

the (ϕ, 0)-module attached to T , where the definition of the ring A together with
its ϕ- and 0-action can be found for example in [Berger 2003]. Here we only recall
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that A+K
∼= OK [[X ]] and AK ∼= (OK [[X ]][1/X ])∧p-adic is the p-adic completion of the

Laurent series ring.

Remark A.1. (i) Let η be nontrivial. From [Berger 2003, Theorem A.3] and its
proof one sees immediately that for the Wach module N (T0), which according
to Proposition A.1 of [loc. cit.] equals OK [[X ]]⊗OK M0, the natural inclusion
N (T0) ↪→ AK ⊗A+K

N (T0) induces an isomorphism

(OK [[X ]]⊗OK M0)
ψ=1 ∼= // N (T0)

ψ=1 ∼= //
(
AK ⊗A+K

N (T0)
)ψ=1 ∼= D(T0)

ψ=1.

(ii) If η is trivial, one has similarly N (Zp)=A+K =OK [[X ]] by the same Proposition
A.1, whence N (Zp(1))= X−1A+K ⊗ t1 = X−1OK [[X ]]⊗ t1 by the usual twist
behaviour of Wach modules. We obtain

D(Zp(1))ψ=1 ∼= N (Zp(1))ψ=1
= (X−1OK [[X ]]⊗ t1)ψ=1

= Zp X−1
⊗ t1⊕ (OK [[X ]]⊗ t1)ψ=1,

but N (Zp)
ψ=1
6∼= D(Zp)

ψ=1 according to Proposition A.3 of [loc. cit.].

We define D̃(Zp(r))ψ=1
= (OK [[X ]] ⊗ tr )ψ=1 and D̃(T )ψ=1

= D(T )ψ=1 for
nontrivial η and obtain a canonical isomorphism

(OK [[X ]]⊗OK M)ψ=pr
∼= D̃(T )ψ=1 (64)

induced by multiplication with tr :

f (X)⊗ (oat−r
⊗ tη,r ) 7→ f (X)oa⊗ tη,r ,

where o ∈ OK and a is as before.
Setting TK∞ := TK∞(T ) := 3(G(K∞/Qp))

]
⊗Zp T we recall that there is a

canonical isomorphism due to Fontaine

D(T )ψ=1 ∼= H1(Qp,TK∞), (65)

which for example is called {h1
Kn,V }n in [Berger 2003] and its inverse Log∗T ∗(1) in

[Cherbonnier and Colmez 1999, Remark II.1.4].
I am very grateful to Denis Benois for parts of the proof of the following

proposition, which has been stated in [Perrin-Riou 1994, Proposition 4.1.3] in a
slightly different form, but without proof.1

Proposition A.2. (i) There is a canonical exact sequence of OK -modules

0 // 1⊗Mϕ=p−r // (OK [[X ]]⊗OK M)ψ=pr // DM
1M,r // M/(1− prϕ)M // 0,

where the map in the middle is induced by 1−ϕ up to twisting (see the first diagram

1As twisting with the cyclotomic character starting from Qp(1) only recovers the representations
V =Qp(r), the general case where V0 is nontrivial is not covered in that reference.
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in the proof below).

(ii) Assume that η is nontrivial. Then, using the isomorphisms (64) and (65) we
obtain the following commutative diagram of 3(G)-modules, in which the maps
C(TK∞) (= (D−r

⊗ t−r )(1−ϕ)) and L0(TK∞) are defined by the property that the
rows become isomorphic to the exact sequence in (i):

0 // D(T )ϕ=1

∼=

��

// D(T )ψ=1 C(TK∞ ) //

∼=Log∗T∗(1)
��

DM

=

��

1M,r // M/(1− prϕ)M

=

��

// 0

0 // H1(Qp,TK∞)tors // H1(Qp,TK∞)
L0(TK∞ )// DM

1M,r // M/(1− prϕ)M // 0.

(iii) The sequence (15) can be interpreted in terms of (ϕ, 0)-modules by the commu-
tative diagram

0 // U(K∞)

Dlog g−∼=

��

δ // H1(Qp,Tun)∼= lim
←−n K̂×n

∼=

��

−v̂ // Zp // 0

0 // D̃(Zp(1))ψ=1 // D(Zp(1))ψ=1 // Zp // 0,

where δ denotes the Kummer map and v̂ is induced from the normalised valuation
map. Furthermore, we obtain again a commutative diagram of 3(G)-modules, in
which the maps C(TK∞) (= (D−r

⊗ t−r )(1−ϕ)) and L0(TK∞) are defined by the
property that the rows become isomorphic to the exact sequence in (i):

0 // D̃(Zp(r))ϕ=1 // D̃(Zp(r))ψ=1 C(TK∞ ) // DM
1M,r // M/(1− prϕ)M // 0

0 // Zp(r) //

∼=

OO

U(K∞)(r − 1)

∼= Dlog g−

OO

L0(TK∞ ) // DM
1M,r // Zp(r)

∼=

OO

// 0.

Hence, using the map M⊗ e1 : OK [[0]]
∼= // DM , λ 7→ λ · (1+ X)⊗ e1, where

M denotes the Mahler (or p-adic Mellin) transform (see [Coates and Sujatha 2006,
Theorem 3.3.3]), the lower sequence can be canonically identified with Coleman’s
exact sequence (4): L0(TK∞)= (M⊗ e1) ◦Colε .

Proof. The exactness in (i) for M0 can be checked as follows. Let f (X)⊗ eη,0 be
in DM0

1M0,0=0, that is, f (0)eη,0 = (1−ϕ)b for some b ∈ M0. Hence

( f (X)− f (0))⊗ eη,0 = Xg(X)⊗ eη,0

for some g ∈ OK [[X ]] and

F ′ := (1−ϕ)−1(Xg(X)⊗ eη,0) :=
∑
i≥0

ϕi (Xg(X)⊗ eη,0) ∈ OK [[X ]]⊗M0
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is a well-defined element. Setting F := F ′+ b we have (1− ϕ)F = f (X)⊗ eη,0
as desired. Now exactness follows from (63). The general case follows from the
following commutative “twist diagram” of OK -modules:

0 // 1⊗Mϕ=p−r

∼=1⊗(tr
⊗ε⊗−r )

��

// (OK [[X ]]⊗OK M)ψ=pr

∼=1⊗(tr
⊗ε⊗−r )

��

// DM

∼=Dr
⊗(tr
⊗ε⊗−r )

��

1M,r // M/(1− prϕ)M

∼=tr
⊗ε⊗−r

��

// 0

0 // 1⊗Mϕ=1
0

// (OK [[X ]]⊗OK M0)
ψ=1 1−ϕ // DM0

1M0,0// M0/(1− prϕ)M0 // 0.

Item (ii) is clear from the fact that D(T ) = AK · a⊗ tη,r , which can either be
calculated directly or deduced from the above remark. The statement about the
torsion (first vertical isomorphism) follows from [Colmez 2004, Theorem 5.3.15].

For (iii) first note that by [Cherbonnier and Colmez 1999, Proposition V.3.2(iii)]
we have a commutative diagram

U(K∞)

δ ((

ϒ // D(Zp(1))ψ=1

Log∗Qp
��

D(Zp)
ψ=1(1)

H1(Qp,TK∞(Zp(1))),

where ϒ maps u to (Dgu/gu)⊗ t1 = Dlog gu ⊗ t1. The statements concerning the
first diagram follow easily, see also [Colmez 2004, §7.2]. The second diagram
follows as above. By construction the composite

U(K∞)→ D(Zp(1))ψ=1
→ DM

maps u = (un)n to(
D−1(1−ϕ)Dlog gu

)
⊗ e1 =

(
(1− p−1ϕ) log gu

)
⊗ e1

= (1−ϕ) (log gu ⊗ e1)

= L(gu)⊗ e1

= Col(u) · (1+ X)⊗ e1,

where L was defined in (5). This implies the last statement. �

Now let K be again a finite extension of degree dK over Qp. For a uniform
treatment we define

H̃1(Qp,TK∞(T )) :=
{

H1(Qp,TK∞(T )) if η 6= 1,

U(K∞)(r − 1) if T = Zp(r).

Now set
HM := {F ∈ B+rig,K ⊗OK M | (1−ϕ) f ∈ DM}.
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Using [Berger 2003, Theorem II.11] and the commutativity of the diagram

HM

Dr
⊗(tr
⊗ε⊗−r )

��

1−ϕ // D
1M,r=0
M

Dr
⊗(tr
⊗ε⊗−r )

��

(OK [[X ]]⊗OK M0)
ψ=1 1−ϕ // D

1M0,0=0
M0

we see that the map L0(TK∞) coincides with the “inverse” of Perrin-Riou’s [1999]
large exponential map

�T,r : D
1M,r=0
M → D(T )ψ=1/T HK (∼= H1(Qp,TK∞)/T HK ),

(which is (−1)r−1 times the one in [Perrin-Riou 1994]). This map sends f to
(Dr
⊗ tr )F , where F ∈ HM satisfies (1− ϕ)F = f . Here “Dr

⊗ tr ” denotes the
composite

HM
Dr
⊗(tr
⊗ε⊗−r ) // (OK [[X ]]⊗OK M0)

ψ=1 1⊗(t−r
⊗ε⊗r ) // (OK [[X ]]⊗OK M)ψ=pr tr

// D(T )ψ=1

and corresponds to the operator ∇r−1 ◦ · · · ◦ ∇0 in [Berger 2003] for r ≥ 1. In
particular, by Theorem II.10/13 of the same reference we obtain the following
descent diagram for r, n ≥ 1, where the maps 4M,n =4

ε
M,n are recalled in (71):

H̃1(Qp,TK∞(T ))

prn

��

L0(TK∞ (T )) // DM

4M,n

��
H1(Kn, V ) Kn ∼= Dd R,Kn (V ),

(−1)r−1(r−1)! expKn ,Voo

(66)

while for r ≤ 0

H̃1(Qp,TK∞(T ))

prn

��

L0(TK∞ (T )) // DM

4M,n

��
H1(Kn, V )

(−r)! exp∗Kn ,V∗(1) // Kn ∼= Dd R,Kn (V ).

(67)

Remark A.3. In particular, for T = Zp(1) we have the following commutative
descent diagram for n ≥ 1:
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U(K∞)

prn

��

L0(TK∞ (Zp(1))) // DM

4n

��
Qp⊗Zp Un

δ

''

Kn ∼= Dd R,Kn (Qp(1)),
expKn ,Qp (1)

uu

expoo

H1(Kn,Qp(1))

where exp denotes the usual p-adic exponential (series), while 4n maps the element
((1− p−1ϕ) log gu)⊗ e1 to log gφ

−n

u (εn − 1)= log un .

In order to arrive at a morphism

L(TK∞(T )) : H̃
1(Qp,TK∞(T ))→ TK∞(T )⊗33[T(T ),τp]−1,

where [T, τp]
−1
= τpη

−1(τp), generalising LK ,ε in (6), we compose L0(TK∞(T ))
with the following canonical isomorphisms:

DM = OK [[X ]]ψ=0
⊗OK M OK [[0]]⊗OK M

∼=

9Moo
∼=

2M // TK∞ ⊗33[T,τp]−1, (68)

where the left one, 9M(λ⊗m)= λ · (1+ X)⊗m, is induced by M, while the right
one is given by

2M(λ⊗ (at−r
⊗ tη,r ))= (1⊗ tη,r )⊗

( dK−1∑
i=0

τ i
p⊗ η

−i (τp)φ
−i (λa)

)
= (1⊗ tη,r )⊗

(∑
i

τ i
p⊗φ

−i (λ)a
)
.

Similarly to the original Coleman map Col in (4), the homomorphisms C(TK∞),
L0(TK∞) and L(TK∞) are norm compatible when enlarging K within Qur

p . Thus,
by taking inverse limits we may and do define them also for infinite unramified
extensions K of Qp. Then we have the following twist and descent properties:

Lemma A.4. Let K ′ ⊆ K be (possibly infinite) unramified extensions of Qp and Y
a (3(G(K ′

∞
/Qp)),3(G(K∞/Qp))-module such that Y ⊗3(G(K∞/Qp)) TK∞(T )∼=

TK ′∞(T
′) as 3(G(K ′

∞
/Qp))-modules with compatible GQp -action. Then

Y ⊗3(G(K∞/Qp)) L0(TK∞(T ))= L0(TK ′∞(T
′))

and
Y ⊗3(G(K∞/Qp)) L(TK∞(T ))= L(TK ′∞(T

′)).

In particular, L(TK ′∞(T ))= LTK ′∞
(T ),ε in (43).
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Proof. The proof can be divided into a twist statement, where K ′ = K and T ′ ∼=
T ⊗Zp T ′′, such that GQp acts diagonally on the tensor product and T ′ is a rank-
one Zp-representation of G, and a descent statement. One first proves the twist
statement for T ′′/pn , n fix, and all finite subextensions K ′ of K , such that G(K/K ′)
acts trivially on T ′′/pn . Afterwards one takes limits over K ′ obtaining the twist
statement for T ′′/pn . Then, taking the projective limit with respect to n (see [Berger
2004] for the correct behaviour of (ϕ, 0)-modules under such limits) one shows the
full twist statement (compare with the well-known twisting for Hi

I W ). The descent
statement then follows easily from the norm compatibility and the fact that the
twisted analogue of the exact sequence (10)

0 // H̃1(Qp,TK∞(T ))
L(TK∞ ) // TK∞(T )⊗33[T(T ),τp]−1 // T // 0

recovers (for finite extension K ′ of Qp) the exact sequence

0 // T G(K/K ′) // H̃1(Qp,TK ′∞(T ))
L(TK ′∞

)
// TK ′∞(T )⊗33[T(T ),τp]−1 // T // 0

by taking G(K/K ′)-coinvariants. We explain the unramified twist in more detail
(the cyclotomic twist being well known): Assume that η factorises over G(K/Qp),
that is, a = aη ∈ O×K , and let N := OK er ⊆ Dcris(Qp(r)) be the lattice associated to
Qp(r). Then we have the following commutative diagram of 3-modules:(

OK [[X ]]ψ=0
⊗OK N

)
⊗Zp T0

a−1
⊗a⊗1

��

(OK [[0]]⊗N )⊗Zp T0

a−1
⊗a⊗1

��

9N⊗T0oo 2N⊗T0// 3⊗3, f T(Zp(r))⊗3τp

ϑ⊗ f̃

��
OK [[X ]]ψ=0

⊗OK M OK [[0]]⊗M
2M //9Moo T(T )⊗33τpη(τp)−1 ,

where in the top line the 3-action is induced by the diagonal G-action and via left
multiplication on 3, respectively,

2N ⊗ T0(λ⊗ (t−r
⊗ tr )⊗ tη,0)= 1⊗ 1⊗ tr ⊗

∑
i

τ i
p⊗φ

−i (λ)

and f̃ := f ⊗ 1 on 3⊗̂Ẑur
p is induced by f :3→3, g 7→ η(g)−1g, while

ϑ :3⊗3, f T(Zp(r))→ T(T ), a⊗ (b⊗ tr ) 7→ a f (b)⊗ tη,r .

Here 3⊗3, f − indicates that the tensor product is formed with respect to f . Also
we have the commutative diagram

D(Zp(r))ψ=1
⊗ T0

∼=

��

C(TK∞ (Zp(r))) //
(
OK [[X ]]ψ=0

⊗OK N
)
⊗Zp T0

a−1

��
D(T )ψ=1 C(TK∞ (T )) // OK [[X ]]ψ=0

⊗OK M.

�
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As on page 2386 we set 3′ =Qp[Gn].

Lemma A.5. There are natural isomorphisms

(i) 6M,n : K ′n ⊗M = K ′n(at−r
⊗ tr,η)∼= Dd R(V ′) of 3′-modules;

(ii) 1⊗6M,n : Vρ∗⊗3′ K ′n⊗M ∼= Vρ∗⊗3′ Dd R(V ′)∼= Dd R(W ) of L-vector spaces.

Proof. The canonical isomorphism (which makes explicit the general formula
(IndH

G (B⊗ V ))∼= (B⊗ IndV ))

Qp[GQp ]⊗Qp[G K ′n
]

(
Bd R ⊗Qp Qp(η)(r)

)
∼= Bd R ⊗Qp Qp[Gn]

]
⊗Qp Qp(η)(r),

which maps g⊗ a⊗ b to ga⊗ ḡ−1
⊗ gb with g ∈ GQp induces the isomorphism

(via the general isomorphism N H ∼= (IndH
G N )G, n 7→

∑
ḡ∈G/H g⊗ n)

K ′n · (at−r
⊗ tr,η)=

(
Bd R ⊗Qp(η)(r)

)G K ′n ∼= Dd R(V ′),

which maps x · at−r
⊗ tr,η to∑

g∈Gn

g(xat−r )⊗ g−1
⊗ gtr,η =

∑
g∈Gn

g(x)at−r
⊗ g−1

⊗ tr,η. (69)

Putting eη,r := at−r
⊗ tr,η we similarly obtain the isomorphism in (ii) sending

l⊗ x ⊗ eη,r to ∑
g∈Gn

g(x)at−r
⊗ ρ(g)l⊗ tr,η,

where this element is regarded in Bd R ⊗Qp W = Bd R ⊗Qp L ⊗Qp Qp(η)(r). Alter-
natively we can read it in (Bd R ⊗Qp L)⊗L W as

#Gnat−r eρ∗(x)l⊗ tρη,r . �

Any embedding σ : Lρ→Qp induces a map Aρ :=Qnr
p ⊗Qp Lρ→Qp taking

x ⊗ y to xσ(y); we still call this map σ .
Consider the Weil group W (Qp/Qp), which fits into a short exact sequence

1 // I // W (Qp/Qp)
v // Z // 0,

and let D be the linearised W (Qp/Qp)-module associated to Dpst(W )= Aρeη,r (ρ),
that is, g ∈W (Qp/Qp) acts as goldϕ

−v(g) or explicitly via the character

χD(g) := ρ(g)η(τp)
v(g) prv(g).

For an embedding σ we write D̄σ :=Qp⊗Aρ ,σ D ∼=Qpeη,r (ρσ ), where σ acts
coefficientwise on ρ. If n≥ 0 is minimal with the property that G(Qp/Q

nr
p (µ(p

n)))
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acts trivially on D̄σ , then by properties (3) and (7) in [Fukaya and Kato 2006,
§3.2.2]2 we obtain for the epsilon constant attached to D̄σ (see loc. cit.)

ε(D̄σ ,−ψ)= 1

if n = 0, while for n ≥ 1

ε(D̄σ ,−ψ)= ε(D̄∗σ (1), ψ)
−1

=

(
(ρση(τp)pr−1)n

∑
γ∈0n

ρσ (γ )γ · εn

)−1

=
(
(ρση(τp)pr−1)nτ(ρσ , εn)

)−1
.

Here 0n :=G(Kn/K ), ψ :Qp→ Q̄p
×

corresponds to the compatible system (εn)n ,
that is ψ(1/pn)= εn , and D̄∗σ (1) denotes the linearised Kummer dual of D̄σ , that
is,

χD̄∗σ (1)
(g)= ρσ (g)−1η(τp)

−v(g) p−(r−1)v(g),

while
τ(ρσ , εn) :=

∑
γ∈0n

ρσ (γ )γ · εn = #0ne0n
ρ∗ εn

denotes the usual Gauss sum. Furthermore

εL(D,−ψ)=
(
ε(D̄σ ,−ψ)

)
σ
∈

∏
σ

Q×p
∼= (Qp⊗Qp L)× ⊆ (Bd R ⊗Qp L)×

is the ε-element as defined in [Fukaya and Kato 2006, §3.3.4]. We may assume
that L contains Qp(µpn ); then εL(D,−ψ) can be identified with

1⊗ (ρη(τp)pr−1)−nτ(ρ, εn)
−1.

Hence the comparison isomorphism renormalised by εL(D,−ψ)

εL ,−ε,d R(W )−1
:W ⊗ L

[W,τ−1
p ]
→ Dd R(W )⊆ Bd R ⊗Qp L ⊗L W

is explicitly given as

x ⊗ l 7→ εL(D,−ψ)−1(−t)r l⊗ x = (−1)r (ρη(τp)pr−1)nτ(ρ, εn)tr l⊗ x, (70)

2Apparently, the formula in §3.2.2 (7) of [Fukaya and Kato 2006] is not compatible with Deligne
as claimed: Deligne identifies W (Qp/Qp) via class field theory with Q×p by sending the geometric
Frobenius automorphism to p, which induces, by a standard calculation applied to Definition (3.4.3.2)
for epsilon constants of quasicharacters of Q×p in [Deligne 1973] (see for example [Hida 1993, §8.5
between (4a) and (4b)]), the formula ε(Vχ , ψ) = χ(τp)

−n ∑
σ∈0n

χ(σ)−1σεn , while in [Fukaya
and Kato 2006] the factor is just χ(τp)

n . Here χ :W (Qp/Qp)→ E× is a character which gives the
action on the E-vector space Vχ .
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where εL(D,−ψ)−1(−t)r l is considered as an element of Bd R ⊗Qp L .
In order to deduce the descent diagram (44) from (66), for n ≥ 1, we have to add

a commutative diagram of the form

DM

4M,n

��

// TK∞ ⊗33[T,τp]−1

Y⊗3−
��

Kn ⊗M ∼= Dd R,Kn (Qp(η)(r))/Dcris(Qp(η)(r))ϕ=1 V ′⊗3′ (3′)[V ′,τ−1
p ]
,oo

where

4M,n( f )=4εM,n( f )= p−n(φ⊗ϕ)−n (F) (εn−1)= p−n(ϕ⊗ϕ)−n(F)(0), (71)

with F ∈HM such that (1−ϕ)F = f = f̃ ⊗ eη,r (recall that ϕ acts as ϕ⊗ϕ here)
on DM

1=0; and more generally we have, mod Dcris(Qp(η)(r))ϕ=1 (recalling that
Dcris(Qp(η)(r))ϕ=1

= 0 in the generic case),

4M,n( f )= p−n
( n∑

k=1

(φ⊗ϕ)−k ( f (εk−1))+ (1−φ⊗ϕ)−1( f (0))
)

= p−n
( n∑

k=1

pkrη(τp)
k f̃ φ

−k
(εk−1)+ (1− p−rη(τp)

−1φ)−1 f̃ (0)
)
⊗ eη,r

(see [Benois and Berger 2008, Lemma 4.9], where f (0) is considered in Dcris(V )
and hence the last summand above equals (1−ϕ)−1 f (0) there by the φ-linearity
of ϕ). Here, for any H(X)= H̃(X)⊗ e ∈ B+rig,K ⊗OK M we consider H(εk − 1)=
H̃(εk − 1)⊗ e, k ≤ n, as an element in Kn ⊗OK M , on which φ⊗ϕ acts naturally.

First we note that for n ≥ 1 we have a commutative diagram

DM

4M,n

��

OK [[0]]⊗M

prn ⊗id

��

9Moo 2M // TK∞ ⊗33[T,τp]−1

Y⊗3−
��

Kn ⊗OK M/Dcris(Qp(η)(r))ϕ=1 K [0n]⊗M
9M,noo // V ′⊗3′ (3′)[V ′,τ−1

p ]
,

(72)

where

9M,n(µ⊗ eη,r )

=9ε
M,n(µ⊗ eη,r )

= p−n
( n∑

k=1

ε
φ−k(µ)
k ⊗ϕ−k(eη,r )+ (1−φ⊗ϕ)−1(1µ⊗ eη,r )

)
=

( n∑
k=1

pkr−nη(τp)
kε
φ−k(µ)
k + p−n(1− p−rη(τp)

−1φ)−1(1µ)
)
⊗ eη,r (73)
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modulo Dcris(Qp(η)(r))ϕ=1. Here φ acts coefficientwise on K [0n] and 1µ is the
same as the image of µ under the augmentation map OK [0n] → OK .

Proposition A.6. (i) For n ≥max{1, a(ρ)} and W 6=Qp(1), the following diagram
is commutative:

Vρ∗ ⊗Qp[Gn ] K [0n]⊗M
1⊗9M,n

uu

1⊗2M,n

**
Vρ∗ ⊗Qp[Gn ] Kn ⊗M

1⊗6M,n ��

Vρ∗ ⊗Qp[Gn ] V
′
⊗Qp[Gn ]3

′

[V ′,τ−1
p ]

∼=

��Vρ∗ ⊗Qp[Gn ] Dd R(V ′)
∼= Dd R(W ) Dd R(W )

8Woo W ⊗L L
[W,τ−1

p ]
,

(−1)r εL ,−ε,d R (W )−1
oo

where

8W :=


idDd R(W ) if a(ρ) 6= 0,

det(1−ϕ | Dcris(W ∗(1)))
det(1−ϕ | Dcris(W ))

otherwise.

(ii) For W 6=Qp(1) the diagram (44) commutes.

Proof. Let b denote a normal basis of OK , that is, OK =Zp[H ]b with H=G(K/Qp),
which can be lifted from the residue field, K being unramified, and e := eη,r . Then
1⊗ b⊗ e = 1⊗ eρ∗b⊗ e is a basis of Vρ∗ ⊗Qp[Gn] K [0n] ⊗M as L-vector space
(in general ρ(g) does not lie in K , but using Vρ∗ ⊗Qp[Gn] K [0n] ∼= Vρ∗ ⊗L[Gn]

L[Gn]⊗Qp[Gn] K [0n] ∼= Vρ∗ ⊗L[Gn] (L⊗Qp K [0n]) one can make sense of it). We
calculate (going clockwise in the above diagram)

1⊗2M,n(1⊗ b⊗ e)

= 1⊗ (1⊗ tη,r )⊗
dK−1∑
i=0

τ i
p⊗φ

−i (b)a (⊆ Vρ∗ ⊗Qp[Gn] V
′
⊗Qp[Gn]3

′

[V ′,τ−1
p ]
)

= tρη,r ⊗
dK−1∑
i=0

ρ(τp)
−iρ∗(φ−i (b))a (⊆W ⊗L L

[W,τ−1
p ]
)

= tρη,r ⊗
dK−1∑
i=0

ρ(τp)
−iφ−i (b)a

= tρη,r ⊗ ς(ρ, b)a,

with

ς(ρ, b) :=
dK−1∑
i=0

ρ(τp)
−iφ−i (b)= dK eH

ρ∗b
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a Gauss-like sum, where eH
ρ∗ =

1
#H

∑
h∈H

ρ(h)h. The image of this element under
(−1)rεL ,−ε,d R(W ) is

(−1)rεL(D,−ψ)−1(−t)−rς(ρ, b)a⊗ tρη,r

= pmr−m(ρη)(τm
p )τ (ρ, εm)ς(ρ, b)at−r

⊗ tρη,r (74)

in Dd R(W ), where we used (70) with m = a(ρ).
Now we determine the image of 1⊗ b⊗ e = 1⊗ eρ∗b⊗ e anticlockwise. First

note that the idempotent eρ∗ decomposes as e0n
ρ∗ · e

H
ρ∗ .

Hence, for n ≥ a(ρ) ≥ 1, where pa(ρ) denotes the conductor of ρ restricted to
0n , we have

(1⊗9M,n)(1⊗ b⊗ e)= 1⊗ eρ∗9M,n(b⊗ e)

= 1⊗ pnr−nη(τp)
nφ−n(eH

ρ∗b)e
0n
ρ∗ · εn ⊗ e

= 1⊗ pnr−nη(τp)
nρ∗(τ−n

p )eH
ρ∗be0n

ρ∗ · εn ⊗ e

= 1⊗ pnr−n

#Gn
(ρη)(τ n

p )ς(ρ, b)τ (ρ, εn)⊗ e,

where we have used the explicit formula (73) and the following fact about Gauss
sums, valid for k ≤ n (see for example [Burns and Flach 2006, Lemma 5.2]):

e0n
ρ (εk)=


e0n
ρ (εk) if a(ρ)= k,
(1− p)−1 if a(ρ)= 0 and k = 1,
0 otherwise.

Now from the end of the proof of Lemma A.5 we see that 6M,n sends this element,
which already “lies in the right eigenspace” to

at−r pnr−n(ρη)(τ n
p )τ (ρ, εn)ς(ρ, b)⊗ tρη,r

= pnr−n(ρη)(τ n
p )τ (ρ, εn)ς(ρ, b)at−r

⊗ tρη,r ,

that is, to the same element as in (74), whence the result follows if a(ρ) 6= 0.
Now assume that a(ρ)= 0, that is, ρ | 0n , the restriction to 0n , is trivial. Setting

n = 1 we then have

(1⊗9M,1)(1⊗ b⊗ e)

= 1⊗9M,1(eρ∗b⊗ e)

= 1⊗
(

pr−1η(τp)ε
φ−1(eρ∗b)
1 + p−1(1− p−rη(τp)

−1φ)−1(eH
ρ∗b)

)
⊗ e

= 1⊗
(

pr−1η(τp)φ
−1(eH

ρ∗b)e
01
ρ∗ · ε1+ p−1(1− p−rρη(τp)

−1)−1(eH
ρ∗b)

)
⊗ e

= 1⊗
(

pr−1ρη(τp)(1− p)−1
+ p−1(1− p−rρη(τp)

−1)−1) ς(ρ, b)
dK

⊗ e
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= 1⊗
(

1− pr−1ρη(τp)

1− p−rρη(τ−1
p )

)
ς(ρ, b)

dK (p− 1)
⊗ e,

which is sent under 6M,1 to(
det(1−ϕ | Dcris(W ∗(1)))

det(1−ϕ | Dcris(W ))

)
ς(ρ, b)at−r

⊗ tρη,r ,

while (74) becomes just
ς(ρ, b)at−r

⊗ tρη,r .

Upon replacing ε by −ε = ε−1 (we have used both the additive and multiplicative
notation!) the second statement follows from (66), (72) and the diagram in part (i)
of the proposition, combined with the isomorphism (68) and Lemma A.4. �

Appendix B: Determinant functors

In this appendix we recall some details of the formalism of determinant functors
introduced in [Fukaya and Kato 2006] (see also [Venjakob 2007]).

We fix an associative unital noetherian ring R. We write B(R) for the category
of bounded complexes of (left) R-modules, C(R) for the category of bounded
complexes of finitely generated (left) R-modules, P(R) for the category of finitely
generated projective (left) R-modules and Cp(R) for the category of bounded (coho-
mological) complexes of finitely generated projective (left) R-modules. By Dp(R)
we denote the category of perfect complexes as a full triangulated subcategory of
the derived category Db(R) of B(R). We write (Cp(R), quasi) for the subcate-
gory of quasi-isomorphisms of Cp(R) and (Dp(R), isom) for the subcategory of
isomorphisms of Dp(R).

For each complex C = (C•, d•C) and each integer r we define the r-fold shift
C[r ] of C by setting C[r ]i = C i+r and d i

C[r ] = (−1)r d i+r
C for each integer i .

We first recall that there exists a Picard category CR and a determinant functor
dR : (Cp(R), quasi)→ CR with the following properties (for objects C,C ′ and C ′′

of Cp(R)):

(B.a) CR has an associative and commutative product structure (M, N ) 7→ M · N
(which we often write more simply as M N ) with canonical unit object 1R = dR(0).
If P is any object of P(R), then in CR the object dR(P) has a canonical inverse
dR(P)−1. Every object of CR is of the form dR(P) ·dR(Q)−1 for suitable objects
P and Q of P(R).

(B.b) All morphisms in CR are isomorphisms and elements of the form dR(P) and
dR(Q) are isomorphic in CR if and only if P and Q correspond to the same element
of the Grothendieck group K0(R). There is a natural identification AutCR (1R)∼=

K1(R) and if MorCR (M, N ) is nonempty then it is a K1(R)-torsor, where each
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element α of K1(R)∼= AutCR (1R) acts on φ ∈MorCR (M, N ) to give

αφ : M = 1R ·M
α·φ
−−→1R · N = N .

(B.c) dR preserves the product structure: specifically, for each P and Q in P(R)
one has dR(P ⊕ Q)= dR(P) ·dR(Q).

(B.d) If C ′→ C→ C ′′ is a short exact sequence of complexes, there is a canonical
isomorphism dR(C) ∼= dR(C ′)dR(C ′′) in CR (which we usually take to be an
identification).

(B.e) If C is acyclic, the quasi-isomorphism 0→ C induces a canonical isomor-
phism 1R→ dR(C).

(B.f) For any integer r one has dR(C[r ])= dR(C)(−1)r .

(B.g) The functor dR factorises over the image of Cp(R) in Dp(R) and extends
(uniquely up to unique isomorphisms) to (Dp(R), isom). Moreover, if R is regular,
also property (B.d) extends to all distinguished triangles.

(B.h) For each C in Db(R) we write H(C) for the complex which has H(C)i =
H i (C) in each degree i and in which all differentials are 0. If H(C) belongs to
Dp(R) (in which case one says that C is cohomologically perfect), then C belongs
to Dp(R) and there are canonical isomorphisms

dR(C)∼= dR(H(C))∼=
∏
i∈Z

dR(H i (C))(−1)i .

(For an explicit description of the first isomorphism see [Knudsen and Mumford
1976, §3] or [Breuning and Burns 2005, Remark 3.2].)

(B.i) If R′ is another (associative unital noetherian) ring and Y an (R′, R)-bimodule
that is both finitely generated and projective as an R′-module then the functor
Y ⊗R − : P(R)→ P(R′) extends to a commutative diagram

(Dp(R), isom)

Y⊗L
R−

��

dR // CR

Y⊗R−

��
(Dp(R′), isom)

dR′ // CR′ .

In particular, if R→ R′ is a ring homomorphism and C is in Dp(R) then we often
simply write dR(C)R′ in place of R′⊗R dR(C).

(B.j) Let R◦ be the opposite ring of R. The functor HomR(−, R) induces an
antiequivalence between CR and CR◦ , with quasi-inverse induced by HomR◦(−, R◦);
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both functors will be denoted by −∗. This extends to give a diagram

(Dp(R), isom)

RHomR(−,R)
��

dR // CR

−
∗

��
(Dp(R◦), isom)

dR◦ // CR◦

which commutes (up to unique isomorphism); similarly we have such a commutative
diagram for RHomR◦(−, R◦).

For the handling of the determinant functor the following considerations are
important in practice:

Remark B.1. (i) For objects A, B ∈ CR we often identify a morphism f : A→ B
with the induced morphism

1R A · A−1
f ·idA−1 // B · A−1.

Then for morphisms f : A→ B and g : B→C in CR , the composition g◦ f : A→C
is identified with the product g · f : 1R → C · A−1 of g : 1R → C · B−1 and
f : 1R → B · A−1. Also, by this identification a map f : A → A corresponds
uniquely to an element in K1(R)=AutCR (1R). Furthermore, for a map f : A→ B
in CR , we write f̄ : B → A for its inverse with respect to composition, while
f −1
=: idB−1 · f · idA−1 : A−1

→ B−1 for its inverse with respect to the multiplication
in CR , that is f · f −1

= id1R . Obviously, for a map f : A→ A both inverses f̄ and
f −1 coincide if all maps are considered as elements of K1(R) as above.

Convention B.2. If f : 1→ A is a morphism and B an object in CR , we write
• f : B→ B · A for the morphism idB · f . In particular, any morphism f : B→ A
can be written as • (idB−1 · f ) : B→ A.

(ii) The determinant of the complex C = [P0
φ
→ P1] (in degrees 0 and 1) with

P0 = P1 = P is by definition dR(C) = 1R; it is defined even if φ is not an
isomorphism (in contrast to dR(φ)). But if φ happens to be an isomorphism, i.e., if
C is acyclic, then by (B.e) there is also a canonical map acyc : 1R→ dR(C), which
is none other than

1R dR(P1)dR(P1)
−1

d(φ)−1
·idd(P1)

−1
// dR(P0)dR(P1)

−1 dR(C)

(and which depends on φ, in contrast with the first identification). Hence, the
composite

1R
acyc // dR(C)

def 1R

corresponds to dR(φ)
−1
∈ K1(R) according to the first remark. In order to dis-

tinguish the above identifications between 1R and dR(C) we also say that C is
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trivialised by the identity when we refer to dR(C)= 1R (or its inverse with respect
to composition). For φ = idP both identifications obviously agree.

We end this section by considering the example where R = K is a field and V
a finite-dimensional vector space over K . Then, according to [Fukaya and Kato
2006, 1.2.4], dK (V ) can be identified with the highest exterior product

∧topV of V
and for an automorphism φ : V → V the determinant dK (φ) ∈ K× = K1(K ) can
be identified with the usual determinant detK (φ). In particular, we identify dK = K
with canonical basis 1. Then a map ψ : 1K → 1K corresponds uniquely to the value
ψ(1) ∈ K×.

Remark B.3. Note that every finite Zp-module A possesses a free resolution C ;
that is, dZp(A)∼= dZp(C)

−1
= 1Zp . Then modulo Z×p the composite

1Qp

acyc// dZp(C)Qp

def 1Qp

corresponds to the cardinality |A|−1
∈Q×p .
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