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Topological complexity of
unordered configuration spaces of surfaces

ANDREA BIANCHI

DAVID RECIO-MITTER

We determine the topological complexity of unordered configuration spaces on almost
all punctured surfaces (both orientable and nonorientable). We also give improved
bounds for the topological complexity of unordered configuration spaces on all
aspherical closed surfaces, reducing it to three possible values. The main methods
used in the proofs were developed in 2015 by Grant, Lupton and Oprea to give bounds
for the topological complexity of aspherical spaces. As such this paper is also part
of the current effort to study the topological complexity of aspherical spaces and
it presents many further examples where these methods strongly improve upon the
lower bounds given by zero-divisor cup-length.

55M99, 55P20; 20J06, 55M30, 68T40

1 Introduction

In 2003 Farber introduced the topological complexity of a space to study the problem
of robot motion planning from a topological perspective [5]. It is a numerical homotopy
invariant which measures the minimal instability of every motion planner on this space.
More explicitly, given a path-connected space X, the topological complexity TC.X /

is the sectional category of the free path fibration pX W X
I !X �X (see Section 2).

Determining TC.X / is in general a hard problem. For over a decade the topological
complexity of many spaces has been computed and diverse tools have been developed
to that end.

In this context, configuration spaces have been extensively studied because they are
of special interest from the point of view of robotics. Considering the problem of
moving n objects on a space X avoiding collisions naturally leads to the definition of
the ordered configuration space F.X; n/ of n distinct ordered points on X as

F.X; n/D f.x1; : : : ;xn/ 2X n
j xi ¤ xj for i ¤ j g:
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1360 Andrea Bianchi and David Recio-Mitter

These spaces model automated guided vehicles (AGVs) moving on a factory floor —
see Ghrist [11] — or flying drones trying to avoid each other in the air.

Farber and Yuzvinsky determined the topological complexity of F.Rd ; n/ for d D 2 or
d odd in [10]. Later, Farber and Grant extended the results to all dimensions d in [8].
The topological complexity of ordered configuration spaces of orientable surfaces has
also been computed by Cohen and Farber in [2]. Many more related results can be
found in the recent survey articles by Cohen [1] and Farber [7].

In the configuration spaces F.X; n/ considered above, the points of a configuration
are labeled (or ordered) and the symmetric group Sn acts on F.X; n/ by permuting
the labels. However, in certain situations it greatly improves the efficiency to consider
the points to be identical. For instance, consider a scenario in which all the AGVs
perform the same tasks equally. In this case we are only interested in the positions
of points in X up to permutation, in other words forgetting the labels assigned to the
points. This leads to the unordered configuration spaces C.X; n/D F.X; n/=Sn , by
definition the orbits of the symmetric group action.

As we saw above, there is a very complete picture of the topological complexity of
ordered configuration spaces of 2–dimensional manifolds and beyond. In contrast to
this, very little is known for unordered configuration spaces, as Cohen notes at the end
of [1]. One of the main reasons for this discrepancy is that all the above results use a
cohomological technique involving zero-divisors, which seems to be insufficient for
unordered configuration spaces (at least with constant coefficients).

The results in this paper use a technique to bound the topological complexity of
aspherical spaces developed in 2015 by Grant, Lupton and Oprea [12]. Being a
homotopy invariant, the topological complexity of an aspherical space only depends
on its fundamental group and the methods are algebraic in nature. An introduction to
topological complexity of groups is given in Section 2.

The mentioned technique was already used in the recent paper [13], in which Grant and
the second author computed the topological complexity of some mixed configuration
spaces F.R2; n/=.Sn�k �Sk/ on the plane, with 1 � k � n� 1. These spaces are
in a sense intermediate between the ordered and the unordered case and they model
the situation in which there are two different types of identical AGVs. It turns out that
also in the mixed case the cohomological lower bounds used in previous results are
insufficient.

Algebraic & Geometric Topology, Volume 19 (2019)



Topological complexity of unordered configuration spaces of surfaces 1361

It has to be mentioned that the topological complexity of unordered configuration
spaces of trees was computed in many cases by Scheirer in [16]. To the best of the
authors’ knowledge that is the only previous computation of the topological complexity
of an unordered configuration space with at least three points. It is worth noting that
Scheirer uses the zero-divisor cup-length lower bound, which seems to be insufficient
for unordered configuration spaces of surfaces.

In this paper we determine the topological complexity of the unordered configuration
spaces of all punctured surfaces (orientable and nonorientable) except the disc and the
Möbius band, and narrow it down to three values for all closed aspherical surfaces
(orientable and nonorientable). For the Möbius band we narrow it down to two values
and for the disc we give some improved bounds and a complete answer in the case
of three points. Many of the proofs extend to ordered configuration spaces (this is
discussed at the end of the paper).

All results except the ones for the disc are presented in the following theorem, which
follows from Theorems 4.1, 4.2, 5.1 and 5.3. In the case of the annulus the upper bound
is proven by finding an explicit motion planner.

Theorem 1.1 � Let S be obtained from a closed surface by removing a positive
number of points. If S is not the disc, the annulus or the Möbius band, then

TC.C.S; n//D 2n:

� Let S be a closed surface. If S is not the sphere or the projective plane, then

2n� TC.C.S; n//� 2nC 2:

� If A denotes the annulus, then

TC.C.A; n//D 2n� 1:

� If M denotes the Möbius band, then

2n� 1� TC.C.M; n//� 2n:

Remark 1.2 Theorem 1.1 should be compared to the corresponding results for ordered
configuration spaces of Cohen and Farber in [2]. They are consistent with the possibility
that the values of the topological complexity of ordered and unordered configuration
spaces of surfaces always agree. Note that in [2] the nonreduced version of topological
complexity is used, which is 1 greater than the one used in this paper.
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The only aspherical surface not covered by Theorem 1.1 is the disc. The best estimates
we found for the disc are given in the following two theorems. Note that they greatly
improve over the best previously known lower bounds

TC.C.D; n//� cat.C.D; n//D n� 1

coming from the Lusternik–Schnirelmann category cat.C.D; n// (see [13]).

Theorem 1.3 If D is the disc, then

2n� 2� 1
2
n� n� 1C cd.ŒPn;Pn�/� TC.C.D; n//� 2n� 2:

Here cd is the cohomological dimension of a group and ŒPn;Pn� is the commutator
subgroup of the pure braid group of the disc (see Section 3).

We expect that cd.ŒPn;Pn�/ is in fact the maximum possible, which would mean that
Theorem 1.3 narrows TC.C.D; n// down to two possible values.

Conjecture 1.4 The cohomological dimension of ŒPn;Pn� is equal to n� 2.

The following theorem gives a potentially better lower bound (depending on the ac-
tual value of cd.ŒPn;Pn�/, which is unknown to the authors). It also tells us that
asymptotically TC.C.D; n// behaves like 2n.

Theorem 1.5 If D is the disc, then

2n� 2
�p

n=2
˘
� 3� TC.C.D; n//� 2n� 2:

Finally, we compute the topological complexity of the unordered configuration space
of three points on the disc by finding an explicit motion planner.

Theorem 1.6 If D is the disc, then

TC.C.D; 3//D 3:

The authors are grateful to Mark Grant for many useful discussions and comments on
earlier drafts of the paper, and to Gabriele Viaggi for suggesting the strategy for the
proof of Lemma 3.6.
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2 Topological complexity of aspherical spaces

In this section we first define the topological complexity of a general topological space
and then specialize it to aspherical spaces.

For a path-connected topological space X, let pX W X
I !X �X denote the free path

fibration on X, with projection pX .
 /D .
 .0/; 
 .1//.

Definition 2.1 The topological complexity of X, denoted by TC.X /, is defined to be
the minimal k such that X �X admits a cover by kC1 open sets U0;U1; : : : ;Uk , on
each of which there exists a local section of pX (that is, a continuous map si W Ui!X I

such that pX ı si D incli W Ui ,!X �X ).

Note that here we use the reduced version of TC.X /, which is 1 less than the number
of open sets in the cover.

Let � be a discrete group. It is well known that there exists a connected CW–complex
K.�; 1/ with

�i.K.�; 1//D

�
� if i D 1;

0 if i � 2:

Such a space is called an Eilenberg–Mac Lane space for the group � . Furthermore,
K.�; 1/ is unique up to homotopy. Because the topological complexity TC.X / is a
homotopy invariant of the space X (see [5]), the following definition is sensible:

Definition 2.2 The topological complexity of a discrete group � is given by

TC.�/ WD TC.K.�; 1//:

In [6] Farber posed the problem of giving an algebraic description of TC.�/. This
problem is far from being solved but some progress has been made, including the
following theorem:

Theorem 2.3 (Grant, Lupton and Oprea [12, Theorem 1.1]) Let � be a discrete
group and let A and B be subgroups of � . Suppose that gAg�1\B D f1g for every
g 2 � . Then

TC.�/� cd.A�B/:

It is worth noting that this theorem has recently been generalized using different methods
in [9, Corollary 3.5.4].
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The corresponding problem for the Lusternik–Schnirelmann category of a group has
been completely answered: cat.�/D cd.�/. This classical result is due to Eilenberg
and Ganea [3] for cd.�/¤ 1, while the remaining case follows from the later work by
Stallings [17] and Swan [18].

We will also need the following standard result:

Lemma 2.4 TC.�/� cd.� ��/:

Proof This follows from the upper bound TC.X / � cat.X �X / given by Farber
in [5].

3 The surface braid groups

In this section we introduce the surface braid groups and we recall their main properties.

Definition 3.1 A surface S is a connected closed 2–dimensional manifold possibly
with a finite number of points removed, called punctures.

Recall from the introduction that the configuration space F.S; n/ admits an action
by the symmetric group Sn which permutes the points in each configuration. The
unordered configuration space

C.S; n/D F.S; n/=Sn

is by definition the orbit space of that action.

Definition 3.2 We call Pn.S/D �1.F.S; n// the pure braid group on n strands of
the surface S , and Bn.S/ D �1.C.S; n// the ( full) braid group on n strands of S .
When S is the disc D, we also abbreviate Pn D Pn.D/ and Bn D Bn.D/.

The covering F.S; n/! C.S; n/ yields the short exact sequence

1! Pn.S/! Bn.S/!Sn! 1:

The following theorem is due to Fadell and Neuwirth:

Theorem 3.3 (Fadell and Neuwirth [4]) Denote by Sn the surface obtained from S
by removing n points. There is a locally trivial fibration

(1) Sn! F.S; nC 1/! F.S; n/;

where the projection map forgets the last point of the ordered configuration.
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It is well known that the only surfaces that are not aspherical are the sphere S2 and the
projective plane RP2 . From now on all the surfaces that we will consider are assumed
to be aspherical. The reason for this is that the methods in this paper only apply to
aspherical spaces.

Corollary 3.4 Let S be an aspherical surface. From the long exact sequence of
the homotopy groups applied to the Fadell–Neuwirth fibrations (1) and induction it
follows that the spaces F.S; n/ are also aspherical. Furthermore, we get the short exact
sequence

(2) 1! �1.Sn/! PnC1.S/! Pn.S/! 1:

We will need the following technical result, which we expect to be well known to the
experts. However, we could not find a full proof in the literature and thus we will give
a detailed proof here. The result appears as Proposition 2.2 in [15] but it relies on
Lemma 3.6 below (Proposition 2.1 in [15]), which is stated there without a proof.

Theorem 3.5 Let S ,! T be a smooth embedding of aspherical surfaces such that the
induced homomorphism �1.S/� �1.T / is injective.

Then the corresponding inclusion C.S; n/ ,! C.T ; n/ induces an injective homomor-
phism Bn.S/! Bn.T /.

In the proof of the theorem the following lemma will be essential. In that lemma a
slightly different definition of nonclosed surface is needed, with open balls removed
instead of points removed. This is the only place in which we make use of this definition.
We stress that this is not an essential distinction because the configuration spaces of
punctured surfaces and the configuration spaces of surfaces with boundary are homotopy
equivalent.

Lemma 3.6 Let S ,! T be a smooth embedding of aspherical surfaces, which we
assume to be closed surfaces with (possibly) some open balls removed instead of points
removed. Further assume that the image of S lies in the interior of T . Then the induced
homomorphism �1.S/! �1.T / is injective if and only if no boundary component
of S bounds a disc in T nS .

Proof Recall that we are assuming that surfaces are path-connected. Therefore, if
S is closed, the embedding has to be surjective and the claim is trivial. Assume S is
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not closed. Because the boundary components of S are smooth simple closed curves
inside T , they separate T into S on one side and a disjoint union of surfaces on the
other side.

We first assume that the homomorphism �1.S/! �1.T / induced by the embedding is
not injective and claim that there is a disc in T nS bounded by a boundary component
of S .

A nontrivial element in the kernel of �1.S/! �1.T / can be represented by a smooth
map f W S1 ! S which extends to a smooth map on the disc gW D ! T . We may
assume that the image of f is in the interior of S and that g is transverse to @S .

Observe that the image of g needs to have a nonempty intersection with the boundary
of S . Otherwise, g would yield a nullhomotopy of f inside S , but by assumption f
represents a nontrivial class in �1.S/. Let B be a boundary component of S which
intersects the image of g .

The preimage of B in D under g is now a nonempty, smooth 1–dimensional manifold.
Since f W S1! S doesn’t intersect @S , g�1.B/ is a compact subset of the interior
of D, hence it must be a closed 1�manifold.

Therefore, given a path-component C �D of g�1.B/, we know that C is a smooth
circle and, by the Jordan–Schoenflies curve theorem, C bounds a disc zD in D on one
side and an annulus A on the other side such that @ADC [@D. We can further assume,
by choosing C to be outermost in D among the path-components of g�1.B/, that
there exists a collar neighborhood U � C in D such that g.U \A/� S . Indeed, by
transversality we have, for a small collar neighborhood U, that g.U \A/ is contained
either in S or in T nS . If C is outermost, the former must be the case, as under this
condition there is a path in A from C to @D only intersecting g�1.B/ at the starting
point, and g.@D/� S .

The curve C gives an element in �1.B/' Z. If this element is trivial then we can
redefine g on zD by a nullhomotopy living on B . After pushing the image of zD along
the collar neighborhood into the interior of S , we get a replacement of g with (at least)
one less connected component in g�1.@S/ than for the original map.

Hence, there must exist a circle C such that gjC is a nontrivial element in �1.B/, other-
wise we would construct a nullhomotopy of f inside S after finitely many iterations
of the above procedure. Therefore, there is a power of the generator ŒB� 2 �1.B/ that
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vanishes in �1.T /. Because �1.T / is torsion-free (indeed T is a finite-dimensional
classifying space for �1.T /), ŒB� is already trivial in �1.T /.

Then B is a nullhomotopic simple closed curve and it must bound a disc in T by the
classification of surfaces. There are two possibilities. Either this disc doesn’t intersect
the interior of S and it is glued to the boundary component B to obtain T , or S
is a punctured sphere and T is obtained from S by glueing discs onto all the path-
components of @S different from B (there is at least one other boundary component
because by assumption �1.S/! �1.T / is not injective and therefore S is not a disc).

We showed that if �1.S/! �1.T / is not injective, there must be a disc in T n S
bounded by boundary component of S .

Conversely, assume that T nS contains a disc D bounded by some boundary component
B of @S . Then the corresponding element ŒB� 2 �1.S/ vanishes in �1.T /. Therefore,
the homomorphism �1.S/ ! �1.T / is not injective unless ŒB� is already trivial
in �1.S/. Again by the classification of surfaces, this can only happen if S itself is a
disc, but then T would be a sphere, contradicting the hypothesis that T is aspherical.

Proof of Theorem 3.5 By the commutativity of the following diagram with exact
rows, it suffices to show that Pn.S/! Pn.T / is injective:

1 // Pn.S/

��

// Bn.S/

��

// Sn
// 1

1 // Pn.T / // Bn.T / // Sn
// 1

We do this by induction using the Fadell–Neuwirth fibrations.

For nD 1, the homomorphism �1.S/! �1.T / is injective by assumption.

Suppose now that Pn�1.S/! Pn�1.T / is injective. The embedding S ,! T gives
rise to an embedding Sn ,! Tn , in which the n new punctures in Sn are sent to the
n new punctures in Tn . The short exact sequences (2) give rise to the commutative
diagram

1 // �1.Sn�1/

��

// Pn.S/

��

// Pn�1.S/

��

// 1

1 // �1.Tn�1/ // Pn.T / // Pn�1.T / // 1

Algebraic & Geometric Topology, Volume 19 (2019)



1368 Andrea Bianchi and David Recio-Mitter

The rows are exact and we assumed the vertical homomorphism on the right is injective.
If the vertical homomorphism on the left were also injective, the vertical homomorphism
in the middle would have to be injective, which would complete the induction argument.

It is not hard to see that the configuration spaces of punctured surfaces (points removed)
and the configuration spaces of surfaces with boundary components (open balls re-
moved) are homotopy equivalent. Because of this we might assume that S and T are
surfaces with boundary and that Sn�1 and Tn�1 are the surfaces which result from
removing n� 1 open balls, in order to be able to use Lemma 3.6. Then the embedding
S ,! T satisfies the assumptions of Lemma 3.6 if and only if Sn�1 ,! Tn�1 satisfies
them. Therefore, the injectivity of the leftmost vertical homomorphism is equivalent to
the injectivity of �1.S/� �1.T /, which is part of the assumptions.

4 Lower bounds

Theorem 4.1 Let S be an aspherical surface which is not the disc, the annulus or the
Möbius band. Then

TC.C.S; n//� 2n:

Proof Let S be a surface satisfying the assumptions in the theorem. Then, with
the only exception of the Klein bottle, we have rank.H1.S// � 2 and there are two
smooth simple closed curves ˛ and ˛0 on S representing linearly independent classes
of H1.S/. We may assume that there exist tubular neighborhoods A of ˛ and A0 of ˛0

that are annuli. If the tubular neighborhood of ˛ were a Möbius band, then we could
replace ˛ by the boundary of this Möbius band.

The homomorphism �1.A/! �1.S/ is injective, as can be checked by further project-
ing to H1.S/. Similarly, the homomorphism �1.A0/! �1.S/ is injective.

For the Klein bottle K , recall that the fundamental group �1.K/ has a presentation

�1.K/D ha; b j aba�1bi;

where both a and b are represented by simple closed curves ˛ and ˇ in K . Both
subgroups hai and hbi are infinite cyclic, and therefore the inclusions of collar neighbor-
hoods A of ˛ and A0 of ˇ in K are injective at the level of �1 ; the collar neighborhood
of ˛ is a Möbius band so we replace ˛ with its double as above.

Hence, by Theorem 3.5 the homomorphisms Pn.A/! Pn.S/ and Pn.A0/! Pn.S/
are injective.
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We now construct a subgroup Zn � Pn.A/. Consider n parallel, disjoint copies
˛1; : : : ; ˛n of the curve ˛ inside A, and let T� F.A; n/ be the subspace of ordered
configurations .x1; : : : ;xn/ with xi lying on the curve ˛i for all 1� i � n; then T is
an embedded n–fold torus in F.A; n/, and at the level of fundamental groups we have
a map Zn ' �1.T/! Pn.A/.

This map is injective: indeed the composition

Zn
' �1.T/! Pn.A/D �1.F.A; n//! �1.An/' Zn

is an isomorphism. We call Zn ' Zn � Pn.A/ the image of this map.

In the same way we construct an n�fold torus T0 � F.A0; n/ and get a subgroup
Z0n � Pn.A0/ as the image of the map between fundamental groups induced by the
inclusion, with Z0n ' Zn .

Figure 1: Braids from Zn as seen from above

There is a homomorphism

Pn.S/!
nY

kD1

�1.S/!
nM

kD1

H1.S/;(3)

under which nontrivial elements in the image of Zn and Z0n inside Pn.S/ are mapped
to elements which lie in different orbits under the action which permutes the summands
in
Ln

kD1 H1.S/. This is because the image of each nontrivial element in Zn will
have at least one summand corresponding to a nontrivial multiple of the class in H1.S/
represented by the curve ˛ , whereas the image of each braid in Z0n has only summands
corresponding to multiples of the class represented by the curve ˛0. Notice that for the
Klein bottle it suffices that the homology class represented by ˛ is infinite cyclic, and
the argument works even if the homology class represented by ˛0 has order 2.
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Now we observe that conjugating an element of Pn.S/ by an element of Bn.S/ has
the effect of permuting the summands in

Ln
kD1 H1.S/ under the homomorphism (3).

To see this first note that the homomorphism (3) consists of a sum of compositions of
homomorphisms of the form

Pn.S/! �1.S/!H1.S/

given by forgetting all strands but one and then taking the abelianization. Given a
braid 
 2Bn.S/, we can write 
 D ı� , where � is supported on a disc and ı 2Pn.S/.
Therefore, conjugating by 
 reduces to conjugating by � and ı . Conjugating by �
permutes the order of the strands by the corresponding permutation under the canonical
map Bn!Sn . Conjugating by ı results in a conjugation inside �1.S/ under the first
homomorphism Pn.S/! �1.S/, but this has no effect on the abelianization.

Therefore, no nontrivial element of Zn is conjugate to an element of Z0n in Bn.S/.
By Theorem 2.3 this implies the lower bound TC.Bn.S//� cd.Zn �Z0n/D 2n.

Theorem 4.2 Let S be either the annulus or the Möbius band. Then

TC.C.S; n//� 2n� 1:

Proof In the same way as in the previous proof we can find an annulus A inside S
and a subgroup Zn in Pn.A/ isomorphic to Zn . Because �1.S/'H1.S/' Z, this
time we cannot find a second annulus inducing a linearly independent homology class,
nor even a disjoint infinite cyclic subgroup of �1.S/.

However, the inclusion of a disc D in S also induces a monomorphism Pn.D/!Pn.S/
and no nontrivial element in Pn.D/ is conjugate to an element of Zn inside Bn.S/.

Indeed, if we consider the map

Pn.S/!
nY

kD1

�1.S/!
nM

kD1

H1.S/;

we see that no nontrivial element of Zn is mapped to zero, whereas all elements
of Pn.D/ are mapped to zero. As we saw in the proof of the previous theorem,
conjugation inside Bn.S/ results only in a permutation of the coordinates of the target
group

Ln
kD1 H1.S/, and the stated properties are therefore invariant under conjugation.

By Theorem 2.3 we get

TC.C.S; n//� cd.Zn
�Pn.D//D 2n� 1:
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5 Upper bounds

Theorem 5.1 If S is a closed aspherical surface, then

TC.C.S; n//� 2nC 2:

If S is a punctured surface which is not the disc, then

TC.C.S; n//� 2n:

Proof It is well known that cd.�1.S// D 2 for closed aspherical surfaces and that
cd.�1.S// D 1 for punctured surfaces (other than the disc). Using the short exact
sequences (2) of Corollary 3.4, together with the fact that the cohomological dimension
is subadditive under group extensions, and that cd.Bn.S//D cd.Pn.S// because Bn.S/
is torsion-free and Pn.S/ is a finite-index subgroup, we see that cd.Bn.S//� nC 1 if
S is closed and cd.Bn.S//�n if S has punctures and is not the disc (the two preceding
inequalities are in fact equalities, but we don’t need that stronger statement in this proof).

The upper bounds now follow from Lemma 2.4.

Next we give an upper bound for the annulus which is 1 better than the one given in
the previous theorem (it is in fact the optimal upper bound). For the proof we will need
the following well-known technical lemma.

We defined the topological complexity in terms of the number of open sets in an open
cover of X �X, but for sufficiently nice spaces (CW–complexes for instance) there
is an equivalent characterization in terms of decompositions into disjoint Euclidean
neighborhood retracts (ENRs).

Lemma 5.2 [6] Let X be an ENR (for instance a finite-dimensional, locally finite
CW–complex). Then the topological complexity TC.X / equals the smallest integer k

such that there exists a decomposition X �X DE0tE1t� � �tEk into kC1 disjoint
ENRs, on each of which there is a local section si W Ei!X I.

The existence of such a section si W Ei ! X I is equivalent to the existence of a
deformation of Ei into the diagonal of X �X, ie a homotopy between the inclusion
Ei ,!X �X and a map whose image lies entirely in the diagonal.

Theorem 5.3 If A is the annulus, then

TC.C.A; n//� 2n� 1:
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The proof of Theorem 5.3 occupies the rest of this section. By Lemma 5.2 we need to
find a decomposition of Cn.A/�Cn.A/ into 2n disjoint ENRs which can be deformed
into the diagonal. Note that such deformations can equivalently be viewed as an explicit
motion planner with 2n different continuous rules and as such it is potentially relevant
for applications.

5.1 Decomposition of Cn.A/ � Cn.A/

The annulus can be identified with a product AD S1 �R of a circle and the real line.
The projection map pW A! S1 induces a map

pnW Cn.A/! Symn.S
1/;

where the latter space is the n–fold symmetric power of S1, defined as the quotient
of .S1/�n by the action of Sn on the coordinates.

For a given pair of configurations .x;y/2Cn.A/�Cn.A/ we interpret pn.x/ and pn.y/

as finite subsets of S1, ie we forget the multiplicities of points in S1. The cardinality
deg.x;y/D jpn.x/[pn.y/j of the union of those subsets will be called the degree of
the pair.

Notice that deg.x;y/ is at least 1 and at most 2n. This yields a decomposition of
Cn.A/ � Cn.A/ into 2n disjoint subspaces Lk D deg�1.k/, corresponding to the
different values of deg; see Figure 2. Furthermore, Lk is a smooth embedded manifold
and in particular an ENR.

5.2 Local motion planners

Given a pair .x;y/ 2Lk , the union pn.x/[pn.y/ contains exactly k distinct points
q1; : : : ; qk 2 S1, ordered cyclically on S1 in the clockwise direction. We need to

Figure 2: A pair of configurations in L4 , with one double point
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introduce some notation. Let nx;i be the number of points in x mapped to qi under p

and let ny;i be the number of points in y mapped to qi under p . Finally, let ıi D
nx;i � ny;i be the difference between those two numbers.

The following map is continuous and well defined:

 k W Lk !

n
.mi/i 2 Zk

ˇ̌ kP
iD1

mi D 0;
kP

iD1

jmi j � 2n
oı
.12 : : : k/; .x;y/ 7! Œ.ıi/i �:

Here .12 : : : k/ 2Sk is the long cycle, permuting the components mi .

Because the preimages of different Œ.ıi/i � are topologically disjoint, we can define the
local section of the free path fibration over Lk separately on each preimage.

Given a pair of configurations .x;y/ 2 Lk lying in the preimage  �1
k
.Œ.ıi/i �/, we

need to construct a path between them, continuously over Lk .

If ıi D 0 for all i , we will simply move the points of x onto the points of y on each
fiber of p by linear interpolation inside the fibers.

On the other hand, if there exists an i such that ıi ¤ 0, first we need to construct a path
from x to zx such that deg.zx;y/D zk for some zk�k , and such that .zx;y/2 �1

zk
..0/i/;

then we concatenate this path with the fiberwise linear interpolation used above. The
path from x to zx will consist in an iteration of one particular deformation which we
describe in the following and which is illustrated in Figure 3.

5.3 First step

Let .x;y/ 2Lk as above and let x consist of the points xi;l 2 A for 1 � i � k and
1� l � nx;i , where for each i the points xi;l are exactly those lying over qi 2 S1 and
the indices are chosen according to the order of the points on the fiber p�1.qi/'R.

We are going to deform x into another configuration, denoted by x.1/ .

Whenever ıi > 0, we move the ıi top points of x in p�1.qi/ clockwise until they
reach p�1.qiC1/, on top of all points of x already in p�1.qiC1/ (if any). More
precisely, we move the points xi;l for ny;i C 1 � l � nx;i to p�1.qiC1/ so as to
keep their order and their pairwise distances, and such that xi;ny;iC1 reaches the
position 1Cmaxf0;xiC1;nx;iC1

g inside the fiber p�1.qiC1/ ' R. We move these
points by linear interpolation along the interval Œqi ; qiC1�� S1 and along R. We do
this simultaneously for all i for which ıi > 0. Note that the indices are considered
modulo k . This is shown in Figure 3.

It is clear from the construction that this deformation is continuous within  �1
k
.Œ.ıi/i �/.
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Figure 3: One iteration of the motion planner on the annulus. Notice that the
positions of the gray points on a given fiber are disregarded when moving
black points towards it because the points exist in two separate spaces.

5.4 Iterations of the first step

We started with a pair of configurations .x;y/ 2 Lk and in the previous subsection
we constructed a deformation of x into x.1/ . Clearly k1 D deg.x.1/;y/� k . We can
now repeat the process starting with the pair .x.1/;y/ to get a new configuration x.2/ ,
again without changing y . Iterating this, we get a sequence of configurations x.j/ and
a sequence of degrees kj D deg.x.j/;y/ which is weakly decreasing.

If this algorithm terminates after T steps, then it gives us a path from .x;y/ 2Lk to
.x.T /;y/ 2  �1

zk
..0/i/. Furthermore, because each iteration is continuous it yields a

continuous deformation of Lk into  �1
zk
..0/i/, which completes the proof.

To see that the algorithm does indeed terminate, note that there exists an N 2N such
that kj D kN for all j �N. After kN further iterations we have that ı.NCkN /

i D 0

for all 1� i � kN and we are done. This follows from the following three facts, which
are easy to check:

(1) For all j >N , if ı.j/i > 0, then ı.j�1/
i�1

> 0.

(2) For all j �N , if ı.j/i � 0, then ı.jC1/
i � 0.

(3) For all j �N we have
P

i ı
.j/
i D 0.

Indeed, if ı.NCkN /
i ¤ 0 for some i , we may assume that ı.NCkN /

i > 0 because of (3).
By (1), this would imply that ı.NCkN�l/

i�l
> 0 for all 0 � l � kN � 1 and therefore,

by (2), ı.NCkN /

i�l
� 0 for all 0� l � kN � 1.
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This would mean that
PkN�1

lD1
ı
.NCkN /

i�l
> 0, which contradicts (3). This completes

the proof of Theorem 5.3.

6 Proof of Theorems 1.3 and 1.5

Proof of Theorem 1.3 Notice that the pure braid group on the disc Pn is isomorphic
to the pure braid group Pn�1.A/ on the annulus with one less strand in the following
way. Every braid in Pn can be chosen such that the last strand does not move and that
strand is identified with the central hole in the annulus.

Consider the subgroup Zn�1ŠZn�1�Pn�1.A/ŠPn given by the braids in Pn�1.A/
in which all strands move in concentric circles around the central hole.

Recall that, for the abelianization, P ab
n Š Z.

n
2/ . The abelianization homomorphism is

given by the collection over all unordered pairs fi; j g of the maps  i;j W Pn!P2ŠZ

forgetting all strands except the i th and the j th (measuring the linking number between
the strands i and j ).

Conjugating by an element g 2 Bn is compatible, under the abelianization, with
the induced permutation of the components  i;j of P ab

n coming from the canonical
permutation in Sn associated to g .

In light of the above, it is clear that the commutator subgroup ŒPn;Pn� (the kernel of the
abelianization homomorphism) is not only normal in Pn but also in Bn . Furthermore,
it also follows that Zn�1 is mapped injectively under the abelianization homomorphism
and thus has a trivial intersection with ŒPn;Pn�. Taken together this implies that the
conjugates of a nontrivial element of ŒPn;Pn� cannot lie in Zn�1 .

The lower bound now follows from Theorem 2.3 together with Lemma 6.1 below.

Finally, the upper bound follows from Lemma 2.4 and cd.Bn/D n� 1, which can be
shown using the Fadell–Neuwirth fibrations as for the other aspherical surfaces.

Proof of Theorem 1.5 Let .p1; : : : ;pn/ 2 F.D; n/ denote an ordered configuration
of n points in the disc D and let 1 � k � n, to be chosen suitably later. Recall that
based loops in F.D; n/ represent braids in the pure braid group Pn and let A� Pn

consist of those pure braids represented by loops in which the points p1;p2; : : : ;pk

are fixed in the middle and pkC1; : : : ;pn independently rotate around this cluster in
concentric orbits. Clearly we have AŠ Zn�k .
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We now write n D mk C r for appropriate m � 0 and 1 � r � k . Notice that r is
assumed to be positive.

Divide the points p1; : : : ;pn into m clusters of k points each plus an additional cluster
of r points. Let B be the subgroup of Pn in which points of the same cluster interact
freely and such that moreover the mC1 clusters are allowed to move around each other,
so long as they don’t mix and their trajectories describe an element in ŒPmC1;PmC1�.

More formally, let E2.mC 1/ be the space of ordered configurations of mC 1 little
discs D1; : : : ;DmC1 inside the disc D. Each disc Di is uniquely determined by its
center and its (positive) radius and the little discs are required to have disjoint interiors
(see [14] for an introduction to the operad of little cubes). There is a map

E2.mC 1/�F.D; k/� � � � �F.D; k/�F.D; r/! F.D; n/

given by embedding each configuration of k or r points into the corresponding disc Di ,
using the only positive rescaling of D onto Di . Because E2.mC1/ is also a classifying
space for PmC1 , there is a homomorphism on fundamental groups


 W PmC1 �Pk � � � � �Pk �Pr ! Pn:

To show that 
 is injective, let � be the product of the following mC 2 maps:

� One map Pn! PmC1 given by forgetting all strands but a chosen one in each
cluster, so that exactly mC 1 strands remain.

� The maps Pn ! Pk and Pn ! Pr given by forgetting all strands outside a
given cluster.

It is easy to see that � is a retraction of 
 and that therefore 
 is injective. The subgroup
B�Pn is defined to be the image of the restriction of 
 to ŒPmC1;PmC1��.Pk/

m�Pr .

Next we need to check that A and B satisfy the assumptions of Theorem 2.3 as
subgroups of Bn , ie gAg�1 \ B D f1g for all g 2 Bn . For this we will use the
abelianization of the pure braid group Pn . As we saw in the proof of Theorem 1.3, the
abelianization detects the pairwise linking numbers between the braids and conjugation
by g 2 Bn permutes those numbers by the induced permutation.

The following property of an element � 2 Pn is invariant under conjugation by each
g 2 Bn :

There exists an index 1� j � n and k other indices i1; : : : ; ik such that  j ;il
.�/¤ 0

for all 1� l � k .
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Let ˛ 2 A be a nontrivial braid. In such a braid there is at least one point pj , for
kC1� j � n, which rotates a nonzero number of times around the points p1; : : : ;pk .
Therefore, the numbers  l;j .˛/ are all nonzero (and equal to each other) for 1� l � k .

However, no braid ˇ 2B has the property above. Indeed,  i;j .ˇ/ can be nonzero only
if pi and pj are in the same cluster, and every cluster contains at most k points.

Hence, we get that, for each 1� k � n,

TC.Bn/� cd.A�B/

D n� kCm.k � 1/C r � 1C cd.ŒPmC1;PmC1�/

� 2n� k �m� 1C 1
2
m� 1 .by Lemma 6.1/

D 2n� k � 1
2
m� 3

2
:

Choosing k D
�p

n=2

˘
, the inequality

nDmkC r �mkC 1

implies that

m�
n�1

k
and so

m�
j

n�1

k

k
� 2kC 4

by the choice of k . Therefore,

TC.Bn/� 2n� 2
�p

n=2
˘
� 3� 1

2

and since TC.Bn/ is an integer we can drop the term 1
2

.

Lemma 6.1 Let ŒPn;Pn� be the commutator subgroup of the pure braid group Pn .
Then

cd.ŒPn;Pn�/�
1
2
.n� 2/:

Proof Like in the previous proof, let E2.3/ denote the space of ordered configurations
of three little discs D1 , D2 and D3 inside a disc D. There exists a map

E2.3/�F.D; 3/! F.D; 5/;

given by embedding the configurations in F.D; 3/ into the first disc D1 (after the
appropriate rescaling) and by mapping the other two little discs to their center points.

Iterating this construction k � 1 times results in the map

E2.3/�E2.3/� � � � �E2.3/„ ƒ‚ …
k�1

�F.D; 3/! F.D; 2kC 1/:
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On fundamental groups this yields a homomorphism

Pk
3 ! P2kC1:(4)

Similarly to the previous proof, this homomorphism is injective. By construction the
images of the different P3 factors commute with each other.

Let Z be an infinite cyclic subgroup of ŒP3;P3�. The image of the homomorphism (4)
restricted to Zk�Pk

3
is isomorphic to Zk by the above observations and it is a subgroup

of ŒP2kC1;P2kC1�. By the well-known properties of cohomological dimension,

cd.ŒP2kC1;P2kC1�/� cd.Zk/D k:

This proves the claim for nD 2kC 1 odd. For n even the claim immediately follows
from Pn�1 � Pn .

7 Motion planner for the disc

Let D be the disc. In this section we are going to give an explicit motion planner which
will imply that TC.C.D; 3// D 3, as stated in Theorem 1.6. Observe that a motion
planner on a subset of X �X is the same as a deformation into the diagonal.

Proof of Theorem 1.6 The lower bound follows from Theorem 1.3 because

cd.ŒP3;P3��Z2/D 1C 2D 3:

We will work with the space C3 D C.C; 3/' C.D; 3/ for the remainder of the proof.

To show TC.C3/� 3, it suffices to find a decomposition of C3 �C3 into four disjoint
ENRs such that each of them can be deformed to the diagonal, by Lemma 5.2.

In the next subsections we will first decompose C3 � C3 into four disjoint ENRs
E0 , E1 , E2 and E3 and discuss some geometric properties of these; then we will
describe a motion planner on each Ei .

7.1 Decomposition of C3 � C3

First we need a notion of orientation for configurations in C3 . For this we define a
function �W C3!C� by

�.fz1; z2; z3g/D .z1� z2/
2.z2� z3/

2.z3� z1/
2;

and let ı D�=j�jW C3! S1 be its normalization.
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We say that two configurations x;y2C3 are cooriented if ı.x/Dı.y/. Let P�C3�C3

denote the closed subspace of pairs .x;y/ for which x and y are cooriented and let
N D C3 �C3 nP denote its complement.

The Lie group S1 on C3 by rotations about the origin. Given a configuration x 2 C3

and an element � 2 S1,

ı.� �x/D �6ı.x/:(5)

Let L � C3 consist of those configurations for which all three points are on a line
and let T D C3 nL be its complement. The points in a configuration in T form a
nondegenerate triangle; L� C3 is closed and T � C3 is open.

We define a deformation retraction of L onto the subspace LR containing configura-
tions of three aligned points, one at the origin and two on the unit circle and opposite
to each other. Note that LR is homeomorphic to a circle and is invariant under rotation.
Given a configuration in L, we translate it so that the central point ends up at the origin
and then slide the two outer points along the line which goes through all three points
until they are both at distance 1 from the origin. This defines a deformation retraction
rLW L!LR . The deformation preserves ı , because the direction determined by any
two points in the configuration remains the same throughout the deformation.

Similarly we define a deformation retraction of T onto the subspace TR containing
configurations of three points on the unit circle that form an equilateral triangle. Note
that TR is also homeomorphic to a circle and invariant under rotation. Given a
configuration in T , we translate it until the center of mass coincides with the origin.
Then we slide all three points simultaneously along the lines going through the origin
until the points land in the unit circle. Finally, we rotate the points until they are at
equal distance from each other on the unit circle.

More precisely, let X, Y and Z be a configuration of three points on the unit circle,
appearing in this order clockwise. Consider the lengths of the arcs XY , YZ and ZX.
If the arcs are all of the same length, then we are done. If there is precisely one arc
of minimal length, say XY , then we can slide X and Y at the same speed along the
unit circle, gradually increasing the length of XY and decreasing both YZ and ZX,
until the length of XY becomes equal to at least one of the other two arcs. Therefore,
we may assume that there are exactly two arcs of minimal length. In this case there is
one arc, say YZ , which is strictly longer than the other two arcs. Slide both Y and Z

at the same speed along the unit circle, gradually decreasing the length of YZ and
increasing the lengths of XY and ZX, until all three arcs are equal. See Figure 4.
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X

Y
Z

X

Y

Z

Figure 4: First step (left) and second step (right)

Additionally, we make sure that the above deformation preserves ı.x/ by constantly
rotating the configuration x about the origin during the whole process to compensate for
the potential change of ı.x/. More precisely, let H W T � Œ0; 1�! C3 be the homotopy
described above, with H. � ; 1/ 2 TR , and consider the function xıW T � Œ0; 1�! S1

defined by
xı.x; t/D ı.H.x; t//=ı.x/:

Then xı. � ; 0/W T ! S1 is the constant function 1 and it admits a lift to the universal
covering R! S1, namely the constant function 0. We can then extend this lift to all
positive times, obtaining a map zıW T � Œ0; 1�!R. Now let z�W T � Œ0; 1�!R be given
by

z�.x; t/D 1
6
zı.x; t/

and denote by �W T � Œ0; 1�! S1 its projection onto S1 along the universal covering
map R! S1.

Finally, consider the homotopy H W T � Œ0; 1�! C3 given by

H .x; t/D .�.x; t//�1
�H.x; t/:

Then H is a deformation retraction of T onto TR preserving ı at all times; this
follows easily from the construction and from formula (5).

Write rT DH . � ; 1/W T ! TR .

We are now ready to construct the decomposition into disjoint ENRs as follows:

� E0 D P \ .L�L/.

� E1 DN \ .L�L/tP \ .T �LtL�T /.

� E2 DN \ .T �LtL�T /tP \ .T �T /.

� E3 DN \ .T �T /.

Note that the subspaces Ei are semialgebraic sets and therefore ENRs.
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Furthermore, the disjoint unions above are topological, ie they form disconnected
components inside each Ei . This follows from the fact that the disjoint components
are relatively open inside each Ei . For example, N \.L�L/ and P \.T �L/ are the
intersections of E1 with the open sets N and T �C3 , respectively, and N \ .T �L/

is the intersection of E2 with the open set N \ .T �C3/.

7.2 Local motion planners

We show now that each Ei deformation retracts onto a disjoint union of circles. First
we notice that for A;B 2 fL;T g the intersection N \ .A�B/ can be deformed to
P \ .A�B/. Given a pair .x;y/ 2N \ .A�B/, rotate x clockwise about the origin
until x and y are cooriented. This can be done continuously thanks to formula (5).

The subspaces P \ .L�L/ and P \ .T �T / deformation retract to P \ .LR �LR/

and P \ .TR �TR/, respectively, because the retractions rL and rT commute with ı .

The subspaces P \ .LR �LR/ and P \ .TR �TR/ in turn consist of a disjoint union
of three circles and a disjoint union of two circles, respectively, where each circle is an
orbit under the diagonal action of S1 on C3�C3 . Precisely one orbit in P\.LR�LR/

and one orbit in P \ .TR �TR/ already lie in the diagonal of C3�C3 . The remaining
orbits consist of pairs of lines or pairs of triangles which are at a given angle from
each other

�
�
3

or 2�
3

in the case of lines and �
3

in the case of triangles, to be precise
�
.

See Figures 5 and 6. They can be deformed into the diagonal by rotating the first
configuration in every pair clockwise about the origin until it is equal to the second
configuration in that pair.

Similarly, the space P \ .L�T / can be deformed to P \ .LR �TR/, which consists
of one single orbit under the diagonal S1 –action; see Figure 7. Specifically, it contains
pairs of configurations .x;y/, where the points in y form an equilateral triangle
centered at the origin and the points in x lie on a line parallel to one of the sides of
said triangle and are symmetrically distributed around the origin. We move the point
in y opposite to the side parallel to x to the origin and the other two points in y to the

Figure 5: Path-components of P \ .LR �LR/ (up to rotation)
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Figure 6: Path-components of P \ .TR �TR/ (up to rotation)

corresponding outer points in x . The pair .x;x/ is obviously in the diagonal and so
we are done.

Figure 7: The subset P \ .TR �LR/ (up to rotation)

This completes the proof because the deformation can be defined separately on the
different disconnected components of each Ei .

8 Conclusions

The results in this paper can be viewed equivalently as finding the values for the
topological complexity of either full braid groups of surfaces or unordered configuration
spaces of surfaces, since, for aspherical surfaces S ,

TC.C.S; n//D TC.Bn.S//:

All the results except the ones which rely on finding explicit motion planners (or
equivalently deformations into the diagonal) extend to finite-index subgroups of Bn.S/
with the same proofs. To be precise, the results which generalize to finite-index
subgroups are the ones given in Theorems 1.3, 1.5, 4.1, 4.2 and 5.1.

In particular, those results apply to the pure braid groups Pn.S/ and the mixed braid
groups from [13]. Observe that for aspherical surfaces S the topological complexity
TC.Pn.S// of the pure braid groups of S is the same as the topological complexity
TC.F.S; n// of the ordered configuration spaces of S .

Thus, the methods in this paper yield an alternative proof for some of the results
given by Cohen and Farber in [2], in particular the topological complexity of ordered
configuration spaces for all nonclosed orientable surfaces (for the ordered configuration
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spaces of the disc one can use a slightly modified version of the proof of Theorem 5.3
to find explicit motion planners). Furthermore, it extends their results to all nonclosed
nonorientable surfaces except the Möbius band.

It is worth noting that the results in this paper taken together with the results in [2] are
consistent with the possibility that the topological complexities of the ordered and the
unordered configuration spaces of a surface coincide for all surfaces.

The only remaining aspherical surface for which the gap between the lower bound and
the upper bound for the topological complexity of its unordered configuration spaces is
still arbitrarily large is, perhaps surprisingly, the disc.

If it is in fact true that cd.ŒPn;Pn�/D n� 2, then Theorem 1.3 would imply

TC.C.D; n//� 2n� 3:

If additionally the upper bound for nD 3 given in Theorem 1.6 generalized to higher n,
this would completely determine TC.C.D; n//. We make the following:

Conjecture 8.1 If D is the disc, then

TC.C.D; n//D TC.Bn/D 2n� 3:
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