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Least dilatation of pure surface braids

MARISSA LOVING

APPENDIX WRITTEN JOINTLY WITH HUGO PARLIER

We study the minimal dilatation of pseudo-Anosov pure surface braids and provide
upper and lower bounds as a function of genus and the number of punctures. For a
fixed number of punctures, these bounds tend to infinity as the genus does. We also
bound the dilatation of pseudo-Anosov pure surface braids away from zero and give
a constant upper bound in the case of a sufficient number of punctures.

37E30; 20F36, 20F65, 30F60, 37B40, 37D20, 57M07, 57M99

1 Introduction

Let Sg;n be a surface of genus g � 2 with n � 1 punctures and let Sg D Sg;0 . We
define the mapping class group of Sg;n , denoted by Mod.Sg;n/, to be the group of
orientation-preserving homeomorphisms of Sg;n up to isotopy. The pure mapping
class group of Sg;n , denoted by PMod.Sg;n/, is the subgroup of Mod.Sg;n/ that fixes
each puncture pointwise.

Consider the short exact sequence

1! ker.Forget/! PMod.Sg;n/!Mod.Sg/! 1;

where Forget W PMod.Sg;n/!Mod.Sg/ is the forgetful map obtained by “filling in”
the n punctures of Sg;n . The n–stranded pure braid group of a surface of genus g is
defined as the kernel of this map Forget , denoted by PBn.Sg/. This is isomorphic to
the fundamental group of the configuration space of ordered n–tuples of points on Sg ;
see Section 2.2 for further discussion.

Given a pseudo-Anosov mapping class f 2 PBn.Sg/, we denote its dilatation by �.f /
and its entropy by log.�.f //, which is indeed the topological entropy of the pseudo-
Anosov representative of f . In particular, we will be interested in the least entropy

L.PBn.Sg// WD infflog.�.f // j f 2 PBn.Sg/ is pseudo-Anosovg:
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Main Theorem For a surface Sg;n of genus g � 2 with n� 1 punctures there exist
constants c; c0 > 0 such that

c log
�

log g

n

�
C c �L.PBn.Sg//� c0 log

�
g

n

�
C c0:

Explicit values for c and c0 are obtained from the bounds given in Theorem 4.1,
Theorem 5.1, and Theorem 6.1.

To put the main theorem in context, we recall the results of Penner [30] and Tsai [37],
which give bounds on the least entropy in the whole mapping class group (Penner for
closed surfaces and Tsai for punctured surfaces).

Theorem 1.1 (Penner) For a surface Sg of genus g � 2,

log 2

12g� 12
�L.Mod.Sg//�

log 11

g
:

The constants in Penner’s bounds have been improved by many authors; see Aaber–
Dunfield [1], Bauer [7], Hironaka [18], Hironaka–Kin [19], and Kin–Takasawa [23].

Theorem 1.2 (Tsai) For any fixed g � 2, there is a constant cg � 1 depending on g

such that
log n

cgn
<L.Mod.Sg;n// <

cg log n

n
;

for all n� 3.

The constants cg in Tsai’s result were improved from an exponential dependence on
genus to a polynomial one by Yazdi [38].

In particular, Theorem 1.1 shows that L.Mod.Sg// goes to 0 as g tends to infinity
and Theorem 1.2 shows that L.Mod.Sg;n//, for fixed genus g , goes to 0 as n tends
to infinity. Theorems 1.1 and 1.2 contrast sharply with the behavior of the least entropy
in the pure surface braid group demonstrated by the main theorem, which shows that
L.PBn.Sg// is bounded away from 0: in fact, for any fixed number of punctures n,
L.PBn.Sg// tends to infinity as g tends to infinity.

In addition to studying the least entropy of the mapping class group, many people have
studied the least entropy of various subgroups of the mapping class group. For example,
Farb–Leininger–Margalit studied the minimal entropy of the Torelli group, the Johnson
kernel, and congruence subgroups in [12] and Hirose–Kin studied the least entropy
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Least dilatation of pure surface braids 943

of hyperelliptic handlebody groups in [20]. The least entropy of classical pure braid
groups, that is the fundamental group of the configuration space of ordered n–tuples
of points on a disc, has also been an object of significant study. Song provided upper
and lower bounds for the least entropy of the classical braid groups in [32]. Specific
values of the least entropy were found when nD 4 and nD 5 by Song–Ko–Los [33]
and Ham–Song [17], respectively. More recently, Lanneau–Thiffeault [25] gave simple
constructions to realize the least entropy for nD 4; 5 and found the least entropy for
braid groups of up to 8–strands.

The entropy of pseudo-Anosovs in the point-pushing subgroup was also studied ex-
tensively by Dowdall in [11]. Note that the point-pushing subgroup coincides with
the 1–stranded pure surface braid group PB1.Sg/. Combining the upper bound of
Aougab and Taylor [5] and the lower bound of Dowdall [11] gives the following.

Theorem 1.3 (Aougab–Taylor, Dowdall) For the closed surface Sg of genus g � 2,

1
5

log.2g/�L.PB1.Sg// < 4 log.g/C 2 log.24/:

For fixed genus, the upper bound in our main theorem interpolates between the log.g/
upper bound in Theorem 1.3 in the case of a single puncture and a constant upper
bound of 4 log.6/ when n> 2g ; see Theorem 4.1.

Dilatations of pseudo-Anosov mapping classes have been studied in a number of
other situations; see Baik–Rafiqi–Wu [6], Malestein–Putman [26], Minakawa [28],
Pankau [29], and Shin–Strenner [31]. In fact, an analogous problem to ours on small
dilatation pseudo-Anosovs has been studied in the context of nonorientable surfaces by
Strenner [34].

Outline Section 2 contains a brief introduction to surface homeomorphisms, surface
braids, and Thurston’s construction for pseudo-Anosovs; it also recalls several important
results from quasiconformal geometry. In Section 3 we give the details of a construction
of Aougab–Taylor from [5] of a small dilatation pseudo-Anosov in the point-pushing
subgroup. Section 4 outlines the construction of pseudo-Anosov pure surface braids
realizing the upper bounds given in the main theorem. Section 5 contains the proof of
the constant lower bound implied by our main theorem. In Section 6 we prove our main
theorem’s lower bound with explicit constants computed. We end the paper with an
appendix which provides a lower bound on the diameter of a “filling” graph embedded
in a surface, a result which is needed in Section 6.
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2 Preliminaries

Here we establish our notation for the remainder of the paper and recall the necessary
notions, definitions, and tools. In particular, we will give an overview of surface
homeomorphisms, surface braids, some relevant results from quasiconformal geometry,
and the details of a construction of pseudo-Anosovs due to Thurston.

2.1 Surface homeomorphisms

Let S be a connected, oriented surface of genus g possibly with a finite number of
punctures and let f W S ! S be a homeomorphism. Throughout the rest of the paper
we will assume any surface we discuss is as described here.

The homeomorphism f is called pseudo-Anosov if there exists a pair of transverse
measured foliations .Fs; �s/ and .Fu; �u/ on S and a real number �.f /> 1 such that

f � .Fs; �s/D .Fs; �.f /�1�s/ and f � .Fu; �u/D .Fu; �.f /�u/:

We call �.f / the stretch factor or dilatation of f .

If there is a collection C of disjoint, essential simple closed curves on S such that the
homeomorphism f preserves C , then f is said to be reducible. If there is some power of
the homeomorphism f isotopic to the identity, then f is called periodic or finite order.

A mapping class '2Mod.S/ is said to be pseudo-Anosov, reducible, or periodic, respec-
tively, if there is a representative homeomorphism f 2' such that f is pseudo-Anosov,
reducible, or periodic, respectively. Thurston proved the following classification of
elements in Mod.S/.

Theorem 2.1 (Nielsen–Thurston) A mapping class ' 2Mod.S/ is pseudo-Anosov,
reducible, or periodic. In addition, ' is pseudo-Anosov if and only if it is neither
reducible nor periodic.

A proof of this result can be found in [14], as well as a detailed discussion of the defini-
tions above. The interested reader can also find an introduction to these topics in [13].
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2.2 Surface braids

Let X be a topological space. We define the configuration space of n distinct ordered
points in X to be the subspace of X n given by

Conf.X; n/ WD f.x1;x2; : : : ;xn/ j xi ¤ xj for i ¤ j g:

Note that the symmetric group †n acts on Conf.X; n/ on the left by

�.x1; : : : ;xn/D .x�.1/; : : : ;x�.n//:

Definition 2.2 Let S be a surface. The braid group of S on n–strands is

Bn.S/ WD �1.Conf.S; n/=†n/:

The pure braid group of S on n–strands is

PBn.S/ WD �1.Conf.S; n//:

Note that BnD�1.Conf.C; n/=†n/ and PBnD�1.Conf.C; n// are the classical braid
and pure braid groups, respectively; see [13]. Although at first glance Definition 2.2
appears different from the definition of PBn.Sg/ given in the introduction, Birman
established that these definitions are equivalent in the following theorem, which first
appeared in [8].

Theorem 2.3 (Birman) For each pair of integers g; n� 0, let

Forget W PMod.Sg;n/!Mod.Sg/

be the forgetful map. If g � 2, then ker.Forget/ is isomorphic to �1.Conf.Sg; n//.

The proof of this result appeals to a long exact sequence of homotopy groups and
is not immediately obvious, but the intuition is straightforward. Observe that for a
homeomorphism representing a mapping class in the n–stranded pure braid group the
isotopy on the closed surface from the homeomorphism back to the identity traces out
a loop of n ordered point configurations and this defines the isomorphism. A further
discussion of braid groups can be found in [9].

2.3 Some quasiconformal results

A Teichmüller theoretic approach is employed in the proof of Theorem 6.1, which is
part of the lower bound in the main theorem. Consequently, we will need some results
from quasiconformal geometry. We begin by defining a quasiconformal map; see [3]
for more on quasiconformal mappings.
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Definition 2.4 Let f W �! f .�/ be a homeomorphism between open sets ��C

and f .�/�C . Suppose f has locally integrable weak partial derivatives and let Df D

.jfzjC jfNzj/=.jfzj � jfNzj/� 1. We say that f is quasiconformal if kDf k1 <1 and
K–quasiconformal if kDf k1�K . The quasiconformal dilatation is K.f /DkDf k1 .

An important component of our proof is a result of Teichmüller [35] and Gehring [16]
which relates the dilatation of a quasiconformal map f on the hyperbolic plane H2

to the maximum distance a point of H2 is moved by f . We give a version of the
statement which can be found in Kra [24].

Theorem 2.5 (Kra) Consider H2 with Poincaré metric � . For x;y 2H2 there exists
a unique self-mapping f W H2!H2 so that f is the identity on the boundary of H2 ,
f .x/D y , and f minimizes the quasiconformal dilatation among all such mappings.
Let K.x;y/ be the quasiconformal dilatation of such an extremal f . Then there exists
a strictly increasing real-valued function ~W Œ0;1/! Œ0;1/ such that

(i) log
�
1C 1

2
t
�
� ~.t/, and

(ii) 1
2

log K.x;y/D ~.�.x;y//.

The second important component of the proof of Theorem 6.1 is Theorem 2.6. The
statement and proof of Theorem 2.6 in the case of n D 2 are due to Imayoshi–Ito–
Yamamoto [21] with a weaker upper bound on the quasiconformal dilatation. The proof
of Imayoshi–Ito–Yamamoto holds in the case of n> 2 punctures without any modifi-
cation so we will omit the full argument and will instead provide a sketch of the proof.

Theorem 2.6 (Imayoshi–Ito–Yamamoto) Let 'W Sg;n! Sg;n be a pseudo-Anosov
homeomorphism representing an element of PBn.Sg/ and let y'W Sg ! Sg be the
extension of ' to the surface with the punctures filled in. There exists a conformal
structure on Sg together with an isotopy Ft W Sg! Sg with t 2 Œ0; 1�, through quasi-
conformal maps, between idW Sg! Sg and y' on the closed surface Sg . Furthermore,
for each t 2 Œ0; 1� the quasiconformal dilatation Kt of Ft satisfies

log.Kt /� 3 log.�.'//:

Sketch of proof We will begin by constructing Ft . Let Sg be given a conformal
structure so that Œid�D ŒidW Sg;n! Sg;n� lies on the axis for ' , and let

Œ0; 1� 3 t 7! Œft � 2 T .Sg;n/
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be the Teichmüller geodesic connecting Œid� and '�1.Œid�/. So for all t 2 Œ0; 1�,
ft W Sg;n! ft .Sg;n/ is a Teichmüller mapping and

1
2

log.K.ft //�
1
2

log.K.f1//D log.�.'�1//D log.�.'//:

By filling in the punctures, we can extend ft to yft W Sg!
yft .Sg/. Denote by y't the

Teichmüller map of Sg onto yft .Sg/ isotopic to yft on Sg . Then we define the map
Ft W Sg � Œ0; 1�! Sg by

Ft .x/D y'
�1
t ı

yft .x/ for x 2 Sg and t 2 Œ0; 1�:

The fact that Ft is an isotopy is proved in [21]. Note that

log.Kt /D log.K.y'�1
t ı

yft //� log.K.y'�1
t //C log.K. yft //:

Furthermore, we have that t 7! Œ yft � is a closed loop of length at most log.�.'//. So

1
2

log.K.y'�1
t //D dT .Sg/.Œ

yft �; Œid�/� diamT .Sg/

�
fŒ yfs � j s 2 Œ0; 1�g

�
�

1
2

log.�.'//:

Thus,
log.Kt /� 3 log.�.'//:

2.4 Thurston’s construction

Here we will introduce a useful tool for constructing pseudo-Anosov mapping classes
due to Thurston [36]. We say a collection C of essential simple closed curves fills our
surface S DSg;n if the curves intersect transversely and minimally and the complement
of C in S is a collection of disks and once-punctured disks. Equivalently, we could
say that C fills S if any essential simple closed curve on S has nonzero geometric
intersection number with at least one curve in our collection C.

Now suppose we have a collection C D fc1; c2; : : : ; cmg of pairwise disjoint, essential
simple closed curves on S. We can define a multitwist TC about C to be the product
of positive Dehn twists about each ci 2 C.

Theorem 2.7 (Thurston) Let A D f˛1; ˛2; : : : ; ˛mg and B D fˇ1; ˇ2; : : : ; ˇkg be
collections of pairwise disjoint, essential, simple closed curves on S such that A[B

fills S. There is a real number � > 1 and homomorphism

�W hTA;TBi ! PSL.2;R/ given by TA 7!

�
1 ��1=2

0 1

�
and TB 7!

�
1 0

�1=2 1

�
:

Furthermore, for f 2 hTA;TBi, f is pseudo-Anosov if its image �.f / is hyperbolic,
in which case the dilatation of f is equal to the spectral radius of �.f /.
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Consider a mapping class TAT �1
B
2 hTA;TBi as given by Theorem 2.7. The image

of TAT �1
B

under � is given by�
1 ��1=2

0 1

��
1 0

�1=2 1

��1

D

�
�C 1 ��1=2

��1=2 1

�
:

The trace of this matrix is 2C�. Thus, by Theorem 2.7, TAT �1
B

is pseudo-Anosov
and log.�.TAT �1

B
// is bounded above by log.2C�/.

The real number � in Theorem 2.7 is the Perron–Frobenius eigenvalue of NN T ,
where N is defined as Ni;j D i.˛i ; ǰ /. If AD f˛g and B D fˇg, then �D i.˛; ˇ/2 .
This will be a useful fact to keep in mind for the following section. In general, � cannot
be computed in such a straightforward manner. However, we can bound � from above
by the maximum row sum of NN T ; see [15].

In order to compute the row sums of NN T we will follow the method used in [2],
which we describe here. Given N , we can build a labeled bipartite graph G with m red
vertices and k blue vertices corresponding to the multicurves A and B , respectively.
An edge from the i th red vertex to the j th blue vertex exists if Ni;j ¤ 0, in which case
it is labeled by Ni;j . We will define the weight of a path in G to be the product of
edge labels in that path. The .i; j / entry of NN T is equal to the sum of the weights of
the paths of length 2 from the i th red vertex to the j th red vertex in G. To compute the
row sum of NN T corresponding to a particular curve we start at the vertex associated
to that curve and sum the weights of all paths of length 2, possibly with backtracking,
beginning at that vertex.

3 The point-pushing subgroup

The construction given by Aougab–Taylor in [5] of point-pushing homeomorphisms
used to realize the upper bound in Theorem 1.3 will play an important role in our
proof of the main theorem so we will recall it here. We also employ some further work
of Aougab–Huang [4] to gain a more careful estimate of the upper bound than that
provided in [5]. In particular, we will prove the following.

Theorem 3.1 (Aougab–Taylor) For the closed surface Sg of genus g � 2,

L.PB1.Sg// < 4 log.g/C 2 log.24/:
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Proof of Theorem 3.1 Let ˛ and ˇ be a minimally intersecting filling pair of curves
on the closed surface Sg . By [4], we have that i.˛; ˇ/D 2g� 1. Let ˇ1 and ˇ2 be
the boundary components of a small tubular neighborhood of ˇ . Thus, ˇ1 and ˇ2 are
homotopic to ˇ on Sg . Now place a marked point z at some point of ˇ n˛ . We can
puncture Sg at z to form the surface Sg;1 .

Set fˇ D T 3
ˇ1
ı T �3

ˇ2
. This is a point-pushing map in Sg;1 obtained by pushing

the marked point z along ˇ three times. Our goal is to show that f˛; fˇ.˛/g fills
the punctured surface Sg;1 , and then apply Theorem 2.7 to obtain a pseudo-Anosov
mapping class in PB1.Sg/. We apply the following inequality of Ivanov found in [22]
to show that any essential simple closed curve on Sg;1 must intersect either ˛ or fˇ.˛/.

Lemma 3.2 (Ivanov) Let c1; : : : ; cm be a collection of pairwise disjoint, pairwise
nonhomotopic simple closed curves on a surface S with negative Euler characteristic
and let .s1; : : : ; sm/ 2 Zm . For any simple closed curves 
 and � ,

mX
iD1

.jsi j � 2/i.�; ci/i.ci ; 
 /� i.�; 
 /� i.T s1
c1
ı � � � ıT sm

cm
.�/; 
 /

�

mX
iD1

jsi ji.�; ci/i.ci ; 
 /C i.
; �/:

Suppose 
 is an essential simple closed curve on Sg;1 such that i.
; ˛/ D 0. Now
we can apply Lemma 3.2 with � D ˛ , .s1; s2/ D .3;�3/, and .c1; c2/ D .ˇ1; ˇ2/.
Recall that ˛ and ˇ filled Sg , so f˛; ˇ1; ˇ2g fill Sg;1 . Thus, i.
; ˇi/¤ 0 for i D 1; 2,
which implies that the left-hand side of the inequality in Lemma 3.2 is nonzero. Hence,
i.
; fˇ.˛//¤ 0, as desired. Furthermore, we can use the fact that i.˛; ˇ/D 2g� 1,
together with Lemma 3.2, to calculate that i.˛; fˇ.˛//� 24g2� 24gC 6.

Since fˇ is a point-pushing map, we know that ˛ and fˇ.˛/ are homotopic on
the closed surface Sg . Thus, T˛T �1

fˇ.˛/
2 PB1.Sg/, and by Theorem 2.7, it is also

pseudo-Anosov. Recall that in the case of two filling curves, Theorem 2.7 tells us
that �.T˛T �1

fˇ.˛/
/� i.˛; fˇ.˛//

2C 2. Thus, �.T˛T �1
fˇ.˛/

/ < 242g4 and we obtain the
desired upper bound

L.PB1.Sg// < 4 log.g/C 2 log.24/:

As we will need this construction in the next section, we will denote the curves ˛
and fˇ.˛/ which we constructed above by ˛ and � , respectively, and call them
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an Aougab–Taylor pair. Note that we can construct an Aougab–Taylor pair f˛; �g
on a surface of genus g with a single boundary component with the same bound
of 24g2� 24gC 6 on the intersection number, since on a surface of genus g > 2 with
a single boundary component there exists a pair of filling curves that intersect 2g� 1

times. In the case of a genus 2 surface with a single boundary component a minimally
intersecting pair of filling curves will intersect four, not three, times. However we
can still construct an Aougab–Taylor pair f˛; �g with i.˛; �/� 24. When our surface
is a torus with a single boundary component, we can construct an Aougab–Taylor
pair f˛; �g with i.˛; �/D 6.

4 The upper bounds

We will begin by proving the main theorem’s upper bound, which depends on the
genus g and number of punctures n of our surface. We state this upper bound with
explicit constants in Theorem 4.1. To prove the upper bound it suffices to construct a
pseudo-Anosov pure braid satisfying the desired upper bound for each g and n.

Theorem 4.1 For a surface Sg of genus g � 2 with 1� n� 2g , we have

L.PBn.Sg//� 4 log
�

2g

n

�
C 4 log.7/:

Fix a genus g � 2. Our main tool throughout this section will be leveraging Thurston’s
construction to build our desired pseudo-Anosov pure surface braids by building pairs
of filling multicurves.

Proof of Theorem 4.1 The main strategy of our proof is to divide our surface into
subsurfaces with a single boundary component, fill each of these subsurfaces with an
Aougab–Taylor pair, and then add a few additional curves which bound twice-punctured
disks to combine these Aougab–Taylor pairs into a single pair of filling multicurves. We
will employ this strategy in each of our three cases: when nD 2; 3, when 4� n< 2g ,
and when n� 2g .

Proof in Case 1 We begin our construction in the case of n D 2. Let A and B

denote the multicurves marked in red and blue, respectively, in Figure 1, which are
constructed in the following way. Consider two subsurfaces of Sg;n given by cutting
along a separating curve that divides Sg;n into two subsurfaces of genus at most dg=2e
each containing a single puncture. On each of these subsurfaces we can construct
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Figure 1: Construction of filling multicurves A and B for two and three punctures

an Aougab–Taylor pair as described in Section 3. We then add an additional curve
bounding a twice-punctured disk containing the pair of punctures. We illustrate this
construction in Figure 1 for the case of a genus 2 surface. In this situation our Aougab–
Taylor pairs on each genus 1 subsurface intersect six times and our additional red curve,
which bounds a twice-punctured disk containing the pair of punctures, intersects each
blue curve eight times. For nD 3 we can add an additional puncture, as shown on the
right of Figure 1.

Let f D TAT �1
B

. Note that f is pseudo-Anosov by Thurston’s construction, since
A and B jointly fill Sg;n . Furthermore, f 2 PBn.Sg/, since the red curve bounding
the twice-punctured disk is trivial on the closed surface and the pairs of curves which
fill each subsurface will be homotopic to each other on the closed surface. Thus, the
composition of positive and negative multitwists about A and B is the trivial mapping
class on the closed surface. As discussed in Section 2.4, we can bound �.f / from
above by the Perron–Frobenius eigenvalue � of NN T . Since there are only five curves
in A[B , as shown in Figure 1, we can explicitly compute �. Note that the red curve
which bounds a twice- (or thrice-) punctured disk intersects each blue curve at most
24.dg=2e/2�24dg=2eC8 times. So we have that ��3

�
24.dg=2e/2�24dg=2eC8

�2
<

74.dg=2e/4� 2, where � is the Perron–Frobenius eigenvalue of NN T , as described
in Theorem 2.7. Thus,

log.�.f //� log.�C 2/� log
�

74

�
g

2

�4�
D 4 log

�
g

2

�
C 4 log.7/:

Proof in Case 2 Now consider the case when 4 � n < 2g . We will illustrate our
construction in Figure 2 in the case of a genus 4 surface. We will build our pair of
filling multicurves on Sg;n in the following way. We will partition Sg into bn=2cC 1

subsurfaces, bn=2c of which have genus at most d2g=ne and one boundary component,
and one of which is a sphere with bn=2c holes. Puncture each nonplanar subsurface
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once, and as before, we fill each of these subsurfaces with an Aougab–Taylor pair
˛ and ˇ , shown in red and blue, respectively, in Figure 2. We then add an additional
puncture to each nonplanar subsurface so that it is near the boundary component of that
subsurface. This is illustrated in Figure 2. Let A be the union of the ˛ curves and B

be the union of the ˇ curves from our Aougab–Taylor pairs. Now view the nonplanar
subsurfaces as being arranged cyclically around the sphere with boundary, as shown in
Figure 2, and for consecutive pairs of punctures, one coming from the Aougab–Taylor
pair and one a puncture added near the subsurface boundary, add a red curve to our
multicurve A which bounds a twice-punctured disc. We have now constructed a pair
of filling multicurves A and B which fill our surface Sg;n .

Note that these additional bounding pair curves will each intersect with two blue curves.
They will intersect with one blue curve twice and with the other blue curve at most
24.d2g=ne/2� 24d2g=neC 8 times. The picture on the left of Figure 2 illustrates the
case of an even number of punctures and that on the right the case of an odd number
of punctures, where we add an additional puncture to the central sphere with boundary.

Let f DTAT �1
B

. Note that f is a pseudo-Anosov pure braid for the same reasons given
in Case 1. Thus, we can proceed immediately to computing the maximum row sum
of NN T in order to bound �.f /. We can compute the maximum row sum of NN T

by considering the labeled bipartite graph in Figure 3 that describes the intersection
pattern of red and blue curves.

Note that each blue vertex has valence 3 and each red vertex has valence at most 2.
Furthermore, the dashed edges have label at most 24.d2g=ne/2� 24d2g=neC 8 and
the solid edges have label 2.

Thus, for the red vertices of valence 2, we have a corresponding row sum of at most

2

�
24

�
2g

n

�2

� 24

�
2g

n

�
C 8

�2

C 6

�
24

�
2g

n

�2

� 24

�
2g

n

�
C 8

�
C 4:

For the red vertices of valence 1 we have a corresponding row sum of at most

2

�
24

�
2g

n

�2

� 24

�
2g

n

�
C 8

�2

C 2

�
24

�
2g

n

�2

� 24

�
2g

n

�
C 8

�
:

Note that each of these is at most 1152.d2g=ne/4� 2< 64.d2g=ne/4� 2. Thus, the
maximum row sum of NN T is bounded above by 64.d2g=ne/4� 2 and we have that

log.�.f //� log.�C 2/� log
�

64

�
2g

n

�4�
D 4 log

�
2g

n

�
C 4 log.6/:
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Figure 2: Examples of filling multicurves A and B for 4� n< 2g

Proof in Case 3 Note that when n � 2g the inequality in Theorem 4.1 says that
we have a constant upper bound on L.PBn.Sg//. The construction given above is
for n< 2g , but can be extended to give a constant upper bound as we add additional
punctures. Suppose we have n� 2g . We can divide Sg into g subsurfaces of genus 1

and one sphere with g boundary components. We then puncture each of the g nonplanar
subsurfaces and fill each one with an Aougab–Taylor pair f˛; �g such that i.˛; �/D 6

using the construction in Section 3 and continue to add punctures to the central sphere
with boundary as shown in Figure 4 where the red curves belong to A and the blue
curves belong to B . Note that this manner of adding additional punctures does not
increase the number of pairwise intersections between red and blue curves nor does it
introduce any curves that have nonzero intersection with more than two other curves.

Figure 3: Bipartite graph for A and B when 4� n< 2g
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Figure 4: Examples of filling multicurves A and B for n� 2g

Let f D TAT �1
B

. Note that f is a pseudo-Anosov pure braid by the same reasoning
used previously. Thus, just as we did before, we can proceed directly to computing the
maximum row sum of NN T in order to bound �.f /. We can compute the maximum
row sum of NN T by considering the labeled bipartite graph in Figure 5 which is
constructed in the same way as the bipartite graph in Figure 3.

The dashed edges in Figure 5 are labeled by 8 and the solid edges are labeled by 2.
Thus, we can compute that the maximum row sum of NN T is 152 and we have that
log.�.f // < 4 log.6/.

Thus, we have addressed each of our three cases and shown that

L.PBn.Sg//� 4 log
�

2g

n

�
C 4 log.7/:

Figure 5: Bipartite graph for A and B when n> 2g
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5 A constant lower bound

In this section we provide a constant lower bound on L.PBn.Sg/.

Theorem 5.1 For a surface Sg of genus g � 2 with n� 1, we have

:000155�L.PBn.Sg//:

The proof of Theorem 5.1 relies on the following result of Agol–Leininger–Margalit,
which can be found in [2].

Proposition 5.2 Let S be a surface and f 2Mod.S/ pseudo-Anosov. Then

:00031

�
�.f /C 1

j�.S/j

�
� log.�.f //;

where �.f / is the dimension of the subspace of H1.S IR/ fixed by f .

In order to make use of this result we must examine the action of a pure surface braid
f 2 PBn.Sg/ on H1.Sg;nIR/. We can place the following lower bound on �.f /.

Lemma 5.3 If f 2 PBn.Sg/, then

maxf2g; n� 1g � �.f /:

Proof of Lemma 5.3 Let Mf denote the mapping torus of f and let b1.Mf / denote
the first Betti number of Mf with coefficients in R. Note that b1.Mf /D �.f /C 1.
This can be obtained by an application of the Mayer–Vietoris long exact sequence.

For n� 1 < 2g , we will show that b1.Mf / � 2gC 1. Since yf W Sg! Sg , obtained
by filling in the punctures of Sg;n and extending f to Sg , is isotopic to the identity,
M yf
ŠMid Š Sg �S1 . Thus, there exists a map from Mf ! Sg �S1 that induces

a surjection on the fundamental groups. By the Hurewicz theorem, we know that
H1.Mf IZ/ is isomorphic to the abelianization of �1.Mf /. Thus, we have that
dim.H1.Mf IR//� rank.�1.Sg �S1/ab/D 2gC 1. Thus, �.f /� 2g .

For 2g � n � 1, observe that f fixes the subspace P of H1.Sg;n/ generated by
the peripheral curves bounding each puncture because f fixes each puncture. Thus,
�.f /� n� 1, since P has dimension n� 1.

Proof of Theorem 5.1 By Lemma 5.3, for a pseudo-Anosov f 2 PBn.Sg/, we have
that .�.f /C 1/=j�.Sg;n/j>

1
2

. This, together with Proposition 5.2, gives our desired
lower bound

:000155�L.PBn.Sg//:
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6 A lower bound for fixed number of punctures

We end with a proof of the lower bound which, for fixed n, goes to infinity as g does.

Theorem 6.1 If f 2 PBn.Sg/ is pseudo-Anosov and g > 5, then

1

3
log
�

1C
log
�

1
3
.g� 2/

�
C 2

160n

�
� log.�.f //:

Proof of Theorem 6.1 By Theorem 2.6, we have a hyperbolic/conformal structure
on Sg and an isotopy Ft through quasiconformal maps from the identity to f such
that for each t the quasiconformal constant Kt satisfies

log.Kt /� 3 log.�.f //:

Choose a lift zFt of Ft to the universal cover H2 of Sg so that zF0 is the identity.
Therefore, zFt is the identity on the circle at infinity. Thus, we can apply Theorem 2.5
and Theorem 2.6 to see that

~
�

max
x2H2

�.x; zFt .x//
�
�

1
2

log.Kt /�
3
2

log.�.f //:

Since this holds for all t 2 Œ0; 1�, we have

~
�

max
t2Œ0;1�

max
x2H2

�.x; zFt .x//
�
�

3
2

log.�.f //:

Note that when measuring distance on the surface we are using the hyperbolic metric,
denoted by dSg

, and in the hyperbolic plane we are using the Poincaré metric, denoted
by � , which is one-half the hyperbolic metric. Thus, the covering map � W H2! Sg

is 2–Lipschitz and for all x 2H2 ,

dSg
.�.x/;Ft .�.x///� 2�.x; zFt .x//:

So we have that

~
�

max
t2Œ0;1�

max
x2Sg

dSg
.x;Ft .x//

�
� 3 log.�.f //:

If fz1; : : : ; zng are the marked points of Sg such that Sg;n D Sg n fz1; : : : ; zng, then

i W t 7!Ft .zi/, with t 2 Œ0; 1�, is a closed curve for each i . Since f is pseudo-Anosov,

1[� � �[
n fills Sg . These n curves define the 1–skeleton � of a cell decomposition
of Sg . Thus, for some i ,

diam.�/
n

� 2 max
t2Œ0;1�

dSg
.zi ;Ft .zi//:
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By Theorem A.1,
log
�

1
3
.g� 2/

�
� 2

40n
�

diam.�/
n

:

By Theorem 2.5, ~ is strictly increasing, so we have that

~

�
log
�

1
3
.g� 2/

�
� 2

80n

�
� ~

�
diam.�/

2n

�
� ~

�
max

t2Œ0;1�
dSg

.zi ;Ft .zi//

�
� 3 log.�.f //:

Since, by Theorem 2.5,

log
�

1C
log
�

1
3
.g� 2/

�
� 2

160n

�
� ~

�
log
�

1
3
.g� 2/

�
� 2

80n

�
;

we have that
1

3
log
�

1C
log
�

1
3
.g� 2/

�
� 2

160n

�
� log.�.f //;

as desired.

Appendix Diameter of a graph embedded in a surface

Let S be a closed genus g � 2 hyperbolic surface and let � be the 1–skeleton of a
cell decomposition of S. Our goal in this appendix is to provide a lower bound on the
diameter of � , which we define as

diam.�/D max
x;y2�

dS .x;y/:

This lower bound is a crucial piece of the proof of Theorem 6.1. For a result related to
Theorem A.1, see [27].

Theorem A.1 Let � be an embedded graph in S such that S n� is a collection of
disks. If g > 5, then

log
�

1
3
.g� 2/

�
� 2

40
� diam.�/:

The first ingredient we will need for the proof of Theorem A.1 is a type of generalized
triangulation of S which consists of both geodesic triangles and a type of annular
generalization of a triangle called a trigon as defined by Buser; see [10].

Definition A.2 Let S be a compact Riemann surface of genus � 2. A closed domain
D � S is called a trigon if it is a simply connected, embedded geodesic triangle
or if it is a doubly connected, embedded domain, with one boundary component a
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Figure 6: A trigon

smooth closed geodesic and the other boundary component two geodesic arcs as shown
in Figure 6. The closed geodesic and the two arcs are the sides of D.

Buser proved that S admits such a triangulation into trigons of controlled size:

Theorem A.3 [10, Theorem 4.5.2] Any compact Riemann surface of genus � 2

admits a triangulation such that all trigons have sides of length � log 4 and area between
0:19 and 1:36. Furthermore, all geodesic triangles have sides of length at least log.2/.

Suppose we have a generalized triangulation T of S as in Theorem A.3. We will
extend our generalized triangulation to an even more general combinatorial model, T 0,
for S in the following way. First, we note that a computation (which we omit) using
equation (iii) of Theorem 2.3.1 in [10] shows that the width (ie minimal distance
between nonadjacent boundary components) of a doubly connected trigon which occurs
in T is at least 1

4
. Next, consider collars of closed geodesics in Sg formed by gluing

together two doubly connected trigons along their closed geodesic sides as in Figure 7.
Now we divide each collar along appropriately chosen simple closed curves (each an
equidistant curve to the closed geodesic) into annuli between simple closed curves and
two generalized trigons on the ends, so that each annulus or generalized trigon has
width between 1

4
and log.2/> 1

2
; see the right-hand side of Figure 7. Our combinatorial

model T 0 consists of three types of pieces: geodesic triangles, generalized trigons, and
annuli. Note that each of these pieces is of bounded size.

Figure 7: A collar formed by two trigons

We can now define the combinatorial length of a geodesic between two points p; q 2 S

in terms of our combinatorial model T 0. For a geodesic segment pq � S between
p and q we define the combinatorial length of pq , denoted by `C .pq/, as the minimum
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number of pieces of T 0 that pq passes through. The following lemma establishes an
explicit inequality between `C and the hyperbolic length `S .

Lemma A.4 Let p; q 2Sg , let pq be a geodesic segment between them, and let T 0 be
the extended combinatorial model of S given above. Then `C .pq/� 40 � `S .pq/C 2.

Proof of Lemma A.4 Note that pq can be subdivided into segments which each lie
inside a single piece of T 0. Our proof of Lemma A.4 will consist mainly of analyzing
which segments of pq are short and which are good. We will then show that segments
of pq cannot be short too many times in a row.

There are three types of short segments we will consider, one in each of the three
types of pieces. In order to define the first type, we add midpoints to each side of the
geodesic triangles in T . A segment which has endpoints on adjacent subdivided pieces
of a single geodesic triangle is called short. The second type of short segment occurs
when pq enters and exits an annulus from a single side instead of passing through the
entire width of the annulus. In this situation, a segment which has both endpoints on
a single boundary component of an annulus will also be considered short. The third
type of short segment occurs when a segment without self-intersections has endpoints
on adjacent subdivided pieces of the geodesic boundary arcs of a generalized trigon,
cutting off a corner, as shown by the blue segment in Figure 8. If a segment is not
short, then we will call it good.

Figure 8: Short (blue) and good (red) segments in a generalized trigon

Recall the following formula for a geodesic triangle in the hyperbolic plane, where
a, b , c are the sides of the triangle and ˛ , ˇ , 
 are the respective opposite angles:

(1) cos.
 /D
cosh.c/� cosh.a/ cosh.b/
�sinh.a/ sinh.b/

:

We can find a lower bound on the length of 
 for a geodesic triangle in T 0 by
maximizing the length of a and b and minimizing the length of c . Taking a; bD log.4/
and c D log.2/, equation (1) implies that 
 > �

9
. Thus, there is a lower bound of �

9

on the interior angles of the triangles in T . So we conclude that pq has no more
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than �=
�
�
9

�
D 9 short segments of the first type in a row. Next, we note that there

cannot be two short segments of type two or three in a row. So we can assume that for
every ten adjacent segments of pq , at least one of them is good.

We now establish that good segments have length at least 1
4

. Once again we have three
types of segments to consider, the shortest possible good segments within each of our
three types of pieces in T 0. Within a geodesic triangle in T 0 the shortest possible good
segment is one that joins the midpoints of two sides of a triangle. Once again using (1),
we see that the length of a good segment is bounded below by

cosh�1
�
�sinh.log.2// sinh.log.2// cos

�
�
9

�
C cosh.log.2// cosh.log.2//

�
�

1
4
:

Within a generalized trigon the shortest possible good segment is a perpendicular
segment going from the closed boundary component of the trigon to the midpoint of
one of the geodesic arc boundary components. A segment of this type has length at
least 1

4
by our definition of T 0. One might think that a shorter possible good segment

in a generalized trigon is one passing from one geodesic arc boundary to the other as
shown by the red arc in Figure 8. However, this red arc has length at least half of the
length of the geodesic arc boundary and so it has length at least 1

2
log.2/ > 1

4
. Lastly

we have that within an annulus the shortest possible good segment is a perpendicular
segment passing from one boundary component to the other, which has length at least 1

4

since we defined our annuli to have width at least 1
4

.

Thus, at worst we have that 1
4
�

1
10
.`C .pq/� 2/� `S .pq/, where the �2 comes from

the fact that the initial and terminal segments of pq can be arbitrarily short depending
on where they lie within a piece of T 0, but still add 2 to `C .pq/. So we have that
`C .pq/� 40 � `S .pq/C 2, as desired.

We define the combinatorial distance, denoted by dC , between two points p; q 2Sg as

dC .p; q/D inf f`C .pq/ j pq is a geodesic segment between p and qg:

Thus, by Lemma A.4, we have that dC .p; q/� 40 � dS .p; q/C 2.

Let T� be the subset of T 0 that minimally covers � , where a piece t 2 T 0 belongs
to T� if � \ t ¤ ¿. We will denote by � 0 the 1–skeleton of T� together with a
geodesic arc for each generalized trigon and annulus in T 0, as shown by the dotted arc
in Figure 9, which ensures � 0 is connected.

We will need one more fact relating the length of � 0 to the genus of our surface before
we continue to the proof of our main result.
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Figure 9: A generalized trigon’s contribution to � 0

Lemma A.5 Let � 0 be as above. Then

`.� 0/D
X
e2� 0

`.e/ > 2�.g� 1/:

Proof of Lemma A.5 Note that if ˛ is a simple closed curve that intersects � , then
it must intersect � 0. Thus, � 0 fills Sg , since � does. Now because � 0 fills, it cuts Sg

into polygons. The sum of the lengths around these polygons is 2`.� 0/, while the sum
of their areas is 4�.g� 1/.

Now recall that the maximum area A.p/ enclosed by a loop of length p in the
hyperbolic plane is at most the area of a circle of radius rD sinh�1.p=.2�//. Therefore,

A.p/� 4� sinh2

�
sinh�1.p=.2�//

2

�
� 4� sinh2

�
1

2
log
�

1C
p

�

��
D

p2

pC�
< p:

Applying this inequality to each of the polygons and summing, we have 4�.g� 1/�

2`.� 0/, as desired

Lemma A.5 implies that T� contains at least g � 1 pieces of T 0, since each piece
contributes a length of at most 3 log.4/ > 2� to `.� 0/. We are now in a position to
prove Theorem A.1.

Proof of Theorem A.1 Let T 0 and T� be as described previously. Consider the
graph G in Sg which is dual to T 0, that is, the vertices of G each correspond to a piece
of T 0 and edges in G correspond to shared boundary components. Note that each
vertex of G has valence at most 3. Thus, if we take a base piece �0 2 T� � T 0, then
we know that at combinatorial distance d from �0 there are at most 3 �2d�1C1 pieces
in T 0. This is because a ball of radius d in G has size at most 3 � 2d�1 . So, unless
g� 1< 3 � 2d�1C 1, there is a piece of T� not in this ball. Hence, the combinatorial
diameter of T� (within T 0 ) is at least log..g�2/=3/ < log2..g�2/=3/ < diamC .T�/

for g > 5 and we are done.
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