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Dimensional reduction and the equivariant Chern character

AUGUSTO STOFFEL

We propose a dimensional reduction procedure for 1j1–dimensional supersymmetric
euclidean field theories (EFTs) in the sense of Stolz and Teichner. Our construction
is well suited in the presence of a finite gauge group or, more generally, for field
theories over an orbifold. As an illustration, we give a geometric interpretation of the
Chern character for manifolds with an action by a finite group.

19L10, 19L47, 57R18, 57R56; 55N91, 58C50, 81T60

1 Introduction

In the context of topological quantum field theory (that is, the study of symmetric
monoidal functors d–Bord! Vect and variants thereof), dimensional reduction is the
assignment of a .d�1/–dimensional theory to a d –dimensional theory induced by the
functor of bordism categories S1 � –W .d�1/–Bord! d–Bord. In the Stolz–Teichner
framework of supersymmetric euclidean field theories (EFTs) [24; 23], dimensional
reduction is a more subtle subject, but it can still be implemented and provides geometric
interpretations of classical constructions in algebraic topology. To give the basic
idea, we first recall that 0j1–dimensional EFTs over a manifold X are in bijection,
after passing to concordance classes, with de Rham cohomology classes of X ; see
Hohnhold, Kreck, Stolz and Teichner [15]. On the other hand, superparallel transport —
see Dumitrescu [9] — allows us to associate a field theory EV 2 1j1–EFT.X / to any
vector bundle with connection V 2 Vectr.X /, and a similar statement relating 1j1–
dimensional EFTs and topological K–theory is widely expected. Moreover, there is
a dimensional reduction map red between (groupoids of) field theories over X that
recovers the Chern character, in the sense that the diagram

1j1–EFT.X / red
//

��

0j1–EFT.X /

��

Vectr.X /

E 11

// K0.X /
ch

// H ev.X IC/

commutes; see Dumitrescu [10] and Han [14].
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110 Augusto Stoffel

This paper is part of an ongoing project aiming to identify gauged supersymmetric
field theories as geometric cocycles for equivariant cohomology theories; see Berwick-
Evans [5], Berwick-Evans and Han [7] and Stolz [22]. Our main goal here is to
extend the above dimensional reduction procedure for 1j1–EFTs to the case where the
manifold X is replaced by an orbifold X (or, more generally, any stack on the site SM
of supermanifolds). This will be based on a series of functors between variants of the
euclidean bordism categories over X,

(1) 0j1–EBord.ƒX/ P
 � 0j1–EBordT .ƒX/ Q

�! 0j1–EBordR==Z.ƒX/

R
�! 1j1–EBord.X/:

Dimensional reduction of field theories (or twist functors) will then be realized as the
pull–push operation induced by R, Q and P. The two middle objects in (1), which we
call T – and R==Z–equivariant bordisms, respectively, over the inertia stack ƒX, as
well as the maps involving them, are introduced in Section 3. Here, T DR=Z stands
for the circle group and R==Z is the stack arising from the action of Z on R. These are
of course equivalent as group stacks, and our terminology just intends to indicate which
model for the circle is directly involved in the definition of each bordism category. (The
two equivariant bordism categories also turn out to be equivalent, though this requires
proof; see Theorem 11.) We also remark that R takes values in the substack of closed
bordisms. This allows us to avoid delving into the somewhat long definition of the full
bordism category 1j1–EBord.X/, and focus on the stack K.X/ of closed, connected
bordisms, which we call euclidean supercircles.

As a simple but illustrative application, we specialize to the case where X D X==G

is a global quotient orbifold and give a field-theoretic interpretation of the simplest
instance of orbifold Chern character, namely the one concerning untwisted cohomology
of global quotients; see Baum and Connes [2]. It is possible to extend the map E above
for an orbifold X in place of the manifold X ; since the dimensional reduction only
depends on the values of a field theory on closed bordisms, we will only describe the
partition function ZV of the field theory EV in this paper. That is, we construct a map

ZW Vectr.X/! C1.K.X//

(see Section 4.2). From the discussion of Section 2 it will follow that 0j1–EFTs over the
inertia orbifold ƒX are geometric cocycles for the so-called delocalized cohomology
H ev

G
. yX IC/ — the codomain of the equivariant Chern character chG (see Section 4.1).

Finally, in Section 4.3 we verify that the dimensional reduction of ZV is a representative
of chG.V /.
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Dimensional reduction and the equivariant Chern character 111

Theorem 1 Let X D X==G be the quotient stack arising from the action of a finite
group on a manifold. Then the diagram

C1.K.X//
red
// 0j1–EFT.ƒX/

��
Vectr.X/

Z 00

// K0
G
.X /

chG
// H ev

G
. yX IC/

commutes, and moreover the vertical map induces a bijection after passing to concor-
dance classes of field theories.

Remark 2 In a subsequent paper [21], we construct twists for 1j1–EFTs over X

associated to classes in H 3.X;Z/, using a representing gerbe with connection as input
data, as well as twisted field theories from twisted vector bundles. We also employ
the dimensional reduction procedure given here to relate these twists and twisted field
theories with more general versions of the orbifold Chern character. In particular, when
the twist is trivial, the field theories in question do indeed have Z as partition function.
This allows us to replace C1.K.X// with a suitably defined groupoid 1j1–EFT.X/ of
field theories over X in the above theorem.

While this work was in preparation, closely related preprints by Daniel Berwick-Evans
have appeared [5; 6]. His approach is heavily inspired by ideas from perturbative
quantum field theory, while ours is more geometric, putting group actions on stacks at
the forefront.

1.1 Terminology and background

For an extensive survey of the Stolz–Teichner program, see [24]. The facts more directly
relevant to this paper, regarding 0j1–dimensional field theories, can be found in [15].
Concerning supermanifolds, we generally follow the definitions and conventions of
Deligne and Morgan [8], and in particular we routinely use the functor of points
formalism. The necessary facts about euclidean structures are reviewed in Appendix B.

Vector bundles are always Z=2–graded and over C , and Vectr denotes the stack of
vector bundles with connection. C1 and �� denote the sheaves of complex-valued
functions and differential forms. In the category of supermanifolds, the notions of
principal bundles and connections mimic the usual definitions; see Stavracou [19]. If G

is a super-Lie group with super-Lie algebra g, a principal G –bundle over the base X

is a manifold P with a free G –action and an invariant submersion P !X which is
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locally isomorphic to X �G!X. A connection is a real form ! 2�1.P I g/ of even
parity satisfying the usual conditions (to be G –invariant and coincide with the Maurer–
Cartan form of G on the fibers), and its curvature is d!C 1

2
Œ!; !� 2�2.X;P �ad g/.

More generally, if X ! S is a submersion, then an S –family of differential forms, or
fiberwise form, is a section of some exterior power of Coker.T �S!T �X /. Fiberwise
connections and their curvature are families of forms defined in a similar fashion.

We treat stacks on the site SM of supermanifolds (where a covering is a collection of
jointly surjective local diffeomorphisms) in a geometric way, meaning, for instance,
that most of our diagrams involving manifolds must be interpreted as diagrams in
stacks, where some of the objects happen to be representable sheaves. A differentiable
stack is a stack X that admits an atlas X0! X, or, equivalently, can be presented by
a Lie groupoid X1� X0 . We recommend the appendix of Hohnhold et al [15] for
a short introduction to stacks, and Behrend and Xu [4] as a more detailed reference,
including the stacky perspective on orbifolds and cohomology of orbifolds. The less
standard piece of descent theory needed in this paper concerns group actions on stacks.
We offer a short overview (with further references) in Appendix A, where we also
record a lemma that may be of independent interest (Proposition 18).

If X is a stack, we define its inertia to be the mapping stack

ƒXD FunSM.pt==Z;X/:

More concretely, ƒX is the fibered category whose S –points are given by pairs .x; ˛/
with x 2XS and ˛ an automorphism of x . A morphism .x; ˛/! .x0; ˛0/ is given by
a morphism  W x! x0 in X such that ˛0 ı D ı˛ . The stack pt==Z can be thought
of as a categorical circle, and ƒX is the stack of “hidden loops”, ie those loops that are
not seen by the coarse moduli space of X (see eg Lupercio and Uribe [16] for more
information). Notice that pt==Z is a group object in stacks, and it follows that ƒX is
acted upon by it. Concretely, such an action translates as an automorphism of idƒX ,
namely the natural transformation assigning to .x; ˛/ the automorphism ˛ .
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Dimensional reduction and the equivariant Chern character 113

2 Bordisms and field theories over an orbifold

A d –dimensional topological (quantum) field theory, in the usual definition of Atiyah
and Segal, is a symmetric monoidal functor

E 2 Fun˝.d–Bord;Vect/

between the category of d –dimensional bordisms and the category of vector spaces.
The domain has as objects closed .d�1/–dimensional manifolds and as morphisms
diffeomorphism classes of bordisms between them.

Stolz and Teichner [24] consider a refinement of the above, where each bordism is
equipped with several additional geometric structures: supersymmetry, meaning that a
bordism is now a supermanifold of dimension d jı ; a euclidean structure in the sense of
Appendix B; and finally a smooth map to a fixed manifold X. In order to make sense
of the idea that field theories should depend smoothly on the input data, we are led to
formulate the resulting bordism category d jı–EBord.X / as a (weak) category internal
to symmetric monoidal stacks. This also allows us to keep track of isometries between
bordisms instead of just considering equivalence classes of bordisms modulo isometry.

Once this framework is in place, it is clear how to replace the manifold X by a
“generalized manifold”, or stack, X: an S –family of bordisms in d jı–EBord.X/ is
given by a submersion †! S of codimension d jı with fiberwise euclidean structure,
an object of X† (which, by the Yoneda lemma, corresponds to a map  W †! X in
the realm of generalized manifolds) and lastly some boundary information we will
not detail here (see [21, Section 2.8]). A morphism over f W S 0! S in the stack of
bordisms is determined by a fiberwise isometry F W †0!† covering f (and suitably
compatible with the boundary information) together with a morphism � between objects
of X†0 as indicated in the diagram below:

†0

��

F

''

 0

!!

†

��

 
//

	� �

X

S 0 f

''
S

Finally, euclidean field theories of dimension d jı over X are functors of internal
categories

d jı–EFT.X/D Fun˝SM.d jı–EBord.X/;TV/;
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where TV is an internal version of the category of topological vector spaces. These are
contravariant objects on the variable X, and we call two EFTs E0;E1 2 d jı–EFT.X/
concordant if there exist a field theory E 2 d jı–EFT.X�R/ such that E Š pr�

1
E0

on X� .�1; 0/ and E Š pr�
1

E1 on X� .1;1/.

These observations are the foundation of an equivariant extension of Stolz–Teichner
program. In this paper, we are only interested in the cases d jıD 0j1 or 1j1, so we can
work with simplified definitions, which we discuss in the remainder of this section.

2.1 Dimension 0j1

Since every 0j1–dimensional bordism is closed, a 0j1–EFT is nothing but the assign-
ment of a complex number to each euclidean 0j1–manifold, in a way that is invariant
under isometries and such that disjoint unions map to products. In particular, a 0j1–EFT
is determined by its values on connected bordisms. Thus, we can just define

0j1–EFT.X/D FunSM.B.X/;C/D C1.B.X//;

where B.X/ is some model for the full substack comprising fiberwise connected
bordisms in 0j1–EBord.X/. Concretely, we take it to be

B.X/D…TX== Isom.R0j1/; where …TXD FunSM.R
0j1;X/:

Here, FunSM denotes the groupoid of fibered functors and natural transformations
over SM, while FunSM denotes the mapping stack. Thus, B.X/ is the quotient stack
arising from a group action on a stack; see Appendix A. The notation …TX is motivated
by the fact that when X is a manifold, the internal hom in question is in fact representable
by the parity-reversed tangent bundle.

Theorem 3 For any differentiable stack X, there is a natural bijection

0j1–EFT.X/Š�ev
cl .X/

between 0j1–EFTs over X and closed differential forms of even parity. If X is an
orbifold, passing to concordance classes gives an isomorphism with even de Rham
cohomology,

0j1–EFT.X/=concordanceŠH ev
dR.X/:

Here, �ev
cl .X/ D FunSM.X; �

ev
cl /, where �ev

cl is the sheaf on SM of even, closed
differential forms.
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Proof For X a manifold, this is Theorem 1 in Hohnhold et al [15], and the main
ingredient of the proof is to identify the action of Isom.R0j1/DR0j1ÌZ=2 on …TX. It
turns out that on C1.…TX /D��.X /, Z=2 acts as the mod 2 grading involution, and
the odd vector field generating the R0j1 –action is precisely the de Rham differential.

Now, let X1 � X0 be a groupoid presentation of X. Then …TX1 � …TX0 is a
groupoid presentation of …TX, since both stacks assign a groupoid equivalent to

SM.S �R0j1;X1/� SM.S �R0j1;X0/

to any contractible S. It follows [15, Proposition 7.13] that

C1.…TX/Š lim.��.X0/���.X1//D�
�.X/:

The Isom.R0j1/–action on ��.X/ � ��.X0/ is, again, generated by the de Rham
differential and the Z=2–grading operator.

Now,
0j1–EFT.X/D FunSM.…TX== Isom.R0j1/;C/

can be calculated from Proposition 18, and is given by

lim
�
C1.…TX/� C1.…TX� Isom.R0j1//

�
D��.X/Isom.R0j1/

D�ev
cl .X/:

By the Stokes theorem, forms in �ev
cl .X0/ are concordant if and only if they are

cohomologous. The same type of argument shows that concordance through closed, X1 –
invariant forms is the same relation as being cohomologous in the chain complex ��.X/.
Thus,

0j1–EFT.X/=concordanceŠH ev.��.X/; d/:

For orbifolds, the right-hand side can be taken as the definition of de Rham cohomology
[3, Corollary 25].

Remark 4 Differential forms and cohomology classes of odd degree are similarly
related to field theories twisted by the basic twist T1 of [15, Definition 6.2]. This
statement is proven similarly, using, as in [15], the fact that sections of T1 correspond
to closed, odd differential forms (see also [21, Section 2], where more general twists
are considered).

2.2 Dimension 1j1

In order to construct the functor of internal categories R of diagram (1), all details
about the stack of objects of 1j1–EBord.X/ and nonclosed bordisms are entirely
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irrelevant; this is, again, due to the fact that the domain of R has trivial object stack.
Thus, it suffices to work with the moduli stack of closed and connected bordisms in
1j1–EBord.X/, which we will also call the stack of euclidean supercircles over X and
denote by K.X/.

The moduli stack K.X/ of euclidean supercircles over X is defined as follows. An object
.K;  / of K.X/ over S is given by an S –family K of closed, connected euclidean
1j1–manifolds together with a map  W K!X. A morphism .K0;  0/! .K;  / over
a map f W S 0! S is given by a fiberwise isometry F W K0!K covering f together
with a 2–morphism  0! ıF ; compositions are performed in the obvious way. The
data of a morphism can be summarized by the following diagram:

K0

��

F

%%

 0

  

K

��

 
//

	� �

X

S 0
f

%%
S

Remark 5 A complete definition of the bordism category 1j1–EBord.X/ is given
in [21]. It is easy to see that K.X/, as given here, is indeed the substack of closed and
connected bordisms there. Alternatively, the reader may prefer to think of the present
description of K.X/ as being sufficiently reasonable, and thus a sanity check for the
more general construction.

A detailed study of the stack KD K.pt/ is given in Section B.2. Examples of (families
of) supercircles can be obtained by choosing a “length” parameter l W S !R1j1

>0
, and

then letting

Kl D .S �R1j1/=Zl

be given by the orbit space of the translation by l . Proposition 23 shows that, at least
locally in S, every supercircle is of this form (but not canonically). Moreover, any
morphism Kl 0!Kl is determined by a smooth map S 0!R1j1ÌZ=2, which fixes a
certain relation between l 0 and l ; see Section B.2 for more details.

In order to define the functor R in Section 3.1, we will use an alternative method to
construct supercircles, provided by the following theorem:

Algebraic & Geometric Topology, Volume 19 (2019)
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Theorem 6 Let †! S be an S –family of euclidean 0j1–manifolds and P !† a
principal T –bundle. Then a fiberwise (in S ) connection form ! on P whose curva-
ture agrees with the tautological 2–form � on † canonically determines a euclidean
structure on P. Isometries of P correspond bijectively to connection-preserving bundle
maps covering an isometry of †.

This is just a restatement of Theorem 25, proven at the end of the paper.

Remark 7 To see why the data of ! is essential here, notice that the short exact
sequence of super-Lie groups

1!R!R1j1
!R0j1

! 1

is not split. As a consequence, the cartesian product of euclidean manifolds of di-
mensions 1 and 0j1 is not endowed with a canonical euclidean structure. This makes
dimensional reduction in our setting quite subtle, since “crossing with S1 ” is not a
well-defined operation in the euclidean category, and therefore there is no direct functor
S1 � –W 0j1–EBord! 1j1–EBord.

Finally, we remark that every 1j1–EFT over X determines a smooth function on K.X/,
the partition function of the theory. Again, this is an immediate consequence of the fact
that the empty manifold, being the monoidal unit in the bordism category, is required
to map to the vector space C .

3 Dimensional reduction

The upshot of Section 2 is that it suffices to discuss the functors (1) of internal categories
in terms of the corresponding substacks of (fiberwise) closed and connected families
of bordisms; we reserve the term moduli stack for these objects. We have already
discussed B.X/ and K.X/ in Section 2. The two middle moduli stacks, as well as the
maps

B.ƒX/
P
 �BT .ƒX/

Q
�!BR==Z.ƒX/

R
�! K.X/

relating them, will be defined in the ensuing subsections. We will refer to the two
middle stacks as the T –equivariant and R==Z–equivariant moduli stacks of euclidean
0j1–manifolds over ƒX.

The lack of a direct map from left to right in the above span of moduli stacks is due to
a subtlety of supereuclidean geometry: if † is a euclidean 0j1–manifold, the product

Algebraic & Geometric Topology, Volume 19 (2019)



118 Augusto Stoffel

S1 �† does not come with a canonical euclidean structure; to choose one essentially
amounts to the choice of preimage along P (see Theorem 6 and Remark 7). This is
not a serious issue for us, since P induces a bijection between the set of functions on
each moduli stack (or, equivalently, between field theories based on each variant of the
bordism category; see Proposition 10).

Following the physical (and, by now, mathematical) jargon, restriction of 1j1–EFTs
(or just functions on K.X/) to 0j1–EFTs via the above maps of bordism stacks will
be referred to as dimensional reduction. Our motivation for doing this is that the
stack K.X/ of euclidean supercircles over X is “infinite-dimensional”, and therefore
unwieldy to analysis; dimensional reduction allows us to probe its geometry by means
of 0j1–dimensional gadgets over X.

To further motivate our dimensional reduction procedure, note that Q is an equivalence
of stacks (Theorem 11), even though its inverse does not admit a nice geometric
description. Thus, BT .ƒX/ and BR==Z.ƒX/ can be seen as different presentations of
the same entity; the former presentation has a direct relationship with B.ƒX/, while
the latter leads us to a suitable definition of a map to K.X/.

Remark 8 To understand the relevance of R==Z–actions for dimensional reduction,
we can consider a naive replacement for the composition RıQ: instead of performing
the descent constructions of Section 3.3, we could simply perform a pullback along
P !†. Then it is easy to see that, with these modifications, Theorem 1 would recover
the naive Chern character

K0
G.X /

˛
�!K0.EG �G X /

ch
�!H ev.EG �G X /DH ev

G .X /

(or, more precisely, its pullback to yX, as defined in (6)). Here, the map ˛ is given, at
the level of vector bundles, by the homotopy quotient construction. Thus, as explained
at the end of Section 4.1, this alternative construction forgets too much information.

At the end of this section, to illustrate the ideas, we specialize these constructions to
the case where XDX==G is a global quotient by a finite group.

3.1 The R==Z–equivariant moduli stack and the map R

We define a stack BR==Z.ƒX/ where an object over S is given by the following data:

(1) a family †! S of connected euclidean 0j1–manifolds;

(2) a principal T –bundle P !† with a fiberwise connection ! whose curvature
agrees with the tautological (fiberwise) 2–form � on † (see Appendix B); and
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(3) an R==Z–equivariant map  W P!ƒX with equivariance datum � , where R==Z

acts on P and ƒX via the usual homomorphisms R==Z!T and R==Z!pt==Z,
respectively.

(Recall that R==Z–equivariance is not just a condition on  , but rather extra data
encoded by the 2–morphism � ; see Appendix A). We will usually denote this object
by .†;P;  ; �/ or, diagrammatically,

P
 

R==Z
//

��

ƒX

†

A morphism .†0;P 0;  0; �0/! .†;P;  ; �/ covering a map of supermanifolds S 0!S

is given by

(1) a fiberwise isometry F W †0!† covering S 0! S,

(2) a connection-preserving bundle map ˆW P 0! P covering F, and

(3) an equivariant 2–morphism �W  0!  ıˆ.

Compositions are performed as suggested by the geometry.

Now we discuss the map RW BR==Z.ƒX/! K.X/. An object .†;P;  ; �/ over S is
mapped to the supercircle over X consisting of

(1) the family of 1j1–dimensional manifolds P endowed with the fiberwise eu-
clidean structure determined by ! (see Theorem 6), and

(2) the map P ! X obtained by composing  with the forgetful map ƒX! X.

Notice that this construction forgets the T –action on P as well as the equivariance
datum � . To define R at the level of morphisms, recall, again by Theorem 6, that a
connection-preserving bundle map P 0! P covering a fiberwise isometry †0!† is
a fiberwise (over S ) isometry with respect to the euclidean structures on P 0 and P.

3.2 The T –equivariant moduli stack and the map P

For any stack X, we define BT .X/ to be the stack whose S –points are given by an
S –family of connected euclidean 0j1–manifolds †! S together with two pieces of
data:

(1) a principal T –bundle P !† with a fiberwise connection ! whose curvature
agrees with the tautological 2–form � on †, and

(2) a map  W †! X.
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Morphisms between two objects .†0;P 0;  0/ and .†;P;  / over f W S 0! S consist
of a fiberwise isometry F W †0 ! † covering f , a connection-preserving bundle
map ˆW P 0! P covering F and a 2–morphism �W  0!  ıF. Compositions are
performed as suggested by the geometry.

The data (1) and (2) above are completely unrelated in the sense that

BT .X/ŠBT
�BB.X/;

and our map PW BT .X/!B.X/ is simply the projection onto the second component.
Our interest in BT .X/ is due to the fact that it admits a straightforward quotient stack
presentation. Write T1j1 DR1j1=Z for the (length 1) supercircle group.

Proposition 9 There is an equivalence of stacks

…TX== Isom.T1j1/!BT .X/;

where the action of Isom.T1j1/ on …TX is through the quotient

� W Isom.T1j1/D T1j1 ÌZ=2!R0j1 ÌZ=2D Isom.R0j1/:

Proof For X D pt, this follows from (the proof of) Theorem 25. Therefore, in the
general case we have

BT .X/Š…TX== Isom.R0j1/�pt== Isom.R0j1/ pt== Isom.T1j1/

and the result follows from Proposition 19.

Proposition 10 For any sheaf F, the map PW BT .X/!B.X/ induces a bijection

FunSM.B.X/;F/! FunSM.B
T .X/;F/:

Proof Under the identification of the previous proposition, PW BT .X/ ! B.X/

becomes the natural map

…TX== Isom.T1j1/!…TX== Isom.R0j1/

induced by the surjection

� W Isom.T1j1/! Isom.R0j1/:

Thus, Proposition 18 identifies the set FunSM.B.X/;F/ with the subset of Isom.R0j1/–
invariants in FunSM.…TX;F/, and similarly for FunSM.B

T .X/;F/. This proves the
claim.
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Dimensional reduction and the equivariant Chern character 121

Taking FDC , we get a bijection between 0j1–EFT.X/ and C1.BT .X//. This shows
that the last step of our dimensional reduction procedure, pushing forward along P, is
well defined.

3.3 The map QW BT .ƒX/ ! BR==Z.ƒX/

We denote by ˛ the canonical automorphism of the identity of ƒX. It suffices to
describe the restriction of the desired map QW BT .ƒX/! BR==Z.ƒX/ to the full
prestack of objects where all bundles involved are trivial. To .†;P;  / 2BT .ƒX/S
with

†D S �R0j1; P D S �T1j1;  W †!ƒX;

and the standard euclidean structure and connection form, we want to assign an object
.†;P;  !W P!ƒX; �/2BR==Z.X/S . Consider the covering U DS�R1j1!P. Our
goal is to descend z W U !ƒX, the pullback of  via U !†, to a map  !W P!ƒX:

U //

z 
''

P //

 !

88
†

 
// ƒX

In order to do that, we need to provide certain isomorphisms over double overlaps and
then check a coherence condition on triple overlaps. Denote by pr1; pr2W U �P U �U

the projections. Then we are looking for a 2–morphism z̨W z ı pr1!
z ı pr2 (whose

domain and codomain happen to be the same map, henceforth denoted by  ıpr). Note
that U �P U breaks up as a disjoint union indexed by Z, where the nth component
comprises pairs of the form .x; n �x/. On that component, we set z̨ to be the horizontal
composition (whiskering)

z̨ D ˛n
ı . ı pr/:

Regarding the coherence condition, we need to check that

(2) pr�13 z̨ D pr�23 z̨ ı pr�12 z̨;

where prij denotes the projection U �P U �P U !U �p U forgetting the third index.
The threefold fiber product breaks up as a disjoint union indexed by Z�Z, where the
component .n;m/ and its image through the prij are as follows:

.x; n �x; .nCm/ �x/*
pr12

uu

_
pr13
��

� pr23

**

.x; n �x/ .x; .nCm/ �x/ .n �x; .nCm/ �x/
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Therefore, on that component,

pr�23 z̨ D ˛
m
ı . ı pr/; pr�12 z̨ D ˛

n
ı . ı pr/; pr�13 z̨ D ˛

nCm
ı . ı pr/;

and their vertical compositions are as required by (2). We thus obtain the desired
 !W P !ƒX.

Next, we need to provide the R==Z–equivariance datum � for  ! . To analyze the
putative square

(3)

P �R==Z

 !�id
��

�
// P

 !
��

ƒX�R==Z //

�

4<

ƒX

we notice that, after a suitable base change, any S –point of P �R==Z can be pulled
back from the atlas i0W P �R! P �R==Z, or, for that matter, from any of the atlases
inW .p; t/ 7! i0.p; t C n/, where n 2 Z; moreover, any morphism of S –points can
be pulled back from mW in ! inCm . Thus, we can extract all information encoded
by � by evaluating the above diagram on each in and m. The top-right composition
factors through P �T, so every in maps to the same �� ! 2ƒXP�R , and m maps to
the identity. The left-bottom composition factors through ƒX� pt==Z, so, for any n,
in maps to pr�

1
 ! 2ƒXP�R , and mW in! inCm maps to pr�

1
˛mW pr�

1
 !!pr�

1
 ! . For

each in , the fibered natural transformation � should give a morphism �.in/W pr�
1
 !!

�� ! fitting in the diagram below:

pr�
1
 !

pr�
1
˛m

��

�.in/
// �� !

pr�
1
 !

�.inCm/
// �� !

This means � is completely specified by �.i0/, and naturality imposes no further
restrictions on the latter. To provide �.i0/, it suffices to give a morphism pr�

1
z !�� z ,

where the latter is the composition

U �R! P �R
�
�! P !†

 
�!ƒX;

satisfying appropriate coherence conditions on U �P U �R. Since �� z D pr1
z , we

can take that to be the identity. One can check that � satisfies the coherence conditions
required of the equivariance datum.
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The effect of BT .ƒX/!BR==Z.ƒX/ on morphisms is also given by descent. Given
a morphism in BT .ƒX/

P

��

ˆ
// P 0

��
ƒX

†
F
//

 
++

†0  0

;;�� �

where †0 D S 0�R0j1 , P 0 D S 0�T1j1 are also trivial families, consider the fiberwise
universal cover U 0 D S �R1j1! P 0 and choose a lift ẑ W U ! U 0. We can then lift
 ,  0 and � by composing and whiskering, respectively, with U !† or U 0!†0 :

U
ẑ

//

z ��

U 0

z 0��

ƒX

z� +3

and descend z� to a morphism �!W  !!ˆ� 0
!
. To justify that, we need to show that on

the nth component of U �P U the diagram

pr�
1
z 

pr�
1
z�
//

˛n

��

pr�
1
. z 0 ı ẑ /

˛n

��

pr�
2
z 

pr�
2
z�
// pr�

2
. z 0 ı ẑ /

commutes. (To be precise, ˛n above stands, respectively, for ˛n ı . ı pr/, the gluing
isomorphism used to build  ! , and its counterpart for ˆ� 0

!
.) This follows immediately

from the compatibility condition between � and ˛ , namely � ı˛ D ˛ˆ� 0 ı � . The
morphism �! thus obtained is independent of the choice of lift ẑ , since it only depends
on the composition z 0 ı ẑ . We omit the verification that �! is compatible with the
equivariance data.

Finally, we assign to the morphism in BT .ƒX/ prescribed by the data .F; ˆ; �/ the
morphism in BR==Z.ƒX/ prescribed by the data .F; ˆ; �!/. That this assignment
respects compositions follows from uniqueness for descent of morphisms.

This finishes the construction of Q. The next result is not used directly in the remainder
of the paper, and is rather meant as a motivation for introducing the stacks BT .ƒX/

and BR==Z.ƒX/, which turn out to be just different presentations of the same object.
In fact, they are presentations adapted to establishing a relationship with B.ƒX/

and K.X/, respectively, as witnessed by the relatively easy definition of the maps P
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and R above. Note also that the proof of Theorem 11 is indirect, and does not explicitly
provide an inverse to Q; thus, it does not seem possible to simplify our presentation of
the dimensional reduction procedure by removing any mention of BT .ƒX/.

Theorem 11 The fibered functor QW BT .ƒX/!BR==Z.ƒX/ is an equivalence.

Proof At the morphism level, the effect of the functor in question was described
in two steps: � 7! z� 7! �! . This is a one-to-one procedure because the first step is
injective (since U ! † has local sections) and the second step (descent) is in fact
bijective. Thus, it remains to show that the fibered functor BT .ƒX/!BR==Z.ƒX/

is full and essentially surjective. In order to do that, we will build a prestack Btriv and
a factorization

(4)

Btriv

v

||

u

$$

BT .ƒX/
Q

// BR==Z.ƒX/

where u is full and essentially surjective on the groupoid of S –point for any con-
tractible S.

The prestack Btriv is defined as follows:

(1) an object consists of an object .†;P;  ; �/2BR==Z.ƒX/ together with a section
sW †! P, and

(2) a morphism .†0;P 0;  0; �0; s0/! .†;P;  ; �; s/ is a pair consisting of a mor-
phism .F; ˆ; �/ of the underlying objects in BR==Z.X/ together with a map
r W †0!R relating s and s0 in the sense that ˆ ı s0 D .s ıF /e2�ir .

With a little poetic license, a morphism can be depicted as follows (the square con-
taining r would literally make sense, as a 2–commutative diagram, if we replaced P

with P==R):

(5)

P 0

��

ˆ

%%

 0

!!

P

��

 
//

�� �

ƒX

†0
F

%%

s0

OO

r
5=

†

s

OO

Algebraic & Geometric Topology, Volume 19 (2019)



Dimensional reduction and the equivariant Chern character 125

We define uW Btriv!BR==Z.ƒX/ to be the forgetful functor, which simply discards s

and r , so it is clearly full and essentially surjective over contractible S, as claimed.

Next, we construct vW Btriv!BT .ƒX/. To an object .†;P;  ; �; s/2Btriv , we assign
the object .†;P; s� / in BT .ƒX/. Now fix a morphism as in (5). To define its image
in BT .ƒX/, the only new data we need to provide is a morphism .s0/� 0! .sıF /� ,
which we take to be the composition

.s0/� 0
.s0/��
���! .s0/�ˆ� Š .ˆ ı s0/� D ..s ıF /e2�ir /� 

��1
sıF;r
���! .s ıF /� :

We omit the verification of functoriality.

To finish the proof, we just need to show that (4) commutes (up to 2–isomorphism).
It suffices to look at .†;P;  ; �; s/ 2Btriv where P and † are trivial families, and
pick s to be the unit section; our goal is to produce an isomorphism between .s� /!
and  , natural in the input data .†;P;  ; �; s/ and compatible with the respective
equivariance data. From the discussion leading to the construction of the � in (3),
we see that the data of the present (arbitrarily given) � is essentially an isomorphism
�0W pr�

1
 !�� in ƒXP�R . Now, let �� be the pullback through � W U !P and

recall that es� is the U –point of ƒX used to put together .s� /! . Note that each
half of the diagram

U D†�R
s�id

//

gs� 
&&

�� 

88
P �R

pr1
//

�
// P

 
// ƒX

commutes, so �0 gives a morphism es� ! �� and, by descent, a morphism
.s� /!!  . We omit the naturality and compatibility checks.

3.4 Global quotients

Let us illustrate the above constructions when X D X==G is the quotient orbifold
associated to the action of a finite group G on a manifold X.

We start noticing that a quotient stack presentation for ƒ.X==G/ can be given as
follows. Consider the product X �G with diagonal G –action, where G acts on itself
by conjugation. There is an invariant submanifold

(6) yX D f.x;g/ 2X �G j x 2X g
g;
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and an object over S in the quotient stack yX==G consists of a pair .Q; .f;A//, where
Q! S is a principal G–bundle and .f;A/W Q! yX � X �G is a G–equivariant
smooth map. Denote by ˛W Q!Q the bundle automorphism determined by A; on
T –points, it is given by

˛.q/D qA.q/; q 2QT :

Notice that this automorphism preserves f , and therefore .Q; f; ˛/ determines an
S –point of ƒ.X==G/. Conversely, given an S –point .Q; f; ˛/ of ƒ.X==G/, we can
specify a G –equivariant map AW Q!G by requiring that the above equation holds,
and compatibility between f and ˛ implies that the resulting map .f;A/W Q!X �G

factors through yX, thus determining an object of yX==G over S.

The translation back and forth between A and ˛ provides a pt==Z–equivariant equiv-
alence between ƒ.X==G/ and yX==G, compatible with the maps ƒ.X==G/! X==G

forgetting the prescribed automorphism and yX==G! X==G induced the projection
pr1W X �G!X. We will shift freely between these two formulations.

The geometric content of an S –family in BR==Z. yX==G/ is the following:

(1) a family †! S of connected euclidean 0j1–manifolds;

(2) a principal T –bundle P !† with a fiberwise connection ! whose curvature
agrees with the tautological 2–form on †;

(3) a principal G –bundle Q! P ;

(4) a G–equivariant map .f;A/W Q ! yX � X � G , or, equivalently, a bundle
automorphism ˛W Q ! Q and a G–equivariant map f W Q ! X such that
f ı˛ D f ; and, finally,

(5) a collection of natural isomorphisms of G –torsors

�p;t W Qp!Qpe2�i t

for each pair of T –points pW T ! P, t W T !R, intertwining the maps

fpW Qp!X; fpe2�i t W Qpe2�i t !X

and subject to the condition that for any nW T ! Z the diagram

(7)

Qp

˛n
p
��

�p;t
// Qpe2�i t

Qp

�p;tCn
// Qpe2�i.tCn/

commutes.
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The last condition means that ˛ agrees with the holonomy of Q around the fibers
of P. A morphism in BR==Z. yX==G/ is given by a fiberwise isometry F W †0!†, a
connection-preserving bundle map ˆW P 0!P covering F and a bundle map Q0!Q

covering ˆ which is required to be compatible in the obvious way with the data in (4)
and (5) above.

The geometric content of an S –family in BT . yX==G/ is the following:

(1) a family †! S of connected euclidean 0j1–manifolds,

(2) a principal T –bundle P !† with a connection ! whose curvature agrees with
the tautological 2–form on †,

(3) a principal G –bundle Q!†, and

(4) a G –equivariant map f W Q! yX.

A morphism
.†0;P 0;Q0; f 0/! .†;P;Q; f /

consists of a fiberwise isometry F W †0 ! †, a connection-preserving bundle map
ˆW P 0! P covering F and a bundle map Q0!Q covering F and intertwining the
maps f W Q! yX and f 0W Q0! yX. From Proposition 9, it follows that BT . yX==G/

admits the presentation

.…T . yX==G//== Isom.T1j1/Š…T yX==.Isom.T1j1/�G/:

Finally, let us describe the map Q relating the T –equivariant and R==Z–equivariant
moduli stacks of euclidean 0j1–manifolds in this special situation. Fix .†;P;Q; f / 2
BT . yX==G/S and let .†;P;Q!; f!; �/ 2B

R==Z. yX==G/S be its image. Locally in S,
f determines a conjugacy class of G and Q!!P is the G –bundle with that holonomy
around the fibers of P !†. More specifically, let us assume P and Q are trivial; if
S is connected, then f determines an element g 2G, namely the one corresponding
to the connected component of yX D

F
g2G X g in which f j†�feg takes values. Then

Q!! P is the G –bundle built as a quotient

Q! D .†�R�G/=Z! P D†�T ;

where the Z–action is generated by the diffeomorphism prescribed, on T –points, by
.s; t; h/ 7! .s; t C 1;gh/. The map f!W Q!!

yX is induced by the Z–invariant map
.s; t; h/ 7! f .s; e/ � h. The automorphism of Q! determined by the G–component
of f! can be expressed as .s; t; h/ 7! .s; t;gh/.
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4 The Chern character for global quotients

In this section, we show how to recover, in terms of dimensional reduction of field
theories, the delocalized Chern character of Baum and Connes [2] (and, before them,
Słomińska [18]), concerning the case of a finite group G acting on a manifold X.

We start by briefly recalling the classical construction of chG in Section 4.1. On the field
theory side, we can associate to each vector bundle with connection V on an orbifold X

a field theory EV 2 1j1–EFT.X/. For the sake of brevity, we will only describe, in
Section 4.2, the partition function of this theory, denoted by ZV 2C1.K.X//. Finally,
in Section 4.3 we prove Theorem 1.

4.1 The Baum–Connes Chern character

As before, we write yX D f.x;g/ 2 X �G j xg D xg D
F

g2G X g . The equivariant
Chern character is a ring homomorphism

(8) chG W K
i
G.X /!H i

G.
yX IC/Š

�M
g2G

H i.X g
IC/

�G

:

Here, i 2Z=2 and ordinary cohomology is Z=2–graded. We recall that the equivariant
ordinary cohomology of yX with coefficients in C can be identified with the invariants
in its nonequivariant cohomology; this can be deduced from the Serre spectral sequence
for the fibration EG�G X !BG using the fact that the integral reduced cohomology
of a finite group is torsion.

For each g 2 G, we define the homomorphism chgW K
i
G
.X /! H i.X gIC/ as the

composition

Ki
G.X /!Ki

hgi.X
g/ŠKi.X g/˝R.hgi/

ch˝trg
���!H i.X g

IQ/˝Q C:

(The middle isomorphism is due to the fact that the action of the cyclic group hgi
generated by g on X g is trivial; ch denotes the usual, nonequivariant Chern character;
and trg assigns to any representation of hgi the trace of the operator g .) Finally, we
let chG W K

i
G
.X /!H i

G
. yX IC/ be the direct sum of all chg via the identification (8).

Concretely, the effect of chg on the K–theory class represented by a G–equivariant
vector bundle V !X is the following. For each x 2X g , the fiber Vx is a represen-
tation of the cyclic group generated by g . Let �1; : : : �r be distinct eigenvalues and
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V 1
x ; : : : ;V

r
x the corresponding eigenspaces. Each �i is a jgj–root of unity, so V jX g

can be written as direct sum of vector bundles

V jX g D V 1
˚ � � �˚V r :

Then
chg.V /D

X
�i ch.V i/ 2H ev.X g

IC/

and

(9) chG.V /D
M
g2G

chg.V / 2

�M
g2G

H ev.X g
IC/

�G

:

This is the correct equivariant extension of the Chern character in the sense that, for
compact X, chG induces an isomorphism after tensoring with C . Note that, in light
of the Atiyah–Segal completion theorem [1], the so-called delocalized cohomology
ring H�

G
. yX IC/ is a stronger invariant than ordinary equivariant cohomology of X.

For instance, taking X D pt, chG provides an identification between the complexified
representation ring K0

G
.pt/˝C and the ring of characters of G. On the other hand,

zH�
G
.ptIC/D 0.

4.2 Parallel transport and field theories

Let X be a stack on SM and V W X!Vectr a vector bundle with connection. (If X is
representable by a manifold, then, by the Yoneda lemma, a fibered functor X!Vectr is
just a vector bundle with connection on X. In general, V provides a natural assignment,
to each S –point xW S ! X, of a vector bundle with connection Vx on S.) Then we
would like to construct a field theory EV 2 1j1–EFT.X/ using parallel transport along
superpaths in X. Roughly speaking, this EFT assigns to a superpoint xW spt! X the
fiber Vx , and to a bordism between those the superparallel transport map constructed
by Dumitrescu [9]. It is then part of the conjecture of Stolz and Teichner on the
relation between 1j1–EFTs and K–theory that, for reasonable X, the field theory
above corresponds to the K–theory class represented by V .

A construction of the field theory EV necessitates a longer discussion on the bordism
category 1j1–EBord.X/, and, for X an orbifold, is given in a subsequent paper [21]. In
any case, we are presently only interested in its partition function, that is, the function
ZV 2 C1.K.X// obtained by restricting EV to closed, connected bordisms. (Note
that the reduced field theory red.EV / relevant for Theorem 1 only depends on ZV .)
The partition function admits a straightforward description independent of the details
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of the construction of the full EFT; the goal of this subsection is to provide a detailed
construction of the functor

V 2 Vectr.X/ 7!ZV 2 C1.K.X//:

We start recalling Dumitrescu’s superversion of parallel transport, modified to better
fit our conventions and perspective. Fix, as above, a vector bundle with connection
V W X! Vectr and a map  W S �R1j1! X, which we think of as an S –family of
superpaths. Fix also sections a; bW S ! S �R1j1 , which we think of as specifying
endpoints of the superinterval Œa; b�� S �R1j1 . The composition

S �R1j1  
�! X V

�! Vectr

determines a vector bundle V over S �R1j1 with connection

rW C1.S �R1j1
IV /!�1.S �R1j1

IV /:

Further restricting via a and b gives us vector bundles V .a/ and V .b/ over S. Now,
we define a section s of V to be parallel if rDs D 0. (Here, as in Appendix B,
D D @� � �@t is the standard left-invariant vector field on R1j1 . Since D2 D �@t ,
this can be though of as a “half-order” differential equation.) It can be shown —
see [9, Proposition 3.1] — that any section sa of V .a/ determines a unique parallel
section s of V . Parallel transport is then the linear map

SP. ; a; b/W V .a/! V .b/

obtained by restricting to V .b/ the parallel section with given value on V .a/ .

The main properties of superparallel transport are established in [9, Theorem 3.5]. We
recall them here for the convenience of the reader.

(SP1) If a map F W S 0 �R1j1! S �R1j1 covering f W S 0! S is conformal, that is,
preserves the distribution generated by D, and, moreover, F.a0/D a ıf and
F.b0/D b ıf , then

SP.F� ; a0; b0/D f �SP. ; a; b/:

(SP2) Given a; b; cW S !R1j1 , we have

SP. ; a; c/D SP. ; b; c/ ıSP. ; a; b/:

Property (SP1) encapsulates both the fact that parallel transport depends smoothly on
the input data  , a and b , and that it is invariant under conformal reparametrization of
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superpaths (and in particular under the euclidean reparametrizations we are concerned
with in this paper). Note that it is not invariant under arbitrary reparametrizations.
Property (SP2) is the expected compatibility with gluing of superintervals.

Remark 12 Dumitrescu describes parallel transport with respect to both D and its
right-invariant counterpart @�C�@t , emphasizing the latter [9, Remark 3.3]. Because of
the way we set up supereuclidean structures, we must work with D–parallel transport.
This leads to different sign conventions, for instance in the proof of Proposition 16.
The second half of Dumitrescu’s paper is concerned with the more subtle notion of a
parallel transport operation for Quillen superconnections; we will not deal with this
case here.

We now return to our task of constructing, out of V 2 Vectr.X/, a function ZV

on K.X/. The idea is to associate, to each S –point .K;  W K ! X/ of K.X/, the
supertrace of the holonomy along K . To make this precise, note that, by Proposition 23,
it suffices to restrict to K of the form Kl D .S �R1j1/=Zl for some length parameter
l W S!R1j1

>0
. With a slight abuse of notation, we still write  for the induced periodic

map S �R1j1! X, so that V .0/ D V .l/ . Finally, we set

(10) ZV .Kl ;  /D str.SP. ; 0; l// 2 C1.S/:

Proposition 13 For any morphism F W .Kl 0 ;  
0/ ! .Kl ;  / covering f W S 0 ! S

in K.X/, we have ZV .Kl 0 ;  
0/ D f �ZV .Kl ;  /. Therefore, (10) indeed defines a

function ZV 2 C1.K.X//.

Proof Again by Proposition 23, any isometry F W Kl 0 ! Kl lifts to a fiberwise
isometry zF W S 0 � R1j1 ! S � R1j1 over the same f W S 0 ! S. If zF .0/ D 0 and
zF .l 0/D l , then the proposition follows immediately from (SP1). Thus, replacing Kl

by its pullback to S 0 if needed, we may assume that S 0 D S and f is the identity.

Now, zF is determined by a map S 0!Z=2ËR1j1 ; simple calculations, done separately
for the case of flips and translations, show that SP. ; 0; zF .0//D SP. ; l; zF .l 0//. Thus,
using (SP2) and the vanishing of supertrace on commutators,

ZV .Kl ;  /D str
�
SP. ; zF .0/; l/ ıSP. ; 0; zF .0//

�
D str

�
SP. ; 0; zF .0// ıSP. ; zF .0/; l/

�
D str

�
SP. ; l; zF .l 0// ıSP. ; zF .0/; l/

�
D str

�
SP. ; zF .0/; zF .l 0//

�
:
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Finally, using (SP1), we get

ZV .Kl 0 ;  
0/DZV .Kl 0 ;F

� /D str
�
SP. ; zF .0/; zF .l 0//

�
DZV .Kl ;  /;

which finishes the proof.

The construction of ZV is clearly natural in V , and thus defines a functor

ZW Vectr.X/! C1.K.X//:

4.3 Proof of Theorem 1

As before, fix V W X==G! Vectr . This map classifies a G –equivariant vector bundle
over X, which we still call V , with a G–invariant connection r . To get started, we
need to describe the pullback of V to a supercircle over X==G.

Proposition 14 Fix a supercircle  W K ! X==G and denote by � W Q ! K and
f W Q! X the principal G–bundle and G–equivariant map classified by  . Then
there is a natural connection-preserving isomorphism of vector bundles

.f �V /=G //

��

 �V

��

Q=G K

Proof Consider the diagram

Q�K Q
//
// Q

f
//

�
��

X

x
��

K
 
// X==G

V
// Vectr

Here, xW X ! X==G is the standard atlas and hence V ı x classifies the vector
bundle with connection V ! X. Notice that the square 2–commutes. In fact, the
top-right composition Q!X==G classifies the trivial G –bundle Q�G!Q, while
the left-bottom composition classifies the G–bundle ��Q! Q (together with the
corresponding equivariant maps into X induced by f ), and these two Q–points
of X==G are isomorphic.

Now, the composition V ıx ıf classifies the vector bundle f �V !Q, and the G –
equivariance information provides descent data for the covering Q�K QŠQ�G�
Q! K . The descended vector bundle with connection can be described explicitly
as .f �V /=G!K . Thus, 2–commutativity of the square above and the uniqueness
property of descent provide a canonical isomorphism  �V Š .f �V /=G.
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Our goal now is to identify red.ZV / 2 C1.B. yX==G//, the dimensional reduction of
ZV 2C1.K.X//, with a (G –invariant, even, closed) differential form on yX, following
the identifications of Theorem 3. To do so, we need to consider the versal …T yX –family
†versal 2B. yX==G/,

(11)
…T yX �R0j1 ev //

��

yX yx // yX==G

…T yX

and calculate the smooth function on the parameter manifold …T yX assigned to it via
red.ZV /. Here, yx denotes the usual atlas.

Proposition 15 In C1.…T yX / we have the identity

red.ZV /.†versal/DZV .K;Q; f /;

where .K;Q; f / 2 K.X/ is as defined below.

Proof This is an exercise in chasing through the definition of dimensional reduc-
tion. The first step is to pick a preimage of †versal via P. Such a preimage is
obtained by adding to (11) the trivial principal T –bundle with standard connection over
…T yX �R0j1 . The second step is to map that gadget to BR==Z. yX==G/ via Q. From
the considerations at the end of Section 3.4, it follows that the resulting …T yX –family,
once restricted to …TX g �…T yX, comprises the following data:

(1) the family of euclidean 0j1–manifolds †D…TX g �R0j1!…TX g ;

(2) the trivial T –bundle PgD…TX g�R0j1�T!†, with the standard connection
form ! D dt � � d� ;

(3) the principal G–bundle Qg D .…TX g �R1j1 �G/=Z! Pg , where the Z–
action is generated by the map described on S –points by

.x; t; h/ 2 .…TX g
�R1j1

�G/S 7! .x; 1 � t;gh/I

(4) the map fgW Qg !
yX � X �G given by .x; t; h/ 7! .ev.t1;x/ � h; h�1gh/,

which is well defined since ev.t1;x/ lies in X g .

Finally, mapping to K.X/ via R results in the …T yX –family .K;Q; f / 2 K.X/

determined, over …TX g , by the data of Pg , seen as a supercircle, and the map Pg!X

determined by Qg and pr1 ıfg . By construction, the equation in the statement of the
proposition holds true.
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Our next task is to compute ZV .K;Q; f /; this is, by definition, the supertrace of the
holonomy (around K ) of the pullback of V by the map  W K! X==G determined
by .Q; f /. Proposition 14 identifies that pullback of V with the vector bundle with
connection W D .f �V /=G!K .

Proposition 16 On …TX g , the supertrace of the holonomy of W D .f �V /=G

around K is a differential form representative of chg.V /.

Here, of course, we employ the usual identification C1.…TX g/Š��.X g/.

Proof Consider the standard superpath cW …TX g � R1j1 ! …TX g � T1j1 � K

with endpoints it W …TX g!…TX g �R1j1 , x 7! .x; t/, for t D 0; 1, and denote by
SPW c�

0
W ! c�

1
W the parallel transport operator along that superinterval. There is a

slight subtlety to notice here. Since the maps c0 D c ı i0 and c1 D c ı i1 are equal,
c�

0
W and c�

1
W are the same vector bundle, but the correct way to identify them (for

the purposes of computing the holonomy) is via the action of g . Indeed, let us form
the pullback of principal bundles

zQ

��

//

zf

''
Q

��

f

// X

…TX g �R1j1 c
// K

where zQ D…TX g �R1j1 �G. Then the pullback c�W can be identified with the
restriction of the pullback of V to the identity section of zQ,

c�W Š . zf �V /=G Š . zf �V /j…TX g�R1j1�feg;

so we identify

c�0 Wx D
zf �V.x;0;e/ D zf

�V.x;1;g/
g�1

�! zf �V.x;1;e/ D c�1 Wx :

We write, as before, V jX g D V 1˚ � � �˚V r as a direct sum of eigenspaces for eigen-
values �1; : : : ; �r , with connection ri on each component. Since zf j…TX g�R1j1�feg

takes values in X g , this induces a similar decomposition of c�W into a sum of
vector bundles �W i with connection. We are finally ready to invoke the calculations of
Dumitrescu recovering the usual (nonequivariant) Chern character in terms of parallel
transport. Denoting by SPi W

�W i j…TX g�0!
�W i j…TX g�1 the superparallel transport
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for one unit of time on each �W i , the main theorem of [10] states that SPi D exp.r2
i /,

so that

ch.ri/D str.exp.r2
i //D str.SPi/:

The holonomy endomorphism H W c�
0
W ! c�

0
W can be expressed as the composition

c�0 W D
M

i

�W i
j…TX g�0

L
i SPi
���!

M
i

�W i
j…TX g�1 D c�1 W

g
�! c�0 W

and we conclude that

str.H /D
X

1�i�r

str.g SPi/D
X

1�i�r

�i str.SPi/D
X

1�i�r

�i ch.ri/

is a differential form representative of chg.V /.

Finally, recall that the differential form on yX D
F

g2G X g associated to the field
theory red.ZV / is the form corresponding to the function red.ZV /.†versal/ on …T yX.
In particular, by Theorem 3, this form is G–invariant and represents an element of
H ev

G
. yX IC/. By the above proposition and (9), this element is chG.V /. This finishes

the proof that the diagram of Theorem 1 commutes. The claim that the vertical arrow
in that diagram induces a bijection after passing to concordance classes is the content
of Theorem 3.

Appendix A Group actions on stacks

We briefly review the definitions of group action on a stack and quotient of a stack,
following Romagny [17] and Ginot and Noohi [13], and then prove a useful lemma
(Proposition 18). Note that limits and colimits here are always taken in the sense of
bicategories. These are often called 2–(co)limits, bi(co)limits or homotopy (co)limits.

A.1 Basic definitions

Let X be a groupoid fibration over a site S and G a strict monoid object in the
2–category of fibrations over S. We denote by mW G �G ! G and 1W pt! G the
multiplication law and unit map of G. Then we define a (left) action of G on X to
be a map of groupoid fibrations �W G �X! X together with (necessarily invertible)
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2–morphisms ˛ and a as in the diagram below:

G �G �X
m�id

//

id��
��

G �X

�
��

G �X
�

//

˛
2:

X

G �X
�
// X

X

1�id

OO

id

99

a !)

In formulas, given an object x 2 XS and g; h 2 GS , and using a dot to denote the
group action, we are given natural isomorphisms

˛x
g;hW g � .h �x/! .gh/ �x; ax

W 1 �x! x:

This data is required to satisfy compatibility conditions that bear some resemblance
to the axioms of a monoidal category. Firstly, a kind of pentagon identity relating
the different ways in which the action of three group elements g; h; k 2 GS can be
associated:

˛x
g;hk ıg �˛x

h;k D ˛
x
gh;k ı˛

g�x

g;h
:

Second, a condition on the two ways of associating the action of the unit and another
group element:

g � ax
D ˛x

g;1 and ag�x
D ˛x

1;g:

It seems appropriate to call ˛ and a the associator and unitor for the action, in analogy
to the terminology used in the theory of monoidal categories. We say the action is strict
if ˛ and a are both the identity.

Now, suppose we are given fibrations with G–action .X; �; ˛; a/ and .Y; �; ˇ; b/.
Then a G–equivariant map between them is a morphism of fibrations f W X! Y

together with a 2–morphism

G �X
�
//

id�f
��

X

f
��

G �Y � //

�
5=

Y

satisfying the following compatibility condition: for each x 2 XS and g; h 2GS , we
have

f .˛x
g;h/ ı �

h�x
g ıg � �x

h D �
x
gh ıˇ

f .x/

g;h
and f .ax/ ı �x

1 D bf .x/:

We will call � the equivariance datum. Finally, a G –equivariant 2–morphism between
morphisms .f; �/ and .f 0; �0/ as above is defined to be a 2–morphism �W f ! f 0
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between the underlying fibered functors which is compatible with � and �0 in the sense
that

�0xg ıg � �x
D �g�x

ı �x
g

for any x 2 XS , g 2GS .

In terms of pasting diagrams, the conditions on � are expressed by the commutativity
of the cube whose two halves are depicted below:

G �G �X
m�id
&&

��

G �X
�

//

��

X

��

G �G �Y
m�id
&&

id��
// G �Y

�
!!

ˇ

v~
G �Y

�
//

�
>F

Y

G �G �X
id��

//

m�id &&

��

G �X
�

""

��

˛

v~
G �X

�
// X

��

G �G �Y
id��

//

id��

>F

G �Y
�

!!

�
9A

Y

and commutativity of the prism
G �X

��

�

''
X

1�id 77

id
//

��

a
x�

X

��

G �Y
�

&&

�

3;

Y
id

//

1�id 88

Y
b
t|

Here, all vertical maps are products of f and the identity of G. The condition on � is
the commutativity of the following diagram:

G �X
�

//

id�f

��

id�f 0

��

id�� +3

�0

4< X

f

��

f 0

��

� +3

G �Y
�

//
�

AI

Y

We are mostly interested in the case where G is a (representable) sheaf of groups,
but we will also consider the group stack pt==Z. Note that a strict action of pt==Z
on a stack X is precisely the data of an automorphism of idX , ie a natural choice of
automorphism for each object of X. For instance, the inertia stack ƒX comes with
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a canonical pt==Z–action. We will also make use of a 2–categorical model for the
circle group, to be denoted by R==Z. It is presented by the Lie 2–group Z�R�R

(the transport groupoid of the Z–action on R) endowed with the multiplication map
determined by the group structures on the spaces of objects and morphisms, and unit
0 2R. At the Lie 2–group level, there are evident strict homomorphisms

T  R==Z! pt==Z:

The left map gives us an equivalence of group stacks, but in concrete situations it may
be more convenient to consider one model or the other.

A.2 Quotient stacks of G –stacks

Let X be a stack endowed with a left action of a sheaf of groups G. Then we define a
new stack GnnX whose S –points are given by a left G –torsor P ! S together with a
G –equivariant map  W P ! X; a morphism .P 0;  0/! .P;  / covering f W S 0! S

is given by a diagram

P 0

��

ˆ

''

 0

!!

P

��

 
//

	� �

X

S 0 f

''
S

where ˆ is a map of G –torsors and � an equivariant 2–morphism.

There is a faithful functor i W X!GnnX sending xW S ! X to the S –point of GnnX

consisting of the trivial G –torsor G �S ! S together with the G –equivariant map

 W G �S
id�x
��!G �X

�
�! X:

This makes the diagram below 2–cartesian:

G �X
�

//

pr2
��

X

i
��

X
i
// GnnX

Now, we can attempt to perform the construction of a transport groupoid G �X� X

internally in the 2–category of stacks. For this to work, we need to define internal
categories with the appropriate degree of weakness (eg if the action is not strictly unital,
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the same must be allowed of our internal categories). In any case, it is clear that we get
a “nerve”, that is, an augmented (weak) simplicial object

(12) GnnX i
 � X�G �X  

 
G �G �X

 
 
 
 
� � � :

Since the various compositions Gn � X ! GnnX are not equal, just isomorphic
(with a specified isomorphism), the augmentation depends, strictly speaking, on a
choice. For definiteness, we take that to be the composition of i with the projection
prnC1W G

n �X! X.

Proposition 17 The above induces an equivalence of stacks

GnnX
j
 � colim

�
X�G �X  

 
G �G �X

 
 
 
 
� � �

�
:

The reader well versed on colimits of categories may be able to interpret the discussion
in Sections 3.2 and 4.2 of Ginot and Noohi [13] as a proof, even though it does not use
the language of colimits. In any case, we will provide our own argument. Before getting
there, we give some background on (homotopy) colimits in Cat. Given a diagram
of small categories F W D! Cat indexed by a small 1–category (with no strictness
requirements on F ), we denote by D ËF the Grothendieck construction. It is the
oplax colimit of F, meaning that for each C 2 Cat, there is an equivalence between
the category of functors D ËF ! C and the category of lax natural transformations
F ! constC and modifications between them. The colimit of F is obtained by
localizing D ËF at the class of opcartesian morphisms.

Spelling out the above, the colimit can be described in terms of generators and relations
as follows. We write i , j , etc, for objects of D, and Ai , Aj for their images via F ;
also, we use the same notation both for a morphism f W i ! j in D and its image
f W Ai!Aj . To build AD colimD Ai , we start with the disjoint union

F
i2D Ai and

then freely adjoin inverse morphisms

fx W x! f .x/; f �1
x W f .x/! x

for each f W i ! j in D and x 2Ai ; finally, we impose a number of natural relations,
most notably

.x
�
�! y

fy
�! f .y//D .x

fx
�! f .x/

f .�/
�! f .y//;

where � is a morphism in Ai , as well as its counterpart involving f �1
x and f �1

y . This
process can be made precise using the free category generated by a directed graph and
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congruences. For more details, including the proof that this has the desired universal
property, see Fiore [11, Chapter 4].

Proof of Proposition 17 Colimits of stacks are obtained by taking colimits objectwise
in S and then stackifying. Thus, it suffices to show that, for each S 2S,

.GnnX/S
jS
 � colim

�
XS � .G �X/S

 
 
 
.G �G �X/S

 
 
 
 
� � �

�
gives an equivalence of the right-hand side with the full subgroupoid .GnnX/triv

S
of the

left-hand side involving only trivial G –torsors. To simplify the argument, we assume,
without loss of generality, that the GS –action on XS is strict [17, Proposition 1.5].

Consider the functor l W .GnnX/triv
S
! colimn.G

n �X/S prescribed by the following
conditions. First, on XS , seen as a subgroupoid of both the domain (via i W XS ,!

.GnnX/triv
S

) and codomain, l is just the identity. Second, to the morphism x! g �x in
.GnnX/triv

S
determined by g 2GS , l associates the morphism

�x
g W x

pr�1
2
��! .g;x/

�
�! g �x

in the colimit groupoid. To see that this is well defined and respects compositions, it
suffices to check that the outer square of the following diagram in the colimit groupoid
commutes for any g; h 2GS and �W g �x! y in XS :

g �x
� //

�
g�x

h

��

y

�
y

h

��

.h;g �x/
id�� //

pr2

gg

�ww

.h;y/

pr2

88

�
%%

hg �x
h�� // h �y

This follows from the fact that each circuit traveling inside the square commutes.

Now, the composition jS ı l is equal to the identity, and we claim that the reverse
composition is isomorphic to the identity. In fact, l ı jS .g1; : : : ;gn;x/D x , and we
define a natural transformation uW id! l ı jS by

u.g1;:::;gn;x/ D prnC1W .g1; : : : ;gn;x/! x:

Naturality with respect to those morphisms in the colimit groupoid which arise from
morphisms in .Gn �X/S is obvious. A general morphism arising from the indexing
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category �op is as in the left vertical arrow of the diagram below:

.g1; : : : ;gn;x/
prnC1 //

��

))

x

�x
gJ

��

.gJ ;x/

pr2

88

�
&&

.gI1
; : : : ;gIk

;gJ �x/
prkC1 // gJ �x

where I1; : : : ; Ik ;J � Œn� are (possibly empty) disjoint and adjacent subsets whose
union contains n and gfi1;:::;ij g D gi1

: : :gij . Its image through l ı jS is the right
vertical arrow, and naturality of u, that is, the claim that the outer square commutes,
follows from commutativity of the circuits involving .gJ ;x/. This finishes the proof
that jS is an equivalence onto .GnnX/triv

S
.

Now, given a stack C, applying FunS.–;C/ to diagram (12) produces a (weak) cosim-
plicial groupoid. The following descent calculation for G –stacks is then a corollary of
Proposition 17:

Proposition 18 For any stack C and G –stack X, diagram (12) induces an equivalence
of groupoids

FunS.GnnX;C/Š lim
�

FunS.X;C/� FunS.G �X;C/
!
!
!
� � �

�
:

Again, a concrete description of 2–limits in the 2–category of small categories can
be found in Fiore [11, Chapter 5]. For the convenience of the reader, we give a quick
summary here. We fix the same notation as in the discussion of colimits above; in
particular, we have a diagram F W D! Cat. Then (a model for) the limit of F is the
category whose objects are (pseudo)natural transformations �pt! F with domain the
constant functor with value the discrete category with one object, and whose morphisms
are modifications between them. In concrete terms, an object consists of a collection
of objects ai 2 Ai for each i 2 D together with isomorphisms �f W f .ai/! aj for
each morphism f W i ! j in D ; these data are required to satisfy certain coherence
conditions. A morphism .a0i ; �

0
f
/! .ai ; �f / consists of a collection of morphisms

a0i! ai in Ai for each i 2D, subject to appropriate conditions.

Proposition 19 Given a homomorphism of sheaves of groups hW G ! H and an
H –stack X, we have an equivalence

GnnX Š
�!Gnnpt�H nnpt HnnX:
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Proof The various maps of stacks involved in the statement of the proposition are
induced by the obvious maps between the simplicial diagrams of which they are a
colimit (see Proposition 17), as well as the universal property of the fiber product.

It follows from Proposition 17 that GnnX is obtained by stackifying the prestack that
assigns to S 2S the groupoid whose objects are objects x;y; : : : 2X, and morphisms
x! y are pairs .g; �/, where g 2 GS and �W g � x! y is a morphism in XS . The
formation of fiber products commutes with stackification (since the latter is built using
limits and filtered colimits), so the codomain of our fibered functor has a similar
description as the stackification of a fiber product of prestacks.

Now, in terms of the above data, the map GnnX!HnnX sends

x 7! x; .g; �/ 7! .h.g/; �/;

while GnnX!Gnnpt sends

x 7! pt; .g; �/ 7! g:

Thus, it is clear that, at the level of prestacks, our fibered functor is fully faithful and
essentially surjective, and the result follows.

Appendix B Low-dimensional euclidean supergeometry

In the category SM of supermanifolds, R1j1 has a (noncommutative) group structure
given by

R1j1
�R1j1

!R1j1; ..t; �/; .t 0; � 0// 7! .t C t 0C �� 0; � C � 0/:

The Lie algebra of left-invariant vector fields is free on one odd generator DD @���@t ,
and actions of R1j1 correspond (bijectively, modulo noncompactness issues) to odd
vector fields. Similarly, R0j1 has a Lie algebra spanned by an odd element @� squaring
to 0, and its actions correspond bijectively to homological vector fields, ie those odd Q

such that ŒQ;Q�D 0.

The definition of euclidean structures on supermanifolds follows the philosophy of
Felix Klein’s Erlangen program. One starts by fixing a model space and a subgroup of
diffeomorphisms, called the isometry group; a euclidean structure is then a maximal
atlas whose transition maps are isometries. This idea is explained in detail in Stolz
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and Teichner [24, Sections 2.5 and 4.2]. In (real) dimensions 0j1 and 1j1, the model
spaces are R0j1 and R1j1 , respectively, with isometry groups

Isom.R0j1/DR0j1 ÌZ=2; Isom.R1j1/DR1j1 ÌZ=2:

In both cases, Z=2 acts by negating the odd coordinate and Rd j1 acts by left multipli-
cation (this choice influences our sign conventions, and dictates whether to work with
left of right group actions at various places).

The differential form d� ^ d� on R0j1 is invariant under isometries, and therefore
determines a canonical fiberwise 2–form � on any family †! S of euclidean 0j1–
manifolds. Conversely, any closed, nondegenerate, even fiberwise 2–form on † is
locally of this form and determines a euclidean structure.

In dimension 1j1, euclidean structures also admit ad hoc definitions in terms of sections
of certain sheaves. In the remainder of this section, we discuss some of those alterna-
tive definitions, and study the stack of 1j1–dimensional closed connected euclidean
supermanifolds, which we will also call euclidean supercircles. This appendix is a
survey of material I learned from Stephan Stolz, some of which does not seem to have
appeared in the literature.

B.1 Euclidean structures in dimension 1j1

bundle In Dumitrescu [9, Section 2.3], a conformal structure on a 1j1–manifold X

is defined to be a distribution D (ie a subsheaf of the tangent sheaf TX ) of rank 0j1

fitting in a short exact sequence

(13) 0! D! TX ! D˝2
! 0

(see also [12, Lecture 3]). A euclidean structure is then defined to be a choice, up to
sign, of an odd vector field D generating D. The fundamental example is the vector
field D D @� � �@t on R1j1 . Note that it squares to �@t , so in fact D and D2

generate TR1j1 . More generally, conformal and euclidean structures on a family
X ! S of 1j1–manifolds are appropriate splittings or sections of the vertical tangent
bundle TX=S .

We want to show that this is equivalent to the original definition. Denote by E and E0

the stacks of families of 1j1–dimensional euclidean manifolds according to the chart
definition and the vector field definition, respectively. It is clear that we have a map
E! E0, since the transition maps of a euclidean chart preserve the canonical vector
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field D on R1j1 up to sign. Now, given an object in E0, the atlas from Proposition 22
below is indeed euclidean, by Propositions 20 and 21. This gives an inverse map E!E0.

Proposition 20 The subgroup of diffeomorphisms of R1j1 preserving the form ! D

dt � � d� is precisely Isom.R1j1/ D R1j1 ÌZ=2, acting in the standard way on the
left.

A correct reading of this assertion requires that we think in families; thus, the claim is
that the subsheaf of Diff.R1j1/� SM.R1j1;R1j1/ preserving ! is representable by the
Lie group R1j1 ÌZ=2. Moreover, it will be clear from the proof that the proposition
is true locally in R1j1 , that is, if U �R1j1 is a connected domain, then the sheaf of
embeddings U !R1j1 preserving ! is R1j1 ÌZ=2.

Proof An S –family of diffeomorphisms of R1j1 is given by a diffeomorphism

ˆW S �R1j1
! S �R1j1

commuting with the projections onto S. We can express this diffeomorphism in terms
of a map �W S �R1j1!R1j1 by the formula

.s;x/ 7! .s; �.s;x/ �x/;

where s and x should be interpreted as T –points of S and R1j1 for a generic super-
manifold T , and � indicates the usual group operation on R1j1 . Writing � D .r; �/ 2
.R �R0j1/S�R1j1 and x D .t; �/ 2 .R �R0j1/T in terms of their components, the
above formula becomes

.s; t; �/ 7! .s; t C r.s; t; �/C �.s; t; �/�; �.s; t; �/C �/:

Hence, the equation ! Dˆ�! reads

dt � � d� D dt C dr � � d� � .2� C �/ d�:

To analyze the restrictions imposed by this equation, let us write

r D r0C r1�; �D �1C �0�; where ri ; �i 2 C1.S �R/i :

Then dr � .2� C �/ d�D 0 gives us

(14) 0D .dr0� �1 d�1/C .dr1C .2C �0/ d�1� �1 d�0/� C .r1� �1�0/ d�

� .2C �0/�0� d�:

Each individual term above vanishes. From the � d� term, we get that �0 D 0 or �2,
since either �0 or .2C�0/ has nonzero reduced part and hence is invertible, and the d�
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term tells us that r1 D �0�1 . Plugging that into the � term, we get .2C 2�0/ d�1 D 0,
so d�1 D 0 since the factor in front of it is a nonzero constant. Finally, (14) implies
that dr0 D 0.

Now, recall that those formulas should be interpreted as equalities of S –families of
differential forms on R1j1 , ie sections of ��.S � R1j1/ modulo ��1.S/. So in
fact we have r0; �1 2 C1.S/, and there is a locally constant function aD 1C �0 2

.Z=2/S D f˙1gS . Therefore, the diffeomorphism ˆ determines and is determined by

.r0; �1; a/ 2 .R
1j1 ÌZ=2/S via the correspondence

.r0; �1; a/ 7! �r0;�1;a D .r0C .a� 1/�1�; �1C .a� 1/�/ 2R1j1

S�R1j1 :

It is simple to check that any choice of .r0; �1; a/ as above determines a diffeomorphism
preserving ! , and that the choices .r0; �1; 1/ and .0; 0;�1/ act as translation by
.r0; �1/ and negation, respectively, of the odd variable. Therefore, to finish the proof,
we just need to verify that given a second diffeomorphism ˆ0 prescribed, in a similar
way, by .r 0

0
; �0

1
; a0/, the composition

.s; t; �/ ˆ
7�! �r0;�1;a.s; �/ � .s; t; �/

ˆ0
7�! �r 0

0
;�0

1
;a0.s; �

0/ ��r0;�1;a.s; �/ � .s; t; �/;

where � 0D �C.a�1/� is the � –component of the middle term, agrees with the action
of the product .r 0

0
; �0

1
; a0/ � .r0; �1; a/; more explicitly,

�.r 0
0
Cr0Ca0�0

1
�1;�

0
1
Ca0�1;a0a/

.s; �/D �r 0
0
;�0

1
;a.s; �C .a� 1/�/ ��r0;�1;a.s; �/:

This is a tedious but straightforward calculation.

Proposition 21 A diffeomorphism of R1j1 preserves ! D dt � � d� if and only if it
preserves D D @� � �@t up to sign.

Proof If an S –family of diffeomorphisms ˆW S �R1j1 ! S �R1j1 preserves ! ,
then it is determined by � 2 .R1j1 ÌZ=2/S and it is easy to check that it sends D to
either D or �D. Conversely, if ˆ�D D˙D, then ˆ�D2 D .˙D/2 , so that

hD; ˆ�!i D hˆ�D; !i D 0; hD2; ˆ�!i D hD2; !i:

Since D and D2 generate TR1j1 as a C1
R1j1 –module, it follows that ˆ�! D ! .

Proposition 22 Let X ! S be an S –family of 1j1–manifolds and D a vertical
vector field generating a distribution as in (13). Then X admits an atlas such that D

can be written locally as @� � �@t .
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Proof We apply the Frobenius theorem [8, Lemma 3.5.2] to the vector field D2 . This
gives us local charts .t; �/W U �X ! S �R1j1 where D2 gets identified with �@t .
With respect to one of those charts, we can write

D D f @� Cg@t ; f D f0Cf1�; g D g1Cg0�;

where fi ;gi 2 C1.S �R/i , so that

D2
D f .@�f /@� Cf .@�g/@t Cg.@tf /@� Cg.@tg/@t

(the remaining terms one could expect in this expansion involve @2
�

, g2 or Œ@� ; @t �, so
they vanish). Inspecting the coefficients of @t , �@t , @� and �@� , respectively, we get

f0g0Cg1g01 D�1; f1g0Cg1g00�g0g01 D 0;

�f0f1Cg1f
0

0 D 0; g1f
0

1Cg0f
0

0 D 0:

The first equation implies that f0 and g0 are invertible, and the fourth equation implies
that g1g0f

0
0
D 0. Multiplying the third equation by g0 gives us g0f0f1 D 0, so

f1 D 0. Using again the fourth equation, we conclude that f 0
0
D 0. Therefore, by the

first equation, g0
0

is a multiple of g1 and the second equation reduces to g0g0
1
D 0Dg0

1
.

Finally, we learn from the first equation that f0 and �g0 are inverses. To summarize,
we have

D D f0@� �f
�1

0 �@t ; where f0 2 C1.S/even:

Performing the change of coordinates t 7! t , � 7! f �1
0
� , we can assume f0 D 1,

which finishes the proof.

B.2 Euclidean supercircles

We are interested in the stack K of closed connected 1j1–dimensional euclidean mani-
folds. Given a parameter supermanifold S and a map l W S !R1j1

>0
, we can form the

S –family of supercircles of length l , KlD .S�R1j1/=Z, where the generator of the Z–
action is described, in terms of T –points of S�R1j1 , by .s;u/ 7! .s; l.s/�u/. Moreover,
given any map r W S !R1j1 , the diffeomorphism of S �R1j1 , .s;u/ 7! .s; r.s/ �u/,
descends to an isometry Kr�1lr !Kl , and the flip flW R1j1!R1j1 (the diffeomor-
phism negating the odd coordinate) descends to an isometry Kfl.l/!Kl , since fl is a
group automorphism of R1j1 .

We can assemble this collection of examples into a Lie groupoid as follows. Note that
the right R1j1 –action on itself by conjugation extends to an action of the semidirect
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product Z=2ËR1j1 , where Z=2 acts via fl. It is then clear that we have a map of
stacks R1j1

>0
==.Z=2ËR1j1/! K. To the S –point of the domain corresponding to a

map l W S !R1j1
>0

, it assigns Kl , and to the morphism corresponding to the S –point
.a; r/ of Z=2ËR1j1 , it assigns the isometry Kr�1fla.l/r!Kl . This only fails to be an
equivalence of stacks because the S –family of morphisms .0; l/W l! l in the domain
stack maps to the identity map of Kl .

Proposition 23 The fibered functor R1j1
>0
==.Z=2ËR1j1/! K is full and essentially

surjective.

Proof Any isometry Kl 0!Kl lifts to an isometry of their covers S�R1j1!S�R1j1 .
It follows from Proposition 20 that the isometry group of R1j1 is (no bigger than)
R1j1 ÌZ=2, and this proves fullness.

It remains to show that our fibered functor is essentially surjective. Pick any K 2 KS .
Restricting to a neighborhood in S if needed, fix a section xW S!K and a vector field
DK specifying the euclidean structure. Then DK gives us an action �W R1j1�K!K ;
composing with x , we get a map of S –families

�x W R
1j1
�S

id�x
��!R1j1

�K
�
�!K:

Since the generators D and D2 of the Lie algebra of R1j1 are �–related to the linearly
independent vector fields DK and D2

K
, �x is a local diffeomorphism. Thus, we can

find a function l W S ! R1j1
>0

which is minimal, pointwise in S, among those l such
that �.l;x/D x . Therefore, �x factors through a diffeomorphism

Kl D .R
1j1
�S/=Zl!K:

Remark 24 At least locally, an S –family in K is determined, up to isomorphism, by a
conjugacy class in .R1j1

>0
/S . However, an actual “length” function l W S!R1j1

>0
is extra

information, determined for instance by a basepoint (ie a section of the submersion
K ! S ). In particular, the coarse moduli space of euclidean supercircles is not a
representable supermanifold.

Each conjugation-invariant (generalized) submanifold of R1j1
>0

gives rise to a full
substack of R1j1

>0
==.Z=2 Ë R1j1/, and therefore to a full substack of K. Here we

are interested in the choice f1g � R1j1
>0

, and we let K1 � K denote the substack of
supercircles of length 1. Recall also the definition of BT DBT .pt/ from Section 3.2.
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Theorem 25 There in an equivalence of stacks K1 ŠBT .

Proof The fibered functor of Proposition 23 factors through an equivalence

pt==.Z=2ËT1j1/! K1:

On the other hand, consider the S –point of BT determined by the trivial family
† D S � R0j1 and the trivial bundle P D † � T with the standard connection
! D dt � � d� . It is easy to see, using Proposition 20, that the automorphism group of
.P; †/ 2BT

S
is precisely Isom.T1j1/. This determines a fully faithful fibered functor

pt==.Z=2ËT1j1/!BT :

It only remains to check that it is also essentially surjective. For contractible S and
any object of BT

S
, we can assume the underlying bundles †! S and P ! † are

trivial. So we just need to prove that the connection ! on P can be taken to be the
standard one.

In general, a (fiberwise) connection on P can be written as !D dtC.f1Cf0�/ d� for
functions fi 2C1.S/ of parity i . The curvature condition imposes that f0D�1. Un-
der the gauge transformation of P DS�R0j1�T given by .s; �; t/ 7! .s; �; t�f1.s/�/,
the connection ! pulls back to the standard dt � � d� .
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