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A note on the .1; n/–category of cobordisms

DAMIEN CALAQUE

CLAUDIA SCHEIMBAUER

In this extended note we give a precise definition of fully extended topological field
theories à la Lurie. Using complete n–fold Segal spaces as a model, we construct
an .1; n/–category of n–dimensional bordisms, possibly with tangential structure.
We endow it with a symmetric monoidal structure and show that we can recover the
usual category of bordisms.
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Introduction

Topological field theories (TFTs) arose as toy models for physical quantum field theories
and have proven to be of mathematical interest, notably because they are a fruitful tool
for studying topology. An n–dimensional TFT is a symmetric monoidal functor from
the category of bordisms, which has closed .n�1/–dimensional manifolds as objects
and n–dimensional bordisms as morphisms, to any other symmetric monoidal category,
which classically is taken to be the category of vector spaces or chain complexes.

A classification of 1– and 2–dimensional TFTs follows from classification theorems for
1– and 2–dimensional compact manifolds with boundary; see Abrams [1]. In order to
obtain a classification result for larger values of n one needs a suitable replacement of
the classification of compact n–manifolds with boundary used in the low-dimensional
cases. Moreover, as explained by Baez and Dolan [2], this approach requires passing
to “extended” topological field theories. Here “extended” means that we need to be
able to evaluate the n–TFT not only at n– and .n�1/–dimensional manifolds, but
also at .n�2/–, . . . , 1– and 0–dimensional manifolds. Thus, an extended n–TFT is a
symmetric monoidal functor out of a higher category of bordisms. In light of the hope
of computability of the invariants determined by an n–TFT, eg by a triangulation, it is
natural to include this data. Furthermore, Baez and Dolan conjectured that, analogously
to the 1–dimensional case, extended n–TFTs are fully determined by their value at a
point, calling this the cobordism hypothesis. A definition of a suitable bicategory of
n–bordisms and a proof of a classification theorem of extended TFTs for dimension 2
was given by Schommer-Pries [49].

In his expository manuscript [40], Lurie suggested passing to .1; n/–categories for
a proof of the cobordism hypothesis in arbitrary dimension n. He gave a detailed
sketch of such a proof using a suitable higher category of bordisms, which, informally
speaking, has zero-dimensional manifolds as objects, bordisms between objects as 1–
morphisms, bordisms between bordisms as 2–morphisms, etc, and for k > n there are
only invertible k–morphisms given by diffeomorphisms and their isotopies. However,
finding an explicit model for such a higher category poses one of the difficulties in
rigorously defining these n–dimensional TFTs, which are called “fully extended”.

In [40], Lurie gave a short sketch of a definition of this .1; n/–category using complete
n–fold Segal spaces as a model. Instead of using manifolds with corners and gluing
them, his approach was to conversely use embedded closed (not necessarily compact)
manifolds, following along the lines of Bökstedt and Madsen [12], Galatius [19] and
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Galatius, Tillmann, Madsen and Weiss [21], and to specify points where they are cut
into bordisms of which the embedded manifold is a composition. Whitney’s embedding
theorem ensures that every n–dimensional manifold M can be embedded into some
large-enough vector space and suitable versions for manifolds with boundary can be
adapted to obtain an embedding theorem for bordisms; see Section 8. Moreover, the
rough idea behind the definition of the n–fold Segal space is that it includes the data,
for k1; : : : ; kn , of the classifying space for diffeomorphisms of — in the i th direction
ki –fold — composable n–bordisms. Lurie’s idea was to use the fact that the space of
embeddings of M into R1 is contractible to justify the construction.

Modifying this approach, the main goal of this note is to provide a detailed construction
of such an .1; n/–category of bordisms, suitable for explicitly constructing an example
of a fully extended n–TFT, which will be the content of a subsequent paper [13]. As
we explain in Section 6.3, Lurie’s sketch does not lead to an n–fold Segal space, as the
essential constancy condition is violated. In our Definition 5.1, we propose a stronger
condition on elements in the levels of the Segal space. We show that this indeed yields
an n–fold Segal space PBordn . Its completion Bordn defines an .1; n/–category of
n–bordisms and thus is a corrigendum to Lurie’s n–fold simplicial space of bordisms
from [40].

Furthermore, we endow it with a symmetric monoidal structure and also consider
bordism categories with additional structure, eg orientations and framings, which
allows us, in Section 10, to rigorously define fully extended topological field theories.

Our main motivation to have a precise definition of the .1; n/–category of bordisms
was the following: in the subsequent paper [13] we explicitly construct an example
of a fully extended topological field theory. Given an En–algebra A we show that
factorization homology with coefficients in A leads to a fully extended n–dimensional
topological field theory with target category a suitable .1; n/–Morita category with
En–algebras as objects, bimodules as 1–morphisms, bimodules between bimodules as
2–morphisms, etc.

Organization of the paper In Part I, consisting of the first three sections, we recall
the necessary tools from higher category theory needed to define fully extended TFTs.

Section 1 reviews the model for .1; 1/–categories given by complete Segal spaces and
recalls some useful information about other models. In Section 2 we explain the model
for .1; n/–categories given by complete n–fold Segal spaces and introduce a model
which is a hybrid between complete n–fold Segal spaces and Segal n–categories.
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We propose two equivalent definitions of symmetric monoidal structures on complete
n–fold Segal spaces in Section 3, one as a � –object in complete n–fold Segal spaces
following Toën and Vezzosi [56] and one as a tower of suitable .nCk/–fold Segal
spaces with one object, 1–morphism, . . . , .k�1/–morphism for k � 0 following the
delooping hypothesis.

Part II is devoted to the construction of Bordn .

Our construction of the .1; n/–category Bordn of higher bordisms is based on a
simpler complete Segal space Int of closed intervals, which we introduce in Section 4.
The closed intervals correspond to places where we are allowed to cut the manifold
into the bordisms it comprises. The fact that we prescribe closed intervals instead of
just a point corresponds to fixing collars of the bordisms.

Section 5 is the central part of this article and consists of the construction of the
complete n–fold Segal space Bordn of bordisms. We discuss variants of Bordn ,
including .1; d /–categories of bordisms and tangles for arbitrary d , and compare our
definition to Lurie’s sketch in Section 6.

In Section 7 we endow Bordn with a symmetric monoidal structure, both as a � –object
and as a tower, and compare the two definitions.

In Section 8 we elaborate on the interpretation of the objects in Bordn as n–bordisms.
Furthermore we show that the homotopy category of the .1; 1/–category of bordisms
is what one should expect, namely the homotopy category of the .1; 1/–category of
n–bordisms Bord.1;1/n gives back the classical bordism category nCob.

Finally, in Section 9 we consider bordism categories with additional structure such as
orientations, denoted by Bordor

n , and framings, denoted by Bordfr
n , which allows us to

define fully extended n–dimensional topological field theories in Section 10.

Conventions

(1) Let Space denote the category of simplicial sets with its usual model structure.
By space we mean a fibrant object in Space , ie a Kan complex.

(2) We denote the simplex category by �. Objects are finite ordered sets denoted
by Œm�D .0 < � � �<m/ and morphisms are monotone maps. As an ordered set,
we can view Œm� as a category. Functors between the associated categories arise
exactly from monotone maps. Thus, we can take the nerve of Œm�, which we
will denote by �m .
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(3) The geometric realization j�l j is the standard geometric simplexn
.x0; : : : ; xl/ 2RlC1 W

P
i

xi D 1; xi � 0
o
:

We denote the extended simplex
˚
.x0; : : : ; xl/ 2RlC1 W

P
i xi D 1

	
by j�l je .
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Part I Symmetric monoidal .1; n/–categories

A higher category, or n–category for n�0, has not only objects and (1–)morphisms, but
also k–morphisms between .k�1/–morphisms for 1� k � n. Strict higher categories
can be rigorously defined, however most higher categories which occur in nature are not
strict. Thus, we need to weaken some axioms and coherences between the weakenings
become rather involved to formulate explicitly. Things turn out to become somewhat
easier when using a geometric definition, in particular when furthermore allowing
k–morphisms for all k � 1, which for k � n are invertible. Such a higher category
is called an .1; n/–category. There are several models for such .1; n/–categories,
eg Segal n–categories (see [27]), ‚n–spaces (see [46]) and complete n–fold Segal
spaces (see [3]), which all are equivalent in an appropriate sense (see [53; 6]). For our
purposes, the latter model turns out to be well suited and in this part we recall some
basic facts about complete n–fold Segal spaces as higher categories. This is not at all
exhaustive, and more details can be found in eg [10]. We also refer to [9], especially
for their role in the proof of the cobordism hypothesis in [40].

Symmetric monoidal structures on .1; n/–categories per se have not been very much
studied in the literature for n > 1 (even though they are particular instances of commu-
tative monoids in 1–categories, which are extensively studied in [41]). We provide a
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brief review of these in Section 3 and describe them in two different, but equivalent,
ways: as � –objects on the one hand and using the delooping hypothesis on the other
hand. A comparison follows from [23].

1 Models for .1; 1/–categories

We start with nD1. An .1; 1/–category should be a category up to coherent homotopy
which is encoded in the invertible higher morphisms. In this section, we will mention and
give references for several models for .1; 1/–categories we will use in the later sections.
A good overview on different models for .1; 1/–categories and their comparison can
be found in [8]. It should be mentioned that, by [53], up to equivalence there is
essentially only one theory of .1; 1/–categories; explicit equivalences between the
models mentioned here have been proved eg in [17; 7; 5; 28]. One additional model
which should be mentioned is that of Joyal’s quasicategories. It has been intensively
studied, most prominently in [38].

1.1 The homotopy hypothesis and .1; 0/–categories

The basic hypothesis upon which1–category theory is based goes back to Grothendieck
[24] and is the following:

Hypothesis 1.1 (homotopy hypothesis) Spaces are models for 1–groupoids, also
referred to as .1; 0/–categories.

Given a space X, its points, ie 0–simplices, are thought of as objects of the .1; 0/–
category, paths between points as 1–morphisms, homotopies between paths as 2–
morphisms, homotopies between homotopies as 3–morphisms, and so forth. With this
interpretation, it is clear that all n–morphisms are invertible up to homotopies, which
are higher morphisms.

We take this hypothesis as the basic definition, and model “spaces” with simplicial sets
rather than with topological spaces.

Definition 1.2 An .1; 0/–category, or 1–groupoid, is a space. According to our
conventions, it is a fibrant simplicial set, ie a Kan complex.

1.2 Topologically and simplicially enriched categories

Two particularly simple, but quite rigid models are topologically or simplicially enriched
categories.
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Definition 1.3 A topological category is a category enriched in topological spaces. A
simplicial category is a category enriched in simplicial sets.

Topological and simplicial categories are discussed and used in [38; 55]. However,
for our applications they turn out to be too rigid. We would also like to allow some
flexibility for objects, not only morphisms, thus also requiring spaces of objects.

1.3 Segal spaces

Complete Segal spaces, first introduced by Rezk [45] as a model for .1; 1/–categories,
turn out to be very well suited for geometric applications. We recall the definition in
this section.

Definition 1.4 A (1–fold) Segal space is a simplicial space X DX� which satisfies
the Segal condition: for any n;m� 0, the commuting square

XmCn //

��

Xm

��

Xn // X0

induced by the maps Œm�! ŒmCn�, .0< � � �<m/ 7! .0< � � �<m/, and Œn�! ŒmCn�,
.0 < � � � < n/ 7! .m < � � � < mC n/, is a homotopy pullback square. In other words,
the induced map

XmCn!Xm �
h
X0
Xn

is a weak equivalence.

Defining a map of Segal spaces to be a map of the underlying simplicial spaces gives a
category of Segal spaces SeSp D SeSp

1
.

Remark 1.5 For any m� 1, consider the maps gˇ W Œ1�! Œm�, .0<1/ 7! .ˇ�1<ˇ/,
for 1� ˇ �m. Requiring the Segal condition is equivalent to requiring the condition
that the maps

Xm!X1 �
h
X0
� � � �

h
X0
X1

induced by g1; : : : ; gm are weak equivalences.

Remark 1.6 Following [40], we omit the Reedy fibrancy condition which often
appears in the literature. In particular, this condition would guarantee that for m; n� 0
the canonical map

Xm �X0 Xn!Xm �
h
X0
Xn
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is a weak equivalence. Our definition corresponds to the choice of the projective model
structure instead of the injective (Reedy) model structure, which is slightly different
(though Quillen equivalent) compared to [45]. We will explain this in more detail in
Section 1.4.3.

Definition 1.7 We will refer to the spaces Xn as the levels of the Segal space X.

Example 1.8 Let C be a small topological category. Recall that its nerve is the
simplicial set

N.C/n D Hom.Œn�; C/D
G

x0;:::;xn2Ob C

HomC.x0; x1/� � � � �HomC.xn�1; xn/;

with face maps given by composition of morphisms, and degeneracies by insertions of
identities. The nerve N.C/ is a Segal space. Moreover, a simplicial set, viewed as a
simplicial space with discrete levels, satisfies the Segal condition if and only if it is the
nerve of an (ordinary) category.

1.3.1 Segal spaces as .1; 1/–categories The above example motivates the follow-
ing interpretation of Segal spaces as models for .1; 1/–categories. If X� is a Segal
space then we view the set of 0–simplices of the space X0 as the set of objects. For
x; y 2X0 we view

HomX .x; y/D fxg �hX0 X1 �
h
X0
fyg

as the .1; 0/–category, ie the space, of arrows from x to y . More generally, we view
Xn as the .1; 0/–category — ie the space — of n–tuples of composable arrows together
with a composition. Note that given an n–tuple of composable arrows, the Segal
condition implies that the corresponding fiber of the Segal map Xn!X1�

h
X0
� � ��hX0

X1

is a contractible space. The map Xn ! X1 determined by the functor Œ1� ! Œn�,
0 < 1 7! 0 < n, can be thought of as “composition”, and thus we can think of the
n–tuple as having a contractible space of possible compositions. Moreover, one can
interpret paths in the space X1 of 1–morphisms as 2–morphisms, which are invertible
up to homotopies, which in turn are 3–morphisms, and so forth.

1.3.2 The homotopy category of a Segal space To a higher category one can in-
tuitively associate an ordinary category, its homotopy category, which has the same
objects and whose morphisms are 2–isomorphism classes of 1–morphisms. For Segal
spaces, one can realize this idea as follows.
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Definition 1.9 The homotopy category h1.X/ of a Segal space X DX� is the (ordi-
nary) category whose objects are the 0–simplices of the space X0 and whose morphisms
between objects x; y 2X0 are

Homh1.X/.x; y/D �0.HomX .x; y//D �0.fxg �hX0 X1 �
h
X0
fyg/:

For x; y; z 2 X0 , the following diagram induces the composition of morphisms, as
weak equivalences induce bijections on �0 :

.fxg �hX0 X1 �
h
X0
fyg/� .fyg �hX0 X1 �

h
X0
fzg/

! fxg �hX0 X1 �
h
X0
X1 �

h
X0
fzg ' � fxg �hX0 X2 �

h
X0
fzg ! fxg �hX0 X1 �

h
X0
fzg:

Example 1.10 Given a small (ordinary) category C , the homotopy category of its
nerve, viewed as a simplicial space with discrete levels, is equivalent to C :

h1.N.C//' C:

The above example motivates the following definition of equivalences of Segal spaces.

Definition 1.11 A map f W X ! Y of Segal spaces is a Dwyer–Kan equivalence if

(1) the induced map h1.f /W h1.X/! h1.Y / on homotopy categories is essentially
surjective, and

(2) for each pair of objects x; y 2X0 the induced map

HomX .x; y/! HomY .f .x/; f .y//

is a weak equivalence.

1.4 Complete Segal spaces

We would like the equivalences of Segal spaces to be the Dwyer–Kan equivalences.
However, instead of considering all Segal spaces and their the Dwyer–Kan equivalences,
it turns out that we can consider a full subcategory of Segal spaces which satisfy an
extra condition, called completeness, for which Dwyer–Kan equivalences have an
equivalent, simpler description. To make sense of this, we need to first introduce the
model categories involved.

1.4.1 The model structures of Segal spaces We now describe various model struc-
tures on the category sSpace of simplicial spaces. Ultimately, the goal is to have a
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model category whose fibrant objects deserve to be called “.1; 1/–categories” and
whose equivalences are analogs of equivalences of categories. We will first introduce
model categories whose fibrant objects are Segal spaces. Then, in the next step, we
will fix the weak equivalences. We refer to [45; 28] for more details.

Let us first consider the injective and projective model structures on the category of
simplicial spaces, denoted by sSpace

c
and sSpace

f
, respectively. Note that the fibrant

objects in sSpace
f

are the levelwise fibrant ones, while the fibrant objects of sSpace
c

turn out to be the Reedy fibrant simplicial spaces.1 Conversely, every object in sSpace
c

is cofibrant; see for example [26, Corollary 15.8.8.]. These model categories are Quillen
equivalent (via the identity functor).

In the first step we perform left Bousfield localizations of the previous model structures
sSpace

c
and sSpace

f
with respect to the morphisms

�1q�0 � � �q�0 �
1
!�n:

This provides two model categories, denoted by sSpaceSe
c

and sSpaceSe
f

, which still
are Quillen equivalent. For the injective model structure, it is immediate that fibrant
objects in sSpaceSe

c
satisfy Xn

'
�!X1�X0 � � ��X0X1 and thus are Reedy fibrant Segal

spaces. For the projective model structure, it follows from [28] that the fibrant objects
in sSpaceSe

f
satisfy Xn

'
�!X1 �

h
X0
� � � �hX0

X1 and thus are Segal spaces.2

1.4.2 Complete Segal spaces Although the model categories sSpaceSe
c

and sSpaceSe
f

have the (Reedy fibrant) Segal spaces as their fibrant objects, there are not enough weak
equivalences: every weak equivalence between Segal spaces is indeed a Dwyer–Kan
equivalence, but there are more Dwyer–Kan equivalences.

This problem can be circumvented by further localizing the model structures. For this
new model structure, the weak equivalences between Segal spaces turn out to be exactly
the Dwyer–Kan equivalences. We will see that these further localized model structures
have fewer fibrant objects, which are the complete (Reedy fibrant) Segal spaces. We
will focus on the case of the projective model structure, since the other case can be
found spelled out in great detail in many references, for example the original [45], but

1See for example [26, Theorem 15.8.7] for a proof that the injective and Reedy model structures
coincide.

2This terminology is not consistent throughout the literature: often “Segal space” includes the Reedy
fibrancy condition. Our examples will not be Reedy fibrant, which is the reason for our choice of
terminology.
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to our knowledge the former has so far only appeared in [28]. Moreover, although we
will phrase it for the projective model structure, the first part works the same in the
injective case. The difference appears when computing the involved mapping spaces
explicitly; see the remark below.

Intuitively, the condition we would like to impose is that the underlying 1–groupoid
of invertible morphisms of the Segal space X� is already encoded by the space X0 .
To translate this, we first need to understand what the space of (homotopy) invertible
morphisms of X� is.

Let f be an element in X1 with source and target x and y , ie its images under the
two face maps X1�X0 are x and y . It is called invertible if its image under

fxg�X0X1�X0fyg!fxg�
h
X0
X1�

h
X0
fyg!�0.fxg�

h
X0
X1�

h
X0
fyg/DHomh1.X/.x; y/

is an invertible morphism in h1.X/, ie it has a left and right inverse.

To define the space of invertible morphisms, consider the walking isomorphism I Œ1�,
which is the category with two objects and one invertible morphism between them,

Š

Mapping the walking isomorphism into an arbitrary category C we get the isomorphisms
of C , and therefore the information about its underlying groupoid. Mimicking this
procedure for a Segal space X� , we consider the derived mapping space

MapsSpaceSe
f
.N.I Œ1�/; X/:

Moreover, an analog of [45, Lemma 5.8] shows that if an element in X1 is invertible,
any element in the same connected component will also be invertible. Thus we define
the space of invertible morphisms in X� to be the homotopy pullback3

X inv
1 X1

�0MapsSpaceSe
f
.N.I Œ1�/; X/ �0X1 D �0MapsSpaceSe

f
.�1; X/

hy

Here, the bottom arrow arises from the obvious functor Œ1�! I Œ1�.

3To compare with the definition in [28], note that the pullback is a homotopy pullback since the map
X1! �0.X1/ is a fibration.
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Finally, identity morphisms in X� should be invertible. Indeed, the degeneracy map
s0W Œ1�! Œ0� factors as Œ1�! I Œ1�! Œ0� and induces a map

X0!X inv
1 :

Definition 1.12 A Segal space X� is complete if the map X0 ! X inv
1 is a weak

equivalence. We denote the full subcategory of SeSp whose objects are complete Segal
spaces by CSSp D CSSp

1
.

Example 1.13 Let C be a category. Then N.C/ is a complete Segal space if and only
if there are no nonidentity isomorphisms in C , ie the underlying groupoid of C is a set
(viewed as a category with only identity morphisms).

In order to compute X inv
1 explicitly, we have to be able to describe the (derived)

mapping space MapsSpaceSe
f
.N.I Œ1�/; X/.

Lemma 1.14 We have a homotopy pullback square

MapsSpaceSe
f
.N.I Œ1�/; X/ X3

X0 �X0 X1 �X1

f0;2gqf1;3g f0;2gqf1;3ghy

Proof Note that since X� was assumed to be a Segal space, it is fibrant, but N.I Œ1�/
might not be cofibrant.4 So, to compute the desired mapping space, we cofibrantly
replace N.I Œ1�/ and then compute the mapping space in the underlying category,

MapsSpaceSe
f
.N.I Œ1�/; X/'MapsSpace

�
cof.N.I Œ1�//; X

�
:

To compute the cofibrant replacement, the crucial observation (originally by [45],
reformulated by [6]) is that the nerve of I Œ1� can be obtained by the pushout of
simplicial sets

K D�3q�f0;2gq�f1;3g .�
0
q�0/:

This can be seen as contracting the edges f0; 2g and f1; 3g in the 3–simplex

0 1

3

2

4For the injective model structure, it is cofibrant and therefore X inv
1 is just the subspace of X1 of

invertible morphisms.

Algebraic & Geometric Topology, Volume 19 (2019)



A note on the .1; n/–category of cobordisms 545

We use an argument similar to that in [29, Remark 3.4], which observes the following:
K is given by a strict pushout along a diagram of cofibrant objects of which one arrow
is an inclusion. By [38, A.2.4.4], this is a homotopy pushout in the injective model
structure and therefore homotopy equivalent to the homotopy pushout in the projective
model structure. So a cofibrant replacement of K is given by taking the homotopy
pushout of the same diagram,

cof.K/D�3qh
�f0;2gq�f1;3g

.�0q�0/:

Finally, we obtain the space as the wanted homotopy pullback.5

1.4.3 Complete Segal spaces as fibrant objects There is a further model structure
on the category of simplicial spaces which implements completeness. It is obtained by
a further left Bousfield localization, with respect to the morphism

�0!N.I Œ1�/:

This provides two Quillen equivalent model categories, denoted by sSpaceCSe
c

and
sSpaceCSe

f
. Fibrant objects in sSpaceCSe

c
and sSpaceCSe

f
are Reedy fibrant complete

Segal spaces and complete Segal spaces, respectively.

Summarizing, we have the diagram

sSpace
c

sSpace
f

sSpaceSe
c

sSpaceSe
f

sSpaceCSe
c

sSpaceCSe
f

where the horizontal arrows are Quillen equivalences induced by the identity and the
vertical arrows are localizations.

The following theorem shows that in the localized model structure Dwyer–Kan equiva-
lences of Segal spaces indeed are weak equivalence, and therefore we have fixed the
concern mentioned above. We refer to [28, Theorem 5.15] for a proof, which makes
substantial use of the analogous result for Reedy fibrant Segal spaces in sSpaceCSe

c

from [45, Theorem 7.7].
5This can be compared to Rezk’s definition using the zigzag category 0! 2 1! 3 and requiring

the morphisms 0! 2 and 1! 3 to be identities.
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Theorem 1.15 Let X and Y be Segal spaces. A morphism f W X ! Y is a weak
equivalence in sSpaceCSe

f
if and only if it is a Dwyer–Kan equivalence.

As a consequence the obvious inclusions induce the equivalences of categories

CSSpŒlwe�1�! SeSpŒDK �1�! Ho.sSpaceCSe
f
/;

where DK and lwe stand for the subcategories of Dwyer–Kan and levelwise weak
equivalences, respectively.

This justifies the following definition.

Definition 1.16 An .1; 1/–category is a complete Segal space.

Remark 1.17 We denote the category of Reedy fibrant complete Segal spaces by
CSSp

c
, that is to say the fibrant objects in sSpaceCSe

c
. Remember that sSpaceCSe

c
and

sSpaceCSe
f

are Quillen equivalent, so that the embedding CSSp
c
� CSSp induces an

equivalence CSSp
c
Œlwe�1�! CSSpŒlwe�1�, of which an inverse is given by the Reedy

fibrant replacement functor .�/R . Sometimes it turns out to be more useful to work in
the model category sSpaceCSe

c
as every object is cofibrant. Note that the Reedy fibrant

replacement functor does not change the homotopy type of the levels.

Definition 1.18 The fibrant replacement functor in the model category sSpaceCSe
f

sending a Segal space to its fibrant replacement is called completion. In [45], Rezk
gave a rather explicit construction of the completion of Segal spaces. He showed that
there is a completion functor which to every Segal space X associates a complete Segal
space yX together with a map iX W X ! yX, which is a Dwyer–Kan equivalence.

Remark 1.19 The completeness condition says that all invertible morphisms essen-
tially are just identities up to the choice of a path. In this sense, one might like to think
of complete Segal spaces as a homotopical version of skeletal6 or reduced (see also [31])
category, and, since any category is equivalent to a reduced one, assuming this extra
condition is harmless. However, the information on the invertible morphisms is merely
encoded in a different way, namely in the spatial structure. Also, in the homotopical
situation, this intuition might be misleading: indeed, instead of thinking of a complete
Segal space as having few invertible morphisms, it is better to think of a complete Segal
space as having a “maximal” space of objects. This is illustrated by [45, Corollary 6.6].

6A category is called skeletal if each isomorphism class contains just one element; see for example [47].
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A good example to keep in mind is a special case of [45, Remark 14.1]: given a group G,
we can view as a category with one object, and consider its nerve. Its completion is the
constant simplicial space BG.

Remark 1.20 The categories sSpace
f

, sSpace
c

, sSpaceSe
f

, sSpaceSe
c

, sSpaceCSe
f

and
sSpaceCSe

c
are all Cartesian closed simplicial model categories. In particular, for any

simplicial space X and any complete Segal space Y , the simplicial space Y X is a
complete Segal space.

1.4.4 The classification diagram: the Rezk or relative nerve Many examples of
(complete) Segal spaces arise by a construction, due to Rezk [45], which produces
a (complete) Segal space from a simplicial model category. More generally, several
authors [4; 37; 36] proved that this construction also gives a complete Segal space
for far-reaching generalizations of model categories, namely for relative categories
with certain weak conditions. For instance, categories of fibrant objects in the sense of
Brown satisfy the conditions to obtain a Segal space; if they additionally are saturated,
they lead to complete Segal spaces.

Definition 1.21 A relative category is a pair .C;W/ consisting of a category C and a
subcategory W � C containing all objects of C . The morphisms in W are called weak
equivalences. A relative functor between two relative categories is a functor which
preserves weak equivalences. Together they form a category RelCat .

Definition 1.22 Let .C;W/ be a relative category. Consider the simplicial object in
categories C� given by Cn WD Fun.Œn�; C /. It has a subobject CW

�
, where CW

n � Cn is
the subcategory which has the same objects and whose morphisms consist only of those
composed of those in W. Taking its nerve we obtain a simplicial space N.C;W/� with

N.C;W/n DN.CW
n /:

It is proved in [37] that this simplicial space satisfies the Segal condition if .C;W/

admits a suitable homotopical three-arrow calculus. Moreover, it is complete if it
additionally is saturated, ie a morphism is a weak equivalence if and only if it is an
isomorphism in the homotopy category. However, it is not levelwise7 fibrant unless
we started with an 1–groupoid. Its levelwise fibrant replacement is called the Rezk
or relative nerve or the classification diagram, which, by abuse of notation, we again
denote by N.C;W/.

7Strictly speaking we should call this a (complete) Segal simplicial set, since we defined a space to be
fibrant.
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Example 1.23 Let C be a small category. Then it is straightforward to see that
N.C; Iso C/ is a complete Segal space. Note that the natural morphism N.C/ !
N.C; Iso C/ is a Dwyer–Kan equivalence. This exhibits N.C; Iso C/ as a completion
of N.C/.

Now we can apply this construction to the model category of complete Segal spaces
from the previous section:

Definition 1.24 The .1; 1/–category of .1; 1/–categories is N.CSSp; lwe/.

Remark 1.25 The inclusions of the relative categories of cofibrant-and-fibrant objects
and of fibrant objects in a simplicial model category lead to equivalences of the
classification diagrams. Thus, the inclusions of relative categories .CSSp; lwe/ �
.SeSp;DK /� .sSpaceCSe

f
;W/ induce levelwise equivalences of complete Segal spaces,

ie equivalences of .1; 1/–categories

N.CSSp; lwe/!N.SeSp;DK /!N.sSpaceCSe
f
;W/:

Remark 1.26 Morphisms in the homotopy category of .1; 1/–categories are more
subtle: they are zigzags X ! X1

'
 � X2! � � � ! Y , where the wrong-way arrows

are weak equivalences and therefore more flexible.

We finally observe that a Quillen equivalence

LWM�N WR

induces a weak equivalence of complete Segal spaces

X WDN.M;weM/'N.N ;weN /DW Y

between the associated classification diagrams. Indeed, the left derived functor LLD

L ıQ (Q being a cofibrant replacement functor) preserves weak equivalence and thus
induces a morphism LW X ! Y , which can be proven to be a Dwyer–Kan equivalence
(this essentially follows from [16]).

1.5 Some other models for .1; 1/–categories

We very briefly recall some other models for .1; 1/–categories in this section which
were the motivation for some definitions later on.

1.5.1 Segal categories Let us mention another model for .1; 1/–categories given by
certain Segal spaces, which avoids having to require completeness by instead requiring
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a discrete set of objects. This will be the motivation for the definitions of “hybrid
n–fold Segal spaces” in Section 2.3.

Definition 1.27 A Segal (1–)category is a Segal space X D X� such that X0 is
discrete, ie constant as a simplicial set. We denote by SeCat the full subcategory
of SeSp consisting of Segal categories.

Segal categories also are the fibrant objects in a certain model category that is Quillen
equivalent to sSpaceCSe

f
; see the above-mentioned [8] or [39] for more details and

references. In particular, the embedding SeCat � SeSp induces an equivalence of
complete Segal spaces

N.SeCat ;DK /!N.SeSp;DK /:

1.5.2 Relative categories Following [5], a rather weak notion of .1; 1/–category
is given by relative categories from Definition 1.21. One should think of the weak
equivalences W as being “formally inverted”. We have already implicitly used this to
define the .1; 1/–category of .1; 1/–categories.

Example 1.28 Let C D ChR be the category of chain complexes over a ring R and
let W � C be the subcategory of chain complexes and quasi-isomorphisms.

RelCat admits a model structure exhibiting it as a model for .1; 1/–categories: in [4]
the model structure of sSpaceCSe

c
is transferred along a slight modification of the relative

nerve,
N� W RelCat � sSpaceCSe

c
WK� ;

thus making the above adjunction into a Quillen equivalence.

1.5.3 Categories internal to simplicial sets Instead of enriching categories in a
category of spaces as in Section 1.2, for certain applications it turns out to be useful
to also have a space of objects (thus allowing more flexibility than in topological
categories), but keeping strict composition (and thus having more rigidity than in Segal
spaces). This philosophy is implemented when considering categories internal to spaces.
We will use this model to construct examples of Segal spaces.

Definition 1.29 Let S be a category with finite limits. A category internal to S or,
for short, an internal category in S consists of objects C0 and C1 together with source
and target morphisms s; t W C1� C0 , a degeneracy morphism d W C0! C1 satisfying
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s ı d D t ı d D idC0 and a composition morphism ıW C1 �C0 C1 ! C1 satisfying
associativity and such that for any x 2 C0 , the maps � ı d.x/ and d.x/ ı � are the
identity. Let ICat .S/ denote the category of categories internal to S , where morphisms
from .C0; C1/ to .D0;D1/ are pairs of morphisms Ci ! Di for i D 0; 1 which are
compatible with the additional structure in the obvious way.

For short, we call an internal category a category internal to S D sSet . In this case,
we use the notation ICat D ICat .sSet /.

Note that there is an equivalence of categories ICat ! Cat�op
. Composition with the

levelwise nerve and swapping the simplicial directions gives a functor

N W ICat ! Cat�
op N.�/
��! Space�

op swap
��! sSpace :

In [28], similarly to RelCat , the model structures of sSpaceSe
f

and sSpaceCSe
f

are
transferred along N to endow ICat with a model structure, the latter exhibiting it as a
model for .1; 1/–categories. Examples of fibrant objects in the former model category
are given by the following strongly Segal internal categories [28, Proposition 5.13];
their nerves are Segal spaces.

Definition 1.30 A strongly Segal internal category is a category C D .C0; C1/ internal
to SDSpace� sSet such that the source and target maps s; t W C1! C0 are fibrations of
simplicial sets. We denote by ICat Se the category of strongly Segal internal categories.

Remark 1.31 The condition that s and t be fibrations ensures that the pullback along
them are homotopy pullbacks, and therefore NC is a Segal space. This condition
is sufficient, but not necessary, for an internal category to be a fibrant object for the
transferred model structure. On the other hand, the condition that C0 and C1 be Kan
complexes is necessary.

Since the model structure was transferred, there is a Quillen equivalence given by the
nerve,

N W ICat ! sSpaceSe
f
:

Moreover, categorical equivalences of strongly Segal internal categories are (by defini-
tion) precisely the morphisms that are sent to Dwyer–Kan equivalences by the nerve.
Thus, the induced morphism

N.ICat Se; cat :eq :/!N.SeSp;DK/

is an equivalence of complete Segal spaces.
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2 Models for .1; n/–categories

As a model for .1; n/–categories, we will use complete n–fold Segal spaces, which
were first introduced by Barwick in his thesis and appeared prominently in Lurie [40].
Details can be found eg in [39; 6; 10]. As mentioned above, .1; n/–categories are
homotopical versions of weak n–categories. Recall that n–categories are inductively
built by taking categories (weakly) enriched in .n�1/–categories. For n D 2 these
are known as 2–categories (strict) or bicategories (weak). Alternatively, one could
choose to consider categories internal to .n�1/–categories, ie they have a whole
.n�1/–category of objects. For nD 2 these were first introduced under the name of
double categories by Ehresmann [18] and have been thoroughly studied in category
theory. Therefore, we will call the higher versions thereof n–uple categories.8 Even
though we present our main example as an n–fold Segal space in the next part, it
actually arises from such an “n–uple” version, as we will see later on.

Moreover, it even comes from a more rigid model, namely from internal n–uple
categories, which are n–uple categories internal to simplicial sets. This model is the
easiest to define, which is why we start with it.

2.1 Internal n–uple categories

Iterating the approach in [28], one obtains a model for .1; n/–uple categories given
by n–uple categories internal to simplicial sets, ie categories internal to the category of
.n�1/–uple categories internal to simplicial sets. Unraveling the definition for nD 2,
there is a space of objects, a space of “horizontal” 1–morphisms, a space of “vertical”
1–morphisms and a space of 2–morphisms, together with unit maps and composition
maps. For larger n, there is a space of objects and suitable spaces of higher morphisms
“in all directions”, again together with unit maps and composition maps. Equivalently,
an n–uple category internal to simplicial sets is a simplicial object in (strict) n–fold
categories. This model has been discussed in [15].

Our bordism category defined in the next part secretly is such an internal n–uple
category, however, details on this model were not available at the time of writing this
article, so we will present it in a different way here.

8This is nonstandard: usually they are called n–fold categories. However, by an unfortunate choice of
terminology, complete n–fold Segal spaces will correspond to n–categories. In order to hopefully reduce
confusion we will instead be consistent in using “uple” for internal versions and reserve “fold” for the
enriched, globular version.
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Remark 2.1 Composition is well defined on the nose, as opposed to the models we
will consider in the next sections.

2.2 n–uple and n–fold Segal spaces

Recall that an n–uple9 simplicial space is a functor X W .�op/�n! Space . An n–uple
Segal space is an n–uple simplicial space with an extra condition ensuring it is the
1–analog of an n–uple category.

Definition 2.2 An n–uple Segal space is an n–uple simplicial space X DX�;:::;� such
that for every 1� i � n and every k1; : : : ; ki�1; kiC1; : : : ; kn � 0,

Xk1;:::;ki�1;�;kiC1;:::;kn

is a Segal space.

Defining a map of n–uple Segal spaces to be a map of the underlying n–uple simplicial
spaces gives a category of n–uple Segal spaces, SeSpn .

Imposing an extra globularity condition leads to a model for1–analogs of n–categories:

Definition 2.3 An n–uple simplicial space X�;:::;� is essentially constant if the map
from the constant n–uple simplicial space X0;:::;0 given by the degeneracy maps

X0;:::;0!X

is a weak equivalence of n–uple simplicial spaces.

Definition 2.4 An n–fold Segal space is an n–uple Segal space X DX�;:::;� such that
for every 1� i � n and every k1; : : : ; ki�1 � 0, the .n�i/–uple simplicial space

Xk1;:::;ki�1;0;�;:::;�

is essentially constant.10

Defining a map of n–fold Segal spaces to be a map of the underlying n–uple simplicial
spaces gives a category of n–fold Segal spaces, SeSp

n
.

9Again, usually this is called an n–fold simplicial space, but we use this terminology to emphasize the
difference.

10To be consistent with our choice of “uple” versus “fold”, we could call an n–uple simplicial space
which satisfies this extra condition an n–fold simplicial space.
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Remark 2.5 Alternatively, one can formulate the conditions iteratively. First, an n–
uple Segal space is a simplicial object Y� in .n�1/–uple Segal spaces which satisfies
the Segal condition. Then, an n–fold Segal space is a simplicial object Y� in .n�1/–
fold Segal spaces which satisfies the Segal condition and such that Y0 is essentially
constant (as an .n�1/–fold Segal space). To get back the above definition, the ordering
of the indices is crucial: Xk1;:::;kn D .Yk1/k2;:::;kn .

2.2.1 Interpretation as higher categories An n–fold Segal space can be thought
of as a higher category in the following way.

The first condition means that this is an n–uple category, ie there are n different
“directions” in which we can “compose”. An element of Xk1;:::;kn should be thought
of as a composition consisting of ki composable morphisms in the i th direction.

The second condition imposes that we indeed have a higher n–category, ie an n–
morphism has as source and target two .n�1/–morphisms which themselves have the
“same” (in the sense that they are homotopic) source and target.

For n D 2 one can think of this second condition as “fattening” the objects in a
bicategory. A 2–morphism in a bicategory can be depicted as

+

The top and bottom arrows are the source and target, which are 1–morphisms between
the same objects.

In a 2–fold Segal space X�;� , an element in X1;1 can be depicted as

X
0;0
3

2
X 0
;0

X 0
;0
3

2
X
0;0

+

X1;0

2
3

X1;0

X0;0 'X0;1 3 2X0;1 'X0;0

The images under the source and target maps in the first direction X1;1� X1;0 are
1–morphisms which are depicted by the horizontal arrows. The images under the source
and target maps in the second direction X1;1�X0;1 are 1–morphisms, depicted by
the dashed vertical arrows, which are essentially just identity maps, up to homotopy,
since X0;1'X0;0 . Thus, here the source and target 1–morphisms (the horizontal ones)
themselves do not have the same source and target anymore, but up to homotopy they do.
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The same idea works with higher morphisms; in particular, one can imagine the
corresponding diagrams for nD 3. A 3–morphism in a tricategory can be depicted as

V

whereas a 3–morphism, ie an element in X1;1;1 in a 3–fold Segal space X can be
depicted as

� // �

�

77

//

3;

�

77

�

OO

V

� //

KS

�

OO

�

OO

77

KS

//

KS

3;

�

77

OO

KS
////

Here the dotted arrows are those in X0;1;1 'X0;0;1 'X0;0;0 and the dashed ones are
those in X1;0;1 'X1;0;0 .

Thus, we should think of the set of 0–simplices of the space X0;:::;0 as the objects
of our category, and elements of X1;:::;1;0;:::;0 as i –morphisms, where 0 < i � n is
the number of 1’s. Pictorially, they are the i th “horizontal” arrows. Moreover, the
other “vertical” arrows are essentially just identities of lower morphisms. Similarly to
before, paths in X1;:::;1 should be thought of as .nC1/–morphisms, which therefore
are invertible up to a homotopy, which itself is an .nC2/–morphism, and so forth.

2.2.2 The homotopy bicategory of a 2–fold Segal space To any higher category
one can intuitively associate a bicategory having the same objects and 1–morphisms,
and with 2–morphisms being 3–isomorphism classes of the original 2–morphisms.

Definition 2.6 The homotopy bicategory h2.X/ of a 2–fold Segal space X DX�;� is
defined as follows: objects are the points of the space X0;0 and

Homh2.X/.x; y/D h1.HomX .x; y//D h1.fxg �hX0;� X1;� �
h
X0;�
fyg/

as Hom categories. Horizontal composition is defined by

.fxg �hX0;� X1;� �
h
X0;�
fyg/� .fyg �hX0;� X1;� �

h
X0;�
fzg/

! fxg �hX0;� X1;� �
h
X0;�

X1;� �
h
X0;�
fzg

� � fxg �hX0;� X2;� �
h
X0;�
fzg ! fxg �hX0;� X1;� �

h
X0;�
fzg:
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The second arrow happens to go in the wrong way but it is a weak equivalence; therefore,
after taking h1 , it turns out to be an equivalence of categories, and thus to have an
inverse (assuming the axiom of choice).

A proof that this definition indeed gives a bicategory will be the subject of a subsequent
article.

2.3 Complete and hybrid n–fold Segal spaces

As with (1–fold) Segal spaces, we need to impose an extra condition to ensure that
invertible k–morphisms are paths in the space of .k�1/–morphisms. Again, there are
several ways to include its information.

Definition 2.7 Let X be an n–fold Segal space and 1� i; j � n. It is said to satisfy

(CSSi ) if for every k1; : : : ; ki�1 � 0,

Xk1;:::;ki�1;�;0;:::;0

is a complete Segal space;

(SCj ) if for every k1; : : : ; kj�1 � 0,

Xk1;:::;kj�1;0;�;:::;�

is discrete, ie a discrete space viewed as a constant .n�jC1/–fold Segal
space.

Definition 2.8 An n–fold Segal space is

(1) complete if, for every 1� i � n, X satisfies (CSSi ).

(2) a Segal n–category if, for every 1� j � n, X satisfies (SCj ).

(3) m–hybrid for m � 0 if condition (CSSi ) is satisfied for i > m and condition
(SCj ) is satisfied for j �m.

Denote the full subcategory of SeSp
n

of complete n–fold Segal spaces by CSSp
n

.

Remark 2.9 An n–hybrid n–fold Segal space is a Segal n–category, while an n–fold
Segal space is 0–hybrid if and only if it is complete.

For our purposes, the model of complete n–fold Segal spaces is well suited, which
leads us to the following definition.

Definition 2.10 An .1; n/–category is a complete n–fold Segal space.
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2.3.1 The underlying model categories Similarly to Section 1.4.3 there are model
categories running in the background. We can consider either the injective or projective
model structure on the category of n–uple simplicial spaces sSpacen , which we denote
by sSpacen

c
and sSpacen

f
, respectively. Bousfield localizations at the analogs of the

Segal maps give model structures whose fibrant objects are (Reedy fibrant) n–uple
Segal spaces; further localizing at maps governing essential constancy, the fibrant
objects become (Reedy fibrant) n–fold Segal spaces, and a third localization at a
map imposing completeness gives model structures sSpaceCSe

n;c
and sSpaceCSe

n;f
, respec-

tively, whose fibrant objects are (Reedy fibrant) complete n–fold Segal spaces; see
[39; 6; 29, Appendix]. Note that, again, the identity map induces a Quillen equivalence
between sSpacen

c
and sSpacen

f
which descends to the localizations.

Alternatively — and by [29, Appendix, Proposition A.9] equivalently — the construction
of complete Segal objects for absolute distributors from [39] provides an iterative
definition of these model categories by considering simplicial objects in a suitable
model category (which is taken to be the appropriate localization of sSpace

n�1;c
or

sSpace
n�1;f

, respectively) and localizing at the maps governing the Segal condition,
essential constancy and/or completeness in the new simplicial direction.

Lurie [39] also provides a model category whose fibrant objects are Segal category
objects in some suitable underlying model category, thus allowing an iteration of the
construction of Segal categories as well. Applying this construction m times to the
above one for complete .n�m/–fold Segal spaces provides a model category whose
fibrant objects are m–hybrid n–fold Segal spaces.

One can show (see eg [3; 39; 10; 11; 57]) that equivalences between (possibly non-
complete) n–fold Segal spaces for this model structure are exactly the Dwyer–Kan
equivalences, which are defined inductively. For this we need the following inductive
definition of the homotopy category of an n–fold Segal space:

Definition 2.11 The homotopy category h1.X/ of an n–fold Segal space X�;:::;� is
the following category: Its objects are the 0–simplices, ie the points of X0;:::;0 . For x
and y two objects, we let

HomX .x; y/�;:::;� WD fxg �hX0;�;:::;� X1;�;:::;� �
h
X0;�;:::;�

fyg

be the .n�1/–fold Segal space of morphisms11 from x to y . Now let morphisms in
h1.X/ from x to y be the set of isomorphism classes of objects in h1.HomX .x;y/�;:::;�/,

11We will revisit this notion in Section 2.4.4.
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which is already defined by induction. Composition is defined using the Segal condition
in the first index.

Definition 2.12 A morphism f W X ! Y of n–fold Segal spaces is a Dwyer–Kan
equivalence if

(1) the induced functor h1.f /W h1.X/! h1.Y / is essentially surjective;

(2) for each pair of objects x; y 2X0;:::;0 , the induced morphism HomX .x; y/!
HomY .f .x/; f .y// is a Dwyer–Kan equivalence of .n�1/–fold Segal spaces.

Again we obtain equivalences of complete Segal spaces

N.CSSp
n
; lwe/!N.SeSp

n
;DK /!N.sSpace

n
;WCSe

f /;

where WCSe
f

is the subcategory of weak equivalences in the localization sSpaceCSe
n;f

.

Remark 2.13 CSSp
n

is the subcategory of fibrant objects for a left Bousfield localiza-
tion of sSpace

n;f
and weak equivalences of complete n–fold Segal spaces are levelwise

weak equivalences. Denoting the category of fibrant objects in sSpaceCSe
n;c

, the Reedy
fibrant complete n–fold Segal spaces, by CSSp

n;c
, the Quillen equivalence between

sSpace
n;c

and sSpace
n;f

induces an equivalence N.CSSp
n;c
; lwe/!N.CSSp

n
; lwe/,

whose inverse is given by Reedy fibrant replacement .�/R .

Recall from Remark 2.5 that we can think of an n–fold Segal space in an iterative
way: we can view an n–fold Segal space as a Segal object in .n�1/–fold Segal spaces,
which we in turn can think of a Segal object in Segal objects in .n�2/–fold Segal
spaces, etc. Then condition (CSSi ) above means that the i th iteration is a complete
Segal space object. For more on this point of view, see [39; 25].

Definition 2.14 Given an n–fold Segal space X�;:::;� , one can apply the completion
functor iteratively to obtain a complete n–fold Segal space yX�;:::;� , its (n–fold) com-
pletion. This yields a map X ! yX, the completion map, which is universal among all
maps (in the homotopy category) to complete n–fold Segal spaces. It is a left adjoint
to the embedding of CSSp

n
Œlwe�1� into SeSp

n
Œlwe�1�.

If an n–fold Segal space X�;:::;� satisfies (SCj ) for j �m, we can apply the completion
functor just to the last n�m indices to obtain an m–hybrid n–fold Segal space yXm

�;:::;� ,
its m–hybrid completion.
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2.4 Constructions of n–fold Segal spaces

We describe several intuitive constructions of .1; n/–categories in terms of (complete)
n–fold Segal spaces.

2.4.1 Truncation Given an .1; n/–category, for k � n its .1; k/–truncation, or
k–truncation, is the .1; k/–category obtained by discarding the noninvertible m–
morphisms for k < m� n.

In terms of n–fold Segal spaces, there is a functor �k W SeSp
n
! SeSp

k
sending X D

X�;:::;� to its k–truncation, the k–fold Segal space

�kX DX�; : : : ; �„ ƒ‚ …
k times

;0; : : : ; 0„ ƒ‚ …
n�k times

:

For economy, we will frequently use the notation 1kD .1; : : : ; 1/ for k 1’s, and similar.
If X is m–hybrid then so is �kX by the definition of the conditions (CSSi ) and (SCj ).
In particular, if X is complete, then �kX is as well, and, thus, the truncation of an
.1; n/–category is an .1; k/–category.

Warning Truncation does not behave well with respect to completion, ie the truncation
of the completion is not the completion of the truncation. However, we get a map in
one direction

�k.X/ //

��

�k. yX/

1�k.X/

;;

In general, this map is not an equivalence. So in general one should always complete
an n–fold Segal space before truncating it. For example, for nD 1 and a noncomplete
Segal space X, the truncation �1.X/DX0 is just the zeroth space, but the truncation of
the completion will be equivalent to the underlying 1–groupoid X inv

1 . The map in this
case is given by the degeneracy map. In the example X DN.G/ from Remark 1.19,
the former is N.G/0 D f�g and the latter is BG, which are not equivalent in general.

Remark 2.15 As explained above, the k–truncation of an .1; n/–category X should
be the maximal .1; k/–category contained in X. However, the image of the degeneracy

X1k ;0;:::;0 ,!X1m;0;:::;0
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consists exactly of the invertible m–morphisms for k <m� n if and only if X satisfies
(CSSi ) for k < i � n. For example, if X DX� is a (1–fold) Segal space then X0 is
the underlying 1–groupoid of invertible morphisms if and only if X is complete.

2.4.2 Extension Any .1; n/–category can be viewed as an .1; nC1/–category
with only identities as .nC1/–morphisms.

In terms of n–fold Segal spaces, any n–fold Segal space can be viewed as a constant
simplicial object in n–fold Segal spaces, ie an .nC1/–fold Segal space which is constant
in the first index. Explicitly, if X�;:::;� is an n–fold Segal space, then ".X/�;:::;� is
the constant simplicial object in the category of Segal spaces given by X, ie it is the
.nC1/–fold Segal space such that for every k � 0,

".X/�;:::;�;k DX�;:::;�

and the face and degeneracy maps in the last index are identity maps.

Lemma 2.16 If X is complete, then ".X/ is complete.

Proof Since X is complete, it satisfies (CSSi ) for i > 1. For i D 0, we have to show
that ".X/�;0;:::;0 is complete. This is satisfied because

.".X/1;0;:::;0/
inv
D ".X/1;0;:::;0 DX0;:::;0 D ".X/0;0;:::;0;

since morphisms between elements x and y in the homotopy category of ".X/�;k2;:::;kn
are just connected components of the space of paths in Xk2;:::;kn , and thus are always
invertible.

We call " the extension functor, which is left adjoint to �n . Moreover, the unit id!�1ı"

of the adjunction is the identity.

2.4.3 Inverting Given an .1; n/–category, for k� n we obtain an .1; k/–category
by inverting the noninvertible m–morphisms for k < m� n.

We saw that the extension functor " had a right adjoint �n . It also has a left adjoint �,
which formally inverts all .nC1/–morphisms. For an n–fold Segal space X, this is
given by realizing the last index,

.�X/k1;:::;kn D jXk1;:::;kn;�j:

Algebraic & Geometric Topology, Volume 19 (2019)



560 Damien Calaque and Claudia Scheimbauer

Here geometric realization amounts to taking the diagonal of the bisimplicial set
Xk1;:::;kn;� . Since the diagram

SeSp
nC1

SeSp
n

CSSp
nC1

CSSp
n

a

a

�.�/
�

a

"

�.�/

a

�

"

of right adjoints commutes, the diagram of left adjoints commutes as well. Therefore,
completion and inverting commute.

2.4.4 The higher category of morphisms and loopings Given two objects x and y
in an .1; n/–category, morphisms from x to y should form an .1; n�1/–category.

This can be realized for n–fold Segal spaces, which is one of the main advantages of
this model for .1; n/–categories.

Definition 2.17 Let X DX�;��� ;� be an n–fold Segal space. As we have seen above
one should think of objects as vertices of the space X0;:::;0 . Let x; y 2 X0;:::;0 . The
.n�1/–fold Segal space of morphisms from x to y is

HomX .x; y/�;��� ;� D fxg �hX0;�;��� ;� X1;�;��� ;� �
h
X0;�;��� ;�

fyg:

Remark 2.18 If X is m–hybrid, then HomX .x; y/ is .m�1/–hybrid.

Example 2.19 (compatibility with extension) Let X be an .1; 0/–category, ie a
space, viewed as an .1; 1/–category, ie a constant (complete) Segal space ".X/� ,
where ".X/k DX. For any two objects x; y 2 ".X/0DX the .1; 0/–category, ie the
space, of morphisms from x to y is

Hom".X/.x; y/D fxg �
h
".X/0

".X/1 �
h
".X/0

fyg D fxg �hX fyg D PathX .x; y/;

the path space in X, which coincides with what one expects by the interpretation
of paths, homotopies, homotopies between homotopies, etc being higher invertible
morphisms.

Definition 2.20 Let X be an n–fold Segal space, and x 2X0 an object in X. Then
the looping of X at x is the .n�1/–fold Segal space

�x.X/�;:::;� D HomX .x; x/�;:::;� D fxg �hX0;�;:::;� X1;�;:::;� �
h
X0;�;:::;�

fxg:
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In the following, it will often be clear at which element we are looping, eg if there
essentially is only one element, or at a unit for a monoidal structure, which we define
in the next section. Then we omit the x from the notation and just write

�X D�.X/D�x.X/:

We can iterate this procedure as follows.

Definition 2.21 Let �0x.X/DX. For 1� k � n, let the k–fold iterated looping be
the .n�k/–fold Segal space

�kx.X/D�x.�
k�1
x .X//;

where we view x as a trivial k–morphism via the degeneracy maps, ie an element in
�k�1x .X/0:::;0!X1k ;0;:::;0 .

Looping k times commutes with taking the k–hybrid completion up to weak equiva-
lence, since completion is taken index by index:

Let X be a k–hybrid n–fold Segal space. Then for the k–hybrid completion yX, which
is the completion in the last .n� k/ variables, we have that �k. yX/ '�! yX1k ;�;:::;�

is complete, so by the universal property of completion, the horizontal map in the
following diagram exists:

2�k.X/ �k. yX/

�k.X/

Lemma 2.22 Let X be a k–hybrid n–fold Segal space. Then the induced map

2
�k.X/ '�!�k. yX/

is a levelwise weak equivalence.

Proof In the diagram
2�k.X/ �k. yX/

�k.X/

we know that the vertical map is a DK-equivalence, since completions are DK-
equivalences. Moreover, since X is hybrid, we have that �k.X/ '�! X1k ;�;:::;� and
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�k. yX/ '�! yX1k ;�;:::;� , and by definition of (hybrid) completion, X1k ;�;:::;�!
yX1k ;�;:::;�

is just a completion, so it is a DK-equivalence. Thus, in the diagram

dX1k ;�;:::;�
yX1k ;�;:::;�

X1k ;�;:::;�

by the two-out-of-three property, the horizontal morphism is as well. But since bothdX1k ;�;:::;� and yX1k ;�;:::;� are complete, it is a levelwise equivalence.

2.4.5 Extracting n–fold from n–uple Segal spaces We can extract the maximal
n–fold Segal space from an n–uple one by the following procedure. Let us recall
and introduce some notation for various model structures on the category of n–uple
simplicial spaces:

� sSpace.C/Se
n;f

, where fibrant objects are (complete) n–fold Segal spaces.

� sSpace.C/Se
n;c

, where fibrant objects are Reedy fibrant (complete) n–fold Segal
spaces.

� sSpacen;fSe , where fibrant objects are n–uple Segal spaces.

� sSpacen;cSe , where fibrant objects are Reedy fibrant n–uple Segal spaces.

From now, let � 2 fc; f g. There are (two) Quillen adjunctions

sSpaceSe
n;� id

id
�!�!sSpacen;�Se :

Let us denote (in a rather unusual way)

L WDRidW N.sSpaceSe
n;�
;w:e:/!N.sSpacen;�Se ;w:e:/:

Observe that on fibrant objects, L is nothing but the inclusion of (possibly Reedy
fibrant) n–fold Segal spaces into (possibly Reedy fibrant) n–uple Segal spaces. After
[25, Proposition 4.12], we know it has a right adjoint R . For the given (possibly Reedy
fibrant) n–uple Segal space X, we wish to compute R.X/. By adjunction, we know
that

R.X/�;:::;� 'MaphsSpaceSe
n;�

.�E�;R.X//'MaphsSpacen;�Se
.L.�E�/; X/;

where �Ek for Ek D .k1; : : : ; kn/ is the n–fold simplicial set represented by

Œk1�� � � � � Œkn� 2�
�n;

and Maph denotes the derived mapping space.
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We will now find an explicit way to compute R.X/ by finding cofibrant replacements
of L.�

Ek/. We start by recalling certain strict n–categories of the desired shapes, which
are all objects in Joyal’s category ‚n [30; 46].

For Ek D .k1; : : : ; kn/, let ‚E� be the walking Ek–tuple of n–morphisms, which is the
strict n–category from [29, Definition 5.1]. We do not want to recall the full definition
here, but rather the intuition:

� For Ek D .1; 0; : : : ; 0/, the category ‚ Ek D �! � is the walking 1–morphism.

� For EkD .2; 0; : : : ; 0/, the category ‚ Ek D �! �! � is the walking composable
pair of 1–morphisms.

� For Ek D .2; 1; : : : ; 0/, the strict 2–category

‚
Ek
D ) )

is the walking horizontally composable pair of 2–morphisms.

� For Ek D .3; 2; : : : ; 0/, we have the strict 2–category

‚
Ek
D

)
)

)
)

)
)

� More generally, for Ek D .k1; : : : ; kn/, the strict n–category ‚E� has k1 � � � kn
n–morphisms, which are composable following the pattern of a grid of dimension
k1 � � � � � kn .

The elementary building blocks for these categories are ‚.n/ , where .n/D .1n;0; : : : ;0/.
All others are built by gluing these in a grid of dimension k1�� � ��kn . In [6], Barwick
and Schommer-Pries use the following definition, which can been easily seen to be
equivalent to the one in [29] by induction:

Definition 2.23 Let C 1 be the walking 1–morphism, ie the category with two objects
and one nonidentity morphism from one object to the other, C 1 D f�! �g. The strict
n–category ‚.n/ is defined inductively by the pushout square

f0; 1g �‚.n�1/ C 1 �‚.n�1/

f0; 1g � f�g ‚.n/:

This immediately implies the existence of a surjective “collapse” map cnW C n!‚.n/ ,
where C n D .C 1/�n is the walking n–morphism as a strict n–uple category.
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The n–fold nerve of ‚ Ek is

� levelwise fibrant (because ‚ Ek is discrete);

� a Segal space (because ‚ Ek is a strict n–category);

� complete (because ‚ Ek is reduced).

Let us thus abuse notation and still write ‚ Ek for this (complete) n–fold Segal space.
Now we can write the formula for the cofibrant replacement, and therefore the recipe
for finding the underlying n–fold Segal space.

Theorem 2.24 Given an n–uple Segal space X, its maximal underlying n–fold Segal
space has levels, for Ek D .k1; : : : ; kn/ 2 .�op/n ,

R.X/ Ek DMaphsSpacen;�Se
.‚
Ek; X/:

Since ‚E� is an n–fold cosimplicial object in strict n–categories (see [29]), this defines
a (complete) n–fold Segal space.

To prove this theorem, we need to understand what the cofibrant replacement L.�E�/ is.
The first step is a tool to compute the right-hand expression in the theorem, namely an
explicit cofibrant replacement of ‚ Ek .

Proposition 2.25 For nD 1, the category ‚.1/ , or rather its nerve, is cofibrant in the
projective model structure sSpace1;fCSe . For n > 1, a cofibrant replacement of ‚.n/ in
the projective model structure of n–uple Segal spaces sSpacen;fSe is given inductively
by replacing the pushouts in the definition by homotopy pushouts and ‚.n�1/ by its
(inductively already defined) cofibrant replacement.

Proof Similarly to Section 1.4, we use an argument similar to that in [29, Remark 3.4],
which observes the following: ‚.2/ is given by a strict pushout along a diagram of
cofibrant objects of which one arrow is an inclusion. By [38, A.2.4.4], this is a
homotopy pushout in the injective model structure and therefore homotopy equivalent
to the homotopy pushout in the projective model structure. So a cofibrant replacement
of ‚.2/ is given by taking the homotopy pushout of the same diagram,

f0; 1g �C 1 C 2

f0; 1g � f�g cof.‚.2//
hy
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Now we proceed by induction. Assume we have shown the statement for k < n and
we have a cofibrant replacement cof.‚.k// given as in the proposition. Then, since the
map f0; 1g ,! C 1 is a cofibration in the projective model structure, the map

f0; 1g � cof.‚.n�1// ,! C 1 � cof.‚.n�1//

is a cofibration. Moreover, f0; 1g � cof.‚.n�1//, C 1 � cof.‚.n�1//, and f0; 1g � f�g
are all cofibrant, so we can use the above-mentioned [38, A.2.4.4] again to see that
the strict pushout, which is weakly equivalent to ‚.n/ , is a homotopy pushout, and
moreover cofibrant. Summarizing, it is a cofibrant replacement of ‚.n/ .

Remark 2.26 Similarly, we can obtain cofibrant replacements for ‚ Ek as defined
in [29] by replacing the pushouts in the definition by homotopy pushouts.

The remaining ingredient in the proof of the theorem is the following lemma.

Lemma 2.27 The natural map �Ek!‚
Ek is a weak equivalence in sSpaceSe

n;�
.

Proof We need to show that for any fibrant object Y in sSpaceSe
n;�

the induced map
MaphsSpaceSe

n;�

.‚
Ek; Y /!MaphsSpaceSe

n;�

.�
Ek; Y / is a weak equivalence of simplicial sets.

We show the claim for Ek D .k/ proceeding by induction using the explicit cofibrant
replacement from the previous proposition. For k D 1, this is true, since ‚.1/ D
�.1/ D�1 . Assume we have proven the statement for l < k . Then

Maph.‚.k/; Y / '�!Maph.C 1 �‚.k�1/; Y /�h
Maph.f0;1g�‚.k�1/;Y /

Maph.f0; 1g; Y /

'Maph.C 1 �‚.k�1/; Y /�h
Y �20;�;:::;�

Y �20;:::;0

'Maph.C 1 �‚.k�1/; Y /

'Maph.‚.k�1/;Hom.C 1; Y //:

Here the first equivalence uses that the cofibrant replacement of ‚.k/ is the homotopy
pushout as described in the previous proposition, the next equivalence computes the
mapping spaces on the right and below the times symbol, the third equivalence uses
essential constancy of Y0;�;:::;� and the last one uses that n–fold Segal spaces are
Cartesian closed.

By the induction hypothesis, the natural map �.k�1/!‚.k�1/ induces an equivalence

Maph.‚.k�1/;Hom.C 1; Y // '�!Maph.�.k�1/;Hom.C 1; Y //'Maph.�.k/; Y /
' Y.k/:

A similar argument works for general Ek .
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Remark 2.28 The above lemma is equivalent to the observation that the model struc-
ture sSpaceSe

n;�
can be obtained as the left Bousfield localization of sSpacen;�Se along

�
Ek!‚

Ek .

Proof of Theorem 2.24 The following equivalences are compatible with the cosim-
plicial structure of �E� and ‚E� :

R.X/ Ek ŠMaph.�
Ek;R.X//'Maph.L.�

Ek/; X/

Lemma 2:27
 �������

'
Maph.L.‚

Ek/; X/'Maph.‚
Ek; X/:

3 Symmetric monoidal structures

3.1 Definition via � –objects

Following [52; 56], we define a symmetric monoidal n–fold Segal space in analogy
to Segal’s � –spaces from [50]. This is a special case of commutative monoid in an
arbitrary .1; 1/–category as defined in [41].

Definition 3.1 Segal’s category � is the category whose objects are the finite sets

hmi D f0; : : : ; mg

for m� 0 which are pointed at 0. Morphisms are pointed functions, ie for k;m� 0,
functions

f W hmi ! hki; f .0/D 0:

For every m� 0, there are m canonical morphisms

ˇ W hmi ! h1i; j 7! ıˇj ;

for 1� ˇ �m, called the Segal morphisms.

Remark 3.2 � is a skeleton of the category of finite pointed sets Fin� . In his original
paper [50], Segal defined � to be the opposite category of Fin� . However, in the
literature, � has often appeared with the above convention.

Recall from Section 2.3.1 that the .1; 1/–category of .1; n/–categories is presented
by a model category in which the fibrant objects are complete n–fold Segal spaces.
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More precisely, the .1; 1/–category of .1; n/–categories is defined to be the complete
Segal space

N.CSSp
n
; lwe/'N.SeSp

n
;DK /'N.sSpace

n
;WCSe

f /:

We would now like to define a symmetric monoidal .1; n/–category to be an .1; 1/–
functor from � , viewed as an .1; 1/–category, eg as N.�; Iso�/, to the .1; 1/–
category of .1; n/–categories satisfying certain properties.

Using the strictification theorem of Toën and Vezzosi from [54] the .1; 1/–category of
such functors can be computed using the model category .sSpaceCSe

n;f
/� of � –diagrams

in sSpaceCSe
n;f

endowed with the projective model structure,

N..sSpaceCSe
n;f
/� ;W/ '�!MaphsSpaceCSe

n;f

.N.�; Iso�/;N.sSpace
n
;WCSe

f //:

Fibrant objects in the former are strict functors from � to CSSp
n

. Thus, the following
definition suffices.

Definition 3.3 A symmetric monoidal complete n–fold Segal space is a (strict) functor
from � to the (strict) category of complete n–fold Segal spaces CSSp

n
,

AW �! CSSp
n
;

such that for every m� 0, the induced map

A

� Y
1�ˇ�m

ˇ

�
W Ahmi ! .Ah1i/m

is an equivalence of complete n–fold Segal spaces.

The complete n–fold Segal space X DAh1i is called the complete n–fold Segal space
underlying A, and by abuse of language we will sometimes call a complete n–fold
Segal space X symmetric monoidal if there is a symmetric monoidal complete n–fold
Segal space A such that Ah1i DX.

Remark 3.4 In particular, for mD 0, this implies that Ah0i is levelwise equivalent
to a point, viewed as a constant n–fold Segal space, which we will denote by 1.

Remark 3.5 We can define symmetric monoidal n–fold Segal spaces in a similar way,
by replacing CSSp

n
by SeSp

n
.
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Definition 3.6 The .1; 1/–category, ie complete Segal space, of functors from �

to CSSp
n

, which as mentioned above can be computed using the model category of
� –diagrams in sSpaceCSe

n;f
, has a full sub-.1; 1/–category of symmetric monoidal

complete n–fold Segal spaces. Similarly to Section 2.3.1, this .1; 1/–category can
be realized as the localization of the projective model structure on .sSpaceCSe

n;f
/� with

respect to the Segal morphisms; see [29, Example A.11]. A 1–morphism in this
.1; 1/–category is called a symmetric monoidal functor of .1; n/–categories.

The completion map X ! yX is a weak equivalence. Moreover, since Dwyer–Kan
equivalences are closed under products, completion commutes with finite products of
Segal spaces (up to weak equivalence). Therefore we obtain the following lemma.

Lemma 3.7 If AW �! SeSp
n

is a symmetric monoidal n–fold Segal space, then

yAW �! CSSp
n
; hmi 7!1Ahmi;

is a symmetric monoidal complete n–fold Segal space.

Example 3.8 Let AW �! SeSp be a symmetric monoidal Segal space. Consider the
product of maps 1 � 2 and the map  W h2i ! h1i, 1; 2 7! 1. They induce a span

Ah1i �Ah1i
A.1/�A.2/
 ���������

'
Ah2i

A./
��! Ah1i:

Passing to the homotopy category, we obtain a map

h1.Ah1i/� h1.Ah1i/! h1.Ah1i/:

Toën and Vezzosi [56] showed that this is a symmetric monoidal structure on the
category h1.Ah1i/. Roughly speaking, this uses functoriality of A. Associativity
uses the Segal space Ah3i; Ah0i corresponds to the unit; and the map cW h2i ! h2i,
1 7! 2; 2 7! 1, induces the braiding and commutativity.

Example 3.9 Truncations and extensions of symmetric monoidal .1; n)-categories
are again symmetric monoidal. Let A be a symmetric monoidal n–fold (complete)
Segal space. Since �k and " are functorial and preserve weak equivalences and products
(since they are right adjoints), the assignments

�k.A/hmi D �k.Ahmi/; ".A/hmi D ".Ahmi/
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can be extended to functors �k.A/ and ".A/, and the images of A
�Q

1�ˇ�m ˇ
�

are
again weak equivalences. Thus, they endow the k–truncation and extension with a
symmetric monoidal structure.

Example 3.10 Given a symmetric monoidal (possibly complete) n–fold Segal space
AW � ! SeSp

n
, recall that Ah0i is weakly equivalent to the point 1, viewed as a

constant n–fold Segal space. For every m� 0 there is a unique map h0i! hmi, which
induces a map 1'Ah0i!Ahmi which picks out a distinguished object 1hmi 2Ahmi.
The looping of A with respect this object is also symmetric monoidal, with

�.A/hmi D�1hmi
.Ahmi/;

which extends to a symmetric monoidal structure similarly to in the previous example.
Note that since the space of choices for the unit 1hmi is contractible, different choices
lead to equivalent loopings.

Example 3.11 Important examples come from the classification diagram construction.
Let C be a small symmetric monoidal category and let W D Iso C . As we saw in
Definition 1.22, this gives a complete Segal space N.C;W/. The symmetric monoidal
structure of C endows N.C;W/ with the structure of a symmetric monoidal complete
Segal space:

First note that W�m D Iso.C�m/ for every m. On objects, let AW �! CSSp be given
by Ahmi DN.C�m;W�m/� . We explain the image of the map h2i ! h1i, 1; 2 7! 1,
which should be a map Ah2i ! Ah1i. The image of an arbitrary map hmi ! hli can
be defined similarly.

An l –simplex in Ah2i0 DN.C � C;W �W/0 is a pair

C0
w1
�! � � �

wl
�! Cl ; D0

w 01
�! � � �

w 0
l
�!Dl ;

and is sent to

C0˝D0
w1˝w

0
1

����! � � �
wl˝w

0
l

����! Cl ˝Dl :

Observe that wi ˝w0i is again in W . More generally, an l –simplex in

Ah2ik DN.C � C;W �W/k
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is a pair of diagrams

C0;0 C1;0 � � � Ck;0 D0;0 D1;0 � � � Dk;0

C0;1 C1;1 � � � Ck;1 D0;1 D1;1 � � � Dk;1

:::
:::

:::
:::

:::
:::

C0;l C1;l � � � Ck;l D0;l D1;l � � � Dk;l

f10

w01

f20

w11

fk0

wk1

g10

v01

g20

v11

gk0

vk1

f11

w02

f21

w21

fk1

wk2

g11

v02

g21

v21

gk1

vk2

w0l w1l wkl v0l v1l vkl

f1l f2l fk;l g1l g2l gk;l

which is sent to the diagram

C0;0˝D0;0 C1;0˝D1;0 � � �

C0;1˝D0;1 C1;1˝D1;1 � � �

:::
:::

f10˝g10

w01˝v01

f20˝g20

w11˝v11

f11˝g11 f21˝g21

of componentwise tensor products.

Finally, we need to check that A
�Q

1�ˇ�m ˇ
�

is a weak equivalence. This follows
from the fact that

.Ahmi/k DN.C�m;W�m/k D .N.C;W/k/
�m
D .Ah1ik/

m:

Remark 3.12 More generally, if we start with a symmetric monoidal relative category
.C;W/ (a definition can eg be found in [14]) such that all N.C�m;W�m/ are (complete)
Segal spaces, then the above construction for .C;W/ yields a symmetric monoidal
(complete) Segal space N.C;W/.

3.2 Definition via towers of .nCi /–fold Segal spaces

Recall that a monoidal category can be seen as a bicategory with just one object.
Similarly, a k–monoidal n–category should be the same as a connected .kCn/–
category with only one object, one 1–morphism, one 2–morphism, and so on up to
one .k�1/–morphism.
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We will base our definitions for (symmetric) monoidal .1; n/–categories in this section
on this guiding principle, which often goes by the name “delooping hypothesis”.

Moreover, in our simplicial setting this principle turns out to be true almost by definition:
we will use that associative monoids in a (higher) category C can be described as
simplicial objects in C satisfying Segal conditions. This motivates the following
definition of a (k–)monoidal complete n–fold Segal space.

3.2.1 Monoidal n–fold complete Segal spaces To implement the above idea, we
first need to explain what “having (essentially) one object” means.

Definition 3.13 A connected or 0–connected n–fold Segal space X is a pointed
object in n–fold Segal spaces, ie a morphism �!X from the constant n–fold Segal
space consisting of a point to X such that the map

�!X0;�;:::;�

is a weak equivalence of .n�1/–fold Segal spaces. In particular, a connected n–fold
Segal space has a contractible space of objects.

Definition 3.14 A monoidal complete n–fold Segal space is a 1–hybrid .nC1/–fold
Segal space X .1/ which is connected. Note that as X .1/ is 1–hybrid, X .1/0;�;:::;� is
constant with values a discrete space. Thus, to be connected implies that X .1/0;�;:::;� is
equal to the point viewed as a constant n–fold Segal space; we again denote the unique
object by �. We say that this endows the complete n–fold Segal space

X D�.X .1//D��.X
.1//

with a monoidal structure and that X .1/ is a delooping of X.

Remark 3.15 Without the completeness condition, we could define a monoidal n–
fold Segal space to be an .nC1/–fold Segal space X .1/ which is connected. Then
��.X

.1//D HomX.1/.�;�/ is independent of the choice of point � 2X0;:::;0 and we
can say that this endows the n–fold Segal space X D �.X .1// D ��.X

.1// with a
monoidal structure. However, for a complete Segal space X, the space X0;:::;0 will not
be contractible (unless it is trivial). Thus, we need a model for .1; nCk/–categories
which can have a point as the set of objects, 1–morphisms, et cetera. This motivates
our use of hybrid Segal spaces.
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Remark 3.16 Let X be an m–hybrid n–fold Segal space with m > 0 which is
connected. Then X0;�;:::;� D �, and therefore the looping just is

�.X/�;:::;� D f�g�
h
f�g
X1;�;:::;� �

h
f�g
f�g 'X1;�;:::;�:

A similar definition works for hybrid Segal spaces.

Definition 3.17 A monoidal m–hybrid n–fold Segal space is an .mC1/–hybrid
.nC1/–fold Segal space X .1/ which is connected. We say that this endows the m–
hybrid n–fold Segal space

X D�.X .1//

with a monoidal structure and that X .1/ is a delooping of X.

Remark 3.18 Definitions 3.14 and 3.17 are special cases of the following more
general construction of monoids in a model category. Let M be a left proper cellular
model category, and consider the projective model structure on the category M�op

of
simplicial objects in M. By the strictification theorem by Toën and Vezzosi [54], the
.1; 1/–category of .1; 1/–functors between the .1; 1/–categories represented by
�op and M is equivalent to N.M�op

; lwe/. We say that an object X� 2M�op
is a

weak monoid if the Segal maps
Xn!Xn1

are weak equivalences. One can show that the .1; 1/–category of monoids in the
.1; 1/–category N.M;we/ — which is, as usual, obtained by a localization of the
model structure on M�op

with respect to the maps governing the Segal morphisms —
is equivalent to the relative nerve of the relative category of weak monoids in M and
levelwise weak equivalences. Monoidal m–hybrid n–Segal spaces are exactly the weak
monoids in m–hybrid n–Segal spaces.

Example 3.19 Let C be a small monoidal category and let W D Iso C . As we saw in
Definition 1.22, this gives a complete Segal space N.C;W/. The monoidal structure
of C endows N.C;W/ with the structure of a monoidal complete Segal space:

Recall that C� was the simplicial object in categories given by Cn WD Fun.Œn�; C/. Let
Cm;n D C˝mn be the category which has objects of the form

C01˝ � � �˝C0m
c1
�! � � �

cn
�! Cn0˝ � � �˝Cnm

Algebraic & Geometric Topology, Volume 19 (2019)



A note on the .1; n/–category of cobordisms 573

for ci D ci1˝ � � �˝ cim and morphisms of the form

C01˝ � � �˝C0m
c1 //

f 0

��

� � �
cn // Cn0˝ � � �˝Cnm

f n

��

D01˝ � � �˝D0m
d1 // � � �

dn // Dn0˝ � � �˝Dnm

where c1; : : : ; cn , d1; : : : ; dn and f 0; : : : ; f n are products of m morphisms in C .

Consider its subcategory CW
m;n � Cm;n which has the same objects, and vertical mor-

phisms involving only the ones in WD Iso C , ie f 0; : : : ; f n are products of morphisms
in W.

Now let

C.1/m;n DN.C
W
m;n/

be the (ordinary) nerve. By a direct verification one sees that the collection C.1/
�;� is a

2–fold Segal space. Moreover,

(1) C.1/0;n D N.C˝0n / D �, so C.1/0;� is discrete and equal to the point viewed as a
constant Segal space, and

(2) for every m � 0, we get that C.1/m;� D N.CW
m;�/ D N..C˝m

�
/W/ is a complete

Segal space.

Summarizing, C.1/ is a 1–hybrid 2–fold Segal space which is connected and endows
�.C.1//� ' C.1/1;� 'N.C;W/� with the structure of a monoidal complete Segal space.

3.2.2 k–monoidal n–fold complete Segal spaces To encode braided or symmetric
monoidal structures, we can push this definition even further.

Definition 3.20 An n–fold Segal space X is called j –connected if

X1j ;0;�;:::;�

is weakly equivalent to the point viewed as a constant n–fold Segal space.

Remark 3.21 Being j –connected implies being i –connected for every 0� i < j .

Definition 3.22 A k–monoidal m–hybrid n–fold Segal space is an .mCk/–hybrid
.nCk/–fold Segal space X .k/ which is .k�1/–connected.
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Remark 3.23 Since X .k/ is .mCk/–hybrid, X .k/
1i ;0;�;:::;�

is discrete for every 0� i <k .
Thus, being .k�1/–connected implies that X .k/

1i ;0;�;:::;�
is equal to the point viewed as

a constant .n�iC1/–fold Segal space for every 0� i < k .

By the following proposition, this definition satisfies the delooping hypothesis. In
practice we can use it to define a k–monoidal n–fold complete Segal space step-by-step
by defining a tower of monoidal i –hybrid .nCi/–fold Segal spaces for 0� i < k .

Proposition 3.24 The data of a k–monoidal n–fold complete Segal space is the same
as a tower of monoidal i –hybrid .nCi/–fold Segal spaces X .iC1/ for 0 � i < k

together with weak equivalences

X .j / '�.X .jC1//

for every 0� j < k� 1.

Definition 3.25 We say that these equivalent data endow the complete n–fold Segal
space

X DX .0/ '�.X .1//

with a k–monoidal structure. The .nCiC1/–fold Segal space X .iC1/ is called an
i –fold delooping of X .

Before proving the proposition, we need the following lemmas.

Lemma 3.26 If X is a k–monoidal m–hybrid n–fold Segal space and 0 � l � k ,
then X is an l –monoidal .mCk�l/–hybrid .nCk�l/–fold Segal space.

Proof Since X is a k–monoidal m–hybrid n–fold Segal space, X is an .mCk/–
hybrid .nCk/–fold Segal space such that

X1k�1;0;:::;0 D �:

This implies that X1l�1;0;:::;0 D �.

Lemma 3.27 Let X be a k–monoidal m–hybrid n–fold Segal space. Then �.X/D
��.X/ is a .k�1/–monoidal .m�1/–hybrid n–fold Segal space.

Proof This follows from

�.X/�;:::;� D HomX .�;�/�;:::;� D f�g�hX0;�;:::;� X1;�;:::;� �
h
X0;�;:::;�

f�g 'X1;�;:::;�;

since X0;�;:::;� D f�g.
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Proof of Proposition 3.24 Let Y be a k–monoidal n–fold complete Segal space. By
Lemma 3.26 it is a monoidal .k�1/–hybrid .nCk�1/–fold Segal space and we define
the top layer of our tower to be X .k/ D Y .

Now let X .k�1/ D�.X .k//. By Lemmas 3.27 and 3.26, this is a monoidal .k�2/–
hybrid .nCk�2/–fold Segal space.

Inductively, define X .i/ D �.X .iC1// for 1 � i � k � 1. Similarly to above, by
Lemmas 3.27 and 3.26, this is a monoidal .i�1/–hybrid .nCi�1/–fold Segal space.

Conversely, assume we are given a tower X .i/ as in the proposition. Since Y DX .k/

is a monoidal .k�1/–hybrid .nCk�1/–fold Segal space,

(1) Y0;�;:::;� DX
.k/
0;�;:::;� D �:

Since X .k�1/ is a monoidal .k�2/–hybrid .nCk�2/–fold Segal space and by (1),

(2) Y1;0;�;:::;� DX
.k/
1;0;�;:::;� D f�g�

h

X
.k/
0;0;�;:::;�

X
.k/
1;0;�;:::;� �

h

X
.k/
0;0;�;:::;�

f�g

D�.X .k//0;�;:::;�

'X
.k�1/
0;�;:::;� D �:

Since X .k/ is k–hybrid, Y1;0;�;:::;� DX
.k/
1;0;�;:::;� is discrete and so Y1;0;�;:::;� D �.

Inductively, for 0� i < k , since X .k�i/ is a monoidal .k�i�1/–hybrid .nCk�i�1/–
fold Segal space and by (1), (2), . . . ,

Y1i ;0;�;:::;� DX
.k/
1i ;0;�;:::;�

' f�g�
h

X
.k/

0;1i�1;0;�;:::;�

X
.k/
1i ;0;�;:::;�

�
h

X
.k/

0;1i�1;0;�;:::;�

f�g

D�.X .k//1i�1;0;�;:::;�

'X
.k�1/
1i�1;0;�;:::;�

D � � � 'X
.k�i/
0;�;:::;� D �:

Again, since X .k/ is k–hybrid, we find that Y1i ;0;�;:::;� DX
.k/
1i ;0;�;:::;�

is discrete and
so Y1i ;0;�;:::;� D �.

Given a bicategory C and an object x in C , the endomorphism, or loop, category
EndC.x/ D �x.C/ is monoidal. Its monoidal structure comes from composition of
endomorphisms, which is encoded in the full sub-bicategory of C which has only the
object x . In analogy with topology, one can call this delooping B�x.C/. We now
prove that a similar statement holds for n–fold Segal spaces. With the definition of
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“symmetric monoidal” appearing in the next section, it will become clear that this
provides an analog of Example 3.10 in this setting.

Recall from Section 2.4 the constructions of the truncation of an n–fold Segal space to
an .n�1/–fold Segal space and its left adjoint, extension. Truncation also has a right
adjoint, which is taking the 0th coskeleton:

.cosk0.X//k1;�;:::;� DX
.k1C1/
�;:::;� I

face and degeneracy maps are given by partial projections and partial diagonals. Given
an n–fold Segal space X and 1� l � n, we can first truncate l times and then take the
coskeleton l times to obtain an n–fold Segal space, which we abbreviate by coskl0.X/.

Definition 3.28 Fix 1� l � n. Let X�;:::;� be an n–fold Segal space and x 2X0;:::;0 .
The object x determines a map xW � ! coskl0.X/ using the degeneracy maps. We
define a new n–fold Segal space pre Llx.X/ as the homotopy pullback

pre Llx.X/�;:::;� X�;:::;�

� coskl0.X/

S

x

For pre Llx.X/ we have that, for 1� i � l ,

pre Llx.X/k1;:::;ki�1;0;kiC1;:::;kn ' �Š fxg:

To obtain an l –hybrid Segal space, we discretize these spaces, ie we define

Llx.X/k1;:::;ki�1;0;kiC1;:::;kn D

�
� Š fxg if ki D 0 for 1� i � l;
pre Llx.X/k1;:::;kn otherwise;

with the obvious modified face and degeneracy maps.

Remark 3.29 Unraveling the coskeleton, for k1; : : : ; kl > 0 the .n�l/–fold Segal
space Llx.X/k1;:::;kl ;�;:::;� is a homotopy fiber

Llx.X/k1;:::;kl ;�;:::;� Xk1;:::;kl ;�;:::;�

� X
�.k1C1/���.knC1/
0;:::;0;�;:::;�

S

x

where S W Xk1;:::;kl ;�;:::;�!X
�.k1C1/���.knC1/
0;:::;0;�;:::;� is the product of all maps arising from

the maps fi W Œ0�! Œki �. The remaining face maps send everything to the point �, which
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we identify with x , or, more precisely, its image under the appropriate composition
of degeneracy maps. The remaining degeneracy maps d�;:::;�W Llx.X/k1;:::;kl ;�;:::;�!

Llx.X/k1;:::;ki�1;:::;kl ;�;:::;� satisfy d�;:::;�.�/D d�;:::;�.x/, where again we identify x
with its image under the appropriate composition of degeneracy maps. Since X is an
n–uple simplicial space, Llx.X/ is well defined as an n–uple simplicial space. The
Segal condition is preserved, and, if X satisfied condition (CSSi ) for some i > l , then
Llx.X/ does too.

Lemma 3.30 Let 1� l � n and let X�;:::;� be an n–fold Segal space which satisfies
(CSSi ) for i > l . Then, for any x 2 X0;:::;0 , the n–fold Segal space Llx.X/ is an l –
monoidal complete .n�l/–fold Segal space which endows �lx.X/ with an l –monoidal
structure.

Proof By construction, Llx.X/ is .l�1/–connected. Since X satisfies (CSSi ) for i >l ,
it is an l –hybrid n–fold Segal space. Finally, �lx.X/D�

l
x.L

l
x.X// by the following

lemma.

Lemma 3.31 For an n–fold Segal space X, an object x 2X0;:::;0 and 0� l � n, we
have an equivalence

�lx.L
l
x.X//'�

l
x.X/:

Proof This can be checked levelwise: exactly the parts of X which involve x remain
in Llx.X/, and when looping at x that’s the part that is seen.

This lemma gives a method for finding a k–monoidal structure as a tower.

Proposition 3.32 Let Y .0/ be an n–fold Segal space. Assume we are given, for
1� l � k , an .nCl/–fold Segal space Y .l/ together with an object yl 2 Y .l/ such that

�yl .Y
.l//' Y .l�1/:

Then Y .0/ has a k–monoidal structure. If all Y .l/ satisfy (CSSi ) for i > l , then Y .0/

is a k–monoidal complete Segal space.

Proof The monoidal .nCl�1/–fold Segal space Lyl .Y
.l// endows Y .l�1/ with a

monoidal structure. Proposition 3.24 finishes the proof.

3.2.3 Symmetric monoidal n–fold complete Segal spaces The stabilization hy-
pothesis, first formulated in [2], states that an n–category which is monoidal of a
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sufficiently high degree cannot be made “more monoidal” and, moreover, is symmetric
monoidal. For Tamasani’s weak n–categories, a proof was given by Simpson [51]; for
general n–categories a proof follows from Lurie’s proof of Dunn’s additivity in [41];
see [23] for details.

For .1; n/–categories, we cannot expect stabilization: for instance, k–monoidal
.1; 0/–categories are .1; k/–categories with one object, one morphism, etc up to one
.n�1/–morphism, which, in turn, are Ek –algebras (in Space ). Note that since there are
Ek –algebras which are not EkC1–algebras, there are k–monoidal .1; 0/–categories
which are not .kC1/–monoidal. However, this motivates the following definition:

Definition 3.33 A symmetric monoidal structure on a complete n–fold Segal space X
is a tower of monoidal i –hybrid .nCi/–fold Segal spaces X .iC1/ for i > 0 such that
if we set X .0/ DX, we have that, for every i � 0,

X .i/ '�.X .iC1//:

3.3 Comparing the two definitions

In this section we show that every symmetric monoidal .1; n/–category defined as
in Section 3.1 gives one as defined in Section 3.2. The converse is also true, but we
do not go into the details here. Essentially this is a consequence of Dunn’s additivity
(see [41]): starting with the definition via a tower of .�k/op –monoids, one can replace
them by Ek –monoids, which in turn, when letting k go to 1, lead to a commutative
monoid. See also [23, Corollary 6.3.13].

We start with a symmetric monoidal .1; n/–category defined as in Section 3.1, a sym-
metric monoidal complete n–fold Segal space X W �! CSSp

n
. We will precompose

it with the functor
f W �op

! �; Œm� 7! hmi;

which sends a map .f W Œn�! Œm�/ in � to zf W hmi ! hni, where zf .0/D 0 and, for
j ¤ 0,

zf .j /D

�
minfi W f .i/D j g if it exists;
0 otherwise:

The composition
zX .1/W �op f

�! � X
�! CSSpn

is an .nC1/–fold simplicial space. Moreover, since f sends the maps gˇ from
Remark 1.5 to the Segal morphisms ˇ from Definition 3.1, zX .1/ is an .nC1/–fold
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Segal space. It satisfies (CSSi ) for i > 1. Moreover, zX .1/ is connected. However, it
does not satisfy (SCj ) for j D 1 since X .1/0;�;:::;� may not be discrete. We can easily
remedy this problem: choose an object x 2X .1/0;:::;0 and consider the .nC1/–fold Segal
space X .1/ D Lx. zX

.1//. Unraveling the definition, we have that

X
.1/

k1;�;:::;�
D

�
� if k1 D 0;
zX
.1/

k1;�;:::;�
if k1 ¤ 0;

as complete n–fold Segal spaces. Note that choosing different x ’s leads to equivalent
complete n–fold Segal spaces. Lemma 3.30 implies that X .1/ is a monoidal complete
n–fold Segal space.

The higher layers of the tower are obtained from the maps �k ! � coming from
taking the smash product of finite pointed sets, ie taking their product and identifying
anything containing a basepoint. Then, composing with f k we obtain

zX .k/W .�op/k
f k
�! �k! �! CSSp

n
:

Similarly, zX .k/ is .k�1/–connected, but might not satisfy (SCj ) for j � k . Choosing
any object x 2 X .k/0;:::;0 , then X .k/ D Lkx. zX

.k// is the desired k–monoidal complete
n–fold Segal space.

Part II The .1; n/–category of bordisms

To rigorously define fully extended topological field theories we need a suitable .1; n/–
category of bordisms, which, informally speaking, has zero-dimensional manifolds
as objects, bordisms between objects as 1–morphisms, bordisms between bordisms
as 2–morphisms, etc, and for k > n there are only invertible k–morphisms. Finding
an explicit model for such a higher category, ie defining a complete n–fold Segal
space of bordisms, is the main goal of this part and this paper. We endow it with a
symmetric monoidal structure and also consider bordism categories with additional
structure, eg orientations and framings, which allows us, in Section 10, to rigorously
define fully extended topological field theories.

4 The complete n–fold Segal space of closed intervals

In this section we define a complete Segal space Int� of closed intervals in R which
will form the basis of the n–fold Segal space of bordisms. It will be a tool to record
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where (in the time direction) the bordisms can be cut. In particular, there will be a
forgetful functor from bordisms to these closed intervals. We start by defining an
internal category of closed intervals in R, whose nerve will give a complete Segal
space of certain tuples of closed intervals. However, for our model of the bordism
category, to avoid having to deal with manifolds with corners, we will instead want
to interpret the tuples of intervals as being closed in an open interval of finite length
(instead of R). This will be explained in Section 4.3. Finally, we could have chosen
that open interval to always be .0; 1/ and thus fix the “length” in the time direction of
the bordism and its collars to be 1. This choice requires rescaling and will be explained
in Section 4.5.

4.1 Intc as an internal category

We first define a category internal to topological spaces Intc which gives rise to a
strongly Segal internal category Intc of closed intervals in R.

The topological space of objects of Intc is

(3) Intc0 D f.a; b/ W a < bg �R2

with the standard topology from R2 . We interpret an element .a; b/ 2 Intc0 as the
closed interval I D Œa; b�. This interpretation gives a bijection from the set of points
of the topological space Intc0 to the set of closed bounded intervals

Intc0 ! fclosed bounded intervals I D Œa; b� in R with nonempty interiorg

which we use as an identification. In fact, Intc0 is a submanifold of R2 and to
get the desired Kan complex Intc0 , we take smooth singular simplices (see eg [35]),
ie for l � 0, the l –simplices are pairs of smooth maps a; bW j�l je ! R such that
a.s/ < b.s/ for every s 2 j�l je . Faces and degeneracies are the usual ones. We view
such an l –simplex as a closed interval bundle and denote it by Œa; b� ! j�l je or
.I.s//s2j�l je D .a.s/; b.s//s2j�l je .

The topological space of morphisms of Intc is

(4) Intc1 D f.a0; a1; b0; b1/ W aj < bj for j D 0; 1 and a0 � a1; b0 � b1g �R4;

again with the standard topology from R4 . Now we interpret .a0; a1; b0; b1/ 2 Intc1
as a pair of ordered closed intervals I0 � I1 , where I0 D Œa0; b0� and I1 D Œa1; b1�.
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Here “ordered” means that a0 � a1 and b0 � b1 . This gives an identification of the
points of the topological space with certain pairs of intervals:

Intc1 !fI0 � I1 W Ij D Œaj ; bj � with aj < bj for j D 0; 1 and a0 � a1; b0 � b1g:

As above, Intc1 has the structure of a submanifold of R4 and by taking smooth singular
simplices we obtain a Kan complex Intc1 whose l –simplices now are quadruples of
smooth maps a0; a1; b0; b1W j�l je!R such that aj .s/ < bj .s/ for j D 0; 1, a0.s/�
a1.s/ and b0.s/� b1.s/ for every s 2 j�l je . We view such an l –simplex as a closed in-
terval bundle with two closed subintervals and denote it by .Œa0; b0�� Œa1; b1�/!j�l je
or .I0.s/� I1.s//j�l je .

The face and degeneracy maps

Intc0 Intc1d

t

s

arise from forgetting and repeating an interval, respectively:

sW Œa0; b0�� Œa1; b1� 7�! Œa0; b0�;

t W Œa0; b0�� Œa1; b1� 7�! Œa1; b1�;

and

d W Œa; b� 7�! Œa; b�� Œa; b�:

Composition is given by remembering the outer intervals:

.Œa0; b0�� Œa1; b1�/ ı .Œa1; b1�� Œa2; b2�/D .Œa0; b0�� Œa2; b2�/:

Here s , t and d are smooth maps, so Intc is a category internal to manifolds. Thus,
when taking smooth singular simplices to get Intc , all the above assignments are
well defined for l –simplices as well and commute with the faces and degeneracies.
Moreover, s and t are fibrations since they are restrictions of projections.

Remark 4.1 Even though we like to think of the l –simplices in Intc0 and Intc1 as
“closed interval bundles”, we do not treat them as such: face and degeneracy maps
are not defined to be pullbacks of the bundles, which would only be defined up to
isomorphism; instead, they are defined explicitly at the level of spaces to ensure that
simplicial functoriality holds.

Summarizing, we obtain:

Lemma 4.2 Intc is a strongly Segal internal category.
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Moreover, the spaces of objects and morphisms are contractible:

Lemma 4.3 Intc0 ' Intc1 ' �:

Proof The underlying topological space is contractible as a subspace of R2k , so the
associated Kan complex given by taking smooth simplices is also contractible.

4.2 Intc as a complete Segal space

We defined Intc as a strongly Segal internal category in the previous section. Its nerve,
constructed in Section 1.5.3, is a Segal space Intc

�
D N.Intc/� . Let us spell out this

Segal space in more detail to become more familiar with it.

For an integer k � 0, let

(5) Intck D
˚
.a;b/D .a0; : : : ;ak;b0; : : : ;bk/ W aj < bj for 0� j � k and

aj�1 � aj and bj�1 � bj for 1� j � k
	
�R2k

with the subspace topology. As above, one can extract Kan complexes Intc
k

by taking
smooth simplices. Note that for k D 0; 1 this coincides with (3) and (4) above. As
before, we interpret an element .a; b/ as an ordered .kC1/–tuple of closed intervals
I D I0 � � � � � Ik with left endpoints aj and right endpoints bj such that Ij has
nonempty interior. By “ordered”, ie Ij � Ij 0 , we mean that the endpoints are ordered,
ie aj � aj 0 and bj � bj 0 for j � j 0.

Spatial structure of the levels The spatial structure of a level Intc
k

comes from taking
smooth singular simplices of the submanifold of R2k . Thus, an l –simplex consists of
smooth maps

j�l je!R; s 7! aj .s/; bj .s/;

for j D 0; : : : ; k such that for every s 2 j�l je , the following inequalities hold:

ai .s/ < bi .s/ for i D 0; : : : ; k;

ai�1.s/� ai .s/;

bi�1.s/� bi .s/ for i D 1; : : : ; k:

We denote an l –simplex by .I0 � � � � � Ik/! j�l je or .I0.s/ � � � � � Ik.s//s2j�l j
and call it a closed interval bundle with .kC 1/ subintervals.

For a morphism f W Œm�! Œl � in the simplex category �, ie a (weakly) order-preserving
map, let jf jW j�mje ! j�l je be the induced map between standard simplices. Let
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f � be the map sending an l –simplex in Intc
k

to the m–simplex in Intc
k

given by
precomposing with jf j:

f �W .I0.s/� � � � � Ik.s//s2j�l je 7!
�
I0.jf j.s//� � � � � Ik.jf j.s//

�
s2j�mje

:

Notation 4.4 We denote the spatial face and degeneracy maps of Intc
k

by d�j and s�j
for 0� j � l .

The following lemma is a straightforward generalization of Lemma 4.3.

Lemma 4.5 Each level Intc
k

is a contractible Kan complex.

Simplicial structure: the simplicial space Intc
�

By construction, since Intc was
strongly Segal, its nerve is a functor Intc

�
W �op!Space . Let us recall that to a morphism

gW Œm�! Œk� in �, it assigns

Intk
g�
�! Intm; .I0.s/� � � � � Ik.s//s2j�l je 7! .Ig.0/.s/� � � � � Ig.m/.s//s2j�l je :

One could alternatively see this directly by observing that the assignment is clearly
functorial and f � and g� commute for all morphisms f and g in �.

Notation 4.6 We denote the simplicial face and degeneracy maps by dj and sj for
0� j � k .

Explicitly, they are given by the following formulas. The j th degeneracy map is given
by doubling the j th interval, and the j th face map is given by deleting the j th interval:

Intk
sj
�! IntkC1; .I0 � � � � � Ik/ 7! .I0 � � � � � Ij � Ij � � � � � Ik/;

Intk
dj
�! Intk�1; .I0 � � � � � Ik/ 7! .I0 � � � � � yIj � � � � � Ik/:

The complete Segal space Intc
�

Proposition 4.7 Intc
�

is a complete Segal space. Moreover, the inclusion � ,! Intc
�

given by degeneracies, where � is seen as a constant complete Segal space, is an
equivalence of complete Segal spaces.

Proof We have seen in Lemma 4.5 that every Intc
k

is contractible. This ensures the
Segal condition, namely that

Intck
'
�! Intc1 �

h
Intc0
� � � �

h
Intc0

Intc1;

completeness, and also that the given inclusion is a levelwise equivalence.
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4.3 The internal category or complete Segal space Int of ordered closed
intervals in an open one

We now change our interpretation of the spaces (5): we do not identify them with the
spaces of ordered closed bounded intervals I0 � � � � � Ik anymore, but as ordered
intervals which are closed in .a0; bk/, ie we interpret the elements as

zI0 � � � � � zIk;

where zIj D Ij \ .a0; bk/ for 0� j � k . Thus, in the generic case when aj ¤ a0 for
0 < j � k and bj ¤ bk for 0� j < k , then zI0 � � � � � zIk are the half-open or closed
intervals

.a0; b0�� Œa1; b1�� � � � � Œak�1; bk�1�� Œak; bk/:

If we view the elements in (5) in this way, we will denote the internal category (or
analogously the Segal space) by Int.

Note that the identity gives an isomorphism of complete Segal spaces describing the
change of interpretation,

Intck! Intk; .I0 � � � � � Ik/ 7! . zI0 � � � � � zIk/;

where zIj D Ij \ .a0; bk/ for j D 0; : : : ; k . Conversely, Ij D clR. zIj /, the closure
of zIj in R.

Definition 4.8 Let
Intn
�;:::;� D .Int�/�n:

We denote an element in Intn
k1;:::;kn

by

I D .xa; xb/D .I i0 � � � � � I
i
ki
/1�i�n:

Lemma 4.9 The n–fold simplicial space Intn
�;:::;� is a complete n–fold Segal space.

Moreover, the inclusion � ,! Intn
�;:::;� given by degeneracies, where � is seen as a

constant complete Segal space, is an equivalence of complete n–fold Segal spaces.

Proof The Segal condition and completeness follow from the Segal condition and
completeness for Int� . Since every Intk is contractible by Lemma 4.5, .Int�/�n satisfies
essential constancy, so Intn is a complete n–fold Segal space. It also ensures that the
given inclusion is a levelwise equivalence.
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4.4 The boxing maps

We will need the following maps for convenience later:

Definition 4.10 Fix k � 0. The map of spaces

BW Intk! Int0; I D .I0� � � � � Ik/!j�
l
je 7!B.I /DB.a; b/D .a0; bk/!j�

l
je;

is called the boxing map.

Its n–fold product gives, for every k1; : : : ; kn � 0, a map BW Intn
k1;:::;kn

! Intn0 which
sends an l –simplex to the (family of) smallest open box(es) containing all intervals,

I D .I i0 � � � � � I
i
ki
/1�i�n! j�

l
je

7! B.I /D B.xa; xb/D .a10; b
1
k1
/� � � � � .an0 ; b

n
kn
/! j�l je:

We will usually view the total space of B.I /! j�l je as sitting inside Rn � j�l je asS
s2j�l je

B.I .s//� fsg.

We will also require the following rescaling maps.

Definition 4.11 For an element I 2 Intn
k1;:::;kn

, let �.I /W B.I / ! .0; 1/n be the
restriction of the product of the affine maps R!R sending ai0 to 0 and bi

k
to 1. We

call it the box rescaling map.

4.5 A variant: closed intervals in .0; 1/

One might prefer to restrict to intervals which lie in .0; 1/, modifying the definition to

Int.0;1/
k
D
˚
.a; b/D .a0; : : : ; ak; b0; : : : ; bk/ W aj < bj for 0� j � k;

0D a0 � a1 � � � � � ak and b0 � � � � � bk�1 � bk D 1
	
� Intk

The simplicial structure now has to be modified to ensure that the outer endpoints
always are 0 and 1. This is provided by composition with an affine rescaling map: Let
gW Œm�! Œk� be a morphism in �. Then, let

Int.0;1/
k

g�
�! Int.0;1/m ; .I0 � � � � � Ik/! j�

l
je 7! �g.Ig.0/ � � � � � Ig.m//! j�

l
je;

where the rescaling map �gD�.Ig.0/�� � �� Ig.m// is the unique affine transformation
R!R sending ag.0/ to 0 and bg.m/ to 1.

Lemma 4.12 Int.0;1/
�

is a complete Segal space.
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Proof The only thing which is not completely analogous to Intc is checking that it is a
simplicial space. Given two maps Œm� g�! Œk�

zg
�! Œp�, and I0 � � � � � Ip , the rescaling

map �zgıg and the composition of the rescaling maps �zg ı �g both send azgıg.0/ to 0
and bzgıg.m/ to 1 and, since affine transformations R!R are uniquely determined
by the image of two points, this implies that they coincide. Thus, this gives a functor
�op! Space .

Note that the degeneracy maps are the same ones, given by repeating an interval.
However, the face maps need to modified: after deleting an end interval we have to
rescale the remaining intervals linearly to .0; 1/. Explicitly, for j D 0, the rescaling
map is the affine map �0 sending .a1; 1/ to .0; 1/, �0.x/ D .x � a1/=.1� a1/ and,
for j D k , it is the affine map �k W .0; bk�1/! .0; 1/, �k.x/D x=bk�1 . Then,

Int.0;1/
k

dj
�! Int.0;1/

k�1
;

I0�� � ��Ik 7�!

8<:
I0�� � �� yIj �� � ��Ik if j ¤0; k;
.0; .b1�a1/=.1�a1/��� � �� Œ.ak�a1/=.1�a1/; 1/ if j D0;
.0; .b0/=.bk�1/��� � �� Œ.ak�1/=.bk�1/; 1/ if j Dk:

Remark 4.13 An advantage of this “reduced” version is that the space of objects is
just a point: for k D 0, the condition on the endpoints of the intervals becomes a0 D 0
and b0 D 1, so the only element is .0; 1/ 2 Int0 . In particular, Int0 is discrete.

Remark 4.14 The boxing maps applied to Int.0;1/
k

are trivial: for I D I0 � � � � � Ik ,
we always have that B.I /D .0; 1/. Moreover, Int.0;1/

k
is the preimage of .0; 1/ under

the boxing maps. Finally, note that the simplicial structure is defined exactly as the
composition

Int.0;1/
k

�
�! Intk

g�
�! Intm

�
�! Int.0;1/m ;

where �W I 7! .�.I //.I / consists of applying the box rescaling maps. Moreover, since
� ı �D id, the diagram

Intk Int.0;1/
k

Intm Int.0;1/m

�

g�

�

g�

�

commutes and shows that the simplicial structure is defined exactly in a way to ensure
that we a natural transformation of simplicial spaces

�W Int! Int.0;1/;

which is a weak equivalence of complete Segal spaces.
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5 The .1; n/–category of bordisms Bordn

In this section we define an n–fold Segal space PBordn in several steps. However, it
will turn out not to be complete in general. By applying the completion functor we
obtain a complete n–fold Segal space, the .1; n/–category of bordisms Bordn .

Let V be a finite-dimensional vector space. We first define the levels relative to V
with elements being certain submanifolds of the (finite-dimensional) vector space
V �Rn Š V �B , where B is an open box, ie a product of n bounded open intervals
in R. Then we vary V , ie we take the limit over all finite-dimensional vector spaces
lying in some fixed infinite-dimensional vector space, eg R1 . The idea behind this
process is that by Whitney’s embedding theorem, every manifold can be embedded in
some large enough vector space, so in the limit, we include representatives of every
n–dimensional manifold. We use V �B instead of V �Rn as in this case the spatial
structure is easier to write down explicitly.

5.1 The sets of 0–simplices of .PBordV
n /k1;:::;kn

The intuition behind the following definition should be the following. An element
(ie 0–simplex) in the space .PBordVn /1;:::;1 should be an n–fold bordism, ie a manifold
for which there are n “time” directions singled out and whose boundary is decomposed
into an incoming and an outgoing part in each of these time directions. This is a picture
of a simple example for nD 2:

time 1

time 2

An element in the space .PBordVn /k1;:::;kn should be an n–fold bordism, which is the
composition of k1 bordisms in the first “time” direction, k2 bordisms in the second
direction, and so on. This is a picture of an example for nD 2 and k1 D k2 D 2:
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The pictures both depict the bordisms as embedded into R times the two time directions.
We would like to point out that the time directions have a preferred ordering, as we
will discuss in more detail later.

More generally, we will choose the bordisms to be equipped with an embedding into
some finite-dimensional real vector space V times n time directions, which we single
out to track where the bordism is allowed to be cut into the individual composed
bordisms. Furthermore, to keep track of the “cuts”, we need to remember the data of
the grid in the time directions:

In practice, we will keep track of little intervals surrounding the grid instead of the grid
itself. This should be thought of as remembering little collars around the cuts rather
than the cuts themselves:

We will explain how to recover the cuts and how to interpret the following definition in
the example and remark right after the definition. Moreover, we will relate it to more
classical definitions of (higher) bordisms in Section 8.

For S � f1; : : : ; ng denote the projection from Rn onto the coordinates indexed by S
by �S W Rn! RS. We will now define the sets of 0–simplices of .PBordVn /k1;:::;kn
and denote them by .PBordVn /k1;:::;kn to avoid adding an extra index. This notation
will only appear in this and the next subsection.
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Definition 5.1 Let V be a finite-dimensional R–vector space, which we identify with
some Rr . For every n–tuple k1; : : : ; kn � 0, let .PBordVn /k1;:::;kn be the collection
of tuples .M; I D .I i0 � � � � � I

i
ki
/1�i�n/, satisfying the following conditions:

(1) For 1� i � n,

.I i0 � � � � � I
i
ki
/ 2 Intki :

(2) M is a closed and bounded n–dimensional submanifold of V �B.I / and the
composition � W M ,! V �B.I /� B.I / is a proper map.12

(3) For every S � f1; : : : ; ng, let pS W M
�
�! B.I /

�S
�! RS be the composition

of � with the projection �S onto the S –coordinates. Then, for every 1� i � n
and 0� ji � ki , at every x 2 p�1

fig
.I iji /, the map pfi;:::;ng is submersive.

Example 5.2 An example of an element in .PBordR
1 / is depicted below. It represents

a composition of three 1–bordisms, the first one of which is “degenerate”, ie a trivial
1–bordism between two points:

b3a0 b0a1 b1 a2 b2 a3
t3t2t1t0

Remark 5.3 For k1; : : : ; kn� 0, one should think of an element in .PBordVn /k1;:::;kn
as a collection of k1 � � � kn composed bordisms, with ki composed bordisms with
collars in the i th direction. They can be understood as follows:

� Condition (3) in particular implies that for every 1� i � n, at every x 2 p�1
fig
.I ij /,

the map pfig is submersive. So if we choose t ij 2 I
i
j , it is a regular value of pfig , and

therefore p�1
fig
.t ij / is an .n�1/–dimensional manifold. The embedded manifold M

should be thought of as a composition of n–bordisms where p�1
fig
.t ij / is one of the

.n�1/–bordisms (or a composition thereof) in the composition:

12Recall the boxing map from Section 4.4.
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t i
j

� For any tn�1j 2 In�1j and tn�1
l
2 In�1

l
, there is an inclusion of the preimages

p�1
fn�1;ng..t

n�1
j ; tnl //� p

�1
fn�1g.I

n�1
j /;

and by condition (3) the map pfn�1;ng is submersive there. Therefore, the preimage
p�1
fn�1;ng

..tn�1j ; tn
l
// is an .n�2/–dimensional manifold, which should be thought of as

one of the .n�2/–bordisms which are connected by the composition of n–bordisms M.
Moreover, again since pfn�1;ng is submersive everywhere in p�1

fn�1g
.In�1j /, a variant

of Ehresmann’s fibration theorem shows that the preimage p�1
fn�1g

.tn�1j / is a trivial
fibration and thus a trivial .n�1/–bordism between the .n�2/–bordisms it connects:

Rfn�1g

Rfng

tn�1
j

� Similarly, for .tkjk ; : : : ; t
n
jn
/ 2 I kjk � � � � � I

n
jn

, the preimage

p�1
fk;:::;ng..t

k
jk
; : : : ; tnjn//

is a .k�1/–dimensional manifold, which should be thought of as one of the .k�1/–
bordisms which is connected by the composition of n–bordisms M.

� Moreover, the following proposition shows that different choices of “cutting points”
t ij 2 I

i
j lead to diffeomorphic bordisms. In the case when bij < aijC1 , one should

thus think of the n–bordisms we compose as ��1
�Qn

iD1Œb
i
j ; a

i
jC1�

�
and the preimages

of the specified intervals as collars of the bordisms along which they are composed.
Otherwise, one should think of that n–bordism in the composition as being “degenerate”,
ie of being a trivial n–bordism.

We will come back to this interpretation in Section 8 when we compute homotopy
categories.
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Proposition 5.4 Let .M; I /2 .PBordVn /k1;:::;kn . Fix 1� i � n and 0� j � j 0 � ki .
Then, for any uij ; v

i
j 2 I

i
j and uij 0 ; v

i
j 0 2 I

i
j 0 such that uij < u

i
j 0 and vij < v

i
j 0 , there is

a diffeomorphism
p�1
fig .Œu

i
j ; u

i
j 0 �/! p�1

fig .Œv
i
j ; v

i
j 0 �/:

Proof Since the map pfig is submersive in I ij and I ij 0 , we can apply the Morse lemma,
which we recall in Theorem 8.11, to pfig twice to obtain diffeomorphisms

p�1
fig .Œu

i
j ; u

i
j 0 �/! p�1

fig .Œv
i
j ; u

i
j 0 �/! p�1

fig .Œv
i
j ; v

i
j 0 �/:

Applying the proposition successively for i D 1; : : : ; n yields:

Corollary 5.5 Let .M; I / 2 .PBordVn /k1;:::;kn and let B1; B2 � Rn be products of
nonempty closed bounded intervals with endpoints lying in the same specified intervals,
ie B1 D

Q
i Œu

i
j ; u

i
j 0 � and B2 D

Q
i Œv

i
j ; v

i
j 0 �, where 0 � j � j 0 � ki and uij ; v

i
j 2 I

i
j

and uij 0 ; v
i
j 0 2 I

i
j 0 such that uij < u

i
j 0 and vij < v

i
j 0 for every 1� i � n. Then there is

a diffeomorphism
��1.B1/! ��1.B2/:

5.2 The spaces .PBordn/k1:::;kn

The level sets .PBordVn /k1;:::;kn form the underlying sets of 0–simplices of spaces
which we construct in this subsection. Ultimately, we want the space to encode the
diffeomorphisms of n–fold bordisms which are the composition of ki bordisms in
the i th direction. More precisely, it should be the disjoint union of classifying spaces
thereof. It will only become apparent that the space we define is the desired one in
Section 8.2, in particular Proposition 8.17.

5.2.1 The topological space .PBordV
n /k1;:::;kn

We endow the set

.PBordVn /k1;:::;kn

with the following topology, coming from modifications of the Whitney C1–topology
on Emb.M; V � .0; 1/n/.

In [19], spelled out in more detail in [20], a topology is constructed13 on the set of
closed (not necessarily compact) n–dimensional submanifolds M �V �.0; 1/n , which

13Both [19] and [20] use the notation ‰.V � .0; 1/n/D Sub.V � .0; 1/n/ .
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we identify with the quotient

Sub.V � .0; 1/n/ ' �
G
ŒM�

Emb.M; V � .0; 1/n/=Diff.M/;

where the coproduct is taken over diffeomorphism classes of n–manifolds. It is given
by defining the neighborhood basis at M to be

fN � V � .0; 1/n WN \K D j.M/\K; j 2W g;

where K � V � .0; 1/n is compact and W � Emb.M; V � .0; 1/n/ is a neighborhood
of the inclusion M ,! V � .0; 1/n in the Whitney C1–topology. Thus, we obtain a
topology on

Sub.V � .0; 1/n/� Intnk1;:::;kn ;

where we view Intnk1;:::;kn as a (topological) subspace of R2k as in Section 4.1.

For an element I 2 Intnk1;:::;kn , recall from Definition 4.11 the box rescaling map
�.I /W B.I / ! .0; 1/n . Then we identify an element .M; I / 2 .PBordVn /k1;:::;kn
whose underlying submanifold is the image of an embedding �W M ,! V �B.I / with
the element .Œ�.I /ı ��; �.I // in the above space. This identification gives an inclusion

.PBordVn /k1;:::;kn � Sub.V � .0; 1/n/� Intnk1;:::;kn ;

which we use to topologize the left-hand side.

5.2.2 The space .PBordV
n /k1;:::;kn

To model the levels of the bordism category as
spaces, ie as Kan complexes, we can start with the above version as a topological
space and take singular simplices of this topological space. However, smooth maps
from a smooth manifold X to Sub.V � .0; 1/n/ as defined in [20, Definition 2.16,
Lemma 2.17] are easier to handle. By Lemma 2.18 in the same paper, every continuous
map from a smooth manifold — in particular from j�l je — to .PBordVn /k1;:::;kn can
be perturbed to a smooth one, so the homotopy type when considering smooth singular
simplices does not change.

We could directly define the space .PBordVn /k1;:::;kn to be the smooth singular space
of .PBordVn /k1;:::;kn . However, we will first give a very explicit description of it.
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Definition 5.6 An l –simplex of .PBordVn /k1;:::;kn consists of tuples�
M; I.s/D .I i0.s/� � � � � I

i
ki
.s//s2j�l je

�
such that:

(1) I D .I i0 � � � � � I
i
ki
/1�i�n! j�

l je is an l –simplex in Intn
k1;:::;kn

.

(2) M is a closed and bounded .nCl/–dimensional submanifold of

V �B.I .s//s2j�l je � V �Rn � j�l je

such that14

(a) the composition � W M ,! V � B.I .s//s2j�l je � B.I .s//s2j�l je of the
inclusion with the projection is proper,

(b) its composition with the projection onto j�l je is a submersion M ! j�l je
which is trivial outside j�l j � j�l je .

(3) For every S � f1; : : : ; ng, let

pS W M
�
�! B.I .s//s2j�l je �Rn � j�l je

�S
�!RS � j�l je

be the composition of � with the projection �S onto the S –coordinates. Then,
for every 1 � i � n and 0 � ji � ki , at every x 2 p�1

fig

�S
s2j�l je

I iji .s/� fsg
�
,

the map pfi;:::;ng is submersive.

From the definition of smooth map in [20, Definition 2.16, Lemma 2.17] we immediately
get:

Lemma 5.7 An l –simplex of .PBordVn /k1;:::;kn is exactly a smooth l –simplex of
.PBordVn /k1;:::;kn .

Remark 5.8 For l D 0 we recover Definition 5.1. Moreover, for every s 2 j�l je the
fiber Ms of M ! j�l je determines an element in .PBordVn /k1;:::;kn ,

.Ms/D
�
Ms � V �B.I .s//; I .s/

�
:

We will use the notation �sW Ms ! B.I .s// for the composition of the embedding
and the projection.

Remark 5.9 The conditions (2)(a)–(b) and (3) imply that M ! j�l je is a smooth
fiber bundle, and, since j�l je is contractible, even a trivial fiber bundle. The proof is a
more elaborate version of the argument after [21, Definition 2.6].

14Recall that we view the total space of B.I /! j�l je as sitting inside Rn � j�l je as the unionS
s2j�l je

B.I .s//� fsg .
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We now use the simplicial maps of Intn
k1;:::;kn

to explain those of .PBordVn /k1;:::;kn .

Definition 5.10 Fix k � 0 and let f W Œm� ! Œl � be a morphism in the simplex
category �, ie a (weakly) order-preserving map. Then let jf jW j�mje! j�l je be the
induced map between standard simplices.

Let f � be the map sending an l –simplex in .PBordVn /k1;:::;kn to the m–simplex which
consists of:

(1) For 1� i � n, the m–simplex in Intki obtained by applying f � ,

f �
�
.I i0.s/� � � � � I

i
ki
.s//s2j�l je

�
D
�
I0.jf j.s//� � � � � Ik.jf j.s//

�
s2j�mje

:

(2) The .nCm/–dimensional submanifold f �M � V �B.I .s//s2j�mje obtained
by the pullback of M ! j�l je along jf j. Note that its fiber at s 2 j�mje is
.f �M/s DMjf j.s/ and

f �M D
[

s2j�mje

Mjf j.s/ � fsg:

The above assignment is indeed well defined since the underlying assignment for the
underlying intervals is well defined and, since the map jf j is a submersion, the pullback
of M ! j�l je along jf j is also a submersion. Moreover, the assignment is functorial,
since pullback commutes contravariantly with composition, and thus .PBordVn /k1;:::;kn
is a simplicial set.

Proposition 5.11 The simplicial set .PBordVn /k1;:::;kn is the smooth singular space of
.PBordVn /k1;:::;kn . In particular, it is a space.

Proof By definition, the simplicial maps f � are induced precisely by the maps
jf jW j�mje! j�

l je .

Notation 5.12 We denote the spatial face and degeneracy maps of .PBordVn /k1;:::;kn
by d�j and s�j for 0� j � l .

Example 5.13 We now construct an example of a path. It shows that cutting-off part
of the collar of a bordism yields an element which is connected to the original one by
a path.

Let .M/D .M; I D .I i0 � � � � � I
i
ki
/iD1;:::;n/ 2 .PBordVn /k1;:::;kn and fix 1 � i � n.

We show that cutting off a short enough piece in the i th direction at an end of an

Algebraic & Geometric Topology, Volume 19 (2019)



A note on the .1; n/–category of cobordisms 595

element of .PBordVn /k1;:::;kn leads to an element which is connected by a path to the
original one. Fix 1� i � n and let " < bi0� a

i
0 .

Choose a smooth, increasing, bijective function Œ0; 1�! Œ0; "�, s 7! ".s/, with vanishing
derivative at the endpoints.

For 0� j � ki and s 2 Œ0; 1�� j�1je , let

I ij .s/D .a
i
0C ".s/; b

i
ki
/\ I ij ;

and then B.I .s// D .ai0 C ".s/; b
i
ki
/ � B.I /. For s � 0 and s � 1 let the family

be constant. Then let M."/ be the preimage of the subset
S
s2j�1je

B.I .s//� fsg �

B.I /� j�1je of M � j�1je! B.I /� j�1je , ie the submanifold

M."/ M � j�1je

S
s2j�1je

B.I .s//� fsg B.I /� j�1je

Then .M."/; I .s// is a 1–simplex in .PBordVn /k1;:::;kn with fibers

M."/s D p
�1
fig

�
.ai0C ".s/; b

i
k/
�
:

Remark 5.14 In the above example we constructed a path from an element in
.PBordVn /k1;:::;kn to its cutoff, where we cut off the preimage of p�1i ..ai0; "�/ for suit-
ably small ". The same argument holds for cutting off the preimage of p�1i .Œbi

ki
�ı; bi

ki
//

for suitably small ı . Moreover, we can iterate the process and cut off "i and ıi strips
in all i directions. Choosing "i D 1

2
.bi0� a

i
0/ and ıi D 1

2
.bi
ki
� ai

ki
/ yields a path to

its cutoff with underlying submanifold

cut.M/D ��1
� nY
iD1

�
1
2
.ai0C b

i
0/;

1
2
.aiki C b

i
ki
/
��
:

5.3 The n–fold simplicial space .PBordn/�;��� ;�

We make the collection of spaces .PBordVn /�;:::;� into an n–fold simplicial space by
lifting the simplicial structure of Int�n

�;:::;� . We first need to extend the assignment

.Œk1�; : : : ; Œkn�/ 7! .PBordVn /k1;:::;kn

to a functor from .�op/n .
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Definition 5.15 For every 1 � i � n, let gi W Œmi �! Œki � be a morphism in �, and
denote by g D .gi /i their product in �n . Then

.PBordVn /k1;:::;kn
g�
�! .PBordVn /m1;:::;mn

applies g�i to the i th tuple of intervals and perhaps cuts the manifold. Explicitly, on
l –simplices, g� sends an element�

M � V �B.I .s//s2j�l je ; I .s/D .I
i
0.s/� � � � � I

i
ki
.s//niD1

�
to�
g�M D ��1

�
B.g�I .s//s2j�l je

�
� V �B.I .s//s2j�l je ;

g�.I /.s/D .I ig.0/.s/� � � � � I
i
g.mi /

.s//niD1

�
;

where � W M � V �B.I .s//s2j�l je� B.I .s//s2j�l je . Note that .g�M/s D g
�Ms .

Note that as the manifold g�M is the preimage of the new box, we just cut off the
part of the manifold outside the new box. This is functorial, as it is functorial on the
intervals, and, if zgi W Œki �! Œzki � and zg D .zgi /i , the following diagram commutes by
construction:

M g�M zg�g�M

B.I.s//s2j�l je B.g�.I .s///s2j�l je B.zg�g�.I .s///s2j�l je

�

�

�

�

�

� �

Notation 5.16 We denote the (simplicial) face and degeneracy maps by

d ij W .PBordVn /k1;:::;kn ! .PBordVn /k1;:::;ki�1;:::;kn ;

sij W .PBordVn /k1;:::;kn ! .PBordVn /k1;:::;kiC1;:::;kn

for 0� j � ki .

Notation 5.17 Recall from Remark 5.3 that for k1; : : : ; kn � 0, one should think of a
0–simplex in .PBordVn /k1;:::;kn as a collection of k1 � � � kn composed bordisms with
ki composed bordisms with collars in the i th direction. These composed collared
bordisms are the images under the maps

D.j1; : : : ; jk/W .PBordVn /k1;:::;kn ! .PBordVn /1;:::;1
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for .1� ji � ki /1�i�n arising as compositions of inert face maps, ie D.j1; : : : ; jk/
is the map determined by the maps

d.ji /W Œ1�! Œki �; .0 < 1/ 7! .ji � 1 < ji /;

in the category �. This should be thought of as sending an element to the .j1; : : : ; jk/th

collared bordism in the composition. Moreover, we will later use the notation

Di .ji /W .PBordVn /k1;:::;kn ! .PBordVn /k1;:::;1;:::;kn

for the maps induced by just d.ji /. By abuse of notation, we will denote the sub-
manifold d.ji /�M by Di .ji /.M/.

Proposition 5.18 The spatial and simplicial structures of .PBordVn /�;:::;� are compati-
ble, ie for f W Œl �! Œp�, gi W Œmi �! Œki � for 1� i � n, the induced maps

f � and g�

commute. We thus obtain an n–fold simplicial space .PBordVn /�;��� ;� .

Proof Since Intn is a simplicial space, it is enough to show that the maps commute
on the manifold part, ie

g�f �M D f �g�M:

This follows from the commuting of the following diagram, in which all sides arise
from taking preimages:

V �B.I .s//s2j�mje V �B.g�I .s//s2j�mje

f �M g�f �M D f �g�M

V �B.I .s//s2j�l je V �B.g�I .s//s2j�l je

M g�M

id�jf j id�jf j

The preimages are taken over B.g�I .s//s2j�mje �B.I .s//s2j�mje and jf jW j�mje!
j�l je , respectively, which affect different components of

V �
[

s2j�mje

�
B.I .s//� fsg

�
� V �Rn � j�mje;

so they commute.

Algebraic & Geometric Topology, Volume 19 (2019)



598 Damien Calaque and Claudia Scheimbauer

5.4 The complete n–fold Segal space Bordn

We will now prove that PBordVn leads to an .1; n/–category, ie a complete n–fold
Segal space of bordisms.

Proposition 5.19 .PBordVn /�;:::;� is an n–fold Segal space.

Proof We need to prove that the Segal condition is satisfied and globularity.

Step 1: Segal condition Fix fixed k1; : : : ; kn � 0. We need to show that for every
1� i � n, and ki DmC l , the Segal map

m;l W .PBordVn /k1;:::;ki ;:::;kn
! .PBordVn /k1;:::;m;:::;kn �

h
.PBordVn /k1;:::;0;:::;kn

.PBordVn /k1;:::;l;:::;kn

is a weak equivalence. From now on we will often omit writing out the indices for
˛ ¤ i for clarity.

Since every level set .PBordVn /k1;:::;kn is a Kan complex by Proposition 5.11, ie fibrant,
the homotopy fiber product on the right-hand side can be chosen to be the space of
triples consisting of two points and a path between their target and source, respectively.

Note that an element in this space is given by a triple consisting of

.M; I /D .�W M � V �B.I /; I D .I i0 � � � � � I
i
m; I

j
0 � � � � � I

j

kj
/1�j�n;j¤i /;

.N; J /D .�W N � V �B.J /; J D .J i0 � � � � � J
i
l ; J

j
0 � � � � � J

j

kj
/1�j�n;j¤i /;

together with a path h from the target

Di .m/.M; I /D .Di .m/.M/; I im; .I
j
0 � � � � � I

j

kj
/1�j�n;j¤i /

of .M; I / in the i th direction to the source

Di .1/.N; J /D .Di .1/.N /; J i0 ; .J
j
0 � � � � � J

j

kj
/1�j�n;j¤i /

of .N; J / in the i th direction (using Notation 5.17).

The Segal map m;l factors as a composition

(6)

.PBordVn /ki .PBordVn /m �
h
.PBordVn /0

.PBordVn /l

.PBordVn /
m;l P

m;l
ki

m;l
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as follows: Informally, the lower right-hand corner is the subspace of triples for which,
for the directions besides the i th , the tuples of intervals agree and the path of intervals
is constant. The lower left-hand corner is the subspace thereof, for which in addition,
in the i th direction, I im D J

i
0 , and along the path this interval stays constant. We will

define these spaces below. Our strategy to prove that m;l is a weak equivalence is to
show that all three maps are weak equivalences. Here the left vertical map is the main
step of the proof — this is where “composing” the bordisms happens, as we will see
below. That the bottom and right vertical map are weak equivalences follows from a
rescaling procedure. Let us first define the two spaces in question.

For the lower right-hand corner, for 1� j � n and j ¤ i , consider the j th forgetful
map

PBordVn ! Int; .M; I / 7! I j :

The canonical maps from the pullback to the homotopy pullback

Int� Š Int� �Int� Int�! Int� �hInt� Int�

(which is a weak equivalence since a deformation retract is straightforward to write
down and rescales the second tuple of intervals) for varying j induce a (strict) pullback
square

Pm;l
�;:::;� .PBordVn /�;:::;�;m;�;:::;� �

h
.PBordVn /�;:::;�;0;�;:::;�

.PBordVn /�;:::;�;l;�;:::;�

Int�.n�1/
�;:::;� Int�.n�1/

�;:::;� �
h

Int�.n�1/�;:::;�

Int�.n�1/
�;:::;�

'

The strict pullback of this diagram consists of exactly those pairs whose j th tuples
of intervals agree for every j ¤ i , and is constant along the path (but the embedded
manifold can still vary).15

For the lower left-hand corner, consider the canonical map

Intm �Int0 Intl ! Intm �hInt0 Intl

(which is a weak equivalence since both sides are contractible).

15Since the right vertical map is a weak equivalence, if the diagram were also a homotopy pullback
diagram, we would immediately see that the left vertical map is a weak equivalence as well. However,
neither map in the diagram is a fibration (nor even a “sharp map” à la Rezk [44]), so we need to find a
different strategy.
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Now form the (strict) pullback

Pm;l
�;:::;� Intm �hInt0 Intl

.PBordVn /
m;l
�;:::;� Intm �Int0 Intl

'

It consists of exactly those pairs whose j th tuples of intervals agree for every j ¤ i and
is constant along the path (but the embedded manifold can still vary), and, in addition,
in the i th direction, the last interval of the first element is the first interval of the second
element.16

The left vertical map in (6) is a weak equivalence We first fix once and for all a
“smoothed diagonal” D � Œ0; 1�2 : it is the graph of a map & W Œ0; 1�! Œ0; 1�, which has
vanishing derivative in

�
0; 1
3

�
and

�
2
3
; 1
�

(we could also choose fixed shorter intervals)
and is bijective with smooth inverse in

�
1
3
; 2
3

�
, for example

1
3

2
3

D

We will use this to define a deformation retract of m;l, which we suggestively call
glue. The homotopy exhibiting the deformation retract will use the following two
modified functions for � 2 Œ0; 1�. Let

&s� D � � & and & t� D 1C � � .& � 1/:

Then for � D 1 we have that & D &s1 D &
t
1 , and for � D 0 we have &s0 D 0 and & t0D 1.

Moreover, for every � , both &s� and & t� are smooth and bijective onto their image.
These give “flatter” diagonals Ds;� and Dt;� :

16Again, the right vertical map is a weak equivalence, and it would be more convenient to take the
homotopy pullback. However, the same problem appears as in the previous situation.
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1
3

2
3

Ds;�

Dt;�

� D 1
3

1
3

2
3

Ds;�

Dt;�

� D 2
3

Recall from above that an element in .PBordVn /
m;l
�;:::;� is given by a pair .M; I / and

.N; J / and a path h from the target of the former to the source of the latter, along which
the interval is constant. We will use this path h to glue the embedded manifolds M
and N. A similar argument works for l –simplices in .PBordVn /

m;l
�;:::;� .

The 1–simplex h by definition is a submanifold P of17 V � .c; b/� j�1je such that
the composition with the projection �figW P ! .c; b/� j�1je is a submersion. We
rescale the fixed smoothed diagonal D linearly to obtain a smooth diagonal Dc;b in
.c; b/� j�1je .

Consider the preimage Pdiag of �fig of Dc;b . Since the projection �figW P !

.c; b/� j�1je is submersive, a Morse lemma style argument shows that this preimage
Pdiag is diffeomorphic to both D.m/.M/ and D.1/.N /. Thus we glue the manifolds M
and N over Pdiag to obtain M[PdiagN. We realize it as a submanifold of V �R�.a; d/

by using

� M ŠM � f0g � V � f0g � .a; b/� V �R� .a; d/,

� N ŠN � f1g � V � f1g � .c; d/� V �R� .a; d/,

and, using the coordinate in j�1je ŠR,

� Pdiag � V �R� .c; b/� V �R� .a; d/.

However, note that the extra copy of R introduced above is not necessary: Let

D D .f0g � .a; c�/[Dc;b [ .f1g � Œb; d//�R� .a; d/:

Then the projection onto the second coordinate induces a diffeomorphism D Š .a; d/.
Thus, composing the embedding of the submanifold into V �R � .a; d/ with the

17Actually, of V � .c; b/�B..I j0 � � � � � I
j
kj
/1�j�n;j¤i /� j�

1je .
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projection onto V � .a; d/ still is an embedding,

M [Pdiag N ,! V � .a; d/:

The same construction works for l –simplices: the same argument goes through with
.M; I / and .N; J / now being l –simplices, and thus submanifolds of V �.a; b/�j�l je
and V � .c; d/� j�l je , respectively, and P a submanifold of V � .c; b/� j�lC1je .
Moreover, since the shape D was chosen once and for all, this construction commutes
with the spatial structure and indeed gives a map of spaces

glueW .PBordVn /
m;l
�;:::;�! .PBordVn /�;:::;�;ki ;�;:::;�:

We claim that this is a deformation retract of m;l : Indeed, glue ı m;l is the identity,
since the path between the source and target in the image of m;l is constant. As for the
other composition m;l ı glue, this sends a pair of elements (or l –simplices) .M; I /
and .N; J / together with a path h from the target to the source to a pair . �M; I/ and
. zN; J / which is not the original one (in fact, the latter pair has a constant path zh).
However, there is a homotopy from m;l ıglue to the identity as follows: For � 2 Œ0; 1�,
send .M; I /, .N; J /, h to the following pair: Modify the above construction by using
Ds;� and Dt;� instead to obtain P s;�diag and P t;�diag . Now one can glue M with P s;�diag and
N with P t;�diag and embed each as above to obtain .M� ; I / and .N� ; J /. A path h�
between their target and source is given by the restriction of P to (ie the preimage of)
the part between Ds;� and Dt;� . For � D 0 this is the identity map, and for � D 1,
this is exactly m;l ı glue.

“Rescaling”: the bottom and right vertical maps in (6) are weak equivalences Both
maps are part of a deformation retraction. Let us describe the right vertical map first.

The idea of “rescaling” is illustrated in the following picture for nD2, iD1, lDmD1
and k2 D 2:
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Note that we just depict the cutting lines, not the intervals around them. The rescaling
is performed on the right-hand piece.

The deformation retract is given as follows: we observed above that the canonical map

Int� Š Int� �Int� Int�! Int� �hInt� Int�

levelwise has a deformation retraction. We will lift this to the desired deformation
retraction.

An element (or l –simplex) in the right-hand side is given by a triple .I ; J ; h/, where
h is a 1–simplex (or .lC1/–simplex) from I to J, which we denote by I ! j�1je .
The latter determines a family of diffeomorphisms B.J /! B.I .s// and we send a
triple ..M; I /; .N; J /; h/ to a triple ..M; I /; .Ns; J s/; hs/, where .Ns; J s/ is given
by the composition

N � V �B.J /! V �B.I .s//:

We need the family of diffeomorphisms to have the following property: if for ev-
ery s 2 Œs; 1�, the cardinality jIj .s/ \ IjC1.s/j is 0 or 1, then bj .1/ 7! bj .s/ and
ajC1.1/ 7! ajC1.s/. Such maps are easily defined in a piecewise linear way. However,
we need them to be diffeomorphisms and vary smoothly in the parameter s , which
requires smoothing. One explicit way of doing this smoothing uses flows along vector
fields as in the proof of Theorem 8.15(1).

As for the horizontal map, the rescaling in the i th direction, let B.I i /D .a; b/ and aij
and bij the left and right endpoints of I ij ; and B.J i /D .c; d/ and cij and d ij the left
and right endpoints of J ij . Similarly to above, by rescaling .N; J /, we can assume that
we have rescaled the embeddings and intervals so that I im D J

i
0 D .a

i
m; b/D .c; d

i
0/,

and along the path this interval stays constant. This assumption implies the intervals
can be “glued” (or rather, concatenated) to obtain an element in Intki :

dai0 D a bi0
: : :

aim D c b
i
m D b

: : :
ci
l

Similarly to above, this can be implemented using a deformation retraction of

Intm �Int0 Intl ! Intm �hInt0 Intl ;

which is lifted to one of the inclusion.
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Step 2: globularity We show that the degeneracy inclusion map

.PBordVn /k1;:::;ki�1;0;0;:::;0 ,! .PBordVn /k1;:::;ki�1;0;kiC1;:::;kn

admits a deformation retraction and thus is a weak equivalence.

Consider the assignment sending a pair consisting of t 2 Œ0; 1� and an l –simplex�
M � V �B.I .s//;

�
.Iˇ .s//1�ˇ<i ; .a

i
0.s/; b

i
0.s//; .I

˛.s//i<˛�n
�
s2j�l je

�
in .PBordVn /k1;:::;ki�1;0;kiC1;:::;kn to�
M � V �B.I .s//;

�
.Iˇ .s//1�ˇ<i ; .a

i
0.s/; b

i
0.s//; .I

˛.s; t//i<˛�n
�
.s;t/2j�l je�Œ0;1�

�
;

where for ˛ > i and every 0� j � k˛ ,

a˛j .s; t/D .1� ".t//a
˛
j .s/C ".t/a

˛
0 .s/;

b˛j .s; t/D .1� ".t//b
˛
j .s/C ".t/b

˛
k˛
.s/:

for a smooth, increasing, bijective "W Œ0; 1�! Œ0; 1� with vanishing derivative at the
endpoints. This is a homotopy

H W Œ0; 1�� .PBordVn /k1;:::;ki�1;0;kiC1;:::;kn ! .PBordVn /k1;:::;ki�1;0;kiC1;:::;kn

exhibiting the deformation retract.18 Note that B.I .s; t//DB.I .s// for every t 2 Œ0; 1�.
Moreover, for t D 0 we have that I˛j .s; 0/D I

˛
j .s/ and the l –simplex is sent to itself.

For t D 1 we have
I˛j .s; 1/D .a

˛
0 .s/; b

˛
k˛
.s//;

so the image lies in .PBordVn /k1;:::;ki�1;0;0;:::;0 .

It suffices to check that for every t 2 Œ0; 1� the image indeed is an l –simplex in
.PBordVn /k1;:::;ki�1;0;kiC1;:::;kn . Since .M; I .s//2.PBordVn /k1;:::;ki�1;0;kiC1;:::;kn , this
reduces to checking:

For every i < ˛ � n and 0� j � k˛ , at every x 2 p�1
f˛g
.I˛j .s; t/s2j�l je /,

the map pf˛;:::;ng is submersive.

Since in the i th direction we only have one interval, we have that

p�1
fig ..a

i
0.s/; b

i
0.s//s2j�l je /DM;

18To be precise, we take t 2 j�1je and extend the assignment so that it is constant outside Œ0; 1� .
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so, in particular, p�1
fig
..ai0.s/; b

i
0.s//s2j�l je / � p

�1
f˛g
.I˛j .s; t/s2j�l je /. Therefore, con-

dition (3) in Definition 5.6 on .M/ for i implies that pfi;:::;ng is a submersion in
p�1
fig

�
.ai0.s/; b

i
0.s//s2j�l je

�
D M � p�1

f˛g
.I˛j .s; t/s2j�l je /, so pf˛;:::;ng is submersive

there as well.

Remark 5.20 It is much easier to see that the “strict” Segal condition also holds,
ie that

.PBordVn /k1;:::;kiCk0i ;:::;kn
��! .PBordVn /k1;:::;ki ;:::;kn �.PBordVn /k1;:::;0;:::;kn

.PBordVn /k1;:::;k0i ;:::;kn :

An element in the right-hand side is a pair of submanifolds M � V � .a0; bki / and
N � V � .za0; zbk0

i
/ which coincide on the intersection V � .aki ; bki / together with

intervals I0 � � � � � Iki and zI0 � � � � � zIk0
i

such that Iki D zI0 . So we can glue them
together to form a submanifold M [N � V � .a0; zbk0

i
/, and concatenate the intervals

I0 � � � � � Iki �
zI1 � � � � � zIk0

i
:

zbk0
ia0 b0 a1 b1 : : : za0 zb0 za1 zb1 za2 zb2 : : :

zak0
i

M NM \N

Thus, the above strict Segal map even is a homeomorphism.

Note that this construction also extends to l –simplices: we glue together subman-
ifolds of V � .a0.s/; bki .s//s2j�l je and V � .za0.s/; zbk0

i
.s//s2j�l je to form one of

V � .a0.s/; zbk0
i
.s//s2j�l je .

Remark 5.21 It can be checked that the maps

.PBordVn /k1;:::;ki ;:::;kn ! .PBordVn /k1;:::;0;:::;kn

are not fibrations unless k1D � � �D knD 0. If they were, this together with the previous
remark would have simplified the proof of the previous proposition. However, we can
still conclude that PBordVn fits into a stricter model for .1; n/–categories; for nD 1, it
is a fibrant object in the model category of internal objects from [28] and Section 1.5.3
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(even though it is not strongly Segal). For n > 1, it is a fibrant object in the model
category of internal n–uple categories from [15] and Section 2.1, although it seems
not to be a fibrant internal n–fold category, since the identities are not strict.

So far the definition of PBordVn depended on the choice of the vector space V . However,
in the bordism category we would like to consider all (not necessarily compact) n–
dimensional manifolds. By Whitney’s embedding theorem any such manifold can be
embedded into some finite-dimensional vector space V , so we need to allow big enough
vector spaces.

Definition 5.22 Fix some countably infinite-dimensional vector space,19 eg R1 .
Then we define PBordn to be the homotopy colimit of n–fold Segal spaces20

PBordn D lim
��!

V�R1
PBordVn D hocolimV�R1 PBordVn :

Remark 5.23 If the vector space V is r –dimensional, the n–fold Segal space PBordVn
is also interesting in its own right. It describes codimension-r tangles; see also
[40, Section 4.4]. For example, if n D 1 and r D 2, we obtain a Segal space of
1–dimensional tangles in R3 . We will elaborate on this more in the next section.
Moreover, we have not used that V is a vector space. Instead, one could take V to be
some fixed manifold (as in eg [20]). This requires some extra care which we will not
pursue here.

The last condition necessary to be a good model for the .1; n/–category of bordisms
is completeness, which PBordn in general does not satisfy. However, we can pass to
its completion Bordn .

Definition 5.24 The .1; n/–category of bordisms Bordn is the n–fold completion
1PBordn of PBordn , which is a complete n–fold Segal space.

Remark 5.25 For n�6, PBordn is not complete; see the full explanation in [40, 2.2.8].
For n D 1 and n D 2, by the classification theorems of one- and two-dimensional
manifolds, PBordn is complete, and therefore Bordn D PBordn .

19The definition does not depend on the choice of the countably infinite-dimensional vector space; any
such is the colimit over all finite-dimensional vector spaces.

20The identity map from the model category of n–fold simplicial spaces to the model category of
n–fold Segal spaces is a left adjoint (since it is a localization) and therefore preserves homotopy colimits.
Thus, the homotopy colimit can be computed in n–fold simplicial spaces.
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6 Variants of Bordn and comparison with Lurie’s definition

6.1 The .1; d/–category of n–bordisms and tangles for any d � 0

For d � 0 we define a d –fold Segal space whose top, ie d –morphisms are n–
dimensional bordisms. For d < n this amounts to extending the category of n–
dimensional bordisms only down to .n�d/–dimensional objects.

Definition 6.1 Let V be a finite-dimensional R–vector space, which we identify with
some Rr . Let n � 0 and d D nC l � 0. For every d –tuple k1; : : : ; kd � 0, we
let .PBordl;Vn /k1;:::;kd be the collection of tuples .M; I D .I i0 � � � � � I

i
ki
/1�i�d /

satisfying conditions analogous to (1)–(3) in Definition 5.1, ie

(1) For 1� i � d ,
.I i0 � � � � � I

i
ki
/ 2 Intki :

(2) M is a closed and bounded n–dimensional submanifold of V �B.I / and the
composition � W M ,! V �B.I /� B.I / is a proper map.

(3) For every S � f1; : : : ; dg, let pS W M
�
�! B.I /

�S
�! RS be the composition

of � with the projection �S onto the S –coordinates. Then for every 1� i � d
and 0� ji � ki , at every x 2 p�1

fig
.I iji /, the map pfi;:::;dg is submersive.

We make .PBordl;Vn /k1;:::;kd into a space similarly to .PBordVn /k1;:::;kn .

Proposition 6.2 .PBordl;Vn /�;��� ;� is a dD.nCl/–fold Segal space.

Proof The proof is completely analogous to the proof of Proposition 5.19.

Again we take the homotopy colimit of n–fold Segal spaces, ie in the model category
sSpaceSe

n;f
over all finite-dimensional vector spaces in a given infinite-dimensional

vector space, say R1 :
PBordln D colim

V�R1
PBordl;Vn :

Definition 6.3 For l �0 let d DnCl �n and let Bordln , which we will also denote by
Bord.1;d/n , be the d –fold completion of PBordln , the .1; d /–category of n–bordisms.

Notation 6.4 For l � 0 let d D n C l � n and let Bord.1;d/;Vn be the d –fold
completion of PBordl;Vn . If V is r –dimensional and l D 0, this is the unframed
version of what Lurie calls the .1; n/–category of n–tangles TangVn;nCr in [40].
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Remark 6.5 For l > 0, the underlying submanifold of objects of PBordln , ie ele-
ments in .PBordln/0;:::;0 , are n–dimensional manifolds M which have a submersion
onto RnCl . This implies that M D∅. Thus, the only objects are .∅; I 10 ; : : : ; I

nCl
0 / and

.PBordln/0;:::;0 Š Intn0;:::;0 ' �. Similarly, .PBordln/0;k2;:::;knCl Š Intn
0;k2;:::;knCl

' �.
Thus, .PBordln/0;�;:::;� is equivalent to the point viewed as a constant .n�1/–fold Segal
space. Similarly, .PBordln/1l�1;0;�;:::;� is equivalent to the point viewed as a constant
.n�l/–fold Segal space. These will appear again later in Section 7.2.

6.2 Unbounded submanifolds, .0; 1/ as a parameter space and cutting
points

6.2.1 Unbounded submanifolds We could have omitted the condition that M be
bounded in condition (2) in Definitions 5.1 and 5.6, requiring it only to be closed. This
modification leads to an n–fold simplicial space PBordunb

n together with a levelwise
inclusion

PBordn ,! PBordunb
n :

Recall from Remark 5.14 that for every element in .PBordn/k1;:::;kn , we constructed a
path to its cutoff. There is a similar cutoff path for every element in .PBordunb

n /k1;:::;kn
to an element whose underlying submanifold

cut.M/D ��1
� nY
iD1

�
1
2
bi0;

1
2
aiki

��
is bounded in the V –direction. Moreover, this construction extends to l –simplices.
Altogether, it shows that the inclusion is a levelwise equivalence of n–fold simplicial
spaces. Finally, since PBordn is an n–fold Segal space, PBordunb

n is as well.

6.2.2 Restricting the boxing to .0; 1/n Instead of basing PBordn and PBordln on
Int, we could instead use Int.0;1/ from Section 4.5. This approach leads to .nCl/–fold
Segal spaces PBordl;.0;1/n using the box rescaling maps �.I /W B.I /! .0; 1/nCl and
the functor � from Definition 4.11 and Remark 4.14. It fits exactly into a commuting
diagram

PBordln PBordl;.0;1/n

IntnCl .Int.0;1//�.nCl/

�

�
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where the vertical maps are the forgetful maps. Any simplex

.M � V �B.I /; I D .I i0 � � � � � I
i
ki
/1�i�nCl/

is sent to�
M � V �B.I /

�.I/
��! V � .0; 1/nCl ; .�.I /.I i0/� � � � � �.I /.I

i
ki
//1�i�nCl

�
:

On a fixed level, ie for fixed k1; : : : ; knCl , there is an inclusion of spaces

�W .PBordl;.0;1/n /k1;:::;knCl ,! .PBordln/k1;:::;knCl

and the above map is a retract of the inclusion. The .nCl/–fold simplicial structure
needs to be modified by rescaling maps to ensure that the boxing stays .0; 1/nCl : For a
morphism g D

Q
gi in �nCl , the associated morphism of spaces is � ıg ı �. Since �

only involves rescalings, PBordln
�
�! PBordl;.0;1/n is a levelwise weak equivalence, so

in particular also a DK-equivalence of n–fold Segal spaces. We leave it to the reader
to fill in the details.

6.2.3 Cutting points Another variant of an n–fold Segal space of bordisms can
be obtained by replacing the intervals I ij in Definition 5.1 of PBordn by specified
“cutting points” t ij , which correspond to where we cut our composition of bordisms.
Equivalently, we can say that in this case the intervals are replaced by intervals consisting
of just one point, ie aij D b

i
j DW t

i
j . The levels of this n–fold Segal space PBordtn can

be made into spaces as we did for PBordn , but we now need to add paths between
0–simplices which coincide inside the boxing of t ’s, ie over Œt10 ; t

1
k1
�� � � � � Œtn0 ; t

n
kn
�.

However, for PBordtn the Segal condition is more difficult to prove, as in this case we
do not specify the collar along which we glue. Since the space of collars is contractible,
sending an interval I with endpoints a and b to its midpoint t D 1

2
.aCb/ induces an

equivalence of n–fold Segal spaces from PBordn to PBordtn . We will not elaborate
more on this variant and leave details to the interested reader.

6.3 Comparison with Lurie’s definition of bordisms

In [40], Lurie defined the n–fold Segal space of bordisms as follows:

Definition 6.6 Let V be a finite-dimensional vector space. For every n–tuple k1 , : : : ,
kn � 0, let .PBordV;Ln /k1;:::;kn be the collection of tuples .M; .t i0 � � � � � t

i
ki
/iD1;:::;n/,

where:
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(1) For 1� i � n,
t i0 � � � � � t

i
ki

is an ordered .kiC1/–tuple of elements in R.

(2) M is a closed n–dimensional submanifold of V �Rn and the composition
� W M ,! V �Rn�Rn is a proper map.

(z3) For every S � f1; : : : ; ng and for every collection fjigi2S , where 0� ji � ki ,
the composition pS W M

�
�!Rn!RS does not have .tji /i2S as a critical value.

(z4) For every x 2 M such that pfig.x/ 2 ft i0; : : : ; t
i
ki
g, the map pfiC1;:::;ng is

submersive at x .

It is endowed with a topology coming from the Whitney topology similar to what we
described in Section 5.2.1. Similarly to before, let

PBordLn D lim
��!

V�R1
PBordV;Ln :

Comparing this definition with Definition 5.1 and PBordtn from Section 6.2.3 above,
our condition (3) on PBordtn is replaced by the two strictly weaker conditions (z3)
and (z4) on PBordLn , which are both implied by (3):

Lemma 6.7 Let M be a closed n–dimensional manifold and � W M!Rn . Moreover,
for 1 � i � n let .t i0 � � � � � t

i
ki
/ be an ordered .kiC1/–tuple of elements in R.

Denote for S � f1; : : : ; ng the composition M �
�! Rn� RS by pS . Assume that

condition (3) from Definition 5.1 holds, ie for every 1 � i � n and 0 � ji � ki for
x 2M such that pfig.x/D t iji , the map pfi;:::;ng is submersive at x . Then:

(z3) For every S � f1; : : : ; ng and for every collection fjigi2S , where 0� ji � ki ,
the composition pS W M

�
�!Rn!RS does not have .tji /i2S as a critical value.

(z4) For every x 2 M such that pfig.x/ 2 ft i0; : : : ; t
i
ki
g, the map pfiC1;:::;ng is

submersive at x .

Proof Let i0 DminS. Consider the diagram

M Rfi0;:::;ng

RS

pfi0;:::;ng

pS
proj
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For (z3) let x2p�1S ..tji /i2S /. Then pfi0g.x/D t
i0
ji0

, so by assumption the map pfi0;:::;ng
is submersive at x . Since proj is submersive, pS D proj ıpfi0;:::;ng is also submersive
at x .

For (z4) note that if pfi;:::;ng is submersive at x then pfiC1;:::;ng is submersive at x .

However, Lurie’s n–fold simplicial space PBordLn is not an n–fold Segal space, as we
will see in the example below. Thus, our PBordtn is a corrigendum of Lurie’s PBordLn
from [40].

Example 6.8 Consider the 2–dimensional torus T in R�R2 , embedded such that the
projection onto R2 is an annulus, and consider the tuple .T �R�R2; t10 ; t

2
0 �� � �� t

2
k2
/,

where t10 is indicated in the picture of the projection plane R2 on the left:

t10

Then, because of condition (z3), t20 � � � � � t
2
k2

can be chosen everywhere such that
any .t10 ; t

2
j / is not a point where the vertical (t10 –)line intersects the two circles in the

picture. Thus, if t2j and t2
Q|

are in two different connected components of this line
minus these forbidden points, there is no path connecting this point to an element in the
image of the degeneracy map. However, it satisfies the conditions (1), (2), (z3) and (z4)
in the definition of .PBordL2 /0;k2 , so .PBordL2 /0;� is not essentially constant.

6.4 The n–uple Segal space PBorduple
n

Consider the following interval version of condition (z3) in Definition 6.6:

(30) For every S�f1; : : : ; ng and for every collection fjigi2S , where 0�ji �ki , the
composition pS W M

�
�!Rn!RS does not have any critical value in .Iji /i2S .

It ensures that the fibers p�1S ..t iji /i2S / for t iji 2 I
i
ji

are .n�jS j/–dimensional smooth
manifolds. This can be interpreted similarly to in Remark 5.3 as follows: Choosing
t iji < t

i
j 0
i

, we picture the composed bordism as

��1
�Y

Œt iji ; t
i
j 0
i

�
�
;

which, by condition (30) is a “cubical” n–dimensional bordism whose sources and
targets in each direction are themselves “cubical” .n�1/–dimensional bordisms, and,
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furthermore, its diffeomorphism class does not depend on the choice of cutting points t iji ;
see Section 8.1 for more details. Our condition (3) — which we saw in Lemma 6.7 to
imply (z3) in the point version; the same argument shows that it implies (30) in the case
of intervals — ensures in addition the globularity condition, namely that the source
and target of the n–dimensional bordism are .n�1/–dimensional bordisms which
themselves have the same source and target. This is reflected in the essential constancy
condition, namely that we have an “n–category” instead of an “n–uple category”.
Thus, relaxing condition (3) in Definition 5.1 to (30), we obtain:

Definition 6.9 The n–uple Segal space PBorduple
n has levels whose elements are tuples

of .M; I D .I i0 � � � � � I
i
ki
/1�i�n/, satisfying conditions (1) and (2) in Definition 5.1

and (30).

Using the construction in Section 2.4.5 one can see that PBordn indeed is the maximal
n–fold Segal space underlying the n–uple Segal space PBorduple

n .

Proposition 6.10 The maximal underlying n–fold Segal space of PBorduple
n is equiv-

alent to PBordn .

Proof Recall from Section 2.4.5 that the levels of the maximal underlying n–fold
Segal space of a n–uple Segal space X are given by

R.X/ Ek DMaph.‚
Ek; X/:

The remaining structure arises from that of X.

The levelwise inclusion �W PBordn ,! PBorduple
n and the weak equivalence from

Lemma 2.27 give a map

PBordn 'Maph.�
Ek;PBordn/

'Maph.‚
Ek;PBordn/!Maph.‚

Ek;PBorduple
n /DR.PBorduple

n /:

By the Segal condition, it suffices to show that this map is an equivalence at every
.i/ D .1i ; 0; : : : ; 0/ 2 .�

op/k . To compute the correct mapping spaces, we use the
cofibrant replacement of ‚.i/ from Proposition 2.25.

Let C i be the n–uple category, or rather its nerve, the n–fold simplicial space which
is the image of the Yoneda embedding of .Œ1�; : : : ; Œ1�/ 2��i and thus is cofibrant for
the projective model structure. Then

Maph.C i ;PBorduple
n /D .PBorduple

n /.i/:
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Now we proceed by induction. The first index for which there is something to show is
i D 2. Using the explicit cofibrant replacement from Proposition 2.25, we compute that

R.PBorduple
n /.2/ DMaph.‚.2/;PBorduple

n /

is the homotopy pullback of the diagram

.PBorduple
n /.2/

.PBorduple
n /0 � .PBorduple

n /0 .PBorduple
n /.1/ � .PBorduple

n /.1/

From this, we see that an element in R.PBorduple
n /.2/ is an element in .PBorduple

n /.2/

together with a path from its source and target to elements in .PBorduple
n /0 . By

Theorem 8.15 such a path determines a diffeomorphism between the composed bordisms
associated to the start and the end (the source and target, respectively) of the path, which
in turn are elements in .PBorduple

n /0 . Thus, they satisfy condition (30) everywhere,
ie the projection � is a submersion. This property is preserved by diffeomorphisms,
which implies that the source and target of the element in .PBorduple

n /.2/ also satisfy
this condition. So the original element must satisfy condition (3). and thus lies in
.PBordn/.2/ .

For i > 2, again using the explicit cofibrant replacement, there is a homotopy pullback
diagram

R.PBorduple
n /.i/ Map.C 1 � cof.‚.i�1//;PBorduple

n /

.PBordn/
uple
0 � .PBordn/

uple
0 .PBordn/

uple
.i�1/

� .PBordn/
uple
.i�1/

ph

Since there is a surjection C i� C 1 �‚.i�1/ , elements in the top-right corner arise
from elements in Maph.C i ;PBorduple

n /D .PBorduple
n /.i/ . Moreover,

Map.C 1 � cof.‚.i�1//;PBorduple
n /DR..PBorduple

n /1;�;:::;�/.i�1/:

The induction hypothesis implies that elements therein are elements in .PBorduple
n /.i/

which satisfy condition (3) in Definition 5.1 or i > 1.

Thus, elements in R.PBorduple
n /.i/ are such elements together with a path from their

source and target to elements in .PBorduple
n /0 . Unraveling this condition as in the base

case, we see that this implies condition (3) for i D 1.

Algebraic & Geometric Topology, Volume 19 (2019)



614 Damien Calaque and Claudia Scheimbauer

Example 6.11 (the torus as a composition) The difference between the n–fold and
the n–uple Segal spaces can be seen when decomposing the torus, viewed as a 2–
morphism in the respective n–(uple) categories. We will omit drawing the intervals
outside of the torus and just draw the “cutting lines”, which should be understood as
actually extending to small closed intervals around them.

The torus as a 2–morphism in Borduple
2 can be decomposed simultaneously in both

directions. One possible decomposition into in some sense elementary pieces is the
following:

However, similar to the argument in Example 6.8, this decomposition is not a valid
decomposition in Bord2 , as condition (3) in Definition 5.1 is violated.

The torus as a 2–morphism in Bord2 can only be decomposed “successively”, so we
first decompose it in the first direction, ie the first coordinate, eg as

which is an element in .Bord2/4;1 and then decompose the two middle pieces, which
are the images under the compositions of face maps

D1.2/;D1.3/W .Bord2/4;1� .Bord2/1;1
as

and
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Altogether, a possible decomposition of the torus into elementary pieces in Bord2 is

This of course is also a valid decomposition in the 2–fold category Borduple
2 .

7 The symmetric monoidal structure on bordisms and
tangles

The .1; n/–category Bordn is symmetric monoidal with its symmetric monoidal
structure essentially arising from taking disjoint unions. In this section we endow
Bordn with a symmetric monoidal structure in two ways. In Section 7.1 the symmetric
monoidal structure arises from a �–object. In Section 7.2 a symmetric monoidal
structure is defined using a tower of monoidal i –hybrid .nCi/–fold Segal spaces.

7.1 The symmetric monoidal structure arising as a � –object

We construct a sequence of n–fold Segal spaces .PBordVn hmi/�;:::;� which form a � –
object in n–fold Segal spaces, which in turn endows Bordn with a symmetric monoidal
structure as defined in Section 3.1.

Definition 7.1 Let V be a finite-dimensional vector space. For every k1; : : : ; kn , let
.PBordVn hmi/k1;:::;kn be the collection of tuples

.M1; : : : ;Mm; .I
i
0 � � � � � I

i
ki
/iD1;:::;n/;

where each .Mˇ ; .I
i
0 � � � � � I

i
ki
/iD1;:::;n/ is an element of .PBordVn /k1;:::;kn and

M1; : : : ;Mm are disjoint. It can be made into an n–fold simplicial space similarly to
PBordVn . Moreover, similarly to the definition of Bordn , we take the homotopy colimit
over all V �R1 and complete to get an n–fold complete Segal space BordnŒm�.

Proposition 7.2 Let

�! SeSp
n
; hmi 7! PBordnhmi;
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where to a morphism f W hmi ! hki in � we assign the map

PBordnhmi ! PBordnhki;

.M1; : : : ;Mm; I
0s/ 7!

� a
ˇ2f �1.1/

Mˇ ; : : : ;
a

ˇ2f �1.k/

Mˇ ; I
0s

�
:

This assignment is functorial and endows Bordn with a symmetric monoidal structure.

Proof By Lemma 3.7 it is enough to show that the assignment is a functor �! SeSp
n

with the property that for every m� 0 the mapY
1�ˇ�n

ˇ W PBordnhmi ! .PBordnh1i/m

is an equivalence of n–fold Segal spaces.

Functoriality follows from the functoriality of taking preimages. For mD 0 both sides
are contractible. For m> 0 the map

Q
1�ˇ�n ˇ is a levelwise inclusion and we show

that levelwise it is a weak equivalence.

First, we can show that for every k1; : : : ; kn , the space .PBordnh1i/mk1;:::;kn is weakly
equivalent to its pullback, which we will denote by Pm , along the diagonal map
Intn
k1;:::;kn

! .Intn
k1;:::;kn

/m . The argument is analogous to the proofs of the rescaling
steps in the proof of the Segal condition in Proposition 5.19. Note that Pm is the
subspace of those elements for which the intervals coincide, and

Q
1�ˇ�n ˇ factors

through Pm .

Now, we will exhibit an explicit deformation retraction ofY
1�ˇ�n

ˇ W PBordnhmik1;:::;kn ! Pm;

which shows that the two spaces are equivalent.

Consider the family of embeddings �sW V ! R˝ V , v 7! .s˛; v/, parametrized by
s 2 Œ0; 1�. Note that this also induces a family of embeddings R1!R˚R1 ŠR1 .

Let ..M1/; : : : ; .Mm// be any k–simplex in the target Pm . We construct a k–simplex
in PBordnhmik1;:::;kn together with a map F W �k � Œ0; 1�! Pm restricting to the
original one at 1 and the new k–simplex at 0. The map F is defined as follows: For
fixed s , it consists of the k–simplex which is defined by composing the embedding
M˛ ,! V �B.I / with the embedding �s . This depends smoothly on s (and nothing
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else). For s > 0, this indeed lands in PBordnhmik1;:::;kn , since the images of Mi are
disjoint. The construction is compatible with the simplicial structure, since �s did
not affect the copy of B.I /. Altogether, this induces a strong homotopy equivalence
between the above spaces.

Remark 7.3 More generally, the same construction works for Bord.1;d/n for d � n
using a sequence of d –fold Segal spaces PBordlnhmi for l D n� d .

7.2 Looping, the monoidal structure and the tower

Our goal for this section is to endow Bordn and Bord.1;d/n with symmetric monoidal
structures arising from a tower of monoidal l –hybrid .nCl/–fold Segal spaces Bord.l/n
for l � 0. We will prove a stronger statement first, namely that the tangle categories
Bord.1;d/;Vn are r –monoidal if V is r –dimensional.

Recall from Section 6.1 the .nCl/–fold Segal spaces PBordln of n–dimensional bor-
disms. We saw in Remark 6.5 that PBordln is .l�1/–connected if l > 0. However, it
does not have a discrete space of objects, 1–morphisms, . . . , .l�1/–morphisms. For
l � 0 the situation is even worse as PBordln is not even connected. However, in any
PBordln , there is the distinguished object

∅D .∅; .0; 1/; : : : ; .0; 1//;

and by Proposition 3.32 it suffices to prove the following theorem.

Theorem 7.4 For nC l � k � 0 and an .r�1/–dimensional vector space V , there is
a weak equivalence

�k∅.PBordl;Vn /
ur
�! PBordl�k;V˚R

n ;

which induces a weak equivalence uW �k∅.PBordln/! PBordl�kn .

Since looping and hybrid completion commute by Lemma 2.22 the following corollary
is immediate.

Corollary 7.5 Let n� 0 and d � n, and let V be an r –dimensional vector space.

� The tangle categories BordVn and Bord.1;d/;Vn are r –monoidal.

� The bordism categories Bordn and Bord.1;d/n are symmetric monoidal.
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We can extract the k–monoidal .nCl/–fold complete Segal spaces which form the
tower for the symmetric monoidal structure:

Definition 7.6 For k > 0 and d � 0, the .nCl/–fold Segal space

Lk∅.PBordk�.n�d/n /

is .k�1/–connected and satisfies

�k∅.L
k
∅.PBordk�.n�d/n //'�k∅.PBordk�.n�d/n /' PBord�.n�d/n

by the above theorem. Its k–hybrid completion thus is a k–monoidal complete .dCk/–
fold Segal space. The collection thereof, for k � 0, endows the complete d –fold
Segal space Bord.1;d/n D Bordln for d D nC l with a symmetric monoidal structure.
For d D n, we obtain the symmetric monoidal structure on the complete n–fold Segal
space Bordn .

Since �n�d .Bordn/ is complete, the universal property for the completion Bord.1;d/n

of PBordd�nn applied to the map PBordd�nn '�n�d .PBordn/!�n�d .Bordn/ gives
the following corollary.

Corollary 7.7 There is a morphism of symmetric monoidal .1; d /–categories

Bord.1;d/n !�n�d .Bordn/:

Remark 7.8 Since completion and looping do not necessarily commute, this map is
not necessarily an equivalence.

Proof of Theorem 7.4 It is enough to show that

�∅.PBordl;R
r�1

n /D Hom
PBordl;R

r�1

n

.∅;∅/' PBordl�1;R
r

n :

The statement for general k follows by induction.

We define a map
ur W �.PBordl;R

r�1

n /! PBordl�1;R
r

n

by sending an element in Hom
PBordl;R

r�1

n

.∅;∅/k2;:::;knCl ,

.Ml/D
�
M �Rr�1 � .a10; b

1
1/�B.I /; I

1
0 � I

1
1 ; I D .I

i
0 � � � � � I

i
ki
/nCliD2

�
2 .PBordln/1;k2;:::;knCl ;
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to
.Ml�1/D

�
M � .Rr�1 � .a10; b

1
1/„ ƒ‚ …

DW zV

/�B.I /; I D .I i0 � � � � � I
i
ki
/nCliD2

�
;

so it “forgets” the first specified intervals. In the above, we view zV DRr�1� .a10; b
1
1/

as a vector space using a diffeomorphism .a10; b
1
1/ŠR, and thus get an isomorphism

zV ŠRr .

First of all, we need to check that this map is well defined, that is, that .Ml�1/ 2

.PBordl�1;R
r

n /k2;:::;knCl . The condition we need to check is the second one, ie we need
to check that M � zV �B.I / is a bounded submanifold and M ,! zV �B.I /�B.I /

is proper. Since p�11 .I 10 / D p�11 .I 11 / D ∅, we know that M is bounded in the
direction of the first coordinate, since M D p�11 .Œb10 ; a

1
1�/, and moreover, we know

that M ! B.I 10 � I
1
1 ; I / is proper. Together this implies the statements.

We claim that the homotopy fibers of this map are contractible. The homotopy fiber at
a point

.M1/D
�
M1 �Rr �B.I /; I D .I i0 � � � � � I

i
ki
/nCliD2

�
in the target consists of pairs of:

� A 1–simplex .M/ in .PBordl�1;R
r

n /k2;:::;knCl with endpoint .M1/.

� For the source vertex .M0/, a choice of pair of intervals which “bound” the
manifold in the last coordinate in Rr , ie an element I 10 � I

1
1 in Int1 such that�

M0 �Rr �B.I .0//; I 10 � I
1
1 ; I .0/D .I

i
0.0/� � � � � I

i
ki
.0//nCliD2

�
2�.PBordl;R

r�1

n /k2;:::;knCl :

In the presence of the 1–simplex, the choice of the intervals is equivalent to the choice
of such intervals for the original element .M1/, since they can be transported back
and forth along the 1–simplex. Thus, the homotopy fiber is a product of the space of
paths to the chosen .M1/ (which is contractible) with the space of choices of pairs of
intervals as in the second item, but for the original .M1/.

We claim that this latter space is contractible as well: The fixed submanifold M1 �

Rr � B.I / is a bounded and closed submanifold. Therefore, it is bounded in the
Rr –direction. Therefore, the image of the projection pfrgW M1! Rfrg is bounded
and the intervals can be chosen to be any intervals which lie of either side of the convex
hull of this image. The complement of the convex hull has two connected components
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and each interval can be chosen arbitrarily in one of the connected components. The
space of subintervals of a given interval is contractible, and therefore the homotopy
fibers are contractible.

7.3 Comparison of the symmetric monoidal structures

Starting with the �–object PBordnh�iW � ! SeSp
n

we can extract, as explained in
Section 3.3, the l th layer of a tower for this symmetric monoidal structure on PBordn .
It is the .nCl/–fold Segal space PBordnh�i�l given by precomposing PBordnh�i
with the map .�op/l

f l
�! � l ^�! � . We now show that it is equivalent to the layers of

the tower constructed in the previous section.

Proposition 7.9 The .nCl/–fold Segal spaces

PBordnh�i�l and Ll∅.PBordln/

are weakly equivalent.

Proof Recall from Section 6.2.2 the variant of bordisms which are constrained to the
box .0; 1/n . The rescaling maps determine a weak equivalence

PBordln
�
�! PBordl;.0;1/n :

Similarly, rescaling determines a weak equivalence

PBordnh�i
�
�! PBord.0;1/n h�i

to a � –object in n–fold Segal spaces, where PBord.0;1/n hmi is the obvious modification
constraining the bordisms to the box .0; 1/n and using rescaling maps as in Section 6.2.2.
We will construct a weak equivalence between PBord.0;1/n h�i�l and Ll∅.PBordl;.0;1/n /

as the colimit of a zigzag of maps below. We need this intermediate step of constraining
bordisms to the box to ensure that the maps in this zigzag are indeed functorial.

To shorten notation, for an ascending sequence V0 � V1 � V2 � � � � of r –dimensional
vector spaces Vr , let

Yr D PBord
.0;1/;Vr
n h�i�l and Xr D Ll∅.PBordl;.0;1/;Vrn /:

We will work with Vr DRr and use the standard inclusions Rr ŠRr ˚f0g ,!RrC1 .
They induce levelwise inclusions �X W Xr ,!XrC1 and �Y W Yr ,! YrC1 .
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We will construct a sequence of maps

: : : Xr XrCl : : :

Yr YrCl YrC2l

fr frClgr grCl

such that fr ıgr � �Y and grCl ı fr � �X . This will induce the weak equivalence on
the homotopy colimits.

The first map fr : forgetting certain intervals For k1; : : : ; kn; j1; : : : ; jl � 0, con-
sider a general element in .XrCl/k1;:::;kn;j1;:::;jl given by

.M � Vr �B.I /�B.J /; I ; J /;

where I 2 Int.0;1/;n
k1;:::;kn

and J 2 Int.0;1/;lj1;:::;jl
. Note that B.I /�B.J /D .0; 1/n� .0; 1/l �

Rn�Rl . The condition that the preimage of the projection map over the intervals in J
be empty implies that M is the disjoint union of the preimages

Mm1;:::;ml DD.m1; : : : ; ml/.M/

for 1� i � l and 1�mi � ji . In brief, the image under fr will be same embedding,
but tracking these disjoint manifolds, together with just the intervals I.

To implement this, we order the Mm1;:::;ml lexiographically. Finally, we relabel
them from 1 to j1 � � � � � jl according to this ordering, which amounts to setting
Ms DMm1;:::;ml for s Dm1C

Pl
iD2.mi � 1/ � j1 � � � ji�1 .

The image under fr has to be an element in

.YrCl/k1;:::;kn;j1;:::;jl D .PBordVrCln hj1 � � � jli/k1;:::;kn :

For this, we use a fixed diffeomorphism .0; 1/ŠR, which induces a diffeomorphism
B.J /Š Vl to transfer the vector space structure. This in turn induces an isomorphism
VrCl Š Vr �B.J /. Then we let the image of the general element above be

.M1; : : : ;Mj1���jl ; I /; where M1q� � �qMj1���jl � VrCl �B.I /:

We remark that this assignment is functorial in k1; : : : ; kn; j1; : : : ; jl , as the diffeo-
morphism is fixed once and for all and the map just forgets certain intervals and orders
the manifolds in the disjoint union in a functorial way.

The second map gr : adding certain intervals back in Conversely, to define the
map gr W Yr !Xr , start with a general element in .Yr/k1;:::;kn;j1;:::;jl , given by

.M1; : : : ;Mj1���jl ; I /; where M1q� � �qMj1���jl � Vr �B.I /:
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Set
M DM1q� � �qMj1���jl ;

and for 1� i � l and 0�mi � ji , set

J imi D

�
2mi

2ji C 1
;
2mi C 1

2ji C 1

�
\ .0; 1/;

so the intervals are equidistributed among .0; 1/. Now we realize M as a submanifold
of Vr �B.I /�B.J /D Vr � .0; 1/n � .0; 1/l in the following way:

For 1 � s � j1 � � � jl find the relabeling in the converse direction: find m1; : : : ; ml
such that s Dm1C

Pl
iD2.mi � 1/ � j1 � � � ji�1 . For example, ml D bs=.j1 � � � jl�1/c,

etc. Then, we use the inclusion of midpoints of the mth
i interval��

2m1C
1
2

2j1C 1
; : : : ;

2ml C
1
2

2jl C 1

��
� B.J /

and set

Ms ŠMs�

��
2m1C

1
2

2j1C1
; : : : ;

2mlC
1
2

2jlC1

��
� Vr�B.I /�

��
2m1C

1
2

2j1C1
; : : : ;

2mlC
1
2

2jlC1

��
� Vr�B.I /�B.J /:

The images of the Ms by construction will be disjoint, so together we get

M � Vr � .0; 1/
n
� .0; 1/l D Vr �B.I /�B.J /:

Together with the intervals I and J, this gives an element in Xr .

Again, it is straightforward to check functoriality: the only choice was that of the extra
intervals J, and this choice was canonical because we chose them to be equidistributed
in .0; 1/. Moreover, they are sent to each other under the face and degeneracy maps
of Int.0;1/ because of the extra rescaling step. This is the reason for constraining the
bordisms to the box in this proof.

The homotopies It is easy to see that fr ıgr � �Y : For an element in the composition,
the manifolds in the disjoint union are “spread out” over different points in .0; 1/l D
B.J /�Rl :

.M1; : : : ;Mj1���jl ; I /; where M1q� � �qMj1���jl � Vr �B.I /;

maps to

.M; I ; J /; where M DM1q� � �qMj1���jl �Vr�.0; 1/
n
�.0; 1/lDVr�B.I /�B.J /;
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which in turn maps to

.M1; : : : ;Mj1���jl ; I /; where M1q� � �qMj1���jl � VrCl �B.I /:

However, for the latter element, consider the homotopy

H W Œ0; 1��RrCl!RrCl ; .t; x1; : : : ; xr ; y1; : : : ; yl/ 7! .x1; : : : ; xr ; t �y1; : : : ; t �yl/:

For any t ,

..Ht � id.0;1/n/.M/�RrCl � .0; 1/n DRrCl �B.I /; I /

still is an element in .YrCl/k1;:::;kn;j1;:::;jl , and for t D 0 we get back the element we
started with.

A homotopy from the other composition grCl ı fr to �X is also straightforward to
construct.

Corollary 7.10 The two symmetric monoidal structures on Bordn constructed in the
last two sections are equivalent.

Remark 7.11 It is straightforward to get a similar result for Bord.1;d/n .

8 Interpretation of bordisms as manifolds with corners and
the homotopy category

In this section we compare our definitions to the definitions of higher bordisms from
[34; 33; 49; 12], which are certain manifolds with corners. We first recall the definition
and show that every bordism in that sense leads to an element in our space of bordisms
from the previous section and vice versa. Then we prove that every path in our space of
bordisms leads to diffeomorphic bordisms as manifolds with corners, and explain that
the spaces indeed are the disjoint union of classifying spaces of diffeomorphisms of
bordisms, as suggested in Section 5.2. Finally, we show that the homotopy category of
our symmetric monoidal Segal space of bordisms recovers the usual bordism category.

8.1 Bordisms as manifolds with corners and embeddings thereof

For the definition and notation for hki–manifolds used in this section we refer to [34].
In brief, a hki–manifold is a manifold M with “faces”21 together with an ordered
n–tuple .@1M; : : : ; @kM/ satisfying

21For an n–dimensional manifold M with corners, for any x 2 M the number of zeros c.x/ in
the coordinates of x in any chart is independent of the chart (by a chart we mean a diffeomorphism
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(1) @1M [ � � � [ @kM D @M, and

(2) @iM \ @jM is a face of @iM and @jM for every i ¤ j .

The number k indicates that the manifold has corners of codimension k , which are
exactly the components of @1M \ � � � \ @kM.

Example 8.1 Consider the biangle as a manifold with corners:

@2M

@1M

M

It is a manifold with faces: every point x in the interior has c.x/ D 0, every point
in @1M \ @2M has c.x/D 2 and is a face of both @1M and @2M, and every other
point has c.x/ D 1 and lies either in @1M or in @2M. Moreover, the ordered pair
.@1M; @2M/ gives M the structure of a h2i–manifold.

An k–bordism is a hki–manifold such that for each @iM we distinguish between an
“incoming” and an “outgoing” part. We will see later that we can think of it as having
k “directions” in which there is an “incoming” and an “outgoing” part of the boundary.

Definition 8.2 � A (cubical) 0–bordism is a closed manifold.

� An n–dimensional cubical k–bordism is an n–dimensional hki–manifold whose
k–tuple of faces is denoted by .@1M; : : : ; @kM/ together with decompositions

@iM D @i;inM q @i;outM

such that @i;inM and @i;outM are .n�1/–dimensional cubical .k�1/–bordisms.

� An n–dimensional k–bordism is an n–dimensional cubical k–bordism such
that @i;inM and @i;outM are trivial in the sense that there are .n�k�1Ci/–
dimensional .i�1/–bordisms Mi;in and Mi;out such that there are diffeomor-
phisms

@i;inM ŠMi;in � Œ0; 1�
k�i and @i;outM ŠMi;out � Œ0; 1�

k�i

for 1� i � n� 1.

x 3 U ! V � Rn
�0 ). A connected face of M is the closure of a component of fx 2M W c.x/ D 1g ,

ie of the .n�1/–dimensional part of the boundary. An n–dimensional manifold with faces is an n–
dimensional manifold M with corners such that any x 2M is in exactly c.x/ faces, ie if x is in the
.n�k/–dimensional part of the boundary, then it lies in k different faces.
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Remark 8.3 For k D 2 our definition of 2–bordism agrees with that in [49]. One
should think of Mi;in and Mi;out as the i –source and i –target of M.

Example 8.4 An example of a 2–dimensional 2–bordism is illustrated in the following
picture:

Its tuple .@1M; @2M/ of faces is given by the vertical and the horizontal faces, respec-
tively.

Example 8.5 Let M D Œ0; 1�k . It is a k–bordism with

@i;inM D Œ0; 1�
i�1
� f0g � Œ0; 1�k�i and @i;outM D Œ0; 1�

i�1
� f1g � Œ0; 1�k�i :

A hki–manifold M determines a functor

M W Œ1�k! Top;

aD .a1; : : : ; ak/ 7!

�
M.a/D

T
fi WaiD0g

@iM if a¤ .1; : : : ; 1/;
M.1; : : : ; 1/DM:

Recall the following embedding theorem via “neat” embeddings for hki–manifolds.

Theorem 8.6 [34, Proposition 2.1.7] Any compact hki–manifold admits a neat
embedding in Rk

C
�Rm for some m, ie a natural transformation �W M ! Rk

C
�Rm

such that

(1) �.a/ is an inclusion of a submanifold for all a 2 Œ1�k ;

(2) the intersections M.a/\.Rm�Rk
C
.b//DM.b/ are perpendicular for all b < a .

We adapt the definition of a neat embedding for hki–manifolds for bordisms.

Definition 8.7 A neat embedding � of a (cubical) k–bordism M is a natural transfor-
mation of M to Rm�Œ0; 1�k for some m, both viewed as functors Œ1�k!Top , such that

(1) �.a/ is an inclusion of a submanifold for all a 2 Œ1�k respecting the prescribed
decomposition of the faces of the bordism;

(2) the intersections M.a/\.Rm� Œ0; 1�k.b//DM.b/ are transverse for all b <a .
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To prove that any k–bordism admits a neat embedding, we use that any hki–manifold
admits a compatible collaring:

Lemma 8.8 [34, Lemma 2.1.6] For a 2 Œ1�k we write 1� aD .1; : : : ; 1/� a . Any
hki–manifold M admits a hki–diagram C of embeddings

C.a < b/W RkC.1� a/�M.a/ ,!RkC.1� b/�M.b/

with the property that C.a < b/ restricted to Rk
C
.1� b/�M.a/ is the inclusion map

id�M.a < b/.

Now the embedding theorem for hki–manifolds leads to an embedding theorem for
(cubical) k–bordisms. Such embedded cubical k–bordisms appear in [12].

Theorem 8.9 Any n–dimensional (cubical) k–bordism M admits a neat embedding
into Rm � Œ0; 1�k .

Proof Let M be an n–dimensional k–bordism. By the above theorem, there is a
(neat) embedding �W M ,!Rk

C
�Rm

0

�RkCm
0

DRm for some m0 and mDm0Ck . We
will use that the product of an embedding with any smooth map still is an embedding.
For this, we will construct a smooth map hW M ! Œ0; 1�k such that its product with �
is a neat embedding.

The idea for h is that the decomposition into disjoint unions of the boundary components
of the k–bordism determine a decomposition of the collars as well. Starting with the
lowest-dimensional corners M.0/, we use this decomposition to define h on each
component using either the collar coordinate or one minus the collar coordinate in each
coordinate direction. Then we proceed by induction on the dimension of the corner
and define h successively on M.a/.

Recall from Example 8.5 that Œ0; 1�k is a k–bordism. We fix a collaring, eg the one
given by the embeddings determined by diffeomorphisms

R˛C � Œ0; 1�
k�˛
Š
�
0; 1
6

�˛
� Œ0; 1�k�˛ W
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Let a D .ai / 2 Œ1�k . Write jaj D
P
ai and S.a/D fi W ai D 0g � f1; : : : ; kg. Note

that jS.a/j D k� jaj.

By the above lemma, there is a collaring of the hki–manifold M. The collaring
gives an embedding C.a < 1/W RS.a/

C
�M.a/ ,!M.1� 0/ DM whose image is a

neighborhood U.a/ of the corner M.a/. The decompositions @iM D @i;inMq@i;outM

give a decomposition of M.a/ into 2jS.a/j disjoint components:

M.a/D
\

fi Wai¤0g

@iM D
\

fi Wai¤0g

@i;inM q @i;outM D
G

˛2Œ1�jS.a/j

M.a; ˛/;

ie an element c 2M.a/ lies in M.a; ˛/ if and only if

˛i D

�
0 if c 2 @i;inM;
1 if c 2 @i;outM:

This decomposition also determines a decomposition of U.a/ into 2k�jaj disjoint
components U.a; ˛/ for ˛ 2 Œ1�S.a/ such that U.a; ˛/ is the image of RS.a/

C
�M.a; ˛/

under C.a < 1/. The chosen collaring of Œ0; 1�k induces one on Œ0; 1�S.a/ , which
in turn determines an embedding �˛W R

S.a/
C

,! Œ0; 1�S.a/ for any particular corner
˛ 2 Œ1�S.a/ � Œ0; 1�S.a/ . Note that the images of these embeddings for varying corners
are disjoint. We define ha on U.a; ˛/ to be the composition

U.a; ˛/ŠRS.a/
C
�M.a; ˛/

pr
�!RS.a/

C

�˛
�! Œ0; 1�S.a/:

For aD 02 Œ1�k , ie the lowest-dimensional (ie .n�k/–dimensional) corners of M, the
function h0W U.0/! Œ0; 1�k is the restriction hjU.0/ to U.0/ of the desired function h.

For a > 0, assume h is already defined on U.b/ for b < a with jbj D jaj � 1. Fix
˛ 2 Œ1�S.a/ and let ˇ 2 Œ1�S.b/ be such that ˇi D ˛i for every i 2 S.a/� S.b/. Then
U.b; ˇ/�U.a; ˛/. Since U.b; ˇ/ are disjoint for varying ˇ and the collarings restrict
compatibly, we can choose a smooth function

hˇ;˛W U.a; ˛/! Œ0; 1�f1;:::;kgnS.a/

such that the product with ha agrees with h on U.b; ˇ/ for all such ˇ . This defines a
smooth map hW M ! Œ0; 1�k .

We claim that the product ��hW M ,!Rm� Œ0; 1�k is a neat embedding of k–bordisms.
The first condition is fulfilled by construction, as h is defined so that M.a; ˛/ is sent to
˛.c/2 Œ0; 1�S.a/ . For the second condition note that by construction, M.a; ˛/Dh�1a .˛/,
M.b; ˇ/ D h�1

b
.ˇ/, and hb D ha � hˇ;˛ on U.b; ˇ/. But on U.b; ˇ/ the function
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hˇ;˛ is a projection onto the extra collar coordinate, with M.b; ˇ/ the preimage of
0 2RC . Thus the intersection is transversal.

Conversely:

Proposition 8.10 For l � �n and d D nC l , any element in .PBordln/k1;:::;kn leads
to a .k1; : : : ; kd /–fold composition of n–dimensional d –bordisms.

Proof Let .M � V �B.I /; I / be an element in .PBordln/k1;:::;kd . As usual, we use
the notation � W M ,! V �B.I /� B.I /. Then for .1� ji � ki /1�i�d define

Mj1;:::;jd D �
�1

�Y
i

�
1
3
.2aij�1C b

i
j�1/;

1
3
.aij C 2b

i
j /
��
:

They are n–dimensional cubical d –bordisms since they are manifolds with corners
with a decomposition of the boundary given by the preimages of the faces of the cube,
similarly to Example 8.5:

@i0;inMj1;:::;jd D �
�1

� Y
i<i0

�
1
3
.2aij�1C b

i
j�1/;

1
3
.aij C 2b

i
j /
�
�
˚
1
3
.2aij�1C b

i
j�1/

	
�

Y
i>i0

�
1
3
.2aij�1C b

i
j�1/;

1
3
.aij C 2b

i
j /
��

and

@i0;outMj1;:::;jd D �
�1

� Y
i<i0

�
1
3
.2aij�1C b

i
j�1/;

1
3
.aij C 2b

i
j /
�
�
˚
1
3
.aij C 2b

i
j /
	

�

Y
i>i0

�
1
3
.2aij�1C b

i
j�1/;

1
3
.aij C 2b

i
j /
��
:

The triviality condition to be a d –bordism follows from condition (3) in Definition 6.1.
Note that we essentially extracted the underlying k–bordisms from Remark 5.3 and
Notation 5.17.

Moreover, they are composable along the faces in the sense that @i;outMj1;:::;ji�1;:::;jd
and @i;inMj1;:::;jd can be glued along their collar to form a new k–bordism given by

��1
�Y
i 0<i

�
1
3
.2aij�1Cb

i
j�1/;

1
3
.aij C2b

i
j /
�
�
�
1
3
.2aij�2Cb

i
j�2/;

1
3
.aij C2b

i
j /
�

�

Y
i 0>i

�
1
3
.2aij�1Cb

i
j�1/;

1
3
.aij C2b

i
j /
��
:
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8.2 A time-dependent Morse lemma and spaces of bordisms

We have already seen in Remark 5.3 and Notation 5.17, and in Corollary 5.5 and
Proposition 8.10, that the Morse lemma allows the interpretation of an element in
.PBordln/k1;:::;kn as a composition of k1 � � � kn bordisms. In this section we will see that
paths in that space lead to diffeomorphisms of the composed bordisms and remark on
why this space should be thought of as the classifying space of these diffeomorphisms.

The following theorem is the classical Morse lemma, as can be found eg in [43].

Theorem 8.11 (Morse lemma) Let f be a smooth proper real-valued function on a
manifold M. Let a < b and suppose that the interval Œa; b� contains no critical values
of f . Then M a D f �1..�1; a�/ is diffeomorphic to M b D f �1..�1; b�/.

We repeat the proof here since later in this section we will adapt it to our situation.

Proof Choose a metric on M, and consider the vector field

V D
ryf

jryf j2
;

where ry is the gradient on M. Since f has no critical value in Œa; b�, V is defined in
f �1..a� �; bC �// for suitable � . Choose a smooth function zgW R!R which is 1
on
�
a� 1

2
�; bC 1

2
�
�

and compactly supported in .a� �; bC �/. Lift zg to a function
gW M !R by setting g.y/D zg.f .y//. Then

V D g
ryf

jryf j2

is a compactly supported vector field on M and hence generates a 1–parameter group
of diffeomorphisms

 t W M !M:

Viewing f � .aC t / as a function on R�M, .t; y/ 7! f .y/� .aC t /, we find that in
f �1

��
a� 1

2
�; bC 1

2
�
��

,

@t .f � .aC t //D 1D
ryf

jryf j2
� .f � .aC t //D V � .f � .aC t //;

and so the flow preserves the set

f.t; y/ W f .y/D aC tg:

Thus, the diffeomorphism  b�a restricts to a diffeomorphism

 b�ajMa W M a
!M b:
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In Lemma 3.1 in [22], Gay, Wehrheim and Woodward prove a time-dependent Morse
lemma which shows that a smooth family of composed bordisms in their (ordinary)
category of (connected) bordisms gives rise to a diffeomorphism which intertwines
with the bordisms. We adapt this lemma to a variant which will be suitable for our
situation in the higher categorical setting.

We start by defining some rescaling data to compare bordisms with different families
of underlying intervals.

Definition 8.12 Let .I0.s/� � � � � Ik.s//!j�l je be an l –simplex in Intk . A smooth
family of strictly monotonically increasing diffeomorphisms�

's;t W .a0.s/; bk.s//! .a0.t/; bk.t//
�
s;t2j�l j

is said to intertwine with the composed intervals if the following condition is satisfied
for every morphism f W Œm�! Œl � in the simplex category �: Let jf jW j�mj ! j�l j
be the induced map between standard simplices. For every 0� j < k such that

� either for every s 2 jf j.j�mj/ the intersection Ij .s/\ IjC1.s/ is empty,

� or for every s 2 jf j.j�mj/ the intersection Ij .s/\ IjC1.s/ contains only one
element,

we require that for every s 2 jf j.j�mj/,

bj .s/
's;t
7��! bj .t/; ajC1.s/

's;t
7��! ajC1.t/ W

s

t

b3.1/a0.1/

'0;1

's;t

b3.0/a0.0/ b0.0/

b0.1/

a1.0/

a1.1/

b1.0/

b1.1/

a2.0/

a2.1/

b2.0/

b2.1/

a3.0/

a3.1/

Remark 8.13 It is enough to check this condition for m� l .
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Definition 8.14 Let .I0.s/�� � ��Ik.s//! Œ0; 1� be a 1–simplex in Intk . A rescaling
datum for I is a is a smooth family of strictly monotonically increasing diffeomorphisms
's;t W .a0.s/; bk.s//! .a0.t/; bk.t// for s; t 2 Œ0; 1� such that

(1) 's;s D id for every s 2 Œ0; 1�,

(2) 's;t D '
�1
t;s for every s; t 2 Œ0; 1�,

(3) .'s;t /s;t2j�1je intertwines with the composed intervals.

Theorem 8.15 Let .M �Rr �B.I /�j�1je; I / be a 1–simplex in .PBordln/k1;:::;kn .
Then:

(1) For every 1� i � n, there is a rescaling datum 'is;t for I i .

(2) There is a smooth family of diffeomorphisms

. s;t W Ms!Mt /s;t2Œ0;1�

such that  s;s D idMs and  s;t D  �1t;s , which intertwine with the composed
bordisms with respect to the product of the rescaling data

's;t D .'
i
s;t /

n
iD1W B.I .s//! B.I .t//:

By this we mean the following: denoting by �s the composition

Ms ,! V �B.I .s//� B.I .s//;

for 1� i � n and 0� ji ; li � ki choose any

t iji 2 I
i
ji
.s/ such that 'is;t .t

i
ji
/ 2 I iji .t/;

t ili 2 I
i
li
.s/ such that 'is;t .t

i
li
/ 2 I ili .t/:

Then  s;t restricts to a diffeomorphism

��1s

� nY
iD1

Œt iji ; t
i
li
�

�
 s;t
��! ��1s

� nY
iD1

Œ's;t .t
i
ji
/; 's;t .t

i
li
/�

�
;

ie writing B D
Qn
iD1Œt

i
ji
; t i
li
�,

Mt ��1t .'s;t .B//

Ms ��1s .B/ 's;t .B/

B.I .s// B

�t s;t

�s �s

 s;t

's;t
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Proof The main strategy of the proof is the same as for the classical Morse lemma.
Namely, we will construct a suitable vector field whose flow gives the desired diffeo-
morphisms. First, we fix the metric on M induced by the restriction of the standard
metric on Rr � B.I / � j�1je . Recall from Remark 5.9 that the map M ! j�1je
exhibits M as a trivial fiber bundle, so there is a diffeomorphism M Š j�1je �N as
an abstract manifold. For every s 2 Œ0; 1�, the fiber Ms is diffeomorphic to N as an
abstract manifold. We fix the metric on N induced by the diffeomorphism N ŠM0 ,
and use the notation fsW N ŠMs ,! V �B.I .s//� B.I .s//.

For Steps 1–3 assume that l D�.n� 1/. The general case applies these arguments in
each direction separately.

Step 1: disjoint intervals First assume that for all 0� j � k and for every s 2 Œ0; 1�
we have

Ij .s/\ IjC1.s/D∅:

We first define suitable vector fields Vj and Wj in neighborhoods of the preimage
under f of

S
s2Œ0;1�fsg � Ij .s/ such that their flows will preserve the preimages of

the left and right endpoints of the intervals, respectively. Then we use a partition of
unity to obtain a vector field V defined on Œ0; 1��N which gives rise to the desired
diffeomorphisms.

Let

Aj D
[

s2Œ0;1�

fsg�f �1s .aj .s//� Œ0; 1��N; Bj D
[

s2Œ0;1�

fsg�f �1s .bj .s//� Œ0; 1��N:

Now for 0� j � k consider the vector fields

Vj D

�
@s; @s.aj .s/�fs/

ryfs

jryfsj2

�
; Wj D

�
@s; @s.bj .s/�fs/

ryfs

jryfsj2

�
;

where ry is the gradient on N. Since fs has no critical value in Ij .s/, the vector fields
Vj and Wj are defined on f �1.Uj /, where Uj is a neighborhood of

S
s2Œ0;1�fsg�Ij .s/.

Moreover, viewing aj W .s; y/ 7! aj .s/ as a function on Œ0; 1��N,

Vj .f �aj /D @s.f �aj /C@s.aj �f /
ryf

jryf j2
.f �aj /D @s.f �aj /C@s.aj �f /D 0:

So the vector field Vj is tangent to Aj and, similarly, Wj is tangent to Bj .

We would now like to construct a vector field V on Œ0; 1��N which, for every 0�j �k ,
at Aj restricts to Vj and at Bj restricts to Wj , and such that there exists a family of
functions .cx W Œ0; 1�!R/x2Ij .0/ such that
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� cx.0/D x , cx.s/ 2 Ij .s/,

� the graphs of cx for varying x partition
S
s2Œ0;1�fsg � Œaj .s/; bj .s/�, and

� V is tangent to Cx D
S
s2Œ0;1�fsg �f

�1
s .cx.s//.

We will use cx to define '0;s.x/ D cx.s/ and 's;t D '0;t ı '
�1
0;s . Moreover, the

diffeomorphisms  s;t will arise as the flow along V .

Fix smooth functions zgj ; zhj W
S
s2Œ0;1�fsg�B.I .s//!R�0 which satisfy the following

conditions:

(1) zgj and zhj are compactly supported in Uj .

(2) zgj D 1 in a neighborhood of graph aj D f.s; aj .s// W s 2 Œ0; 1�g and zhj D 1 in
a neighborhood of graph bj .

(3) zgj C zhj D 1 in
S
s2Œ0;1�fsg�Ij .s/, and the supports of the zgj C zhj are disjoint.

Lift the functions zgj and zhj to functions gj ; hj W Œ0; 1��N !R by setting gj .s; y/ WD
zgj .s; fs.y// and hj .s; y/ WD zhj .s; fs.y//. Then consider the vector field on f �1.Uj /

Vj D
�
@s;

�
gj @s.aj /C hj @s.bj /� @s.f /

�
ryf

jryf j2

�
:

This vector field is supported on the support of gj C hj and thus extends to a vector
field on N. Note that Vj .s; y/D Vj .s; y/ for .s; y/ 2Aj , and Vj .s; y/DWj .s; y/ for
.s; y/ 2 Bj .

Now let V be the vector field on Œ0; 1��N constructed by combining the above vector
fields as follows:

(7) V D
�
@s;

X
0�j�k

.gj @s.aj /C hj @s.bj /� @s.f //
ryfs

jryfsj2

�
:

Note that in
S
s2Œ0;1�fsg �f

�1
s .Ij .s//, it restricts to Vj .

In order for V to be tangent to Cx , the functions cx must satisfy Vj .f � cx/D 0 at
points in Cx . Expanding the left-hand side as

Vj .f � cx/D @s.f � cx/C .gj @s.aj /C hj @s.bj /� @s.f //
rf

jrf j2
.f � cx/

D�@s.cx/Cgj @s.aj /C hj @s.bj /

leads to the ordinary differential equation with smooth coefficients on Œ0; 1�,

@s.cx/.s/D gj .s; cx.s//@s.aj /.s/C hj .s; cx.s//@s.bj /.s/;

cx.0/D x:
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By Picard–Lindelöf, it has a unique, a priori local, solution. To see that it extends to
every s 2 Œ0; 1�, consider the smooth function F W Œ0; 1��N !

S
s2Œ0;1�fsg �B.I .s//

defined to be � under the diffeomorphism M Š Œ0; 1��N, so F.s; y/D .s; f .s; y//D
.s; fs.y//. Since � is proper, so is F . Moreover, Cx D F�1.graph cx/. For fixed x ,
graph cx sits inside the support of zgj C zhj , for some j , and thus is compact inS
s2Œ0;1�fsg�B.I .s//. Therefore, Cx lies in a compact part of Œ0; 1��N and thus the

local solution exists for all s 2 Œ0; 1�.

We now define our rescaling data essentially by following the curve cx . Explicitly,
let '0;sW B.I .0//! B.I .s// be defined on Œaj .0/; bj .0/� by sending x0 to cx0.s/.
Note that by construction, it sends aj .0/ to aj .s/ and bj .0/ to bj .s/. Since the
solution cx of the ODE varies smoothly with respect to the initial value x this map
is a diffeomorphism. So we can define 's;t W B.I .s//! B.I .t// on Œaj .s/; bj .s/� by
sending xs D cx0.s/ to cx0.t/. We extend 's;t to a diffeomorphism in-between these
intervals in the following way. Let zzgj ; zzhj W Œbj .0/; ajC1.0/�!R be a partition of unity
such that zzgj is strictly decreasing, zzgj .bj .s// D 1, and zzhj .ajC1.s// D 1. Then, for
x0 2 Œbj .0/; ajC1.0/� set

cx0.s/D zzgj .x0/cbj .0/.s/C
zzhj .x0/cajC1.0/.s/ and 's;t .cx0.s//D cx0.t/:

As mentioned above, we obtain the diffeomorphisms  s;t by flowing along the vector
field V . Since V is tangent to the sets Cx D

S
s2Œ0;1�fsg � f

�1
s .cx.s// for x 2

I0.0/[ � � � [ Ik.0/, the flow preserves Cx , and
S
s2Œ0;1�fsg �f

�1
s .Œbj .s/; ajC1.s/�/

in-between. Again, this implies that the flow exists for all s 2 Œ0; 1�. It is of the form
‰.t � s; .s; y//D .t;  s;t .y// for 0 � s � t � 1, where . s;t /s;t2Œ0;1� is a family of
diffeomorphisms on N. We transport them under the diffeomorphism M Š Œ0; 1��N

to diffeomorphisms . s;t W Ms!Mt /s;t2Œ0;1� , which by construction intertwine with
the composed bordisms with respect to the rescaling data 's;t .

Step 2: common endpoints Now consider the case that for 0� j � k we have that
either for every s 2 Œ0; 1�, Ij .s/\ IjC1.s/D∅, as in the previous case, or for every
s 2 Œ0; 1� we have

jIj .s/\ IjC1.s/j D 1:

In this case, one can modify the above argument. We explain this for the case of two
intervals with one common endpoint, ie bj .s/D ajC1.s/.

Instead of choosing smooth functions zgj ; zhj ; zgjC1; zhjC1W
S
s2Œ0;1�fsg�B.I .s//!R

such that the supports of zgj C zhj and zgjC1C zhjC1 are disjoint (which now is not
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possible), we fix three smooth functions zfj ; zgj ; zhj W
S
s2Œ0;1�fsg�B.I .s//!R which

satisfy the following conditions:

(1) zfj , zgj and zhj are compactly supported in Uj [UjC1 .

(2) zfj D 1 in a neighborhood of graph aj D f.s; aj .s// W s 2 Œ0; 1�g, zgj D 1 in
a neighborhood of graph bj D graph ajC1 and zhj D 1 in a neighborhood of
graph bjC1 .

(3) zfj C zgj C zhj D 1 in
S
s2Œ0;1�fsg � .Ij .s/[ IjC1.s//, and the support of the

zfj C zgj C zhj is disjoint from the sums associated to the other intervals.

Now continue the proof similarly to above.

Step 3: overlapping intervals with nonempty interior If for some 0 � j � k the
intersection Ij .s/\ IjC1.s/ has nonempty interior for every s 2 Œ0; 1�, then one can
do the above construction with the intervals Ij .s/ and IjC1.s/ replaced by the interval
Ij .s/[ IjC1.s/.

Step 4: partial overlaps (mixed cases) When the above cases are mixed, we can
combine the cases treated so far. We will illustrate this in the case when the intervals
first are disjoint and then start overlapping. The other cases are treated similarly.

Let us assume that there is an Qs such that Ij .s/ \ IjC1.s/ D ∅ for s < Qs , and
Ij .s/ \ IjC1.s/ ¤ ∅ for s � Qs . In this case, Qx D bj .Qs/ D ajC1.Qs/, which is a
regular value of fQs . Since f is smooth, there is an open ball Uj centered at .Qs; Qx/
in
S
s2Œ0;1�fsg � B.I .s// such that for .s; x/ 2 U, x is a regular value of fs . Let

Ns < Qs be such that for every Ns � s � Qs , the set fsg � Œaj .s/; bjC1.s/� is covered by
U [

�
fsg � .Ij .s/[ IjC1.s//

�
. Choose s0 and t0 such that Ns � s0 < t0 :

s0
t0

bj .0/

ajC1.1/

ajC1.0/

bj .1/

In Œ0; t0�, we are in the situation of disjoint intervals and can use the first construction
to obtain c.1/x .s/ and V.1/.s; y/ for s � t0 .
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In Œs0; 1�, we apply the construction from Step 1 to the intervals Ij .s/ and IjC1.s/
replaced by the interval Œaj .s/; bjC1.s/� to obtain c.2/x .s/ and V.2/.s; y/ for s � s0 .

Now choose a partition of unity G;H W Œ0; 1�!R such that GjŒ0;s0�D 1;H jŒt0;1�D 1,
and G is strictly decreasing on Œs0; t0�. For s < t define

cx.s/DG.s/c
.1/
x .s/CH.s/c.2/x .s/; V.s; y/DG.s/V.1/.s; y/CH.s/V.2/.s; y/:

Then define 's;t and  s;t as before.

Step 5: several directions Assume now that l > �.n� 1/. Let

�sW N ŠMs ,! V �B.I .s//� B.I .s//

and for 1 � i � n denote by .pi /sW N ! B.I i .s// the composition of �s with the
projection to the i th coordinate. Note that by condition (3) in Definition 5.1, the
function .pi /s does not have a critical point in I i0.s/[ � � � [ I

i
ki
.s/.

By Steps 1–3, for each i we get a vector field of the form

V i D
�
@s;…i .s; y/

ry.pi /s

jry.pi /sj2

�
for a function …i .s; y/; eg see (7). We combine them to obtain a new vector field on
Œ0; 1��N given by

�V D �@s; nX
iD1

…i .s; y/
ry.pi /s

jry.pi /sj2

�
:

For i ¤ j the projections .pi /0 and .pj /0 are orthogonal with respect to the metric
on N and, moreover, .pi /s and .pj /s stay orthogonal along the path, because the
change of metric on N ŠMs induced by the embedding of Ms respects orthogonality
on B.I /. This implies that

ry.pi /s

jry.pi /sj2
pj D ıij ;

and so �V still is tangent to the respective C ix in each direction and thus its flow, if it
exists globally, will give rise to the desired diffeomorphisms and rescaling data.

The global existence follows from the special form of the vector field. Given a point
.t; yt / 2N, the flow will preserve a set of the form

f.s; y/ W �s.ys/D .c
1
x0
.s/; : : : ; cnx0.s//D .�1.s/; : : : ; �n.s//g;
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where the right-hand side is in the notation of Example 5.13, and Ecx0.t/D E�.t/D yt .
One can show, as in the example, that this set lies in a compact part of N and thus the
flow exists globally.

We can now relate the spaces of bordisms to diffeomorphisms of bordisms in a more
classical sense.

Definition 8.16 Building upon the previous section, in particular Proposition 8.10,
we define a diffeomorphism of a .k1; : : : ; kd /–fold composition of n–dimensional
d –bordisms to be a diffeomorphism of the composition which “intertwines with”,
ie restricts to, the composed bordisms.

The above theorem shows that a path in .PBordln/k1;:::;kd leads to such an intertwining
diffeomorphism of the compositions at the start and at the end of the path. Actually,
much more is true.

Proposition 8.17 For fixed k1; : : : ; kd and a .k1; : : : ; kd /–fold composition M of
n–dimensional d –bordisms Mj1;:::;jd , which we denote by .M; .Mj1;:::;jd //, con-
sider the group of such intertwining diffeomorphisms Diff.M; .Mj1;:::;jd //. Then
.PBordln/k1;:::;kn is the disjoint union of classifying spaces of Diff.M; .Mj1;:::;jd //,
where the disjoint union is taken over diffeomorphism classes.

Proof We sketch the argument, essentially following the argument for Sub.M;R1/
being a classifying space for the group of diffeomorphisms of M, and its modifications
in [21; 40]: Consider the space Emb

�
.M; .Mj1;:::;jd //;R

1 � Œ0; 1�d
�

of neat em-
beddings of the composition which restricts to neat embeddings of the composed
bordisms. It is nonempty by the embedding theorem for d –bordisms (Theorem 8.9)
and contractible, which can be seen similarly to Emb.M;R1/ being contractible. We
get a principal Diff.M; .Mj1;:::;jd //–bundle

Emb
�
.M; .Mj1;:::;jd //;R

1
� Œ0; 1�d

�
! Emb

�
.M; .Mj1;:::;jd //;R

1
� Œ0; 1�d

�
=Diff.M; .Mj1;:::;jd //:

The disjoint union over all diffeomorphism classes of the right-hand side is equivalent
to .PBordln/k1;:::;kn .

8.3 The homotopy category h1.Bord.1;1/
n /

The goal of the section is to show that there is a equivalence of symmetric monoidal
categories between the homotopy category of the .1; 1/–category Bord.1;1/n and the
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usual unoriented bordism category nCob. In fact, even more is true: one can show
that there is an equivalence of symmetric monoidal bicategories between the homotopy
bicategory of the .1; 2/–category Bord.1;2/n and the unoriented bordism bicategory
defined in [49]. This will be proven in a subsequent article.

8.3.1 The symmetric monoidal structure on h1.Bord.1;1/
n / The .1;1/–category

Bord.1;1/n D Bord�.n�1/n '�n�1.Bordn/

has a symmetric monoidal structure defined in two ways similarly to that of Bord1 .
Both induce a symmetric monoidal structure on the homotopy category h1.Bord.1;1/n /.
We now make this symmetric monoidal structure more explicit for later purposes.

. . . coming from a � –object We can either obtain the symmetric monoidal structure
as a � –object on Bord.1;1/n ' �n�1.Bordn/ by iterating the construction of the
symmetric monoidal structure on the looping from Example 3.10 or by constructing
a functor from an assignment Œm� 7! Bord�.n�1/n Œm� as mentioned in Remark 7.3.
In the second case, Bord�.n�1/n Œm� arises, similarly to BordnŒm�, from the spaces
.PBordV;�.n�1/n Œm�/k1;:::;kn , whose set of 0–simplices is the collection of tuples

.M1; : : : ;Mm; .I0 � � � � � Ik//;

where M1; : : : ;Mm are disjoint n–dimensional submanifolds of V �B.I /D .a0; bk/,
and each .Mˇ ; .I0 � � � � � Ik// 2 .PBordV;�.n�1/n /k1;:::;kn .

We saw in Example 3.8 that a � –object endows the homotopy category of its underlying
Segal space with a symmetric monoidal structure. Explicitly, in the second case, it
comes from the maps

Bord�.n�1/n h1i �Bord�.n�1/n h1i
1�2
 ����
'

Bord�.n�1/n h2i

�! Bord�.n�1/n h1i;

.M1; I /; .M2; I /  ����Í .M1;M2; I / 7�! .M1qM2; I /:

. . . coming from a tower To understand the symmetric monoidal structure on the
category h1.Bord.1;1/n / coming from a symmetric monoidal structure as a tower, we
use that Bord.1;1/n DBord�.n�1/n has a symmetric monoidal structure coming from the
collection of k–hybrid .kC1/–fold Segal spaces given (essentially) by the k–hybrid
completion of

Lk∅.PBordk�.n�1/n /:
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This symmetric monoidal structure induces one on the homotopy category

h1.Bord.1;1/n /' h1.Bord�.n�1/n /:

Since completion is a Dwyer–Kan equivalence — see Definition 1.18 — it is enough to
understand the symmetric monoidal structure on h1.PBord�.n�1/n /.

The monoidal structure arises from composition in PBord1�.n�1/n , the next layer of the
tower PBord2�.n�1/n gives a braiding and the higher layers show that it is symmetric
monoidal; see Section 3.3. Consider the diagram

.PBord1�.n�1/n /1;� �
h

.PBord1�.n�1/n /0;�
.PBord1�.n�1/n /1;�

d10�d
1
2

 �����
'

.PBord1�.n�1/n /2;�
d11
�! .PBord1�.n�1/n /1;�:

Similarly to Remark 3.16, we find that

L∅.PBord1�.n�1/n /1;� '�.PBord1�.n�1/n /� ' .PBord�.n�1/n /�

and, together with the maps above, this gives a monoidal structure

h1.PBord�.n�1/n /� h1.PBord�.n�1/n /! h1.PBord�.n�1/n /:

We spell this structure out explicitly. Consider two objects or 1–morphisms represented
by elements

.M/D .M � V �B.I /; I /; .N /D .N �W �B.zI /; zI /

in .PBord�.n�1/n /k for k D 0 or k D 1. Without loss of generality we can assume that
V DW DRr , that .M/; .N / 2 .PBord�.n�1/;R

r

n /k , and that (perhaps after rescaling)
I D zI. Furthermore, choose c > 0 such that .M/; .N /2 .PBord�.n�1/;B.c;r/n /k . What
follows will be independent of the choice of c .

Under the map `r.c/W PBord�.n�1/;B.c;r/n !�.PBord1�.n�1/;R
r�1

n / from Theorem 7.4,
.M/ and .N / are sent to

.M1/D
�
M �Rr�1 � .�.cC 1/; cC 1/�B.I /; .�.cC 1/;�c�� Œc; cC 1/; I

�
;

.N1/D
�
N �Rr�1 � .�.cC 1/; cC 1/�B.I /; .�.cC 1/;�c�� Œc; cC 1/; I

�
:

Now we can use the gluing procedure as in the proof of the Segal condition for PBordn
in Proposition 5.19. In this case, the sources and targets of .M1/ and .N1/ are all
empty, so the construction of the glued element is as follows: We choose a path from
.N1/ to another element .N2/ by moving the first coordinate in the box so that the pair
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..M/; .N2// lies in

.PBord1�.n�1/n /1;� �
.PBord1�.n�1/n /0;�

.PBord1�.n�1/n /1;�;

ie so that

.N2/D
�
N �Rr�1 � .c; 3cC 2/�B.I /; .c; cC 1�� Œ3cC 1; 3cC 2/; I

�
:

Since d11 ..M1//Dd
1
0 ..N1//D∅ we have that M and N2 are disjoint as submanifolds

of Rr�1 � .�.cC 1/; 3cC 2/�B.zI /. So the glued element is�
M qN � Vd�1 � .�.cC 1/; 3cC 2/�B.I /;

.�.cC 1/;�c�� Œc; cC 1�� Œ3cC 1; 3cC 2/; I
�
:

The third face map d11 sends it to�
M qN � Vd�1� .�.cC 1/; 3cC 2/�B.I /; .�.cC 1/;�c�� Œ3cC 1; 3cC 2/; I

�
;

which by ur W �.PBord1�.n�1/;R
r

n /! PBord�.n�1/n is sent to

.M qN �Rr �B.I /; I /:

8.3.2 The homotopy category and nCob Our higher categories of bordisms give
back the ordinary categories of n–bordisms, as we see in the main proposition in this
section. First, let us briefly recall the definition of the symmetric monoidal category of
bordisms. A good reference for the details and subtleties is eg [32].

Definition 8.18 The symmetric monoidal category of n–dimensional bordisms nCob
is defined as follows:

� Objects are closed .n�1/–dimensional smooth manifolds.

� A morphism from M to N is a diffeomorphism class of n–dimensional cobor-
disms from M to N, where an n–dimensional bordism from M to N is a
smooth manifold † with boundary, together with a specified diffeomorphism
@†ŠM qN.

� Composition of morphisms †1W M0!M1 and †2W M1!M2 is given by the
diffeomorphism class of the gluing †1qM1 †2 .

� The identity morphism on M is the diffeomorphism class of the cylinder
M � Œ0; 1� viewed as a morphism from M to M.

� The symmetric monoidal structure is given by taking disjoint unions of objects
and morphisms.
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Remark 8.19 An n–dimensional bordism † from M to N is exactly an n–dimen-
sional 1–bordism † as in Definition 8.2 with @in†DM and @out†DN.

Proposition 8.20 There is an equivalence of symmetric monoidal categories between
the homotopy category of the .1; 1/–category Bord.1;1/n and the category of n–
bordisms

h1.Bord.1;1/n /' nCob :

Proof We first show that there is an equivalence of categories h1.Bord.1;1/n /' nCob
and then show that it respects the symmetric monoidal structures.

Rezk’s completion functor is a Dwyer–Kan equivalence of Segal spaces, and thus by
definition induces an equivalence of the homotopy categories. So it is enough to show
that

h1.PBord�.n�1/n /' nCob :

We define a functor
F W h1.PBord�.n�1/n /! nCob

and show that it is essentially surjective and fully faithful.

Definition of the functor By definition, an object in h1.PBord�.n�1/n / is an element
.M/ D .M � V � .a; b/; I D .a; b// 2 .PBord�.n�1/n /0 . Since � W M ! .a; b/ is
submersive and proper, in particular 1

2
.aCb/ is a regular value of � and ��1

�
1
2
.aCb/

�
is a closed .n�1/–dimensional manifold. We define

F..M//D ��1
�
1
2
.aC b/

�
:

A morphism in h1.PBord�.n�1/n / is an element in �0..PBord�.n�1/n /1/, represented
by

.N /D
�
N � V � .a0; b1/; I0 D .a0; b1�� I1 D Œa1; b1/

�
2 .PBord�.n�1/n /1:

We let F send .N / to the isomorphism class of

N D ��1
��
1
3
.2a0C b0/;

1
3
.a1C 2b1/

��
:

This is an n–dimensional manifold with boundary

��1
�
1
3
.2a0C b0/

�
q��1

�
1
3
.a1C 2b1/

�
:

Since � only has regular values in I0 and I1 , the Morse lemma gives diffeomorphisms

��1
�
1
3
.2a0Cb0/

�
Š��1

�
1
2
.a0Cb0/

�
and ��1

�
1
3
.a1C2b1/

�
Š��1

�
1
2
.a1Cb1/

�
:
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Thus, F..N // is an n–dimensional bordism from the image of the source F.d0.N //
to the image of the target F.d1.N //.

We need to check that this assignment is well defined, ie independent of the choice of the
representative of the isomorphism class. Any two representatives .N0/ and .N1/ are
connected by a path in .PBord�.n�1/n /1 . From this path we can obtain another one which
has “shorter” intervals, namely just by shrinking them to

�
a0.s/;

1
3
.2a0.s/Cb0.s//

�
and�

1
3
.a1.s/C 2b1.s//; b1.s/

�
. Now Theorem 8.15 gives a diffeomorphism  0;1W N0!

N1 which restricts to a diffeomorphism x 0;1W N 0!N 1 .

The Morse lemma implies that any image of the degeneracy map in .PBord�.n�1/n /1

is sent to an identity morphism in nCob and that F behaves well with composition.

The functor is an equivalence of categories Whitney’s embedding theorem shows
that F is essentially surjective. Moreover, it is injective on morphisms: Let �0W N0 ,!
V �B.I / and �1W N1 ,!W �B.zI / be embeddings which are representatives of two
1–morphisms .N0�V �B.I /; I / and .N1�W �B.zI /; zI / which have diffeomorphic
images. Without loss of generality we can assume that V DW and I DzI. Then there is
a diffeomorphism  W N 0!N 1 , which can be extended to the rest of the collars, ie we
get a diffeomorphism  W N0!N1 . Since Emb.N0;R1�B.I // is contractible, there
is a path from �0 to �1 ı , which induces a 1–simplex .N � V �B.I /� Œ0; 1�; B.I //
in .PBord�.n�1/n /1 such that the fiber at s D 0 is .N0 � V �B.I /; I / and the fiber
at 1 is .im.�1 ı /.N0/DN1 � V �B.I /; I /.

It remains to show that F is full. In the case n D 1; 2 this is easy to show, as we
have a classification theorem for 1– and 2–dimensional manifolds with boundary.
In the 1–dimensional case it is enough to show that an open line, the circle and the
half-circle — once as a bordism from two points to the empty set and once vice versa —
lie in the image of the map, which is straightforward. In the 2–dimensional case, the
pair-of-pants decomposition tells us how to embed the manifold.

For general n we need to find a suitable embedding of our bordism. Theorem 8.9
provides one for much more general k–bordisms, but as there is a much simpler
argument for k D 1, we provide it here.

We first embed the manifold with boundary into RC �R2n using Laures’ embedding,
Theorem 8.6, for manifolds with boundary. Then the boundary of the half-space is
@.RC �R2n/DR2n . We want to transform this embedding into an embedding into
.0; 1/�R2n so that the incoming boundary is sent into f�g �R2n and the outgoing
boundary is sent into f1� �g �R2n .
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We first show that the boundary components can be separated by a hyperplane in R2n .
The boundary components are compact, so they can be embedded into (large enough)
balls B2n . By perhaps first applying a suitable “stretching” transformation, one can
assume that these balls do not intersect. Now, since 2n > 1 we have that the config-
uration space of these balls �0.Conf.B2n;R2n//Š � is contractible. Hence, there is
a transformation to a configuration in which the boundary components are separated
by a hyperplane, without loss of generality given by the equation fx1 D 0g �R2n .

Consider the restriction of the (holomorphic) logarithm function with branch cut �iRC

to .RC�R/nf.0; 0/gŠHn0�C . It is a homeomorphism to f.x; y/2R2 W0�y��g.
We can apply log�idR2n�1 to .RC�Rx1/�R2n�1 and, composing this with a suitable
rescaling, obtain an embedding into .�; 1� �/�R2n . Now choose a collaring of the
bordism to extend the embedding to .0; 1/�R2n .

The functor is a symmetric monoidal equivalence In the case of the structure
coming from a � –object, one can, similarly to the previous paragraph, define an
equivalence of categories

F Œm�W h1Bord�.n�1/n Œm�! nCobm :

Then one can easily check that the following diagram commutes:

h1Bord�.n�1/n Œ1�� h1Bord�.n�1/n Œ1� h1Bord�.n�1/n Œ2� h1Bord�.n�1/n Œ1�

nCob�nCob nCob�nCob nCob

F�F F Œ2�

'

F

q

Thus, we have a functor of � –objects in categories. Finally, there is an equivalence of
categories between � –objects in categories and symmetric monoidal categories, which
is a direct consequence of Mac Lane’s coherence theorem for symmetric monoidal
categories [42].

For the case of the structure coming from a tower, we explicitly saw that the symmetric
monoidal structure on h1.Bord.1;1/n / sends two objects or 1–morphisms determined by

.M/D .M � Vd �B.I /; I /; .N /D .N � Vd �B.I /; I /

to

.M qN/D .M qN ,! V �B.I /; I /;
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where the images of M and N lie in disjoint “heights” in the v1–direction in Vd .
Thus, under the functor F the element .M qN/ is sent to F..M//qF..N //.

Finally, in both cases, any element represented by .∅; I / is sent to ∅.

9 Bordisms with additional structure: orientations and
framings

In the study of fully extended topological field theories, one is particularly interested in
manifolds with extra structure, especially that of a framing. In this section we explain
how to define the .1; n/–category of structured n–bordisms, in particular for the
structure of an orientation or a framing.

9.1 Structured manifolds

We first recall the definition of structured manifolds and the topology on their morphism
spaces making them into a topological category. In the next subsection we will see
that the smooth singular simplices on these topological spaces essentially will give rise
to the spatial structure of the levels of the n–fold Segal space of structured bordisms
similarly to the construction in Section 5.2.

Throughout this subsection, let M be an n–dimensional smooth manifold.

Definition 9.1 Let X be a topological space and E!X a topological n–dimensional
vector bundle which corresponds to a (homotopy class of) map(s) eW X ! BGL.Rn/
from X to the classifying space of the topological group GL.Rn/. More generally,
we could also consider a map eW X ! BHomeo.Rn/ to the classifying space of
the topological group of homeomorphisms of Rn , but for our purposes vector bun-
dles are enough. An .X;E/–structure or, equivalently, an .X; e/–structure on an
n–dimensional manifold M consists of the following data:

(1) a map f W M !X, and

(2) an isomorphism of vector bundles

trivW TM Š f �.E/:

Denote the set of .X;E/–structured n–dimensional manifolds by Man.X;E/n .

An interesting class of such structures arises from topological groups with a morphism
to O.n/.
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Definition 9.2 Let G be a topological group together with a continuous homomor-
phism eW G!O.n/, which induces eW BG!BGL.Rn/. As usual, let BGDEG=G
be the classifying space of G, where EG is the total space of its universal bundle,
which is a weakly contractible space on which G acts freely. Then consider the vector
bundle E D .Rn�EG/=G on BG. A .BG;E/–structure or, equivalently, a .BG; e/–
structure on an n–dimensional manifold M is called a G–structure on M . The set of
G–structured n–dimensional manifolds is denoted by ManGn .

For us, the most important examples will be the following three examples.

Example 9.3 If G is the trivial group, then X D BG D � and E is trivial. Then a
G–structure on M is a trivialization of TM, ie a framing.

Example 9.4 Let G D O.n/ and e D idO.n/ . Then, since the inclusion O.n/!
Diff .Rn/ is a deformation retract, an O.n/–structured manifold is just a smooth
manifold.

Example 9.5 Let G D SO.n/ and eW SO.n/ ! O.n/ be the inclusion. Then an
SO.n/–structured manifold is an oriented manifold.

Definition 9.6 Let M and N be .X;E/–structured manifolds. Then let the space of
morphisms from M to N be

Map.X;E/.M;N /D Emb.M;N /�hMap=BHomeo.Rn/.M;N/
Map=X .M;N /:

Taking (singular or differentiable) simplices leads to a space, ie a simplicial set of mor-
phisms from M to N. Thus, we get a topological (or simplicial) category Man .X;E/n of
.X;E/–structured manifolds. Disjoint union gives Man .X;E/n a symmetric monoidal
structure.

Remark 9.7 For G DO.n/ we recover Emb.M;N /, and for G D SO.n/ the space
of orientations on a manifold is discrete, so an element in MapSO.n/.M;N / is an
orientation-preserving map.

If G is the trivial group, we saw above that a G–structure is a framing. In this case,
the above homotopy fiber product reduces to

Map.X;E/.M;N /D Emb.M;N /�hMapGL.d/.Fr.TM/;Fr.TN// Map.M;N /:

Thus, a framed embedding is a pair .f; h/, where f W M !N lies in Emb.M;N / and
h is a homotopy between the trivialization of TM induced by the framing of M and
that induced by the pullback of the framing on N.
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9.2 The .1; n/–category of structured bordisms

Fix a type of structure given by the pair .X;E/. In this subsection we define the n–fold
(complete) Segal space of .X;E/–structured bordisms Bord.X;E/n .

Compared to Definition 5.1, we add an .X;E/–structure to the data of an element in a
level set.

Definition 9.8 Let V be a finite-dimensional vector space. For every n–tuple k1 ,
: : : , kn � 0, let .PBord.X;E/;Vn /k1;:::;kn be the collection of tuples

.M; f; triv; .I i0 � � � � � I
i
ki
/iD1;:::;n/;

where

(1) .M; .I i0 � � � � � I
i
ki
/niD1/ is an element in the set .PBordVn /k1;:::;kn , and

(2) .f; triv/ is an .X;E/–structure on the (abstract) manifold M.

Remark 9.9 There is a forgetful map

U W .PBord.X;E/;Vn /k1;:::;kn ! .PBordVn /k1;:::;kn

forgetting the .X;E/–structure.

Definition 9.10 An l –simplex of .PBord.X;E/;Vn /k1;:::;kn consists of tuples�
M;f; triv; I .s/D .I i0.s/� � � � � I

i
ki
.s//s2j�l je

�
such that:

(1) I D .I i0 � � � � � I
i
ki
/1�i�n! j�

l je is an l –simplex in Intn
k1;:::;kn

.

(2) M is a closed and bounded .nCl/–dimensional submanifold of V �B.I / such
that22

(a) the composition � W M ,! V � B.I /� B.I / of the inclusion with the
projection is proper,

(b) its composition with the projection onto j�l je is a submersion �l W M !
j�l je ,

(c) .f; triv/W ker
�
D�l W TM ! T j�l je

�
�! f �E is a fiberwise linear isomor-

phism.

22Recall from Section 4.4 that B.I / denotes the total space of B.I /! j�l je and is the subspaceS
s2j�l je

B.I .s//� fsg of Rn � j�l je .
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(3) For every S � f1; : : : ; ng, let pS W M
�
�! B.I / � Rn � j�l je

�S
�! RS � j�l je

be the composition of � with the projection �S onto the S –coordinates. Then
for every 1 � i � n and 0 � ji � ki , at every x 2 p�1

fig
.I iji .s/� fsg/, the map

pfi;:::;ng is submersive.

Similarly as for PBordn the levels can be given a spatial structure with the above
l –simplices and then the collection of levels can be made into a complete n–fold Segal
space Bord.X;E/n .

Moreover, Bord.X;E/n has a symmetric monoidal structure given by .X;E/–structured
versions of the � –object and of the tower giving Bordn a symmetric monoidal structure.

9.3 Example: objects in Bordfr
2

are 2–dualizable

In dimension one, a framing is the same as an orientation. Thus the first interesting
case is the two-dimensional one. In this case, the existence of a framing is a rather
strong condition. However, we will see that any object in Bordfr

2 is 2–dualizable.
Being 2–dualizable means that it is dualizable with evaluation and coevaluation maps
themselves have adjoints, see [40].

Consider an object in Bordfr
2 , which, since in this case Bordfr

2DPBordfr
2 by Remark 5.25,

is an element of the form�
M � V � .a1; b1/� .a2; b2/; F; .a1; b1/; .a2; b2/

�
;

where F is a framing of M. By the submersivity condition (3) in the definition
(Definition 5.1) of PBord2 , M is a disjoint union of manifolds which are diffeomorphic
to .0; 1/2 . Thus, it suffices to consider an element of the form

..0; 1/2 � .0; 1/2; F; .0; 1/; .0; 1//;

where F is a framing of .0; 1/2 . Depict this element by

1

2

One should think of this as a point together with a 2–framing,

1

2
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We claim that its dual is the same underlying unstructured manifold together with the
opposite framing

1

2

1

2

An evaluation 1–morphism ev 1
2 between them is given by the element in .Bordfr

2/1;0

which is a strip, ie .0; 1/2 , with the framing given by slowly rotating the framing
by 180ı , and is embedded into R� .0; 1/2 by folding it over once as depicted on the
right:

1

2 1
2 1

2 1

2

1

2

1

2

1

2

A coevaluation coev 1
2 is given similarly by rotating the framing along the strip in

the other direction, by �180ı .

The composition

1

2

1

2

1

2

1

2

1

2

is connected by a path to the flat strip with the following framing, given by pulling at
the ends of the strip to flatten it:

1

2 1
2 1

2 1

2

1

2

1

2

1
2 1

2

1

2

This strip is homotopic to the same strip with the trivial framing. Thus the composition
is connected by a path to the identity and thus is the identity in the homotopy category.
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Similarly,

.ev 1
2 ˝ id 1

2 / ı .id 1
2 ˝ coev 1

2 /' id 1
2 :

In the above construction, we used ev 1
2 and coev 1

2 ; which arose from strips with
framing rotating by ˙180ı . A similar argument holds if you use for the evaluation any
strip with the framing rotating by ˛� for any odd integer ˛ and for the coevaluation
rotation by ˇ� for any odd ˇ . Denoting these by ev.˛/ and coev.ˇ/, they will be
adjoints to each other if ˛Cˇ D 2.

The counit of the adjunction is given by the cap with the framing coming from the
trivial framing on the (flat) disk:

evcoev
1

2

1

21

2

1

2

1

2

1

2

1

2 1

2

1

2
1

2

1

2

1

2

Similarly, the unit of the adjunction is given by a saddle with the framing coming from
the one of the torus which turns by 2� along each of the fundamental loops:

Then the following 2–bordism is also framed and exhibits the adjunction:

=
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Remark 9.11 One can use a similar, but much longer, argument to show that objects
in Bordfr

n are in fact n–dualizable.

10 Fully extended topological field theories

Now that we have a good definition of a symmetric monoidal .1; n/–category of
bordisms modeled as a symmetric monoidal complete n–fold Segal space, we can
define fully extended topological field theories à la Lurie.

10.1 Definition

Definition 10.1 A fully extended unoriented n–dimensional topological field theory
is a symmetric monoidal functor of .1; n/–categories with source Bordn .

Remark 10.2 Consider a fully extended unoriented n–dimensional topological field
theory

ZW Bordn! C;

where C is a symmetric monoidal complete n–fold Segal space. We have seen in
Corollary 7.7 and Section 8 that there is a map

nCob' h1.Bord.1;1/n /! h1.�
n�1.Bordn//:

Precomposition of �n�1∅ .Z/ with this map induces a symmetric monoidal functor

nCob! h1.�
n�1.Bordn//! h1.�

n�1
Z.�/.C//;

ie an ordinary n–dimensional topological field theory.

Additional structure Recall from the previous section that there are variants of Bordn
which require that the underlying manifolds of their elements be endowed with some
additional structure, eg an orientation or a framing. These variants lead to the following
definitions.

Definition 10.3 Fix a type of structure given by the pair .X;E/. A fully extended
n–dimensional .X;E/–topological field theory is a symmetric monoidal functor of
.1; n/–categories with source Bord.X;E/n .

In particular, the most interesting cases are the following:
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Definition 10.4 A fully extended n–dimensional framed topological field theory is a
symmetric monoidal functor of .1; n/–categories with source Bordfr

n .

Definition 10.5 A fully extended n–dimensional oriented topological field theory is a
symmetric monoidal functor of .1; n/–categories with source Bordor

n .

10.2 n–TFT yields k–TFT

Every fully extended n–dimensional (unoriented, oriented, framed) TFT yields a
fully extended k–dimensional (unoriented, oriented, framed) TFT for any k � n by
truncation from Section 2.4.1.

Note that for k < n, we have a map of k–fold Segal spaces

PBordk! �k.PBordn/D .PBordn/�k ;0n�k

induced by sending
�
M ,! V �B.I /; I D .I i0 � � � � � I

i
jk
/kiD1

�
2 .PBordk/j1;:::;jk to�

M � .0; 1/n�k ,! V � .0; 1/n�k �B.I /; I ; .0; 1/n�k
�
:

The completion map PBordn ! Bordn induces a map on the truncations. Precom-
position with the above map yields a map of (in general noncomplete) n–fold Segal
spaces

PBordk! �k.PBordn/! �k.Bordn/:

Recall from Section 2.4.1 that since �k.Bordn/ is complete, by the universal property
of the completion we obtain a map Bordk! �k.Bordn/, which is compatible with the
symmetric monoidal structure (for both approaches).

Remark 10.6 This map is usually not an equivalence, since completion does not
commute with truncation. Moreover, if we equip the bordisms with an orientation
or a framing, the image of PBordk in �k.PBordn/ consists of those n–oriented or
n–framed bordisms whose orientation or framing is a stabilization of a k–orientation
or k–framing.

We conclude that any fully extended n–dimensional (unoriented, oriented, framed) TFT
with values in a complete n–fold Segal space C , Bordn! C leads to a k–dimensional
(unoriented, n–oriented, n–framed) TFT given by the composition

Bordk! �k.Bordn/! �k.C/

with values in the complete k–fold Segal space �k.C/.
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