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the space of morphisms on Pn

Alon Levy

We restate the semistable reduction theorem from geometric invariant theory in
the context of spaces of morphisms from Pn to itself. For every complete curve C
downstairs, we get a Pn-bundle on an abstract curve D mapping finite-to-one onto
C , whose trivializations correspond to not necessarily complete curves upstairs
with morphisms corresponding to identifying each fiber with the morphism the
point represents. Finding a trivial bundle is equivalent to finding a complete D
upstairs mapping finite-to-one onto C ; we prove that in every space of morphisms,
there exists a curve C for which no such D exists. In the case when D exists,
we bound the degree of the map from D to C in terms of C for C rational and
contained in the stable space.

1. Introduction and the statement of the problem

The moduli spaces of dynamical systems on Pn are the spaces of morphisms, and
more generally rational maps, defined by polynomials of degree d; the case we will
study is d > 1, in which case the morphisms are not automorphisms (that is, they
do not have inverses that are morphisms). For each n and d , we write each rational
map ϕ as (ϕ0 : · · · : ϕn), so that the space is parametrized by the coefficients of the
monomials of each ϕi and is naturally isomorphic to a large projective space, PN .
By an elementary computation, N = (n + 1)

(n+d
d

)
− 1. As we will not consider

more than one of these moduli spaces at a time, there is no ambiguity in writing
just N , without explicit dependence on n and d. Thus, in the remainder of this
paper, N will invariably be used for the dimension of the moduli space of self-maps
on Pn defined by polynomials of degree d .

Within the space of rational maps, the space of morphisms is an affine open
subvariety, denoted Homn

d . The group PGL(n+ 1) acts on PN by conjugation, cor-
responding to coordinate change, that is, A maps ϕ to AϕA−1; this action preserves
Homn

d , since the property of being a morphism is independent of coordinate change.
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We study the quotient of the action using geometric invariant theory [Mumford
and Fogarty 1982]. To do this, we need to replace PGL(n + 1) with SL(n + 1),
which projects onto PGL(n+ 1) finite-to-one. Geometric invariant theory defines
stable and semistable loci for the SL(n+1)-action. To take the quotient, we need to
remove the unstable locus, defined as the complement of the semistable locus. The
quotient of Homn

d by SL(n+1) is denoted Mn
d , and parametrizes morphisms on Pn

up to coordinate change. The stable and semistable loci for the action of SL(n+ 1)
on PN are denoted by Homn,s

d and Homn,ss
d , and their quotients are denoted by Mn,s

d
and Mn,ss

d .
It is a fact that every regular map is in the stable locus. More precisely, we have

the following prior results [Silverman 1998; Petsche et al. 2009; Levy 2011]:

Theorem 1.1. Homn,s
d and Homn,ss

d are open subvarieties of PN such that Homn
d (

Homn,s
d ⊆Homn,ss

d ( PN . The middle containment is an equality if and only if n= 1
and d is even.

Theorem 1.2. The stabilizer group in PGL(n+1) of each element of Homn
d is finite

and bounded in terms of d and n.

Mn,ss
d is a proper variety, as it is the quotient of the largest semistable subspace

of PN for the action of SL(n+ 1). We make the following simplifying definition.

Definition 1.3. A rational map ϕ ∈PN is called semistable if it is in the semistable
space Homn,ss

d .

The semistable reduction theorem states the following, answering in the affirma-
tive a conjecture for P1 in [Szpiro et al. 2010]:

Theorem 1.4. If C is a complete curve with K (C) its function field, and if ϕK (C) is a
semistable rational map on Pn

K (C), then there exists a curve D mapping finite-to-one
onto C with a Pn-bundle P(E) on D with a self-map 8 such that:

(1) The restriction ϕx of 8 to the fiber of each x ∈ D is a semistable rational
self-map.

(2) 8 is a semistable map over K (D), and is equivalent to ϕK (D) under coordinate
change.

This is a classical result of geometric invariant theory; for one proof of a result
that implies it, see [Zhang 1996]. We will include the proof in Section 2, along
with other general facts about geometric invariant theory, including a description of
the stable and semistable spaces Homn,s

d and Homn,ss
d .

Theorem 1.4 leads to the natural question of which vector bundle classes can
occur for each C ⊆Mn,ss

d , and more generally, for each choice of n and d. One
interesting subquestion is whether, for every C , we can choose the bundle to be
trivial. Equivalently, given C , it asks whether we can find a proper D ⊆ Homn,ss

d
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that maps finite-to-one onto C . For most curves upstairs, the answer should be
positive, by simple dimension counting: as demonstrated in [Silverman 1998] and
[Levy 2011], the complement of Homn,ss

d has high codimension, equal to about half
of N . However, it turns out that the answer is sometimes negative, and in fact, for
every n and d , we can find a C with only nontrivial bundle classes. More precisely:

Theorem 1.5. For every n and d, there exists a curve with no trivial bundle class
satisfying semistable reduction.

Remark 1.6. An equivalent formulation for Theorem 1.5 is that for every n and d ,
we can find a curve C ⊆Mn,ss

d such that there does not exist a curve D ⊆ Homn,ss
d

mapping onto C under π .

Although most curves in Homn,ss
d can be completed, this does not imply that we

can find a nontrivial bundle on an open dense set of the Chow variety of Mn,ss
d . In

fact, as we will see in Section 5, there exist components of the Chow variety of
Mn,ss

d where, at least generically, a nontrivial bundle is required.
Our study of bundle classes now splits into two cases. In the case of curves satis-

fying semistable reduction with a trivial bundle, the reformulation of Remark 1.6,
in its positive form, means that we can study D directly as a curve in PN . We can
bound the degree of the map from D to C in terms of the stabilizer groups that
occur on D. More precisely:

Proposition 1.7. Let X be a projective variety over an algebraically closed field
with an action by a geometrically reductive linear algebraic group G. Using the
terminology of geometric invariant theory, let D be a complete curve in the stable
space X s whose quotient by G is a complete curve C ; say the map from D to C has
degree m. Suppose the stabilizer is generically finite of size h, and either D or C is
normal. Then there exists a finite subgroup SD ⊆ G, of order equal to mh, such that
for all x ∈ D and g ∈ G, gx ∈ D if and only if g ∈ SD .

Corollary 1.8. With the same notation and conditions as in Proposition 1.7, the
map from D to C is ramified precisely at points x ∈ D where the stabilizer group is
larger than h, and intersects SD in a larger subgroup than in the generic case.

If the genus of C is 0, then the only way the map from D to C could have high
degree is if it ramifies over many points; therefore, Corollary 1.8 forces the degree
to be small, at least as long as C is contained in the stable locus.

In the case of curves that only satisfy semistable reduction with a nontrivial
bundle, we do not have a description purely in terms of coordinates. Instead, we
will study which bundle classes can be attached to every curve C . The question
of which bundles occur is an invariant of C ; therefore, it is essentially an invariant
that we can use to study the scheme Hom(C,Mn,ss

d ). In the sequel, we will study
the scheme using the bundle class set and height invariants.



1486 Alon Levy

For the study of which nontrivial bundle classes can occur, first observe that fixing
a D for which a bundle exists, we can apply the reformulation of Theorem 2.11 to
obtain a unique extension of ϕ locally. This can be done at every point, so it is true
globally, so we have:

Proposition 1.9. Using the notation of Theorem 1.4, the bundle class P(E) depends
only on D and its trivialization Ui , Ui ↪→ Homn,ss

d .

Note that the bundle class does not necessarily depend only on D, regarded as
an abstract curve with a map to C . The reason is that a point of D may not be
stable, which means it may correspond to one of several different orbits, whose
closures intersect. However, there are only finitely many orbits corresponding to
each point, so the bundle class depends on D up to a finite amount; if C happens to
be contained in the stable locus, then it depends only on D.

Thus we can study which bundle classes occur for a given C . We will content
ourselves with rational curves, for which there is a relatively easy description of
all projective bundles. Recall that every vector bundle over P1 splits as a direct
sum of line bundles, and that the bundle

⊕
i O(mi ) is projectively equivalent to⊕

i O(l +mi ) for all l ∈ Z. In other words, a Pn-bundle over P1 can be written as
O⊕O(m1)⊕· · ·⊕O(mn); if the mi ’s are in nondecreasing order, then the expression
uniquely determines the bundle’s class. We will show that:

Proposition 1.10. There exists a curve C for which multiple nonisomorphic bundle
classes can occur. In fact, suppose C is isomorphic to P1, and there exists U ⊆
Homn,ss

d mapping finite-to-one into C such that U is a projective curve minus a
point. Then there are always infinitely many possible classes: if the class of U is
thought of as splitting as P(E)= O⊕O(m1)⊕· · ·⊕O(mn), where mi ∈N, then for
every integer l the class O⊕O(lm1)⊕ · · ·⊕O(lmn) also occurs.

Proposition 1.10 frustrated our initial attempt to obtain an easy classification of
bundles based on curves. However, it raises multiple interesting questions instead.
First, the construction uses a rational D mapping finite-to-one onto C , and going
to higher m involves raising the degree of the map D→ C . It may turn out that
bounding the degree bounds the bundle class; we conjecture that if we fix the degree
of the map, then we obtain only finitely many bundle classes. Furthermore, in
analogy with the consequences of Corollary 1.8, we should conversely be able to
bound the degree of the map in terms of C and the bundle class, at least for rational
C .

Second, it is nontrivial to find the minimal mi ’s for which a bundle splitting as
O⊕ O(m1)⊕ · · · ⊕ O(mn) would satisfy semistable reduction; the case of n = 1
could be stated particularly simply, as the question would be about the minimal m
for which O⊕O(m) occurs.
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In Sections 3 and 4 we will illustrate Theorem 1.5: in Section 3 we will give
some examples and compute the bundle classes that occur, proving Proposition 1.10
on the way, while in Section 4 we will prove Theorem 1.5. In Section 5 we will
focus on the trivial bundle case, proving Proposition 1.7 and defining the height
function, which will impose constraints on which curves admit a trivial bundle; this
will allow us to obtain a large family of curves C in Mss

2 with no trivial bundle.

2. A description of the stable and semistable spaces

Unless another reference is given, the general geometric invariant theory results
given in this section are all from [Mumford and Fogarty 1982].

Recall that when a geometrically reductive linear algebraic group G has a linear
action on a projectivized vector space P(V ), we have:

Definition 2.1. A point x ∈ V is called semistable (resp. stable) if any of the
following equivalent conditions hold:

(1) There exists a G-invariant homogeneous section s such that s(x) 6= 0 (resp.
same condition, and the action of G on x is closed).

(2) The closure of G · x does not contain 0 (resp. G · x is closed).

(3) Every one-parameter subgroup T acts on x with both nonnegative and nonpos-
itive weights (resp. negative and positive weights).

Remark 2.2. The last condition in the definition is equivalent to having nonpositive
(resp. negative) weights. This is because if we can find a subgroup acting with only
negative weights, then we can take its inverse and obtain only positive weights.

Observe that for every nonzero scalar k, x is stable (resp. semistable) if and
only if kx is. So the same definitions of stability and semistability hold for points
of P(V ). The definitions also descend to every G-invariant projective variety
X ⊆ P(V ); in fact, in [Mumford and Fogarty 1982] they are defined for X in terms
of a G-equivariant line bundle L . When L is ample, as in the case of the space
under discussion in this paper, this reduces to the above definition.

The importance of stability is captured in the following results:

Proposition 2.3. The space of all stable points, X s , and the space of all semistable
points, X ss , are both open and G-invariant.

Theorem 2.4. There exists a quotient Y = X ss//G, called a good categorical
quotient (in the category of separated schemes), with a natural map π : X → Y ,
satisfying the following properties:

(1) π is a G-equivariant map, where G acts on Y trivially.

(2) Every G-equivariant map X → W , where G acts on W trivially, factors
through π .
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(3) π is an open submersion.

(4) π(x1)= π(x2) if and only if the closures of G · x1 and G · x2 intersect.

(5) For every open U ⊆ Y , OU = O(π−1(U ))G .

In addition, Y is proper.

Theorem 2.5. There exists a quotient Z = X s//G, called a good geometric quotient,
with a natural map π : X → Z satisfying all enumerated conditions of a good
categorial quotient, as well as the following:

(1) π(x1)= π(x2) if and only if G · x1 = G · x2.

(2) Z is naturally an open subset of X ss//G.

Theorem 2.6. On X s , the dimension of the stabilizer group StabG(x) is constant.

Returning to our case of self-maps of Pn , we write the stable and semistable
spaces for the conjugation action as Homn,s

d and Homn,ss
d . This involves a fair

amount of abuse of notation, since those two spaces are open subvarieties of PN

and in fact properly contain Homn
d , which consists only of regular maps.

In [Levy 2011] we proved the fact that Homn
d ( Homn,s

d by describing Homn,s
d

and Homn,ss
d more or less explicitly. We will recapitulate the results, which are very

technical but help us answer the question of when we can obtain a trivial bundle
class in the semistable reduction problem and when we cannot.

We use the Hilbert–Mumford criterion, the last condition in Definition 2.1.
In more explicit terms, the criterion for semistability (resp. stability) states that
for every one-parameter subgroup T ≤ SL(n + 1), the action of T on ϕ can be
diagonalized with eigenvalues taI and at least one aI is nonpositive (resp. negative).
Now, assume by conjugation that this one-parameter subgroup is in fact diagonal,
with diagonal entries ta0, . . . , tan , and that a0 ≥ · · · ≥ an; we may also assume that
the ai ’s are coprime, as dividing throughout by a common factor would not change
the underlying group. Note also that a0+· · ·+an = 0. Our task is made easy by the
fact that our standard coordinates for AN+1 are the monomials, on which T already
acts diagonally. Throughout this analysis, we fix a = (a0, . . . , an), and similarly
for x and d.

Now, T acts on the xd0
0 . . . xdn

n monomial of the i-th polynomial, ϕi , with weight
ai−a·d. A map ϕ ∈PN is unstable (resp. not stable) if and only if, after conjugation,
there exists a choice of ai ’s such that whenever the xd-coefficient of ϕi satisfies
a · d ≤ ai (resp. <), it is equal to zero.

Remark 2.7. While in principle there are infinitely many possible T ’s, parametrized
by a hyperplane in Pn(Q), in practice there are up to conjugation only finitely many.
This is because each diagonal T imposes conditions of the form “the xd-coefficient
of ϕi is zero,” and there are only finitely many such conditions. Thus the stable and
semistable spaces are indeed open in PN .
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Remark 2.8. The conjugation conditions we have chosen for T are such that the
conditions they impose for ϕ to be unstable (or merely not stable) are the most
stringent on ϕn and least stringent on ϕ0, and are the most stringent on monomials
with high x0-degrees and least stringent on monomials with high xn-degrees.

If n = 1, we have a simpler description:

Theorem 2.9 [Silverman 1998]. ϕ ∈ PN is unstable (resp. not stable) if and only if
it is equivalent under coordinate change to a map

x 7→
a0xd
+ · · ·+ ad yd

b0xd + · · ·+ bd yd ,

such that:

(1) ai = 0 for all i ≤ (d − 1)/2 (resp. <).

(2) bi = 0 for all i ≤ (d + 1)/2 (resp. <).

The description for n = 1 can be thought of as giving a dynamical criterion for
stability and semistability. A point ϕ ∈ PN is unstable if there exists a point x ∈ P1

where ϕ has a bad point of degree more than (d + 1)/2, or ϕ has a bad point of
degree more than (d− 1)/2 where it in addition has a fixed point. Following Rahul
Pandharipande’s unpublished reinterpretation of [Silverman 1998], we define “bad
point” as a vertical component of the graph 0ϕ ⊆ P1

×P1, and “fixed point” as a
fixed point of the unique nonvertical component of 0ϕ . When n = 1, d = 2, this
condition reduces to having a fixed point at a bad point, or alternatively, a repeated
bad point.

The conditions for higher n are not as geometric. However, if we interpret fixed
points liberally enough, there are still strong parallels with the n = 1 case. One
can show that the unstable space for n = 2 and d = 2 consists of two irreducible
components, which roughly generalize the n = 1, d = 2 condition of having a fixed
point at a bad point; in this case, one needs to define a limit of the value of ϕ(x)
as x approaches the bad point, though this limit can be defined purely in terms of
degrees of polynomials, without needing to resort to a specific metric on the base
field.

Finally, let us prove semistable reduction. Let us restate Theorem 1.4:

Theorem 2.10. If C is a complete curve with K (C) its function field, and if ϕK (C)

is a semistable rational map on Pn
K (C), then there exists a curve D mapping finite-

to-one onto C with a Pn-bundle P(E) on D with a self-map 8 such that:

(1) The restriction ϕx of 8 to the fiber of each x ∈ D is a semistable rational
self-map.

(2) 8 is a semistable map over K (D), and is equivalent to ϕK (D) under coordinate
change.
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Semistable reduction can be thought of as extending a rational map defined over
a field K to a rational map defined over a discrete valuation ring R whose fraction
field is K , in a way that is not too degenerate. The reason a discrete valuation
ring suffices is that once we know we can extend to a discrete valuation ring, we
can extend to some larger integral domain. In other words, it suffices to show the
following, more general statement:

Theorem 2.11. Let G be a geometrically reductive group acting on a projective
variety X whose stable and semistable spaces are X s and X ss , respectively. Let R
be a discrete valuation ring with fraction field K , and let xK ∈ X s

K . Then for some
finite extension K ′ of K , with R′ the integral closure of R in K ′, xK has an integral
model over R′ with semistable reduction modulo the maximal ideal. In other words,
we can find some A ∈ G(K ) such that A · xK has semistable reduction. If xK ∈ X ss

K ,
then the same result is true, except that xR′ could be an integral model for some x ′K ′
mapping to the same point of X ss//G such that x ′K ′ /∈ G · xK .

Proof. We follow the method used in [Zhang 1996]. Let C be the Zariski closure
of xK in X ss

R //G, and reduce it modulo the maximal ideal to obtain xk , where
k is the residue field of R. Observe that C is a one-dimensional subscheme of
X ss

R //G and is isomorphic to Spec R, and is as a result connected. Since G is
connected, the preimage π−1(C) is also connected: when xK is stable, this follows
from the fact that π−1(C) is the Zariski closure of G · xK in X ss , and even when it
is not, π−1(C) is the union of connected orbits whose closures intersect. Further,
since π−1(C) surjects onto C , we can find an integral one-dimensional subscheme
mapping surjectively to C . This subscheme necessarily maps finite-to-one onto C
by dimension counting, so it is isomorphic to some finite extension ring R′, giving
us K ′ as its fraction field. �

Remark 2.12. Theorem 2.11 can also be proven in a much more explicit way,
producing for each ϕK ∈ Homn,ss

d a sequence of A’s conjugating it to a model with
semistable reduction.

Remark 2.13. Szpiro et al. [2010] study semistable reduction for the moduli space
of self-maps of P1 and raise a conjecture that Theorems 1.4 and 2.11 answer in the
affirmative.

3. Examples of nontrivial bundles

In the case n = 1, we follow [Silverman 1998] and write Ratd for Hom1
d and Md

for M1
d . The space Rat2 and its quotient M2 have been analyzed with more success

than the larger spaces, yielding the following prior structure result:
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Theorem 3.1 [Milnor 2006; Silverman 1998]. M2 =A2; Ms
2 =Mss

2 =P2. The first
two elementary symmetric polynomials in the multipliers of the fixed points realize
both isomorphisms.

Recall that within PN
=P5, a map (a0x2

+a1xy+a2 y2)/(b0x2
+b1xy+b2 y2)

is unstable if and only if it is in the closure of the PGL(2)-orbit of the subvariety
a0 = b0 = b1 = 0. In other words, it is unstable if and only if there the map is
degenerate and has a double bad point, or a fixed point at a bad point.

Definition 3.2. A map on P1 is a polynomial if and only if there exists a totally
invariant fixed point. Taking such a point to infinity turns the map into a polynomial
in the ordinary sense. In Ratd , or generally in PN

= P2d+1, a map is polynomial
if and only if it is in the closure of the PGL(2)-orbit of the subvariety defined by
zeros in all coefficients in the denominator except the yd -coefficient.

Remark 3.3. A totally invariant fixed point is not necessarily a totally fixed point.
A totally invariant fixed point is one that is totally ramified. A totally fixed point is
the root of the fixed point polynomial when it is unique, that is, when the polynomial
is a power of a linear term. In fact by an easy computation, a map has a totally
invariant, totally fixed point x if and only if it is degenerate linear with bad point of
multiplicity d−1 at x , in which case it is necessarily unstable.

The polynomial maps define a curve in Mss
2 ; we will show:

Proposition 3.4. The polynomial curve in Mss
2 only satisfies semistable reduction

with nontrivial bundles.

Proof. First, note that in P5, the polynomial maps are those that can be conjugated
to the form (a0x2

+ a1xy + a2 y2)/b2 y2, in which case the totally invariant fixed
point is ∞= (1 : 0). We will call the polynomial map locus X . If a0 = 0, then
the map is unstable; we will show that every curve in X contains a map for which
a0 = 0. Clearly, the set of all maps with a given totally invariant fixed point is
isomorphic to P3, and the unstable locus within it is isomorphic to P2 as a linear
subvariety, so for there to be any hope of a trivial bundle, a curve in X cannot lie
entirely over one totally invariant point.

Now, the fixed point equation for a map of the form f/g is f y − gx = 0;
the homogeneous roots of this equation are the fixed points, with the correct
multiplicities. For our purposes, when the totally invariant point is∞, the fixed
point equation is a0x2 y+ (a1− b2)xy2

+ a2 y3
= 0. We get that a0 = 0 if and only

if the totally invariant point is a repeated root of the fixed point equation.
There exists a map from X to P1

×P2, mapping ϕ to its totally invariant point
in P1, and to the two elementary symmetric polynomials in the two other fixed
points in P2. Write (x : y) for the image in P1 and (a : b : c) for the image in P2.
Now (x : y) is a repeated root if ax2

+ bxy + cy2
= 0. The equation defines an
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ample divisor, so every curve in P1
×P2 will meet it. Finally, a curve in X maps

either to a single point in P1
×P2, in which case it must contain points with a0 = 0

as above, or to a curve, in which case it intersects the divisor ax2
+ bxy+ cy2

= 0.
In both cases, the curve contains unstable points. Thus there is no global semistable
curve D in Ratss

2 mapping down to C . �

Note that in the above proof, maps conjugate to x2 have two totally invariant
points, so a priori the map from X to P1

×P2 is not well-defined at them. However,
for any curve D in X , there is a well-defined completion of this map, whose value at
x2 on the P1 factor is one of the two totally invariant points. Thus this complication
does not invalidate the above proof.

Let us now compute the vector bundle classes that do occur for the polynomial
curve. We work with the description x2

+ c, which yields an affine curve that
maps one-to-one into C , missing only the point at infinity, which is conjugate to
(x2
− x)/0. To hit the point at infinity, we choose the alternative parametrization

cx2
− cx + 1, which, when c =∞, corresponds to the unique (up to conjugation)

semistable degenerate constant map. For any c, this map is conjugate to x2
−cx+c

and thence x2
+ c/2− c2/4, using the transition function [c,− 1

2 ; 0, 1]. Thus the
bundle splits as O⊕O(1).

This bundle depends on the choice of D. In fact, if we choose another para-
metrization for D, for example c2x2

− c2x + 1, then the transition function is
[c2,− 1

2 ; 0, 1], which leads to the bundle O⊕O(2). This is not equivalent to O⊕O(1).
This then leads to the question of which classes of bundles can occur over each C .
In the example we have just done, the answer is every nontrivial class: for every
positive integer m, we can use cm x2

− cm x + 1 as a parametrization, leading to
O⊕O(m), which exhausts all nontrivial projective bundle classes.

Recall the result of Proposition 1.10:

Proposition 3.5. Suppose C is isomorphic to P1, and there exists U ⊆ Homn,ss
d

mapping finite-to-one into C such that U is a projective curve minus a point. Then
there are always infinitely many possible classes: if the class of U is thought of
as splitting as P(E) = O⊕ O(m1)⊕ · · · ⊕ O(mn), where mi ∈ N, then for every
integer l, the class O⊕O(lm1)⊕ · · ·⊕O(lmn) also occurs.

Proof. Imitating the analysis of the polynomial curve above, we can parametrize C
by one variable, say c, and choose coordinates such that the sole bad point in the
closure of U corresponds to c =∞. Now, we can by assumption find a piece U ′

above the infinite point with a transition function determining the vector bundle
O⊕O(m1)⊕· · ·⊕O(mn). Now let V be the composition of U ′ with the map c 7→ cl .
Then U and V determine a vector bundle satisfying semistable reduction, of class
O⊕O(lm1)⊕ · · ·⊕O(lmn), as required. �

The example in Proposition 3.4, of polynomial maps, is equivalent to a multiplier
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condition. When d = 2, a map is polynomial if and only if it has a superattracting
fixed point, that is, one whose multiplier is zero; see the description in the first
chapter of [Silverman 2007]. One can imitate the proof that semistable reduction
does not hold for a more general curve, defined by the condition that there exists
a fixed point of multiplier t 6= 1. In that case, the condition b1 = 0 is replaced by
b1 = ta0, and the point is a repeated root of the fixed point equation if and only if
a0 = b1, in which case we clearly have a0 = b1 = 0 and the point is unstable.

When the multiplier is 1, the fixed point in question is automatically a repeated
root, with b1 = a0. The condition that the point be the only fixed point corresponds
to b2 = a1, which by itself does not imply that the map fails to be a morphism, let
alone that it is unstable.

Instead, the condition that gives us b1 = a0 = 0 is the condition that the fixed
point be totally invariant. Specifically, the fixed point’s two preimages are itself
and one more point; when the fixed point is∞, the extra point is −b2/b1. Now we
can map X to P1

×P1, where the first coordinate is the fixed point and the second
is its preimage. This map is well-defined on all of X because only one point can be
a double root of a cubic. Now the diagonal is ample in P1

×P1, so the only way a
curve D can avoid it is by mapping to a single point; but in that case, D lies in a
fixed variety isomorphic to P3 where the unstable locus is P2, so it will intersect
the unstable locus.

The fact that any condition of the form “there exists a fixed point of multiplier t”
induces a curve for which semistable reduction requires a nontrivial bundle means
that there is no hope of enlarging the semistable space in a way that ensures we
always have a trivial bundle. We really do need to think of semistable reduction as
encompassing nontrivial bundle classes as well as trivial ones.

Specifically: it is trivial to show that the closure of the polynomial locus in Rat2
includes all the unstable points (fix∞ to be the totally invariant point and let a0 go
to zero). At least some of those unstable points will also arise as closures of other
multiplier-t conditions. However, different multiplier-t conditions limit to different
points in Mss

2 \M2.

4. The general case

So far we have talked about nontrivial classes in M2. But we have a stronger result,
restating Theorem 1.5:

Theorem 4.1. For all n and d, over any base field, there exists a curve with no
trivial bundle class satisfying semistable reduction.

Proof. In all cases, we will focus on polynomial maps, which we will define to be
maps that are PGL(n+ 1)-conjugate to maps for which the last polynomial ϕn has
zero coefficients in every monomial except possibly xd

n .
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Lemma 4.2. The set of polynomial maps, defined above, is closed in Homn
d = PN .

Proof. Clearly, the set of polynomial maps with respect to a particular hyperplane —
for example, xn = 0 — is closed. Now, for each hyperplane a0x0+ · · ·+ anxn = 0,
we can check by conjugation to see that the condition that the map be polynomial
corresponds to the condition that a0ϕ0+· · ·+anϕn = c(a0x0+· · ·+anxn)

d , where c
may be zero. As Pn is proper, it suffices to show that the condition “ϕ is polynomial
with respect to a0x0+ · · ·+ anxn = 0” is closed in (Pn)∗×PN .

Now, we may construct a rational function f from (Pn)∗×PN to Symd(Pn)×

Symd(Pn) by
(
(a0x0+ . . .+anxn), ϕ

)
7→
(
(a0x0+· · ·+anxn)

d , a0ϕ0+· · ·+anϕn
)
.

The map ϕ is polynomial with respect to a0x0+ · · · + anxn = 0 if and only if f
is ill-defined at

(
(a0x0 + · · · + anxn), ϕ

)
or f

(
(a0x0 + · · · + anxn), ϕ

)
∈ 1, the

diagonal subvariety. The ill-defined locus of f is closed, and the preimage of 1 is
closed in the well-defined locus. �

In fact, the condition of ϕ being polynomial with respect to r distinct hyperplanes
in general position, where r is a fixed integer — in other words, the condition that
ϕ be conjugate to a map for which ϕi = ci xd

i for all i > d − r — is more or less
closed as well. It is not closed, but a sufficiently good condition is closed. Namely:

Lemma 4.3. For each 1 ≤ i ≤ n, consider the PGL(n + 1)-orbit of the space of
maps in which, for each j ≥ i , ϕ j has zero coefficients in every monomial containing
any term xk with k < j . This orbit is closed in PN .

Proof. Observe that the above-defined space of maps consists of maps that are
polynomial with respect to xn = 0, such that the induced map on the totally invariant
hyperplane xn = 0 is polynomial with respect to xn−1 = 0, and so on until we reach
the induced map on the totally invariant subspace xi+1 = · · · = xn = 0.

Now we use descending induction. Lemma 4.2 is the base case, when i = n.
Now suppose it is true down to i . Then for i−1, the condition of having no nonzero
xk term in ϕi−1 with k < i − 1 is equivalent to the condition that the induced map
on the totally invariant subspace xi = xi+1 = . . . = xn = 0 be polynomial; this
condition is closed in the space of all maps that are polynomial down to xi , which
we assume closed by the induction hypothesis. �

Definition 4.4. We call maps of the form in Lemma 4.3 polynomial with respect
to B, where B is the Borel subgroup preserving the ordered basis of conditions. In
the case above, B is the upper triangular matrices.

We need one final result to make computations easier:

Lemma 4.5. Let X be a curve of polynomial maps, all with respect to a Borel
subgroup B, and let ϕ be a semistable map in PGL(n+ 1) · X. Then ϕ ∈ B · X.
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Proof. Let C be the closure of the image of X in Mn,ss
d . By semistable reduction,

there exists some affine curve Y 3 ϕ mapping finite-to-one to C , that is, dominantly.
We need to find some open Z ⊆ Y containing ϕ and some f : Z→ PGL(n+1) such
that f (ϕ) is the identity matrix, and Z ′ = {( f (z) · z)} consists of maps which are
polynomial with respect to B. Such a map necessarily exists: we have a map h from
Y to the flag variety of Pn sending each y to the subgroup with respect to which it
is polynomial (possibly involving some choice if generically y is polynomial with
respect to more than one flag), which then lifts to G, possibly after deleting finitely
many points. Generically, a point of X maps to a point of C that is in the image
of Z ; therefore, picking the correct points in X , we get that ϕ ∈ B · X . �

With the above lemmas, let us now prove Theorem 4.1 for n = 1, which is
slightly easier than the higher-n case, where the more complicated Lemma 4.3 is
required. We will use the family xd

+ c, where c ∈ A1. In projective notation, this
is (a0xd

+ ad yd)/bd yd , which is a one-dimensional family modulo conjugation.

Lemma 4.6. Let V be the closure of the PGL(2)-orbit of the family

a0xd
+ ad yd

bd yd

in PN . Then:

(1) In characteristic 0 or p - d , every ϕ ∈ V is actually in the PGL(2)-orbit of the
family, or else it is a degenerate linear map, conjugate to

ad−1xyd−1
+ ad yd

bd yd .

(2) In characteristic p | d , with pm
‖ d and pm

6= d , every ϕ ∈ V is in the PGL(2)-
orbit of the family or is a degenerate map conjugate to

ad−pm xyd−pm
+ ad yd

bd yd .

(3) In characteristic p with d = pm , set V to be the closure of the orbit of the
family (a0xd

+ ad−1xyd−1)/bd yd ; then every ϕ ∈ V is actually in the orbit of
the family, or else it is a degenerate linear map, conjugate to

ad−1xyd−1
+ ad yd

bd yd ,

and furthermore, ad−1 = bd .

Proof. Observe that the first two cases are really the same: case (2) is reduced to
case (1) viewed as a degree-(d/pm) map in (x pm

: y pm
). So it suffices to prove

case (1) to prove (2); we will start with the family (a0xd
+ ad yd)/bd yd and see



1496 Alon Levy

what algebraic equations its orbit satisfies. As polynomials are closed in Ratd ,
every point in the closure of the orbit is a polynomial. We may further assume it is
polynomial with respect to y = 0; therefore, by Lemma 4.5, it suffices to look at
the action of upper triangular matrices. Further, the condition of being within the
family (a0xd

+ ad yd)/bd yd is stabilized by diagonal matrices; therefore, it suffices
to look at the action of matrices of the form [1, t; 0, 1].

Now, the conjugation action of [1, t; 0, 1] fixes bd yd and maps a0xd
+ ad yd to

a0(x−t y)d+(ad+tbd)yd . Clearly, there is no hope of obtaining any condition on bd

or ad . Now, the conditions on the terms a0, . . . , ad−1 are that for some t , they fit into
the pattern a0(xd

−dtxd−1 y+· · ·±dtd−1xyd−1), that is, ai = (−t)i
(d

i

)
a0. To remove

the dependence on t , note that when i+ j = k+ l, we have
(d

i

)(d
j

)
ai a j =

(d
k

)(d
l

)
akal ,

as long as i, j, k, l < d.
Let us now look at what those conditions imply. Setting j = i, k= i−1, l = i+1,

we get conditions of the form
(d

i

)2
a2

i =
( d

i−1

)( d
i+1

)
ai−1ai+1, whenever i + 1< d . If

a0 6= 0, then the value of a1 uniquely determines the value of a2 by the condition
with i = 1; the value of a2 uniquely determines a3 by the condition with i = 2;
and so on, until we uniquely determine ad−1. In this case, choosing t =−a1/da0

will conjugate this map back to the family (a0xd
+ ad yd)/bd yd . If a0 = 0, then

the equation with i = 1 will imply that a1 = 0; then the equation with i = 2 will
imply that a2 = 0; and so on, until we set ad−2 = 0. We cannot ensure ad−1 = 0
because ad−1 always appears in those equations multiplied by a different ai , instead
of squared. Hence we could get a degenerate-linear map.

In case (3), we again look at the action of matrices of the form [1, t; 0, 1]. Such
matrices map (a0xd

+ ad−1xyd−1)/bd yd to

a0xd
+ ad−1xyd−1

+ (−a0td
− ad−1t + bd t)yd

bd yd .

Now the only way a map of the form (a0xd
+ ad−1xyd−1

+ ad yd)/bd yd could
degenerate is if the image of the polynomial map t 7→−a0td

−ad−1t+bd t misses ad ,
which could only happen if the polynomial were constant, that is, a0 = 0 and
ad−1 = bd , giving us a degenerate-linear map. �

Remark 4.7. The importance of the lemma is that in all degenerate cases, the map
is necessarily unstable, since d − 1 (or, in case (2), d − pm) is always at least as
large as d/2.

We can now prove Theorem 4.1 when n = 1. So if we can always find a
D ⊆ Homn,ss

d that works globally, we can find one over a family in which every
map is conjugate to (a0xd

+ ad yd)/bd yd , or, in characteristic p with d = pm ,

a0xd
+ ad−1xyd−1

bd yd .



The semistable reduction problem for the space of morphisms on Pn 1497

It suffices to show that there exists a map with a0 = 0. For this, we use the fixed
point polynomial, which is well-defined on this family. If the polynomial is fixed,
then all maps in the family may be simultaneously conjugated to the form

a0xd
+ ad yd

bd yd

(or (a0xd
+ ad−1xyd−1)/bd yd ), and then one map must have a0 = 0. If the polyno-

mial varies, then some map will have the point at infinity colliding with another
fixed point. This will force the map to be ill-defined at infinity; recall that totally
invariant points are simple roots of the fixed point polynomial, unless they are bad.
This will force a0 to be zero, again.

For higher n, the proof is similar. The lemma we need is similar to Lemma 4.6,
but is somewhat more complicated:

Lemma 4.8. Let V be the closure of the PGL(n+ 1)-orbit of the family

(c0xd
0 + bxd

1 : ϕ1 : . . . : ϕn),

where ϕi is x j -free for all j < i .

(1) If the characteristic does not divide d, then every ϕ ∈ V is actually in the
PGL(n + 1)-orbit of the family, or else it is a degenerate map, whose only
possible nonzero coefficients in ϕ0 are those without an x0 term and those of
the form x0 p0, where there is no nonzero x0-term in p0.

(2) If the characteristic p satisfies p | d , with d 6= pm
‖ d , then the same statement

as in case (1) holds as long as each ϕi is in terms of x pm

j , but with x0 p0 replaced
by x pm

0 p0.

(3) If the characteristic p satisfies d = pm , then changing the family to

(c0xd
0 + bx0xd−1

1 : ϕ1 : . . . : ϕn),

with ϕi in terms of xd
j as in case (2), the same statement as in case (1) holds.

Proof. As in the one-dimensional case, case (2) is reducible to case (1) with d
replaced with d/pm and xi with x pm

i . By Lemma 4.5, we only need to conjugate
by upper triangular matrices. Further, we only need to conjugate by matrices of
the family E , with first row (1, t1, . . . , tn) and other rows the same as the identity
matrix. This is because we can control the diagonal elements because the condition
of being in the family is diagonal matrix-invariant, and we can control the rest by
projecting any curve Z of unipotent upper triangular matrices onto E .

Set ad to be the xd-coefficient in ϕ0. For all vectors i , j , k, l with i+ j = k+ l ,
we have

(d
i
)(d

j
)
ai a j =

(d
k
)(d

l
)
akal , as long as none of i , j , k, or l is in the span of ei



1498 Alon Levy

for i > 0. Note that i and i are two separate quantities, one an index of coordinates
and one an index of monomials.

As in the one-dimensional case, we may set j = i and k = i − e0 + ei . If
c0 = a(d,0,...,0) 6= 0, then by the same argument as before, the values of the xd−1

0 xi -
coefficients determine all the rest, and we can conjugate the map back to the desired
form. And if c0 = 0, then the value of every coefficient that can occur as i in
the above construct is zero; the only coefficients that cannot are those with no x0

component and those with a linear x0 component.
In case (3), we restrict to matrices of the same form as in case (1), and observe that

those matrices only generate extra xd
i and xi xd−1

1 in ϕ0. The statement is vacuous
if c0 = 0, so assume c0 6= 0. For i = 1, this is identical to the one-dimensional case,
so if c0 6= 0, then we can find an appropriate t1. For higher i , if b 6= 0, then we
can extract ti from the xi xd−1

1 coefficient, which will necessarily work for the xd
i

coefficient as well, making the map conjugate to the family; if b= 0, then the same
equations as for i = 1 hold for higher i , and we can again find ti ’s conjugating the
map to the family. �

While we could also control the terms involving a linear (or p-power) x0 coeffi-
cient in the above construction, it is not necessary for our purposes.

To finish the proof of Theorem 4.1, first note that in the closure of the family
above, any map for which c0 = 0 is unstable. Indeed, the one-parameter subgroup
of PGL(n+1) with diagonal coefficients t0= n, ti =−1 for i > 0, shows instability.
Recall that a map is unstable with respect to such a family if ti > t0d0+ · · ·+ tndn

whenever the xd0
0 . . . xdn

n -coefficient of ϕi is nonzero. With the above one-parameter
subgroup, we have t0d0+ · · ·+ tndn =−d <−1 for the only nonzero monomials
in ϕi with i > 0; in ϕ0, the maximal value of t0d0+ · · · + tndn is t0+ ti (d − 1)=
n− (d − 1) < n.

Now we need to show only that for some map in the family, c0 will indeed be
zero. So suppose on the contrary that c0 is never zero. Then all maps are, after
conjugation, in the family (c0xd

0 + bxd
1 : ϕ1 . . . : ϕn), where the linear subvariety

ϕi = ϕi+1 = · · · = ϕn is totally invariant. Now look at the action on the line
x2 = · · · = xn = 0. Every morphism will induce a morphism on this line, so there
will be three fixed points on it, counting multiplicity. We now imitate the proof in
the one-dimensional case: the totally invariant fixed point on this line, (1 : 0 : . . . : 0),
will collide with another fixed point, so the map will be ill-defined at it. This means
that (1 : 0 : . . . : 0) is a bad point, which cannot happen unless c0 = 0. �

Trivially, the above theorem for curves shows the same for higher-dimensional
families in Mn,ss

d . An interesting question could be to generalize semistable reduc-
tion to higher-dimensional families, for which we may get projective vector bundles
just like in the case of curves. Trivially, if we have two proper subvarieties of Mn,ss

d ,
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V1⊆ V2, and a bundle class occurs for V2, then its restriction to V1 occurs for V1. In
particular, if we have the trivial class over V2, then we also have it over V1, as well
as any other subvariety of V2. This leads to the following question: if the trivial
class occurs for every proper closed subvariety of V2, does it necessarily occur for
V2? What if we weaken the condition and only require the trivial class to occur for
subvarieties that cover V2?

5. The trivial bundle case

For most curves C ⊆Mn,ss
d , there occurs a trivial bundle. Since the complement of

Homn,ss
d in PN has high codimension, this is true by simple dimension counting.

Therefore, it is useful to analyze those curves separately, as we have more tools
to work with. Specifically, we can use more machinery from geometric invariant
theory. We will start by proving Proposition 1.7, restated below:

Proposition 5.1. Let X be a projective variety over an algebraically closed field
with an action by a geometrically reductive linear algebraic group G. Using the
terminology of geometric invariant theory, let D be a complete curve in the stable
space X s whose quotient by G is a complete curve C ; say the map from D to C has
degree m. Suppose the stabilizer is generically finite, of size h, and either D or C is
normal. Then there exists a finite subgroup SD ⊆ G, of order equal to mh, such that
for all x ∈ D and g ∈ G, gx ∈ D if and only if g ∈ SD .

Proof. For x ∈ D, we define SD(x)= {g ∈ G : gx ∈ D}. This is a map of sets from
an open dense subset of D to Symmh(G), and is regular on an open dense subset.
We have:

Lemma 5.2. The map from Symmh(G)×X s to Symmh(X s)×X s defined by sending
each

(
{g1, . . . , gmh}, x

)
to
(
{g1 · x, . . . , gmh · x}, x

)
is proper.

Proof. By standard geometric invariant theory, the map from G× X s to X s
× X s ,

(g, x) 7→ (g ·x, x), is proper. Thus the map from Gmh
×(X s)mh to (X s)mh

×(X s)mh

defined by (gi , xi ) 7→ (gi · xi , xi ) is also proper, as the product of proper maps.
Now closed immersions are proper, so the map remains proper if we restrict it to
Gmh
×X s , where we embed X s into (X s)mh diagonally; the image of this map lands

in (X s)mh
× X s . Finally, we quotient out by the symmetric group Smh , obtaining

Gmh
× X s //

π

��

(X s)mh
× X s

π

��
Symmh(G)× X s // Symmh(X s)× X s
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The map on the bottom is already separated and finite-type; we will show it is
universally closed. Extend it by some arbitrary scheme Y . If

V ⊆ Symmh(G)× X s
× Y

is closed, then so is π−1(V )⊆Gmh
×X s
×Y . The map on top is universally closed,

so its image is closed in (X s)mh
× X s

× Y . But the map on the right is proper, so
the image of V is also closed in Symmh(X s)× X s

× Y . �

Now, the rational map fD(x) = SD(x) · x ∈ Symmh(D) can be extended to a
morphism on all of D, since both D and Symmh(D) are proper. This is trivial if D
is normal; if it is not normal, but C is normal, then observe that the map factors
through C since it is constant on orbits, and then analytically extend it through C .
But now ( fD(x), x) embeds into Symmh(X s)×X s as a proper curve. The preimage
in Symmh(G)× X s of this curve is also proper; for each ( fD(x), x), it is a finite
set of points of the form (S, x) satisfying S · x = fD(x), including (SD(x), x).
Projecting onto the Symmh(G) factor, we still get a proper set, which means it must
be a finite set of points, as Symmh(G) is affine. One of these points will be SD,
which is then necessarily finite.

Finally, if g, h ∈ SD and x ∈ D, then g · h · x ∈ g · D = D; therefore SD is a
group. �

Remark 5.3. The proposition essentially says that the cover D→ C is necessarily
Galois. The generic stabilizer is necessarily a group H , normal in SD .

Corollary 5.4. With the same notation and conditions as in Proposition 5.1, the
map from D to C ramifies precisely at points x ∈ D such that Stab(x) intersects SD

in a strictly larger group than H. Furthermore, the ramification degree is exactly
[Stab(x)∩ SD : H ].

For high n or d , the stabilized locus of Homn
d is of high codimension. Furthermore,

most curves in Homn,ss
d lie in Homn,s

d . Therefore, generically not only is H trivial,
but also there are no points on D with nontrivial stabilizer. Thus for most C and
D, the map D→ C must be unramified. Thus, when C is rational, generically the
degree is 1.

It’s based on this observation that we conjecture the bounds for the nontrivial
bundle case in both directions — that is, that if we fix C and the bundle class P(E),
then the degree of the map π : D→ C is bounded.

Using the structure result on Mss
2 = P2, we can prove much more:

Proposition 5.5. If C is a generic line in Mss
2 , then it requires a nontrivial bundle.

Proof. Generically, C is not the line consisting of the resultant locus, Mss
2 \M2. So

it intersects this line at exactly one point. Furthermore, since the resultant Res2

is an SL(2)-invariant section, we have D.Res2 = m ·C.Res2; we abuse notation
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and use Resn
d to refer to the resultant divisor both upstairs and downstairs. Since

the degree of the resultant upstairs is (n+ 1)dn
= 4 [Jouanolou 1991], we obtain

4 · D.O(1)= m. In other words, m ≥ 4.
However, using Proposition 5.1, we will show m ≤ 2 generically. The generic

stabilizer is trivial, and the stabilized locus is a cuspidal cubic in P2, on which the
stabilizer is isomorphic to Z/2Z, except at the cusp, where it is S3. The generic
line C will intersect this cuspidal curve at three points, none of which is the cusp.
Therefore, h= 1, and there are at most three points of ramification, with ramification
degree 2. By Riemann–Hurwitz, the maximum m is 2, contradicting m ≥ 4. �
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