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A characterization of quaternionic Kleinian groups
in dimension 2 with complex trace fields

SUNGWOON KIM

JOONHYUNG KIM

Let G be a nonelementary discrete subgroup of Sp.2; 1/ . We show that if the sum of
diagonal entries of each element of G is a complex number, then G is conjugate to a
subgroup of U.2; 1/ .

22E40, 30F40, 57S30

1 Introduction

Given a Kleinian group G of PSL.2;C/, its trace field, denoted by Q.tr G/, is defined
as the field generated by the traces of its elements. Trace fields have played an impor-
tant role in studying arithmetic aspects of Kleinian groups. Neumann and Reid [10]
studied the trace fields of arithmetic lattices in PSL.2;C/. They showed that if G is a
nonuniform arithmetic lattice, it is conjugate to a subgroup of PSL.2;Q.tr G//.

Even though the notion of trace field was first defined for Kleinian groups in PSL.2;C/,
it is possible to extend the notion to complex and quaternionic Kleinian groups. Indeed,
there have been a few studies concerning the trace fields of complex and quaternionic
Kleinian groups. Most of studies on the trace fields of complex Kleinian groups have
focused on extending the results in the case of PSL.2;C/ to SU.n; 1/. McReynolds [9]
showed that the trace fields of complex Kleinian groups are commensurability invariants
as for real Kleinian groups. Cunha and Gusevskii [1] and Genzmer [3] studied whether
a discrete subgroup of SU.2; 1/ can be realized over its trace field.

A central theme in studying the trace fields of complex Kleinian groups is to characterize
complex Kleinian groups with real trace fields. It turns out that any nonelementary
complex Kleinian group with real trace field preserves a totally geodesic submanifold
of constant negative sectional curvature in complex hyperbolic space. Cunha and
Gusevskii [1] and Fu, Li and Wang [2] proved this for Kleinian groups in SU.2; 1/, and
then J Kim and S Kim [7] extended it to SU.3; 1/. Recently Kim and Kim [8] extended
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this result to SU.n; 1/ in general. Furthermore, they showed that any nonelementary
quaternionic Kleinian group with real trace field is also conjugate to a subgroup of
either SO.n; 1/ or SU.1; 1/.

For quaternionic Kleinian groups, Kim [6] proved that if a nonelementary quaternionic
Kleinian group G in Sp.3; 1/ has a loxodromic element fixing 0 and 1, and the sum
of diagonal entries of each element of G is real, then G preserves a totally geodesic
submanifold of constant negative sectional curvature in the quaternionic hyperbolic
space. Then the result is extended to the general Sp.n; 1/ case by Kim and Kim [8].

The studies so far have focused on characterizing nonelementary discrete groups with
real trace fields. It is very natural to ask what if the “real” is replaced with “complex”.
In this article, we give the answer for this question in the case of Sp.2; 1/. The main
theorem is the following.

Theorem 1.1 Let G < Sp.2; 1/ be a nonelementary quaternionic Kleinian group
containing a loxodromic element fixing 0 and 1. If the sum of diagonal entries of
each element of G is in a maximal abelian subfield of H , then G preserves a totally
geodesic submanifold of H 2

H that is isometric to H 2
C . In other words, G is conjugate

to a subgroup of U.2; 1/.

In particular, the field C of complex numbers is one of the maximal abelian subfields
of H . Hence Theorem 1.1 answers the motivating question.

2 Quaternionic hyperbolic space

The materials of this chapter are borrowed from [6]. For basic notions, we refer the
reader to [6], and for more information, see [5].

Let H2;1 be a quaternionic vector space of dimension 3 with a Hermitian form of
signature .2; 1/. An element of H2;1 is a column vector pD .p1;p2;p3/

t. Throughout
the paper, we choose the second Hermitian form on H2;1 given by the matrix

J D

240 0 1

0 1 0

1 0 0

35 :
Thus

hp; qi D q�Jp D xqtJp D xq1p3Cxq2p2Cxq3p1;

where p D .p1;p2;p3/
t ; q D .q1; q2; q3/

t 2H2;1.
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One model of a quaternionic hyperbolic 2–space H 2
H , which matches this Hermitian

form, is the Siegel domain S. It is defined by identifying points of S with their
horospherical coordinates p D .�; v;u/ 2H� Im.H/�RC . The boundary of S is
given by H� Im.H/�f0g[f1g, where 1 is a distinguished point at infinity. Define
a map  W S! PH2;1 by

 W .�; v;u/ 7!

24�j�j2�uC v
p

2�

1

35 for .�; v;u/ 2S�f1g; and  W 1 7!

241

0

0

35 :
Then  maps S homeomorphically to the set of points p in PH2;1 with hp;pi< 0,
and maps @S homeomorphically to the set of points p in PH2;1 with hp;pi D 0.
There is a metric on S called the Bergman metric, and the isometry group of H 2

H with
respect to this metric is

Sp.2; 1/D fA 2 GL.3;H/ W hp;p0i D hAp;Ap0i; p;p0 2H2;1
g

D fA 2 GL.3;H/ W J DA�JAg;

where AW H2;1! H2;1; xH 7! .Ax/H for x 2 H2;1 and A 2 Sp.2; 1/. As in [4],
we adopt the convention that Sp.2; 1/ acts on H 2

H on the left and the projectivization
of Sp.2; 1/ acts on the right. If we write

AD

24a b c

d e f

g h l

35 2 Sp.2; 1/;

A�1 is written as

A�1
D

24xl xf xcxh xe xb

xg xd xa

35 2 Sp.2; 1/:

Then, from AA�1 DA�1AD I , we get the following identities:

.1/ axl C bxhC cxg D 1; .2/ a xf C bxeC c xd D 0; .3/ axcCjbj2C cxaD 0;

.4/ dxl C exhCf xg D 0; .5/ d xf Cjej2Cf xd D 1; .6/ dxcC exbCf xaD 0;

.7/ gxl Cjhj2C l xg D 0; .8/ g xf C hxeC l xd D 0; .9/ gxcC hxbC lxaD 1;

.10/ xlaC xf d Cxcg D 1; .11/ xlbC xf eCxchD 0; .12/ xlcCjf j2Cxcl D 0;

.13/ xhaCxed C xbg D 0; .14/ xhbCjej2C xbhD 1; .15/ xhcCxef C xbl D 0;

.16/ xgaCjd j2Cxag D 0; .17/ xgbC xdeCxahD 0; .18/ xgcC xdf Cxal D 1:
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Remark 2.1 If cD 0, then f D 0 by (12), and hence A fixes 0D Œ0; 0; 1�t. Similarly,
if g D 0, then d D 0 by (16), and hence A fixes 1D Œ1; 0; 0�t.

Note that totally geodesic submanifolds of quaternionic hyperbolic 2–space are isomet-
ric to one of H 1

H , H 1
C , H 2

C , and H 2
R . The following proposition is essential in the

proof of the main theorem.

Proposition 2.2 For two nonzero quaternions a and b , if ab and ba are complex
numbers, then a and b satisfy one of the following:

(i) a, b 2C .

(ii) aD a�j and b D b�j for some a�; b� 2C .

(iii) b D rxa for some r 2R�f0g.

Proof First observe that ab D a.ba/a�1 . In other words, two quaternions ab and ba

are similar. It is well known that two quaternions are similar if and only if they have
the same norm and real part. By the assumption that ab and ba are complex numbers,
it follows that

jIm.ab/j D
p
jabj2�Re.ab/2 D

p
jbaj2�Re.ba/2 D jIm.ba/j:

Then one of the following holds:

(i) Im.ab/D Im.ba/D 0,

(ii) Im.ab/D Im.ba/¤ 0,

(iii) Im.ab/D� Im.ba/¤ 0.

If Im.ab/ D Im.ba/ D 0, ie ab and ba are real numbers, it easily follows that
b D jb=ajxa.

If Im.ab/D Im.ba/¤ 0, then ab D ba, and thus

ab D a.ba/a�1
D a.ab/a�1:

Since a commutes with ab , which is a complex number with nonzero imaginary part,
a must commute with i . Hence a 2C . Furthermore, b 2C since b D a�1.ab/.

Lastly, if Im.ab/D� Im.ba/¤ 0, then ab D ba, and thus

ab D a.ba/a�1
D a.ab/a�1:

This implies that a anticommutes with i . Hence aD a�j for some a� 2C . Applying
the same argument to baD b.ab/b�1 D b.ba/b�1 , it follows that b D b�j for some
b� 2C . This completes the proof.
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The next lemma is quite elementary and the proof is easy.

Lemma 2.3 Let q be a quaternion. If qixq 2C , then either q 2C or q is of the form
q D q�j for some q� 2C .

Proof We may assume that q ¤ 0. Note that qixq D q.jqj2i/q�1 , and hence qixq

is a complex number similar to jqj2i 2 C . By a similar argument as the proof of
Proposition 2.2, q either commutes or anticommutes with i . This leads to either q 2C

or q D q�j for some q� 2C .

3 Proof of Theorem 1.1

Let F be a maximal abelian subfield of H . Then F D R˚ uR for some nonreal
quaternion u 2H . Suppose that the sum of diagonal entries of each element of G is
in F . Since any quaternion is similar to a complex number, there exists a nonzero unit
quaternion q with quq�1 2C . Then the sum of the diagonal entries of each element
of DqGD�1

q lies in C , where DqGD�1
q is the group obtained by conjugating each

element of G by Dq D Diag.q; q; q/. Hence it is sufficient to prove Theorem 1.1 in
the case that F DC .

We now suppose that G is a nonelementary discrete subgroup of Sp.2; 1/ in which the
sum of the diagonal entries of each element of G is a complex number. Let A be a
loxodromic element of G fixing 0 and 1, and let B be an arbitrary element of G . In
terms of matrices, we write A and B as

(19) AD

24�� 0 0

0 � 0

0 0 �=�

35 ; B D

24a b c

d e f

g h l

35 ;
where �; � 2 Sp.1/ and � > 1. For more details, see [4] or [5].

Lemma 3.1 The matrix A of G fixing 0 and 1 is an element of U.2; 1/. In other
words, �; � 2 U.1/.

Proof For a matrix X , we denote by tr.X / the sum of the diagonal entries of X . Let
�D �0C�1i C�2j C�3k and � D �0C �1i C �2j C �3k for �t ; �t 2 R, where
t D 0; 1; 2; 3. Then

tr.A/D .�C 1=�/ .�0C�1i C�2j C�3k/C .�0C �1i C �2j C �3k/ 2C;
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and hence

(20) .�C 1=�/�t C �t D 0 for t D 2; 3:

Furthermore, considering

tr.A2/D .�2
C 1=�2/�2

C �2

D .�2
C 1=�2/.�2

0��
2
1��

2
2��

2
3C 2�0�1i C 2�0�2j C 2�0�3k/

C .�2
0 � �

2
1 � �

2
2 � �

2
3 C 2�0�1i C 2�0�2j C 2�0�3k/ 2C;

we have that for t D 2; 3,

(21) .�2
C 1=�2/�0�t C �0�t D �t Œ.�

2
C1=�2/�0� .�C1=�/�0�D 0:

If �2 D �3 D 0, (20) implies that �2 D �3 D 0. Then �; � 2C , and so �; � 2 U.1/.
From now on, we assume that �2 ¤ 0 or �3 ¤ 0. By (21),

(22) .�2
C 1=�2/�0� .�C 1=�/�0 D 0;

and we can write

� D
�4C1

�.�2C1/
�0C �1i �

�
�C

1

�

�
.�2j C�3k/:

Now let us consider A4 . Then

tr.A4/D
�
�4
C

1

�4

�
�4
C �4

D

�
�4
C

1

�4

�
.�0C�1i C�2j C�3k/4

C

�
�4C1

�.�2C1/
�0C �1i �

�
�C

1

�

�
.�2j C�3k/

�4
2C:

Since �; � 2 Sp.1/, we get

�2
0C�

2
1C�

2
2C�

2
3D1 and j�j2D

�
�4C1

�.�2C1/
�0

�2
C�2

1C

�
�C

1

�

�2
.�2

2C�
2
3/D1:

Using these identities and calculating the j –part of tr.A4/, we have that

4�0�2.�
2� 1/.�6� 1/.4�2�2

0
� .�2C 1/2/

�4.�2C 1/2
D 0:

Since �> 1 and 0��2
0
< 1, it follows that �0�2D 0. By repeating the same argument

for the k–part of tr.A4/, one gets �0�3 D 0. Since �2 ¤ 0 or �3 ¤ 0, we have
�0 D 0 and hence �0 D 0 by (22). That is, � and � are purely imaginary, and so
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x�D�� and x� D�� . Since j�j D j�j D 1, we know that �3 D�� and �3 D�� . If
we write � D �1i � .�C 1=�/.�2j C�3k/ as before, since

tr.A3/D
�
�3
C

1

�3

�
�3
C �3

D�

�
�3
C

1

�3

�
�� � 2C;

the j –part of tr.A3/ is zero; ie

�

�
�3
C

1

�3

�
�2C

�
�C

1

�

�
�2 D�

�
�C

1

�

� �
��

1

�

�2

�2 D 0:

Since � > 1, we have �2 D 0. Similarly, considering the k–part of tr.A3/, we also
get �3 D 0. This contradicts to the assumption that �2 ¤ 0 or �3 ¤ 0. Therefore,
�2 D �3 D 0 and thus �; � 2 Sp.1/\C D U.1/.

According to Lemma 3.1, A is written as

AD

24�ei� 0 0

0 ei� 0

0 0 .1=�/ei�

35 ; where � > 1 and �; � 2 Œ0; 2�/:

Lemma 3.2 For any element B 2G , every diagonal entry of B is a complex number.

Proof Let B be the matrix

B D

24a b c

d e f

g h l

35 :
Since the sum of the diagonal entries of every element of G is in C , we have that

tr.B/D aC eC l 2C;

tr.AB/D �ei�aC ei�eC
ei�

�
l 2C;

tr.A�1B/D
e�i�

�
aC e�i�eC�e�i� l 2C:

Solving for a; e , and l , we conclude that a; e; l 2C . This shows that every element
of G has complex diagonal entries.

Lemma 3.3 Let A, B1 and B2 be elements of G of the form

AD

24�ei� 0 0

0 ei� 0

0 0 .1=�/ei�

35 ; B1 D

24a1 b1 c1

d1 e1 f1

g1 h1 l1

35 ; B2 D

24a2 b2 c2

d2 e2 f2

g2 h2 l2

35
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for some �> 1 and � , � 2 Œ0; 2�/. Then b1d2 , c1g2 , d1b2 , f1h2 , g1c2 and h1f2 are
all complex numbers. Furthermore, b1id2 and h1if2 are complex numbers provided �
is not an integer multiple of � , and c1ig2 , d1ib2 , f1ih2 and g1ic2 are complex
numbers provided � is not an integer multiple of � .

Proof Since B1 and B2 are in G , we know that a1 , e1 , l1 , a2 , e2 and l2 are all
complex numbers by Lemma 3.2. Consider the elements B1AB2 , B1A2B2 , B1A3B2 ,
B1A4B2 in G and also their respective .1; 1/–entries:

�ei�a1a2C b1ei�d2C�
�1c1ei�g2;

�2e2i�a1a2C b1e2i�d2C�
�2c1e2i�g2;

�3e3i�a1a2C b1e3i�d2C�
�3c1e3i�g2;

�4e4i�a1a2C b1e4i�d2C�
�4c1e4i�g2:

These are also all complex numbers by Lemma 3.2. Since a1; a2 2C , the following
are all complex numbers as well:

� cos�.b1d2/C� sin�.b1id2/C cos �.c1g2/C sin �.c1ig2/D z1;

�2 cos 2�.b1d2/C�
2 sin 2�.b1id2/C cos 2�.c1g2/C sin 2�.c1ig2/D z2;

�3 cos 3�.b1d2/C�
3 sin 3�.b1id2/C cos 3�.c1g2/C sin 3�.c1ig2/D z3;

�4 cos 4�.b1d2/C�
4 sin 4�.b1id2/C cos 4�.c1g2/C sin 4�.c1ig2/D z4:

One can easily show that the determinant of the associated 4� 4 matrix to the system
of linear equations above is

�3 sin� sin �.�2
� 2 cos.� � �/�C 1/.�2

� 2 cos.�C �/�C 1/:

Hence we have that b1d2 , b1id2 , c1g2 and c1ig2 are all complex numbers if both �
and � are not integer multiples of � . It can be easily checked that b1d2 and c1g2 are
still complex numbers even if either � or � is an integer multiple of � . Therefore,
b1d2 and c1g2 are complex numbers. Furthermore, if � is not an integer multiple
of � , then b1id2 is a complex number. If � is not an integer multiple of � , then c1ig2

is a complex number. Similarly, from the other diagonal entries of B1AB2 , B1A2B2 ,
B1A3B2 , B1A4B2 in G , the lemma is proved.

Applying Lemma 3.3 to B1DB2DB and B1DB;B2DB�1 (or B2DB;B1DB�1 ),
we immediately have:
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Corollary 3.4 Let B be the matrices written in (19). Then

(i) bd , db , f h, hf , cg , gc , bxh, f xd , cxg , xhb , xdf , xgc 2C .

(ii) bid , hif , bi xh, xdif 2C unless � � 0 .mod �/.

(iii) cig , dib , f ih, gic , ci xg , di xf , xgic , xhib 2C unless � � 0 .mod �/.

Let B be an arbitrary element of G (written as in (19)) that does not fix both 0 and 1.
Suppose that cg D 0. Then B fixes either 0 or 1; see Remark 2.1. This means that
A and B have a common fixed point. However this is impossible since G is discrete.
Hence cg ¤ 0.

3.1 The bd ¤ 0 case

We will first deal with the case that there exists an element B of G with bd ¤ 0, which
we assume throughout this section. As seen in Corollary 3.4, both bd and db are
complex numbers. Applying Proposition 2.2 for b and d , one of the following holds:

(1) b; d 2C .

(2) b and d are of the form b D b�j and d D d�j , where b�; d� 2C .

(3) d D r xb for some r 2R�f0g.

We will consider these cases separately as follows.

Case 1 Suppose that b; d 2C . Since bxh; xhb 2C and b is nonzero, h 2C . Similarly,
since f xd ; xdf 2C and d is nonzero, f 2C . Then, from (2) and (13), it can be seen
that c and g are also complex numbers. Thus every entry of B is a complex number,
and hence B 2 U.2; 1/.

Let B0 be any other element of G that does not fix both 0 and 1, and write

B0 D

24a0 b0 c0

d 0 e0 f 0

g0 h0 l 0

35 :
Then by Lemma 3.2, we know that a0; e0; l 0 2C . Furthermore, by Lemma 3.3, we have

bd 0; db0; b xh0; f 0 xd ; cg0;gc0 2C:

Since b and d are nonzero complex numbers, it follows that b0; d 0; h0; f 0 2C . More-
over, from (2) and (13), it follows that c0;g0 2C . Thus every entry of B0 is a complex
number; ie B0 2 U.2; 1/. Therefore, G is a subgroup of U.2; 1/, which preserves a
copy of H 2

C in H 2
H .
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Case 2 Now we suppose that b D b�j and d D d�j for some b�; d� 2 C . Since
bxh; xhb 2C by Corollary 3.4 and b is nonzero, hD h�j for some h� 2C . In the same
way, since f xd ; xdf 2C and d is nonzero, f D f�j for some f� 2C . Furthermore,
by (2), we have that

a xf C bxeC c xd D�af�j C b�j xe� cd�j:

Since e is a complex number, j xe D ej . Hence

�af�j C b�j xe� cd�j D .�af�C b�e� cd�/j D 0:

Since d� ¤ 0, we conclude that c is a complex number. Similarly, from (13), it can
be derived that g 2C . To summarize, a; e; l; c;g 2C , and b , d , f and h are of the
form q�j where q� 2C . Then for z1; z2 2C ,

A

24 z1

z2j

1

35D
24 �ei�z1

ei�z2j

.1=�/ei�

35�
24 z0

1

z0
2
j

1

35
for some z0

1
; z0

2
2C and

B

24 z1

z2j

1

35D
24 a b�j c

d�j e f�j

g h�j l

3524 z1

z2j

1

35D
24 az1C b�j z2j C c

d�j z1C ez2j Cf�j

gz1C h�j z2j C l

35
D

24 az1� b� xz2C c

.d� xz1C ez2Cf�/j

gz1� h� xz2C l

35�
24 z00

1

z00
2
j

1

35
for some z00

1
; z00

2
2 C . Note that

�
z1 z2j 1

�
D
�
z1 j xz2 1

�
for z1; z2 2 C . Hence A

and B leave invariant a copy of H 2
C of polar vectors

�
z1 j z2 1

�t
, where z1; z2 2C .

Let B0 be any other element of G that does not fix both 0 and 1. Let

B0 D

24a0 b0 c0

d 0 e0 f 0

g0 h0 l 0

35 :
Then a0; e0; l 0 2C by Lemma 3.2. Applying Lemma 3.3 to B and B0 , one can conclude
that bd 0; d 0b; b0d; db0 2C . Then, by Proposition 2.2, b0 and d 0 are of the form q�j

where q� 2C since b and d have the same form. By a similar argument, one can show
that f 0 and h0 are of the same form q�j . Moreover, c0;g0 2C because cg0;gc0 2C

by Lemma 3.3 and cg ¤ 0. Therefore, B0 is of the same form as B , and we conclude
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that every element of G preserves a copy of H 2
C consisting of

�
z1 j z2 1

�t
, where

z1; z2 2C .

Case 3 Lastly, suppose that d D r1
xb for some r1 2 R� f0g. Then consider AB

written as

AB D

24 �ei�a �ei�b �ei�c

ei�d ei�e ei�f

��1ei�g ��1ei�h ��1ei� l

35 :
The element AB falls into the bd ¤ 0 case. In addition, if �C � 6� 0 .mod �/, then
AB can never fall into Case 3 and thus it must fall into either Case 1 or 2, and we
are done. Hence, from now on, we assume that � C � � 0 .mod �/. Moreover, in
order to avoid repetition, assume that b and d are neither complex numbers nor of the
form b D b�j and d D d�j for b�; d� 2C . Under these hypotheses, we claim that
� � 0 .mod �/. If not, bid D r1bixb 2C holds by Corollary 3.4. Lemma 2.3 implies
either b 2 C or b D b�j for b� 2 C , which contradicts our hypothesis. Therefore,
� � 0 .mod �/, and thus � � 0 .mod �/ since �C � � 0 .mod �/.

By Corollary 3.4, we have that f xd , xdf , bxh, xhb 2C . Applying Proposition 2.2 to f; xd
and b; xh respectively, it can be easily seen that f D r 0

2
d D r 0

2
r1
xb D r2

xb and hD r3b

for some r2; r3 2R�f0g. From (5) and (14),

2r1r2jbj
2
D 2r3jbj

2
D 1� jej2;

and thus,

r3 D r1r2 D
1� jej2

2jbj2
and hD r1r2b:

Moreover, using (2), (4), (11), (13), we have the following equations:

r2abC r1cbC bxe D 0; r1lbC r2gbC r1r2bxe D 0;

r1r2xcbCxlbC r2be D 0; r1r2xabC xgbC r1be D 0:

These equations are written as

�r1r2bxe D r1r2
2 abC r2

1 r2cb D r1lbC r2gb;

�r1r2be D r2
1 r2xcbC r1

xlb D r1r2
2 xabC r2xgb:

Since b ¤ 0, these equations simplify to

r1r2
2 aC r2

1 r2c D r1l C r2g;

r1r2
2 a� r2

1 r2c D r1l � r2g:
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Hence we finally get that r1r2
2

aD r1l and r2
1

r2cD r2g ; ie l D r2
2

a and gD r2
1

c since
r1; r2 ¤ 0. Now B is written as

B D

24 a b c

r1
xb e r2

xb

r2
1

c r1r2b r2
2

a

35 ; where a; e 2C and r1; r2 2R�f0g:(23)

Since cg D r2
1

c2 2C by Corollary 3.4, either c 2C or c is purely imaginary.

Case 3.1 c 2 C From (11), .r2xaC r1xc/bC be D 0, and thus we have that

beb�1
D�r2xa� r1xc:

By hypothesis, a; c 2 C and r1; r2 2R� f0g. Hence the above identity implies that
beb�1 is also a complex number. We have two complex numbers e and beb�1 which
are similar. Therefore, we have one of the following:

(i) Im.e/D Im.beb�1/D 0.

(ii) Im.e/D Im.beb�1/¤ 0 and b 2C

(iii) Im.e/D� Im.beb�1/¤ 0 and b D b�j with b� 2C .

Since we are now assuming that neither of the last two cases holds, the first case holds;
ie e 2R.

Since �; � � 0 .mod �/ as mentioned before, ei� ; ei� 2 R. Therefore, for any
z1; z2; z3 2C ,

A

24 z1

xbz2

z3

35D
24�ei� 0 0

0 ei� 0

0 0 .1=�/ei�

3524 z1

xbz2

z3

35D
24 z0

1
xbz0

2

z0
3

35
for some z0

1
; z0

2
; z0

3
2C . In addition,

B

24 z1

xbz2

z3

35D
24 a b c

r1
xb e r2

xb

r2
1

c r1r2b r2
2

a

3524 z1

xbz2

z3

35D
24 az1Cjbj

2z2C cz3

xb.r1z1C ez2C r2z3/

r2
1

cz1C r1r2jbj
2z2C r2

2
az3

35D
24 z00

1
xbz00

2

z00
3

35
for some z00

1
; z00

2
; z00

3
2C .

Let B0 be any other element of G that does not fix both 0 and 1. By applying
Lemma 3.3 to B and B0 as in the previous case, one can check that B0 has the same
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form as B ; ie

B0 D

24 a0 b0 c0

r3
xb0 e0 r4

xb0

r2
3

c0 r3r4b0 r2
4

a0

35 ; where a0; c0 2C; e0 2R and r3; r4 2R�f0g:

Then, considering the diagonal entries of B0B , it follows that

a0aC r1b0xbC r2
1 c0c 2C; r1

xbb0C ee0C r2r3r4
xbb0 2C:

Since a; a0; c; c0 2 C , e; e0 2 R and r1; r2; r3; r4 ¤ 0, we have that b0xb 2 C and
xbb0 2 C . Applying Proposition 2.2 for xb and b0 , we have b0 D rb for some r 2 R

since b is neither a complex number nor of the form bD b�j for some b� 2C . Hence

B0 D

24 a0 rb c0

r3r xb e0 r4r xb

r2
3

c0 r3r4rb r2
4

a0

35 :
Then it is easy to see that B0 also preserves a copy of H 2

C of polar vectors
�
z1
xbz2 z3

�t
.

Therefore, we conclude that G preserves a copy of H 2
C of polar vectors

�
z1
xbz2 z3

�t
,

where z1; z2; z3 2C .

Case 3.2 c is purely imaginary Now we suppose that the previous case does not
happen for any element of G . Hence assume that c is not a complex number.

Claim r2 D�1.

Proof of claim From (3) and xc D�c , we have

Re.axcCjbj2C cxa/D 2 Re.axc/Cjbj2 D�2 Re.ac/Cjbj2 D 0:

Also since ac and ca are similar, we have 2 Re.ca/D 2 Re.ac/D jbj2 . In addition,
once we prove that the .1; 3/–entry of B2 , namely ac C r2jbj

2 C r2
2

ca, is purely
imaginary, then we have that

0D 2 Re.acC r2jbj
2
C r2

2 ca/D jbj2C 2r2jbj
2
C r2

2 jbj
2
D .r2C 1/2jbj2:

Since b ¤ 0, it follows that r2 D�1. For this reason, we only need to show that the
.1; 3/–entry of B2 is purely imaginary. This follows if both the .1; 2/–entry and the
.2; 1/–entry of B2 are nonzero since it is assumed that the previous case does not
happen for any element of G .
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Putting aD a0Ca1i and c D c1iC c2j C c3k , the identity axcCjbj2C cxaD 0 of (3)
implies that

jbj2C 2a1c1 D 0:

By a straight computation, the .1; 2/–entry of B2 is

abC beC r1r2cb:

From (11), we have that be D �r2xab � r1xcb D �r2xab C r1cb . The last equation
follows from the assumption that c is purely imaginary. Then the .1; 2/–entry of B2

is written as

abC beC r1r2cb D .a� r2xaC r1.r2C 1/c/b:

Note that a is a complex number, c is purely imaginary and not a complex number, and
b ¤ 0. Hence, if r2 ¤�1, the .1; 2/–entry of B2 can never be zero. In a similar way,
the .2; 1/–entry of B2 is also nonzero if r2¤�1. Hence if r2¤�1, the .1; 3/–entry
of B2 must be purely imaginary, and then r2 D�1 as mentioned above. This makes a
contradiction. Therefore, r2 D�1.

Now B is written as

B D

24 a b c

r1
xb e �xb

r2
1

c �r1b a

35 ; where a; e 2C and r1 2R�f0g:(24)

We look at the matrix BA:

BAD

24 a b c

r1
xb e �xb

r2
1

c �r1b a

3524�ei� 0 0

0 ei� 0

0 0 .1=�/ei�

35D
24 �aei� bei� cei�=�

�r1
xbei� eei� �xbei�=�

�r2
1

cei� �r1bei� aei�=�

35 :
Since ei� ; ei� 2R, the .1; 2/–entry of BA is neither a complex number nor of the form
q�j for q� 2C . Hence BA is of the same form as B in (24). Then the modulus of
the .1; 2/–entry of BA should equal to the modulus of the .2; 3/–entry of BA. Hence,
we have that

jbe�2i�
j D

ˇ̌̌
�xbei�

�

ˇ̌̌
and jbj D

jbj

�
; and so �D 1:

However, this contradicts the assumption that � > 1. Therefore, the case that c is
purely imaginary and not a complex number can never happen.
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3.2 The bd D 0 case

So far, we have looked at the case that there exists an element B of G with bd ¤ 0.
From now on, we consider the remaining case that every element of G satisfies bd D 0.
If bd D 0, by considering B�1 , we also have f h D 0. Then, using the identities
(1)–(18), it can be easily checked that bD d D f D hD 0. For example, if bD f D 0,
then by (6), d D 0 because c ¤ 0. Then by (15), h D 0. Therefore, every element
of G is of the form 24a 0 c

0 e 0

g 0 l

35 ; where a; e; l 2C:

Applying Proposition 2.2 for c and g , since c;g ¤ 0, one of the following holds:

(i) c , g 2C .

(ii) c and g are of the form c D c�j and g D g�j where c�;g� 2C .

(iii) g D rxc for some r 2R�f0g.

First, if c , g 2C , then B 2 U.2; 1/. For any other element

B0 D

24a0 0 c0

0 e0 0

g0 0 l 0

35 2G; where a0; e0; l 0 2C;(25)

we have c0;g0 2 C since cg0;gc0 2 C by Lemma 3.3. Hence B0 2 U.2; 1/. This
implies that G is a subgroup of U.2; 1/.

Second, if c and g are of the form c D c�j and gD g�j , where c�;g� 2C , then for
z1; z2; z3 2C , we have

A

24z1j

z2

z3

35D
24�ei� 0 0

0 ei� 0

0 0 .1=�/ei�

3524z1j

z2

z3

35D
24 �ei�z1j

ei�z2

.1=�/ei�z3

35D
24z0

1
j

z0
2

z0
3

35 ;
B

24z1j

z2

z3

35D
24a 0 c

0 e 0

g 0 l

3524z1j

z2

z3

35D
24az1j C cz3

ez2

gz1j C lz3

35D
24z00

1
j

z00
2

z00
3

35 ;
for some z0

1
; z0

2
; z0

3
; z00

1
; z00

2
; z00

3
2C . Hence, A and B leave invariant a copy of H 2

C of
polar vectors

�
z1j z2 z3

�t
, where z1; z2; z3 2C .

For any other element B0 2 G of the form (25), since cg0;gc0 2 C by Lemma 3.3,
c0 and g0 are also of the form c0 D c0�j , g0 D g0�j for c0� , g0� 2 C . Therefore,
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every element of G preserves a copy of H 2
C of polar vectors

�
z1j z2 z3

�t
, where

z1; z2; z3 2C .

Lastly, in the case that gD rxc for some r 2R�f0g, we assume that c 62C and that c

is not of the form c D c�j for c� 2 C to avoid repetition. From (1), we have that
axl C rc2 D 1, and so c2 2C . Then c should be purely imaginary because c 62C . By
(3), we have Re.ca/D 0, so a 2R. Then for z1; z2; z3 2C ,

B

24cz1

z2

z3

35D
24 a 0 c

0 e 0

rxc 0 l

3524cz1

z2

z3

35D
24 c.az1C z3/

ez2

r jcj2z1C lz3

35D
24cz0

1

z0
2

z0
3

35
for some z0

1
; z0

2
; z0

3
2C .

Claim � � 0 .mod �/.

Proof of claim The .1; 1/–entry of BAB is a complex number; ie

�ei�a2
C

rcei�xc

�
2C:

Since �ei�a2 2C , we have cei�xcD jcj2 cos ��.cic/ sin � 2C . So if � 6� 0 .mod �/,
cic 2C . Then by Lemma 2.3, either c 2C or c D c�j for c� 2C . This contradicts
our assumption. Thus � � 0 .mod �/.

Due to the claim above, A is written as

AD

24˙� 0 0

0 ei� 0

0 0 ˙1=�

35 :
Then, for z1; z2; z3 2C ,

A

24cz1

z2

z3

35D
24 ˙c�z1

ei�z2

˙.1=�/z3

35D
24cz0

1

z0
2

z0
3

35
for some z0

1
; z0

2
; z0

3
2C .

Thus A and B leave invariant a copy of H 2
C of polar vectors

�
cz1 z2 z3

�t
, where

z1; z2; z3 2C . For any other element B0 2G of the form (25), by Lemma 3.3, cg0 2C

and g0c 2 C . Since c is purely imaginary, Proposition 2.2 implies that g0 D r 0c for
some r 0 2R�f0g and g0 is purely imaginary. Since c0g0;g0c0 2C by Corollary 3.4,
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c0 D r 00g0 for some r 00 2R�f0g by Proposition 2.2. Also, by a similar argument as
above, we have a0 2R using (3). Therefore, B0 is written as

B0 D

24 a0 0 r 0r 00c

0 e0 0

r 0c 0 l 0

35 ;
where e0; l 0 2 C , a0 2 R, r 0; r 00 2 R � f0g, and c is purely imaginary. Then, for
z1; z2; z3 2C ,

B0

24cz1

z2

z3

35D
24 a0 0 r 0r 00c

0 e0 0

r 0c 0 l 0

3524cz1

z2

z3

35D
24c.a0z1C r 0r 00z3/

e0z2

�r 0jcj2z1C l 0z3

35D
24cz0

1

z0
2

z0
3

35
for some z0

1
; z0

2
; z0

3
2 C . Therefore, every element of G preserves a copy of H 2

C of
polar vectors

�
cz1 z2 z3

�t
, where z1; z2; z3 2C .
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