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Ropelength, crossing number and
finite-type invariants of links

RAFAL KOMENDARCZYK

ANDREAS MICHAELIDES

Ropelength and embedding thickness are related measures of geometric complexity
of classical knots and links in Euclidean space. In their recent work, Freedman
and Krushkal posed a question regarding lower bounds for embedding thickness of
n–component links in terms of the Milnor linking numbers. The main goal of the
current paper is to provide such estimates, and thus generalize the known linking
number bound. In the process, we collect several facts about finite-type invariants and
ropelength/crossing number of knots. We give examples of families of knots where
such estimates behave better than the well-known knot–genus estimate.

57M25; 53A04

1 Introduction

Given an n–component link (we assume class C 1 embeddings) in 3–space

(1-1) LW S1
t � � � tS1

!R3; LD .L1;L2; : : : ;Ln/; Li DLjthe ith circle;

its ropelength rop.L/ is the ratio rop.L/D `.L/=r.L/ of length `.L/, which is a sum
of lengths of individual components of L, to reach or thickness r.L/, ie the largest
radius of the tube embedded as a normal neighborhood of L. The ropelength within
the isotopy class ŒL� of L is defined as

(1-2) Rop.L/D inf
L02ŒL�

rop.L0/; rop.L0/D
`.L0/

r.L0/
;

(in Cantarella, Kusner and Sullivan [10] it is shown that the infimum is achieved
within ŒL� and the minimizer is of class C 1;1 ). A related measure of complexity, called
embedding thickness, was introduced recently in Freedman and Krushkal [20], in the
general context of embeddings’ complexity. For links, the embedding thickness �.L/
of L is given by the value of its reach r.L/ assuming that L is a subset of the unit ball
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3336 Rafal Komendarczyk and Andreas Michaelides

B1 in R3 (note that any embedding can be scaled and translated to fit in B1 ). Again,
the embedding thickness of the isotopy class ŒL� is given by

(1-3) T.L/D sup
L02ŒL�

�.L0/:

For a link L�B1 , the volume of the embedded tube of radius �.L/ is �`.L/�.L/2 —
see Gray [23] — and the tube is contained in the ball of radius r D 2, yielding

(1-4) rop.L/D
�`.L/�.L/2

��.L/3
�

4
3
�23

��.L/3
D) �.L/�

�
11

rop.L/

�1
3
:

In turn a lower bound for rop.L/ gives an upper bound for �.L/ and vice versa.
For other measures of complexity of embeddings such as distortion or Gromov–Guth
thickness, see eg Gromov [24] or Gromov and Guth [25].

Bounds for the ropelength of knots, and in particular the lower bounds, have been
studied by many researchers; we only list a small fraction of these works here: Buck
and Simon [5; 6], Cantarella, Kusner and Sullivan [10], Diao, Ernst, Janse van Rensburg
and Por [16; 14; 13; 17], Litherland, Simon, Durumeric and Rawdon [32; 40] and Ricca,
Maggioni and Moffatt [41; 33; 42]. Many of the results are applicable directly to links,
but the case of links is treated in more detail by Cantarella, Kusner and Sullivan [10]
and in the earlier work of Diao, Ernst, and Janse Van Rensburg [15] concerning the
estimates in terms of the pairwise linking number. In [10], the authors introduce a cone
surface technique and show the following estimate, for a link L (defined as in (1-1))
and a given component Li [10, Theorem 11]:

(1-5) rop.Li/� 2� C 2�
p
Lk.Li ;L/;

where Lk.Li ;L/ is the maximal total linking number between Li and the other
components of L. A stronger estimate was obtained in [10] by combining the Freedman–
He [19] asymptotic crossing number bound for energy of divergence-free fields and
the cone surface technique as follows:

(1-6) rop.Li/� 2� C 2�
p
Ac.Li ;L/; rop.Li/� 2� C 2�

p
2g.Li ;L/� 1;

where Ac.Li ;L/ is the asymptotic crossing number (see [19]) and the second inequality
is a consequence of the estimate Ac.Li ;L/� 2g.Li ;L/�1, where g.Li ;L/ is a min-
imal genus among surfaces embedded in R3nfL1[� � �[

yLi[� � �[Lng [19, page 220]
(in fact, the estimate (1-6) subsumes (1-5) since Ac.Li ;L/� Lk.Li ;L/). A relation
between Ac.Li ;L/ and the higher linking numbers of Milnor [35; 36] is unknown
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and appears difficult. The following question, concerning the embedding thickness, is
stated in [20, page 1424]:

Question A Let L be an n–component link which is Brunnian (ie almost trivial in
the sense of Milnor [35]). Let M be the maximum value among Milnor’s x�–invariants
with distinct indices , ie among jx�IIj .L/j. Is there a bound

(1-7) ø.L/� cnM�1=n

for some constant cn > 0, independent of the link L? Is there a bound on the crossing
number Cr.L/ in terms of M ?

Recall that the Milnor x�–invariants fx�IIj .L/g of L are indexed by an ordered tuple
.II j /D .i1; i2; : : : ; ik I j / from the index set f1; : : : ; ng, where the last index j has
a special role (see below). If all the indexes in .II j / are distinct, fx�IIj g are link
homotopy invariants of L and are often referred to simply as Milnor linking numbers
or higher linking numbers [35; 36]. The definition fx�IIj g begins with coefficients �IIj

of the Magnus expansion of the j th longitude of L in �1.R
3�L/. Then

(1-8) x�IIj .L/� �IIj .L/ mod ��.II j /; ��.II j /D gcd.��.II j //;

where ��.II j / is a certain subset of lower-order Milnor invariants; see [36]. Regarding
x�IIj .L/ as an element of Zd D f0; 1; : : : ; d � 1g, d D ��.II j / (or Z, whenever
d D 0), let us set

(1-9) Œx�IIj .L/� WD

�
min.x�IIj ; d � x�IIj / for d > 0;

jx�IIj j for d D 0:

Our main result addresses Question A for general n–component links (deposing of the
Brunnian assumption) as follows:

Theorem A Let L be an n–component link n � 2 and x�.L/ one of its top Milnor
linking numbers; then

(1-10) rop.L/4=3 � 3
p

n.Œx�.L/�/1=.n�1/; Cr.L/� 1
3
.n� 1/.Œx�.L/�/1=.n�1/:

In the context of Question A, the estimate of Theorem A transforms, using (1-4), as

�.L/

�
11

Œ4�n

�1
3

M�1=4.n�1/:

Naturally, Question A can be asked for knots and links and lower bounds in terms
of finite-type invariants in general. Such questions have been raised for instance by
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Cantarella [8; 9], where the Bott–Taubes integrals [4] — see also Volić [43] — have
been suggested as a tool for obtaining estimates.

Question B Can we find estimates for ropelength of knots/links, in terms of their
finite-type invariants?

In the remaining part of this introduction let us sketch the basic idea behind our approach
to Question B, which relies on the relation between the finite-type invariants and the
crossing number.

Note that since rop.K/ is scale invariant, it suffices to consider unit thickness knots,
ie K together with the unit radius tube neighborhood (ie r.K/D 1). In this setting,
rop.K/ just equals the length `.K/ of K . From now on we assume unit thickness,
unless stated otherwise. In [5], Buck and Simon gave the following estimates for `.K/,
in terms of the crossing number Cr.K/ of K :

(1-11) `.K/�
�

4�

11
Cr.K/

�3
4
; `.K/� 4

p
� Cr.K/:

Clearly, the first estimate is better for knots with large crossing number, while the
second one can be sharper for low crossing number knots (which manifests itself for
instance in the case of the trefoil). Recall that Cr.K/ is a minimal crossing number
over all possible knot diagrams of K within the isotopy class of K . The estimates
in (1-11) are a direct consequence of the ropelength bound for the average crossing
number1 acr.K/ of K (proven in [5, Corollary 2.1]), ie

(1-12) `.K/4=3 �
4�

11
acr.K/; `.K/2 � 16� acr.K/:

In Section 3, we obtain an analog of (1-11) for n–component links (n� 2) in terms of
the pairwise crossing number2 PCr.L/,

(1-13) `.L/�
1

p
n� 1

�
3
2
PCr.L/

�3=4
; `.L/�

n
p

16�
p

n2� 1
.PCr.L//1=2:

For low crossing number knots, the Buck and Simon bound (1-11) was further improved
by Diao3 [13]:

(1-14) `.K/� 1
2
.d0C

p
d2

0 C 64� Cr.K//; d0 D 10� 6.� C
p

2/� 17:334:

1That is, an average of the crossing numbers of diagrams of K over all projections of K ; see (3-2).
2See (3-14) and Corollary I; generally PCr.L/� Cr.L/ , as the individual components can be knotted.
3More precisely, 16� Cr.K/� `.K/.`.K/� 17:334/ [13].
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On the other hand, there are well-known estimates for Cr.K/ in terms of finite-type
invariants of knots. For instance,

(1-15) 1
4
Cr.K/.Cr.K/� 1/C 1

24
� jc2.K/j;

1
8
.Cr.K//2 � jc2.K/j:

Lin and Wang [31] considered the second coefficient of the Conway polynomial c2.K/

(ie the first nontrivial type 2 invariant of knots) and proved the first bound in (1-15).
The second estimate of (1-15) can be found in Polyak and Viro’s work [39]. Further,
Willerton, in his thesis [44], obtained estimates for the “second”, after c2.K/, finite-type
invariant V3.K/ of type 3, as

(1-16) 1
4
Cr.K/.Cr.K/� 1/.Cr.K/� 2/� jV3.K/j:

In the general setting, Bar-Natan [3] shows that if V .K/ is a type n invariant then
jV .K/j DO.Cr.K/n/. All these results rely on the arrow diagrammatic formulas for
Vassiliev invariants developed in the work of Goussarov, Polyak and Viro [22].

Clearly, combining (1-15) and (1-16) with (1-11) or (1-14) immediately yields lower
bounds for ropelength in terms of a given Vassiliev invariant. One may take these
considerations one step further and extend the above estimates to the case of the 2nth

coefficient of the Conway polynomial c2n.K/, with the help of arrow diagram formulas
for c2n.K/, obtained recently in Chmutov, Duzhin and Mostovoy [11] and Chmutov,
Khoury and Rossi [12]. In Section 2, we follow Polyak and Viro’s argument of [39] to
obtain:

Theorem B Given a knot K , we have the crossing number estimate

(1-17) Cr.K/� ..2n/!jc2n.K/j/
1=2n
�

2
3
njc2n.K/j

1=2n:

Combining (1-17) with Diao’s lower bound (1-14) one obtains:

Corollary C For a unit thickness knot K ,

(1-18) `.K/� 1
2

�
d0C

�
d2

0 C
128

3
n� jc2n.K/j

1=2n
�1=2�

:

Recall that a somewhat different approach to ropelength estimates is presented in [10],
where the authors introduce a cone surface technique, which, combined with the
asymptotic crossing number, Ac.K/, bound of Freedman and He [19] gives

(1-19) `.K/� 2� C 2�
p
Ac.K/; `.K/� 2� C 2�

p
2g.K/� 1;

Algebraic & Geometric Topology, Volume 19 (2019)



3340 Rafal Komendarczyk and Andreas Michaelides

a1 a2 an�1 an

Figure 1: P .a1; : : : ; an/ pretzel knots.

where the second bound follows from the knot genus estimate Ac.K/ � 2g.K/� 1

of [19].

When comparing estimates (1-19) and (1-18), in favor of (1-18), we may consider a
family of pretzel knots P .a1; : : : ; an/, where ai is the number of signed crossings in
the i th tangle of the diagram; see Figure 1. Additionally, for a diagram P .a1; : : : ; an/,
to represent a knot one needs to assume either both n and all ai are odd or one of the
ai is even; see Kawauchi [26].

Genera of selected subfamilies of pretzel knots are known, for instance Manchon [21,
Theorem 13] implies

g.P .a; b; c//D 1; c2.P .a; b; c//D
1
4
.abC acC bcC 1/;

where a, b and c are odd integers with the same sign (for the value of c2.P .a; b; c//;
see the table in [21, page 390]). Concluding, the lower bound in (1-18) can be made
arbitrarily large by letting a; b; c!C1, while the lower bound in (1-19) stays constant
for any values of a, b and c , under consideration. Yet another4 example of a family
of pretzel knots with constant genus one and arbitrarily large c2 –coefficient is

D.m; k/D P .m; "; : : : ; "„ ƒ‚ …
jkj times

/;

with m> 0; k , where "D k=jkj is the sign of k (eg D.3;�2/D P .3;�1;�1/). For
any such D.m; k/, we have c2.D.m; k//D

1
4
mk .

Remark D A natural question can be raised about the reverse situation: can we
find a family of knots with constant c2n –coefficient (or any finite-type invariant; see

4Out of a few such examples given in [21].
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Remark L), but arbitrarily large genus? For instance, there exist knots with c2 D 0 and
nonzero genus (such as 82 ); in these cases (1-19) still provides a nontrivial lower bound.

The paper is structured as follows: Section 2 is devoted to a review of arrow polynomials
for finite-type invariants and Kravchenko–Polyak tree invariants in particular; it also
contains the proof of Theorem B. Section 3 contains information on the average
overcrossing number for links and link ropelength estimates analogous to the ones
obtained by Buck and Simon [5] (see (1-12)). The proof of Theorem A is presented in
Section 4, together with final comments and remarks.
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where a weaker versions of the estimates (in the Borromean case) were obtained.

2 Arrow polynomials and finite-type invariants

Recall from [11] the Gauss diagram of a knot K is a way of representing signed
overcrossings in a knot diagram, by arrows based on a circle (Wilson loops [2]) with
signs encoding the sign of the crossings (see Figure 2, showing the 52 knot and its
Gauss diagram). More precisely, the Gauss diagram GK of a knot KW S1! R3 is
constructed by marking pairs of points in the domain S1 , endpoints of a corresponding
arrow in GK , which are mapped to crossings in a generic planar projection of K . The

a
b

c

d

e

 

a

b
c

d

e

Figure 2: 52 knot and its Gauss diagram (all crossings are positive).
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arrow always points from the under- to the over–crossing and the orientation of the
circle S1 in GK agrees with the orientation of the knot.

Given a Gauss diagram G, the arrow polynomials of [22; 38] are defined simply as a
signed count of selected subdiagrams in G. For instance, the second coefficient of the
Conway polynomial c2.K/ is given by the signed count of in G, denoted as

(2-1) c2.K/D
˝

;G
˛
D

X
�W !G

sign.�/; sign.�/D
Y
˛2

sign.�.˛//;

where the sum is over all basepoint-preserving graph embeddings f�g of into G,
and the sign is a product of signs of corresponding arrows in �

� �
�G. For example,

in the Gauss diagram of 52 knot in Figure 2, there are two possible embeddings of
into the diagram. One matches the pair of arrows fa; dg and another pair fc; dg; since
all crossings are positive, we obtain c2.52/D 2.

  

Figure 3: Turning a one-component chord diagram with a basepoint into an
arrow diagram.

For other even coefficients of the Conway polynomial, the work in [12] provides
the following recipe for their arrow polynomials. Given n > 0, consider any chord
diagram D, on a single circle component with 2n chords, such as , and .
A chord diagram D is said to be a k –component diagram if, after parallel doubling
of each chord according to  , the resulting curve will have k components.
For instance,  is a 1–component diagram and  is a 3–component
diagram. For the coefficients c2n , only one component diagram will be of interest
and we turn a one-component chord diagram with a basepoint into an arrow diagram
according to the following rule [12]:

Starting from the basepoint we move along the diagram with doubled
chords. During this journey we pass both copies of each chord in opposite
directions. Choose an arrow on each chord which corresponds to the
direction of the first passage of the copies of the chord (see Figure 3 for
the illustration).
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We call the arrow diagram obtained according to this method the ascending arrow
diagram and denote by C2n the sum of all based one-component ascending arrow
diagrams with 2n arrows. For example, C2 D and C4 is (see [12, page 777])

C4 D

In [12], the authors show for n� 1 that the c2n.K/ coefficient of the Conway polyno-
mial of K equals

(2-2) c2n.K/D hC2n;GK i:

Theorem B Given a knot K , we have the crossing number estimate

(2-3) Cr.K/� ..2n/!jc2n.K/j/
1=2n
�

2
3
njc2n.K/j

1=2n:

Proof Given K and its Gauss diagram GK , let X D f1; 2; : : : ; cr.K/g index arrows
of GK (ie crossings of a diagram of K used to obtain GK ). For diagram term Ai

in the sum C2n D
P

i Ai , an embedding �W Ai 7! GK covers a certain 2n–element
subset of crossings in X, which we denote by X�.i/. Let E.i IGK / be the set of all
possible embeddings �W Ai 7!GK , and

E.GK /D
G

i

E.i IGK /:

Note that X�.i/¤ X�.j / for i ¤ j and X�.i/¤ X�.i/ for � ¤ � , thus for each i

we have an injective map

Fi W E.i IGK / 7! P2n.X /; Fi.�/DX�.i/;

where P2n.X /D f2n–element subsets of X g. Fi extends in an obvious way to the
whole disjoint union E.GK /, as F W E.GK / ! P2n.X /, F D

F
i Fi , and remains

injective. In turn, for every i we have

jhAi ;GK ij � #E.i IGK /

and therefore
jhC2n;GK ij � #E.GK / < #P2n.X /D

�
cr.K/

2n

�
:

If cr.K/ < 2n then the left-hand side vanishes. Since
�cr.K /

2n

�
� cr.K/2n=.2n/!, we

obtain
jc2n.K/j �

cr.K/2n

.2n/!
D) ..2n/!jc2n.K/j/

1=2n
� cr.K/;
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which gives the first part of (2-3). Using the upper lower bound for m! (Stirling’s
approximation [1])

m!�
p

2�mmC1=2e�m;

applying e�1 �
1
3

, .
p

2�/1=m � 1 and .mmC1=2/1=m �m.
p

m/1=m �m yields

(2-4) .m!/1=m
� .
p

2�.m/mC1=2e�m/1=m
�

1
3
m

for mD 2n, so one obtains the second part of (2-3).

e

1 2

xe

1 2

Z2I1 D

1 2

Figure 4: Elementary trees e and xe and the Z2I1 arrow polynomial.

Next, we turn to arrow polynomials for Milnor linking numbers. In [29], Kravchenko
and Polyak introduced tree invariants of string links and established their relation
to Milnor linking numbers via the skein relation of [37]. In the recent paper, the
authors5 [27] showed that the arrow polynomials of Kravchenko and Polyak, applied to
Gauss diagrams of closed based links, yield certain x�–invariants (as defined in (1-8)).
For the purpose of the proof of Theorem A, it suffices to give a recursive definition,
provided in [27], for the arrow polynomial of x�23���nI1.L/ denoted by ZnI1 . Changing
the convention, adopted for knots, we follow [29; 27] and use vertical segments
(strings) oriented downwards in place of circles (Wilson loops) as components. The

e

Z2I1

1 2

 

1 2 3

Figure 5: Obtaining a term in Z3I1 via stacking e on the second component
of Z2I1 , ie Z2I1 �2 e .

polynomial ZnI1 is obtained inductively from Zn�1I1 D
P

k ˙Ak by expanding
each term Ak of ZnI1 through stacking elementary tree diagrams e and xe , shown in

5Consult [28] for a related result.
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Figure 4; the sign of a resulting term is determined accordingly. The stacking operation
is denoted by �i , where i D 1; : : : ; n tells which component is used for stacking.
Figure 5 shows Z2I1 �2 e . The inductive procedure is defined as follows:

(i) Z2I1 is shown in Figure 4 (right).

(ii) For each term Ak in Zn�1I1 produce terms in ZnI1 by stacking6 e and xe on
each component, ie Ak �i e for i D 1; : : : ; n and Ak �i xe for i D 2; : : : ; n; see
Figure 5. Eliminate isomorphic (duplicate) diagrams.

(iii) The sign of each term in ZnI1 equals to .�1/q , where q is the number of arrows
pointing to the right.

As an example consider Z3I1 ; we begin with the initial tree Z2I1 , and expand by
stacking e and xe on the strings of Z2I1 ; this is shown in Figure 6, and we avoid
stacking xe on the first component (called the trunk [27]). Thus, Z3I1 is obtained as
ACB �C, where ADZ2I1 �2 e , B DZ2I1 �1 e and C DZ2I1 �2 xe .

1 2

 

1 2 3

C

1 2 3

�

1 2 3

Figure 6: Z3I1 DACB �C obtained from Z2I1 via (i)–(iii).

Given ZnI1 , the main result of [27] (see also [28] for a related result) yields the formula

(2-5) x�nI1.L/� hZnI1;GLi mod ��.nI 1/;

where x�nI1.L/ WD x�2���nI1.L/, GL is a Gauss diagram of an n–component link L

and the indeterminacy ��.nI 1/ is as defined in (1-8). Recall that hZnI1;GLi DP
k ˙hAk ;GLi, where ZnI1 D

P
k ˙Ak and hAk ;GLi D

P
�WAk!GL

sign.�/ is a
signed count of subdiagrams isomorphic to Ak in GL .

For nD 2, we obtain the usual linking number

(2-6) x�2I1.L/D hZ2I1;GLi D

D
;GL

E
:

For nD 3 and nD 4 the arrow polynomials can be obtained following the stacking
procedure

x�3I1.L/D hZ3I1;GLi mod gcdfx�2I1.L/; x�3I1.L/; x�3I2.L/g;

Z3I1 D � C ;

6Note that xe is not allowed to be stacked on the first component.
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and

x�4I1.L/D hZ4I1;GLi mod ��.4I 1/;

Z4I1 D � C � C C �

C � C � C � :

Given a formula for x�nI1.L/D x�23���nI1.L/, all remaining x�–invariants with distinct
indices can be obtained from the permutation identity (for � 2†.1; : : : ; n/)

(2-7) x��.2/�.3/����.n/I�.1/.L/D x�23���nI1.�.L//; �.L/D.L�.1/;L�.2/; : : : ;L�.n//:

By (2-5), (2-7) and (1-8) we have

(2-8) x��.2/�.3/����.n/I�.1/.L/D h�.ZnI1/;GLi mod ��.�.2/�.3/ � � � �.n/I �.1//;

where �.ZnI1/ is the arrow polynomial obtained from ZnI1 by permuting the strings
according to � .

Remark E One of the properties of x�–invariants is their cyclic symmetry [36, (21)],
ie given a cyclic permutation � , we have

x��.2/�.3/����.n/I�.1/.L/D x�23���nI1.L/:

3 Overcrossing number of links

We will denote by DL a regular diagram of a link L, and by DL.v/ the diagram
obtained by the projection of L onto the plane normal to a vector7 v 2 S2 . For a pair
of components Li and Lj in L, define the overcrossing number in the diagram and
the pairwise crossing number of components Li and Lj in DL , ie

ovi;j .DL/D fnumber of times Li overpasses Lj in DLg;

cri;j .DL/D fnumber of times Li overpasses and underpasses Lj in DLg

D ovi;j .DL/C ovj ;i.DL/D crj ;i.DL/:

(3-1)

In the following, we also use the average overcrossing number and average pairwise
crossing number of components Li and Lj in L, defined as an average over all DL.v/

7Unless otherwise stated we assume that v is generic and thus DL.v/ is a regular diagram.
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for v 2 S2 , ie

(3-2)

aovi;j .L/D
1

4�

Z
S2

ovi;j .v/ dv;

acri;j .L/D
1

4�

Z
S2

cri;j .v/ dv D 2 aovi;j .L/:

The following result is based on the work in [8; 9; 5]; the idea of using the rearrangement
inequality comes from [8; 9].

Lemma F Given a unit thickness link L and any 2–component sublink .Li ;Lj /,

(3-3) min.`i`
1=3
j ; j̀`

1=3
i /� 3 aovi;j .L/; `i j̀ � 16� aovi;j .L/

for `i D `.Li/ and j̀ D `.Lj / the lengths of Li and Lj , respectively.

Proof Consider the Gauss map of Li DLi.s/ and Lj DLj .t/,

Fi;j W S
1
�S1

7! Conf2.R
3/ 7! S2; Fi;j .s; t/D

Li.s/�Lj .t/

kLi.s/�Lj .t/k
:

If v 2 S2 is a regular value of Fi;j (which happens for the set of full measure on S2 )
then

ovi;j .v/D #fpoints in F�1
i;j .v/g;

ie ovi;j .v/ stands for number of times the i –component of L passes over the j –
component in the projection of L onto the plane in R3 normal to v . As a direct
consequence of Federer’s coarea formula [18] (see eg [34] for a proof),

(3-4)
Z

Li�Lj

jF�i;j!j D
1

4�

Z
S1�S1

jhLi.s/�Lj .t/;L
0
i.s/;L

0
j .t/ij

kLi.s/�Lj .t/k3
ds dt

D
1

4�

Z
S2

ovi;j .v/ dv;

where ! D 1
4�
.x dy ^ dz � y dx ^ dzC z dx ^ dy/ is the normalized area form on

the unit sphere in R3 and

(3-5) hv;w; zi WD det.v; w; z/ for v;w; z 2R3:

Assuming the arc-length parametrization by s 2 Œ0; `i � and t 2 Œ0; j̀ � of the components,
we have kL0i.s/k D kL

0
j .t/k D 1 and therefore

(3-6)
ˇ̌̌̌
hLi.s/�Lj .t/;L

0
i.s/;L

0
j .t/i

kLi.s/�Lj .t/k3

ˇ̌̌̌
�

1

kLi.s/�Lj .t/k2
:
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Combining equations (3-4) and (3-6) yields

(3-7)
Z

j̀

0

Z `i

0

1

kLi.s/�Lj .t/k2
ds dt D

Z
j̀

0

Ii.Lj .t// dt;

where

Ii.p/D

Z `i

0

1

kLi.s/�pk2
ds D

Z `i

0

1

r.s/2
ds; r.s/D kLi.s/�pk;

is often called the illumination of Li from the point p 2R3 ; see [5]. Following the
approach of [5; 8; 9], we estimate Ii.t/ D Ii.p/ for p D Lj .t/. Denote by Ba.p/

the ball at p D Lj .t/ of radius a, and s.z/ the length of a portion of Li within the
spherical shell Sh.z/ D Bz.p/ nB1.p/ for z � 1. Note that, because the distance
between Li and Lj is at least 2, the unit thickness tube about Li is contained entirely
in Sh.z/ for big enough z . Clearly, s.z/ is nondecreasing. Since the volume of a unit
thickness tube of length a is �a, comparing the volumes we obtain

(3-8) �s.z/� Vol.Sh.z//D 4
3
�.z3

� 13/ and s.z/� 4
3
z3 for z � 1:

Next, using the monotone rearrangement .1=r2/� of 1=r2 (Remark G),

(3-9)
�

1

r2

��
.s/�

�
4
3

�2=3
s�2=3;

and, by the monotone rearrangement inequality [30],

(3-10) Ii.p/D

Z `i

0

1

r2.s/
ds �

Z `i

0

�
1

r2

��
.s/ ds

�

Z `i

0

�
4
3

�2=3
s�2=3 ds D 3

�
4
3

�2=3
`

1=3
i :

Integrating (3-10) with respect to the t –parameter, we obtain

aov.L/�
1

4�

Z
j̀

0

Z `i

0

1

kLi.s/�Lj .t/k2
ds dt � 3

�
4
3

�2=3 1
4� j̀`

1
3

i <
1
3 j̀`

1=3
i :

Since the argument works for any choice of i and j , the estimates in (3-3) are proven.
The second estimate in (3-3) follows immediately from 1=kLi.s/�Lj .t/k

2 �
1
4

.

Remark G Recall that for a nonnegative real-valued function f (on Rn ), vanishing
at infinity, the rearrangement f � of f is given by

f �.x/D

Z 1
0

��
ff >ug.x/ du;
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where ��
ff >ug

.x/ D �B� .x/ is the characteristic function of the ball B� centered
at the origin, determined by the volume condition Vol.B�/ D Vol.fx j f .x/ > ug/;
see [30, page 80] for further properties of the rearrangements. In particular, the
rearrangement inequality states [30, page 82]

R
Rn f .x/ dx �

R
Rn f

�.x/ dx . For one-
variable functions, we may use the interval Œ0; �� in place of the ball B� ; then f � is a
decreasing function on Œ0;C1/. Specifically, for f .s/D 1=r2.s/D 1=kLi.s/�pk2 ,
we have �

1

r2

�
� .s/D u for length

�
fx j u<

1

r2.x/
� 1g

�
D s;

where length.fx ju<1=r2.x/�1g/ stands for the length of the portion of Li satisfying
the given condition. Further, by the definition of s.z/, from the previous paragraph
and (3-8), we obtain

s D length
��

x
ˇ̌̌ 1

r2.x/
> u

��
D length

��
x
ˇ̌̌
1� r.x/ <

1
p

u

��

D s

�
1
p

u

�
�

4

3

�
1
p

u

�3

;

and (3-9) as a result.

From the Gauss linking integral (3-4),

jLk.Li ;Lj /j � aovi;j .L/;

thus we immediately recover the result of [15] (but with a specific constant),

(3-11) 3jLk.Li ;Lj /j �min.`i`
1=3
j ; j̀`

1=3
i /; 16�jLk.Li ;Lj /j � `i j̀ :

Summing up over all possible pairs i and j and using the symmetry of the linking
number, we have

6
X
i<j

jLk.Li ;Lj /jD3
X
i¤j

jLk.Li ;Lj /j�
X
i¤j

`i`
1=3
j D

�X
i

`i

��X
j

`
1=3
j

�
�

X
i

`
4=3
i :

From Jensen’s inequality [30], we know that

1

n

�X
i

`
1=3
i

�
�

�
1

n

X
i

`i

�1
3

and 1

n

�X
i

`
4=3
i

�
�

�
1

n

X
i

`i

�4
3
;
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therefore

(3-12)
�X

i

`i

��X
j

`
1=3
j

�
�

X
i

`
4=3
i � n2=3 rop.L/ rop.L/1=3�n�1=3 rop.L/4=3

D
n�1

n1=3
rop.L/4=3:

Analogously, using the second estimate in (3-11) and Jensen’s inequality yields

32�
X
i<j

jLk.Li ;Lj /j D 16�
X
i¤j

jLk.Li ;Lj /j �
X
i¤j

`i j̀ �

�
1�

1

n2

��X
i

`i

�2

:

Corollary H Let L be an n–component link (n� 2); then

(3-13) rop.L/4=3 �
6n1=3

n� 1

X
i<j

jLk.Li ;Lj /j; rop.L/2 �
32�n2

n2� 1

X
i<j

jLk.Li ;Lj /j:

In terms of growth of the pairwise linking numbers jLk.Li ;Lj /j, for a fixed n, the above
estimate performs better than the one in (1-5). One may also replace

P
i<j jLk.Li ;Lj /j

with the isotopy invariant

(3-14) PCr.L/Dmin
DL

�X
i¤j

cri;j .DL/

�
(satisfying PCr.L/� Cr.L/), which we call the pairwise crossing number of L. This
conclusion can be considered as an analog of the Buck and Simon estimate (1-11) for
knots.

Corollary I Let L be an n–component link (n� 2) and PCr.L/ its pairwise crossing
number; then

(3-15) rop.L/4=3 �
3n1=3

n� 1
PCr.L/; rop.L/2 �

16�n2

n2� 1
PCr.L/:

4 Proof of Theorem A

The following auxiliary lemma will be useful:

Lemma J Given nonnegative numbers a1 , . . . , aN , we have, for k � 2,

(4-1)
X

1�i1<i2<���<ik�N

ai1
ai2
� � � aik

�
1

N k

�N

k

�� NX
iD1

ai

�k

:
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Proof It suffices to observe that for ai � 0 the ratioP
1�i1<i2<���<ik�N ai1

ai2
� � � aik�PN

iD1 ai

�k
achieves its maximum for a1 D a2 D � � � D aN .

Recall from (1-9) that x�nI1 WD x�23���nI1 , and

(4-2) Œx�nI1.L/� WD

�
min.x�nI1.L/; d � x�nI1.L// for d > 0;

jx�nI1.L/j for d D 0;
d D��.nI 1/:

For convenience, recall the statement of Theorem A:

Theorem A Let L be an n–component link of unit thickness and x�.L/ one of its top
Milnor linking numbers; then

(4-3) `.L/� 4
p

n. n�1
p
Œx�.L/�/3=4; Cr.L/� 1

3
.n� 1/ n�1

p
Œx�.L/�:

Proof Let GL be a Gauss diagram of L obtained from a regular link diagram DL .
Consider any term A of the arrow polynomial ZnI1 and index the arrows of A by
.ik ; jk/ for k D 1; : : : ; n� 1 in such a way that ik is the arrowhead and jk is the
arrowtail; we have the obvious estimate

(4-4) jhA;GLij �

n�1Y
kD1

ovik ;jk
.DL/�

n�1Y
kD1

crik ;jk
.DL/:

Let N D
�
n
2

�
; since every term (a tree diagram) of ZnI1 is uniquely determined by its

arrows indexed by string components,
�

N
n�1

�
gives an upper bound for the number of

terms in ZnI1 . Using Lemma J, with k D n� 1, N as above and ak D crik ;jk
.DL/,

k D 1; : : : ;N , one obtains, from (4-4),

(4-5) jhZnI1;GLij �
1

N n�1

� N

n�1

��X
i<j

cri;j .DL/

�n�1

:

Remark K The estimate (4-5) is valid for any arrow polynomial in place of ZnI1

which has arrows based on different components and no parallel arrows on a given
component.

By (2-5), we can find k 2 Z such that hZnI1;GLi D x�nI1C kd . Since

Œx�nI1.DL/�� jx�nI1.DL/C kd j D jhZnI1;GLij for all k 2 Z;
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replacing DL with a diagram obtained by projection of L in a generic direction v 2S2 ,
we rewrite the estimate (4-5) as

(4-6) ˛n
n�1

q
Œx�nI1.DL.v//��

X
i<j

cri;j .v/; ˛n D

�
1

N n�1

� N

n�1

�� �1
n�1

:

Integrating over the sphere of directions and using invariance8 of Œx�nI1� yields

4�˛n
n�1

q
Œx�nI1.L/��

X
i<j

Z
S2

cri;j .v/ dv:

By Lemma F, we obtain

˛n
n�1

q
Œx�nI1.L/��

X
i<j

acri;j .L/D 2
X
i<j

aovi;j .L/� 2
X
i<j

1
3

min.`i`
1=3
j ; j̀`

1=3
i /

�
1

3

X
i¤j

`i`
1=3
j ;

since
P

i<j 2 min.`i`
1=3
j ; j̀`

1=3
i /�

P
i¤j `i`

1=3
j . As in the derivation of (3-12) (see

Corollary H), by Jensen’s inequality,

(4-7) rop.L/4=3 �
3n1=3˛n

n� 1
n�1

q
Œx�nI1.L/�:

Now, let us estimate the constant ˛n . Note that

N n�1�
N

n�1

� D N n�1

N.N � 1/ � � � .N � .n� 1/C 1/
.n� 1/!� .n� 1/!:

Again, by Stirling’s approximation (letting mD n� 1 in (2-4)) we obtain, for n� 2,

(4-8) ˛n � ..n� 1/!/1=.n�1/
�

1
3
.n� 1/I

thus, (4-7) can be simplified to

(4-9) rop.L/4=3 � 3
p

n n�1

q
Œx�nI1.L/�;

as claimed in the first inequality of (4-3). For a minimal diagram Dmin
L

of L,

Cr.L/�
X
i<j

cri;j .D
min
L /I

8Both x�nI1 and d are isotopy invariants.
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thus the second inequality of (4-3) is an immediate consequence of (4-6) (with DL.v/

replaced by Dmin
L

) and (4-8). Using the permutation identity (2-7) and the fact that
rop.�.L// D rop.L/ for any � 2 †.1; : : : ; n/, we may replace x�nI1.L/ with any
other9 top x�–invariant of L.

In the case of almost trivial (Borromean) links, d D 0, and we may slightly improve
the estimate in (4-5) of the above proof, by using the cyclic symmetry of x�–invariants
noted in Remark E. We have, in particular,

(4-10) nx�23���nI1.L/D
X

�;� is cyclic

x��.2/�.3/����.n/I�.1/.L/D
X

�;� is cyclic

h�.ZnI1/;GLi:

Since cyclic permutations applied to the terms of ZnI1 produce distinct arrow dia-
grams,10 by Remark K, we obtain the bound

(4-11) njx�nI1.L/j�
X

�;� is cyclic

jh�.ZnI1/;GLij�
1

N n�1

� N

n�1

��X
i<j

cri;j .DL/

�n�1

:

Disregarding Stirling’s approximation, we have

(4-12) rop.L/4=3 �
3 3
p

n z̨n

.n� 1/
n�1

q
jx�nI1.L/j; z̨n D

�
1

nN n�1

� N

n�1

�� �1
n�1

;

or, using the second bound in (3-3),

rop.L/2 � 43� z̨n

�
n2

n2� 1

�
n�1

q
jx�nI1.L/j:

In particular, for nD 3, we have N D 3 and z̨3 D 3 and the estimates read

(4-13) rop.L/� .5
3
p

3

q
jx�23I1.L/j /

3=4; rop.L/� 6
p

6� 4

q
jx�23I1.L/j:

Since 6
p

6� � 26:049, the second estimate is better for Borromean rings (�23I1 D 1)
and improves the linking number bound of (1-5), 6� � 18:85, but falls short of the
genus bound (1-6), 12� � 37:7. Numerical simulations suggest that the ropelength of
Borromean rings is � 58:05 [10; 7].

Remark L This methodology can be easily extended to other families of finite-type
invariants of knots and links. For illustration, let us consider the third coefficient of the

9There are .n� 2/! different top Milnor linking numbers [35].
10Since the trunk of a tree diagram is unique; see [29; 27].
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Conway polynomial, ie c3.L/ of a two-component link L. The arrow polynomial C3

of c3.L/ is [12, page 779]

C3 D

Let GL be the Gauss diagram obtained from a regular link diagram DL , and DLk
the

subdiagram of the k th component of L for k D 1; 2. The absolute value of the first
term

˝
;GL

˛
of hC3;GLi does not exceed

�cr1;2.DL/

3

�
, the absolute value of the

sum
˝

C C ;GL

˛
does not exceed cr.DL1

/
�cr1;2.DL/

2

�
, and, for

the remaining terms, a bound is
�cr.DL1

/

2

�
cr1;2.DL/. Therefore, a rough upper bound

for jhC3;GLij can be written as

jhC3;GLij � .cr1;2.DL/C cr.DL1
//3:

Similarly, as in (4-6), replacing DL with DL.v/ and integrating over the sphere of
directions we obtain

jc3.L/j
1=3
� acr1;2.L/C acr.L1/:

For a unit thickness link L, (1-12) and (3-3) give

acr1;2.L/C acr.L1/�
1
3
`

1=3
1
`2C

1
3
`

1=3
2
`1C

4
11
`

1=3
1
`1;

acr1;2.L/C acr.L1/�
1

16�
`2

1C
1

8�
`1`2:

Thus, for some constants ˛; ˇ > 0, we have

`.L/2 �Ajc3.L/j
1=3; `.L/4=3 � B jc3.L/j

1=3:

In general, given a finite type-n invariant Vn.L/ and a unit thickness m–link L, we
may expect constants ˛m;n and ˇm;n such that

`.L/2 � ˛m;n jVn.L/j
1=n; `.L/4=3 � ˇm;n jVn.L/j

1=n:
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