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Knot Floer homology and Khovanov–Rozansky homology
for singular links

NATHAN DOWLIN

The (untwisted) oriented cube of resolutions for knot Floer homology assigns a
complex CF .S/ to a singular resolution S of a knot K . Manolescu conjectured
that when S is in braid position, the homology H�.CF .S// is isomorphic to the
HOMFLY-PT homology of S. Together with a naturality condition on the induced edge
maps, this conjecture would prove the existence of a spectral sequence from HOMFLY-
PT homology to knot Floer homology. Using a basepoint filtration on CF .S/ , a
recursion formula for HOMFLY-PT homology and additional sln–like differentials on
CF .S/ , we prove Manolescu’s conjecture. The naturality condition remains open.

57M27

1 Introduction

The last few decades have seen tremendous growth within the field of knot theory.
Many new knot invariants have been constructed, including the categorifications of
several classical knot polynomials. These categorifications typically take the form of a
multigraded homology theory, whose graded Euler characteristic returns the polynomial
in question.

Some of the most notable categorifications include HOMFLY-PT homology, sln homol-
ogy and knot Floer homology, whose graded Euler characteristics return the HOMFLY-
PT polynomial, the sln polynomial and the Alexander polynomial, respectively. The
HOMFLY-PT polynomial of a link L is a two variable polynomial PH .a; q/.L/, and it
is determined by the skein relation

aPH .a; q/.LC/� a
�1PH .a; q/.L�/D .q� q

�1/PH .a; q/.L0/;

where LC , L� and L0 are identical except at one crossing, where LC has a positive
crossing, L� has a negative crossing and L0 has the oriented smoothing (see Freyd,
Yetter, Hoste, Lickorish, Millett and Ocneanu [4] and Przytycki and Traczyk [16]). To-
gether with the normalization PH .a; q/.unknot/D 1, this relation uniquely determines
the HOMFLY-PT polynomial.
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We can obtain a single-variable polynomial invariant Pn.q/.L/ by setting a D qn

in the HOMFLY-PT polynomial. For n� 1, Pn.q/.L/ gives the sln polynomial, and
setting nD 0 gives the Alexander polynomial. The most popular of the sln polynomials
is the Jones polynomial, which is obtained by setting n D 2, and sl2 homology is
isomorphic to Khovanov’s original categorification of the Jones polynomial, known
as Khovanov homology [8]. An explicit description of this isomorphism is described
by Hughes [6].

The fact that the sln and Alexander polynomials are specializations of the HOMFLY-PT

polynomial led to the following conjecture of Dunfield, Gukov and Rasmussen:

Conjecture 1.1 [3] For all n � 1, there is a spectral sequence from HOMFLY-
PT homology to sln homology, and there is a spectral sequence from HOMFLY-PT

homology to knot Floer homology.

Rasmussen was able to use similarities in the constructions of HOMFLY-PT homology
and sln homology to prove the first part of this conjecture. In particular, he showed [18]
that there are a family of spectral sequences Ek.n/ for n� 1 such that the E2 page is
HOMFLY-PT homology and the E1 page is sln homology.

Unfortunately, due to the fundamental differences between Khovanov–Rozansky ho-
mology and knot Floer homology, the second part of Conjecture 1.1 has remained
unsolved for the last decade. This conjectured spectral sequence from HOMFLY-PT

homology to knot Floer homology will be the focus of this paper.

It turns out that all three of these homology theories can be constructed via an oriented
cube of resolutions. Let CH .D; dH0 Cd

H
1 / denote the cube of resolutions for HOMFLY-

PT homology, where dHi denotes the component of the differential which increases the
cube grading by i . (For both HOMFLY-PT and sln homology, the higher face maps di
with i � 2 are zero.) The HOMFLY-PT homology HH .K/ is defined to be

HH .K/DH�
�
H�.CH .D/; d

H
0 /; .d

H
1 /
�
�
;

where D is a braid diagram of the knot K and .dH1 /
� is the induced map on homology.

HOMFLY-PT homology is a knot invariant, which means that the homology does
not depend on the choice of braid diagram for K . Note that this homology can be
equivalently viewed as the E2 page of the spectral sequence induced by the cube
filtration on the HOMFLY-PT complex.
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The sln homology Hn.K/ is defined in the same way. If Cn.D; d
.n/
0 Cd

.n/
1 / denotes

the cube of resolutions for sln homology, then Hn.K/ is given by

Hn.K/DH�
�
H�.Cn.D/; d

.n/
0 /; .d

.n/
1 /�

�
;

where, again, D is a diagram for K (not necessarily a braid), and the homology is
independent of the choice of D.

Knot Floer homology is a completely different story. There is not a standard way to
define the complex CFK�.K/, as it depends on a choice of Heegaard diagram for K ,
and there are many different ways to make this choice for a knot K . However, the
chain homotopy type of CFK�.K/ does not depend on the choice of diagram.

Using a particular choice of Heegaard diagram together with a bit of algebra, Oszváth
and Szabó developed an oriented cube of resolutions for knot Floer homology with
twisted coefficients [15]. This construction was modified by Manolescu [12] to give
an untwisted cube of resolutions for knot Floer homology, which is chain homotopy
equivalent to CFK�.K/. We will denote this complex by .CF .D/; dF0 Cd

F
1 C� � �Cd

F
k
/.

Unlike the HOMFLY-PT and sln homology, the knot Floer homology HFK�.K/ is the
total homology of this complex:

HFK�.K/ŠH�.CF .D/; dF0 C d
F
1 C � � �C d

F
k /:

For all of these complexes, each vertex in the cube of resolutions can be viewed as a
complex corresponding to the complete resolution S at that vertex. We will denote
these complexes by CH .S/, Cn.S/ and CF .S/, with the corresponding homologies
given by HH .S/, Hn.S/ and HF .S/.

Manolescu made the following conjecture:

Conjecture 1.2 [12] Let S denote a complete resolution of a diagram D in braid
position. Then HH .S/ŠHF .S/ as bigraded vector spaces.

An immediate consequence of this conjecture is an isomorphism

H�.CH .D/; d
H
0 /ŠH�.CF .D/; d

F
0 /;

which maps each vertex in the HOMFLY-PT cube of resolutions to the same vertex in
the knot Floer cube of resolutions. As discussed in [12], one would obtain a spectral
sequence from HOMFLY-PT homology to knot Floer homology if the induced edge
maps agree. In other words, if f is the isomorphism between them, then the existence
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of such a spectral sequence would follow from the square below being commutative:

H�.CH .D/; d
H
0 / H�.CF .D/; d

F
0 /

H�.CH .D/; d
H
0 / H�.CF .D/; d

F
0 /

.dH1 /
�

f

.dF1 /
�

f

This idea can also be explained in terms of the spectral sequences induced by the
cube filtrations on CH .D/ and CF .D/. Letting EH

k
.D/ and EF

k
.D/ denote the two

spectral sequences, we see that the HOMFLY-PT homology is given by EH2 .D/ and
the knot Floer homology is given by EF1.D/. Manolescu’s conjecture would imply
an isomorphism EH1 .D/ Š EF1 .D/, and the induced edge maps commuting with
this isomorphism would imply that EH2 .D/ Š E

F
2 .D/. This would give a spectral

sequence whose E2 page is isomorphic to HOMFLY-PT homology and whose E1 page
is HFK�.K/.

Manolescu showed that for a connected singular braid S, both HH .S/ and HF .S/ have
a purely algebraic formulation in terms of Tor groups. Letting R denote the polynomial
ring QŒU1; : : : ; Uk�, where k is the number of edges in the singular braid S, he showed
that there are ideals L, Q and N in R such that

HH .S/Š TorR.R=L;R=Q/ and HF .S/Š TorR.R=L;R=N/:

These Tor groups can naturally be viewed as bigraded vector spaces, where the dimen-
sion in each bigrading is finite. Thus, for S connected, Conjecture 1.2 is equivalent to
an isomorphism of bigraded vector spaces

TorR.R=L;R=Q/Š TorR.R=L;R=N/:

Unfortunately, these Tor groups turned out to be difficult to compare due to the nonlocal
nature of the ideal N.

In this paper, we will prove Conjecture 1.2 using a very different approach. First, we
define an additional family of differentials on CF .S/ for all n � 1. We will denote
this complex by CF.n/ .

Theorem 1.3 For all n� 1, there is an isomorphism H�.CF.n/.S//ŠHnC1.S/.
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The differential on CF.n/ can be filtered by the Alexander grading, and when we only
consider those differentials which preserve the Alexander grading, we get back the
complex CF .S/. Thus, using the Alexander filtration on CF.n/ , we get the following:

Corollary 1.4 For all n� 2, there is a spectral sequence which starts at HF .S/ and
converges to Hn.S/.

For all n � 1, there is also a known spectral sequence which starts at HH .S/ and
converges to Hn.S/; see Rasmussen [18]. Thus, HH .S/ and HF .S/ are both “limits”
of sln homology (in a suitable sense).

We are able to use these additional differentials together with a basepoint filtration to
prove Conjecture 1.2.

Theorem 1.5 Let S denote a complete resolution of a diagram D in braid position.
Then HH .S/ŠHF .S/ as bigraded vector spaces.

Corollary 1.6 Let D be a braid diagram and EF2 .D/ the E2 page of the spectral
sequence on CF .D/ induced by the cube filtration. Then the graded Euler characteristic
of EF2 .D/ is the HOMFLY-PT polynomial.

This corollary provides evidence for the conjecture that EF2 .D/ is in fact isomorphic
to HOMFLY-PT homology.

Remark 1.7 The spectral sequences from HF .S/ to Hn.S/ may seem strange in the
context of the conjectured spectral sequence from Khovanov homology to knot Floer
homology, since, assuming this conjecture is true, we would have rank inequalities
among the reduced homologies

rk.HH .K//� rk.Hn.K//� rk.Hn�1.K//� � � � � rk.H 2.K//� rk. bHFK .K//

for any knot K . The intuition behind this is that knot Floer homology has large
homology at each vertex in the cube of resolutions, but unlike HOMFLY-PT and sln
homology, it has higher face maps which allow the total homology of a knot to still be
smaller.

Outline of the paper

In Section 2 we give background on HOMFLY-PT and sln homology for singular
braids. In Section 3 we describe a recursion formula for sln homology known as the
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composition product — see Wagner [21] — and prove a generalization to HOMFLY-
PT homology. In Section 4 we describe the knot Floer homology of singular braids
and define a filtration on the associated complex. The main theorems are proved in
this section using the filtration together with the composition product formulas from
Section 3.
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2 The Khovanov–Rozansky homology of singular links

2.1 Singular resolutions and the ground ring

A complete resolution S of a knot K in braid position can be viewed as an oriented
planar graph with the following properties:

(1) All vertices are either 2–valent or 4–valent.

(2) The number of incoming edges is equal to the number of outgoing edges at each
vertex.

(3) If Z is an oriented cycle in S, then the unique disc D �R2 with boundary Z
intersects the center of the braid.

Let e1; : : : ; ek denote the edges of S. To each edge ei , we assign an indeterminate Ui .
All three homology theories will be defined over the ground ring RDQŒU1; : : : ; Uk�.

e1 e2

e3 e4

e5 e6

Figure 1: An example of a singular braid diagram
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2.2 HOMFLY-PT homology and sln homology

This section will give a brief description of the HOMFLY-PT and sln homologies as
defined in [9; 10]. We will use the grading conventions from [18], though we will
leave out the overall grading shifts coming from the braid number. The reader can refer
to these resources for further background. The HOMFLY-PT and sln complexes have
the same generators, with the sln complex having strictly more differentials than the
HOMFLY-PT complex (see Remark 2.1). For this reason, we will start by defining the
HOMFLY-PT complex, then we will describe the additional differentials to make the
sln complex.

Remark 2.1 In all of our homology theories, the differential is a map d W C ! C

with d2 D 0, where C is free R–module. However, we will also commonly refer to a
particular component of d as a “differential” as well. For example, if the coefficient
of y in the basis expansion of d.x/ is a2R , then we will say that there is a differential
from x to y with coefficient a .

The HOMFLY-PT complex for links comes equipped with a triple-grading, and the
sln complex with a bigrading. One of the gradings in both theories, however, comes
from the height in the cube of resolutions, so it will be fixed for a single resolution.
The HOMFLY-PT complex will therefore come with a bigrading, and the sln complex
with a single grading. For the HOMFLY-PT complex, these gradings are called the
quantum grading, denoted grq , and the horizontal grading, denoted grh . Multiplication
by the Ui increases the quantum grading by 2 and preserves the horizontal grading.

Let V2.S/ denote the 2–valent vertices in S and V4.S/ the 4–valent vertices of S. For
vertices v in V2.S/, there is a unique outgoing edge ei and a unique incoming edge ej .
Define L.v/ to be the linear term Ui �Uj . Similarly, for vertices v in V4.S/ there are
two outgoing edges ei and ej and two incoming edges ek and el . We define L.v/ to
be the linear term UiCUj �Uk�Ul and Q.v/ to be the quadratic term UiUj �UkUl .

The HOMFLY-PT complex is a tensor product of complexes CH .v/ for each vertex v .
For v in V2.S/, CH .v/ is defined as

Rf0;�2g
L.v/
��!Rf0; 0g;

where Rfi; j g refers to the free R–module of rank 1 shifted by i in grq and by j
in grh , so that the generator lies in bigrading fi; j g. For v in V4.S/, CH .v/ is defined
as in Figure 2.
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Rf1;�4g Rf1;�2g

Rf�1;�2g Rf�1; 0g

Q.v/

L.v/

Q.v/

�L.v/

Figure 2: The HOMFLY-PT complex at a 4–valent vertex v

Note that the differential is homogeneous of degree f2; 2g. The HOMFLY-PT complex
for the singular diagram S is given by

CH .S/D
O
v2S

CH .v/;

where the tensor product is taken over R and the HOMFLY-PT homology HH .S/ is
the homology of CH .S/.

We will now define the additional differentials which give sln homology. For a vertex v
in S with outgoing edges Eout and incoming edges Ein , let the potential wn be given
by

wn.v/D
X
ei2Eout

U nC1i �

X
ej2Ein

U nC1j :

For v in V2.S/, let u1.v/ be the unique element in R such that u1.v/L.v/D wn.v/.
For v in V4.S/, we can choose u1.v/ and u2.v/ such that

u1.v/L.v/Cu2.v/Q.v/D wn.v/:

Unlike the 2–valent case, the choice is not unique, but the reader can refer to [9, page 5]
for the precise choice. (It is not relevant for our discussion.)

For each vertex v , we will add new differentials to CH .v/ to make a new com-
plex Cn.V /. For v in V2.S/, Cn.v/ is given by

Rf0;�2g Rf0; 0g

L.v/

u1.v/

and for v in V4.S/, Cn.v/ is given by Figure 3.

Algebraic & Geometric Topology, Volume 18 (2018)



Knot Floer homology and Khovanov–Rozansky homology for singular links 3847

Rf1;�4g Rf1;�2g

Rf�1;�2g Rf�1; 0g

Q.v/

L.v/

�L.v/

u2.v/ Q.v/

u1.v/

�u1.v/

u2.v/

Figure 3: The sln complex at a 4–valent vertex v

Observe that for both types of vertices, the differential on Cn.v/ satisfies d2Dwn.v/I.
Such a complex is called a matrix factorization with potential wn . Since d2 is nonzero,
its homology is not well defined. However, we are interested in the tensor product
of Cn.v/ over all vertices v in S. Define the sln complex Cn.S/ by

Cn.S/D
O
v2S

Cn.v/;

where again the tensor product is taken over R .

As mentioned above, the HOMFLY-PT differentials are homogeneous of degree f2; 2g.
These differentials are denoted by dC . The new differentials, those with coefficients
u1.v/ and u2.v/, are homogeneous of degree f2n;�2g. These are denoted by d� .
The total differential dtot D dCC d� is not homogeneous in this bigrading. However,
if we look at the grading grn D grq C

1
2
.n � 1/ grh , then dtot is homogeneous of

degree nC 1.

Additionally, d2totD 0. This can be seen from the fact that the potential is additive under
tensor product, so d2tot D

P
v2S wn.v/. The sum must be zero because each edge ei is

an outgoing edge for one vertex, which will contribute U nC1i , and an incoming edge
for another vertex, which will contribute �U nC1i .

This shows that Cn.S/ is a well-defined chain complex which is homogeneous with
respect to the grading grn . We define the sln homology Hn.S/ to be the homology of
this complex.

Remark 2.2 The definitions given here correspond to the unreduced theories in [18]
as opposed to the middle or reduced homologies. To translate between our definition
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L.v/ �Rf0; 0g

Rf0;�2g Rf0; 0g=L.v/

1

u1.v/ �L.v/

u1.v/

Figure 4

and Rasmussen’s, it suffices to show they are the same for connected diagrams S, as in
both theories disjoint union corresponds to tensor product over Q.

Let v0 be a bivalent vertex in S (insert one if necessary). The linear relations coming
from all of the vertices besides v form a regular sequence in R — this is shown in
Rasmussen’s proof of Lemma 3.11 in [18]. We can write our complex Cn.S/ as

Cn.S/D C
Q
n .S/˝R .Rf0;�2g ���!���!

u1.v0/

L.v0/
Rf0; 0g/˝R C

L
n .S � v0/;

where CQn .S/ is the Koszul complex on the terms .Q.v/; u2.v// for all 4–valent
vertices v , and CLn .S � v0/ is the Koszul complex on the terms .L.v/; u1.v// for all
vertices except v0 (see [18, Definition 3.7] for the definition of a Koszul complex in
the context of Z–graded matrix factorizations). Each Koszul factor in CLn .S � v0/ is
given by

Rf0;�2g Rf0; 0g

L.v/

u1.v/

for some vertex v . This complex can be rewritten as in Figure 4, where the dashed line
refers to the fact that multiplication by L.v/ in Rf0; 0g=L.v/ maps into L.v/ �Rf0; 0g
in the obvious way (ie it is recording the R–module structure, not the differential).

After tensoring this matrix factorization with the remaining terms to obtain Cn.S/,
the map by 1 in this diagram gives a contractible subcomplex, so our complex Cn.S/
is chain homotopy equivalent to the complex in which the linear Koszul factor is
replaced with the quotient complex Rf0; 0g=L.v/. Since all of the elements L.v/ in
CLn .S �v0/ form a regular sequence, we can do this recursively until CLn .S �v0/ has
been replaced with the complex R=L D Rf0; 0g=fL.v/ D 0 for v ¤ v0g. (The fact
that the elements form a regular sequence guarantees that the maps labeled by 1 in the
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diagram are always isomorphisms rather than just surjections, making the subcomplex
contractible at each stage.)

Since L.v0/ is the negative of the sum of the L.v/ for v¤ v0 , L.v0/ is in the ideal L
as well. Thus, we have shown that

Cn.S/Š C
Q
n .S/˝R .Rf0;�2g ���!���!

u1.v0/

0
Rf0; 0g/˝R R=L:

This corresponds to the definition of the unreduced theory in [18, Definition 2.14]. The
middle theory can be obtained by dropping the Koszul complex Rf0;�2g ���!���!

u1.v0/

0
Rf0; 0g.

Remark 2.3 This argument that Koszul complexes on regular sequences can be
simplified to quotients R=I where I is the ideal generated by the elements of the
regular sequence will be repeated throughout the paper. When we are using this
argument, we will simply say that we are canceling the corresponding differentials. The
above discussion describes why no new differentials arise as a result of this cancelation.

2.3 Rasmussen’s spectral sequences

Rasmussen [18] showed that there is a family of spectral sequences Ek.n/ which
start at HOMFLY-PT homology and converge to sln homology. The existence of these
spectral sequences is somewhat difficult to prove for the case of knots and links, but
the argument is much simpler for fully singular diagrams.

With respect to the horizontal grading, dC has grading 2 and d� has grading �2. If
we take homology with respect to dC , all induced differentials decrease the horizontal
grading. Thus, there is a well-defined spectral sequence .Ek.n/; dk.n//, where dk is
defined to be the part of dtot which increases the horizontal grading by 2� 4k .

The E1 page of this spectral sequence is H�.Cn.S/; dC/, which is exactly the definition
of HOMFLY-PT homology. Since Cn.S/ is bounded in horizontal grading, the E1 page
is the homology with respect to dtot , or sln homology. It turns out (Corollary 2.7) that
this spectral sequence collapses at the E2 page, given by

H�.H�.Cn.S/; dC/; d
�
�/:

We will denote this page by H˙.Cn.S//. Note that H˙.Cn.S// is bigraded, as both
dC and d� are homogeneous. In order to see why this spectral sequence collapses, we
must first introduce the rotation number.
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Definition 2.4 Given a (possibly singular) diagram D, let D0 denote the diagram
obtained by replacing each crossing or singularization with the oriented smoothing.
The resulting diagram is a collection of oriented circles. These circles are called the
Seifert circles of D.

Definition 2.5 The rotation number of a (possibly singular) diagram D is the sum
of the signs of the Seifert circles, with a circle contributing a C1 if it is oriented
counterclockwise and a �1 if it is oriented clockwise.

The fact that all higher differentials are trivial follows from the following lemma:

Lemma 2.6 [18] The homology H˙.Cn.S// lies in a single horizontal grading,
namely grh D 2r.S/, where r.S/ is the rotation number of S. Since S is a singular
braid oriented clockwise, r.S/ is the negative of the number of strands in S.

Since none of the higher differentials preserve the horizontal grading, they must all be
trivial, causing the spectral sequence to collapse.

Corollary 2.7 Viewing H˙.Cn.S// as singly graded with grading grn , there is a
graded isomorphism H˙.Cn.S//ŠHn.S/.

Remark 2.8 The reader familiar with [18] may note that our homology lies in
grh D 2r.S/, while Rasmussen’s lies in grh D 1 C r.S/. This difference comes
from the fact that our homology is unreduced, which decreases the grading by 1, and
because we are leaving out the overall grading shift of �r.S/ in [18, Definition 2.14].

3 A recursion formula for the Khovanov–Rozansky
homology of singular links

3.1 The composition product

3.1.1 Jaeger’s formula The first composition product formula was defined by Jaeger
in [7]. In order to discuss the composition product, we must first define labelings of a
diagram. Let K be a knot with corresponding diagram D. Viewing D as an oriented
4–valent graph, we say that a subset S of the edges of D is a homological cycle if
at each vertex in D the number of incoming edges in S is equal to the number of
outgoing edges in S. A labeling f of the diagram D is a function from the set of edges
in D to the set f1; 2g such that f �1.1/ is a homological cycle. (Note that f �1.1/ is
a homological cycle if and only if f �1.2/ is a homological cycle.)
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1

1

2

2

2

2

1

1

Figure 5: Nonadmissible labelings

We will place a restriction on which homological cycles are allowed. A homological
cycle is said to make a turn at a crossing c if it has one incoming edge at c and one
outgoing edge at c and those edges are not diagonal from one another. Let T .f /
denote the number of turns of the labeling f . A labeling f is admissible if f �1.1/
doesn’t make any left turns at positive crossings or right turns at negative crossings.

Since the homological cycle f �1.1/ uniquely determines the labeling f , we will say
that a homological cycle Z is admissible if the unique labeling f with f �1.1/DZ
is admissible. The two cycles f �1.1/ and f �1.2/ can both be viewed as diagrams
of links if we retain the crossing information whenever one of them contains all four
edges at a crossing, and forget it otherwise. We will refer to these diagrams as Df;1
and Df;2 , respectively. Note that r.Df;1/C r.Df;2/D r.D/.

With the HOMFLY-PT polynomial PH as defined in the introduction, define

P 0H .a; q;D/D

�
a� a�1

q� q�1

�
.aw.D//PH .a; q;D/:

Note that P 0H is invariant under Reidemeister II and III moves, but performing a
Reidemeister I move changes the writhe, so one picks up a factor of a or a�1 depending
on the sign of the crossing. With this normalization, P 0H .O/D .a� a

�1/=.q� q�1/,
and P 0H .∅/D 1, where ∅ denotes the empty diagram and O denotes the crossingless
diagram for the unknot. Jaeger’s composition product can be stated as

(1)
X

f admissible

.q� q�1/T.f /a
r.Df;2/

1 a
�r.Df;1/

2 P 0H .a1; q;Df;1/P
0
H .a2; q;Df;2/

D P 0H .a1a2; q;D/:

The proof of this formula is combinatorial in nature — one can show that it behaves
properly under Reidemeister moves and that it satisfies the necessary skein relation
via local computations. In fact, Jaeger [7] showed that this formula is invariant under
all Reidemeister moves, so the formula holds for arbitrary diagrams D instead of just
braid diagrams.
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e1 e2

e3 e4

Figure 6: A labeled 4–valent vertex

3.1.2 The composition product for singular graphs Defining

P 0n.q;D/D P
0
H .q

n; q;D/;

the composition product formula can be specialized to the sln polynomials to give

(2)
X

f admissible

.q� q�1/T.f /qmr.Df;1/�nr.Df;2/P 0n.q;Df;1/P
0
m.q;Df;2/

D P 0mCn.q;D/:

This formula was extended by Wagner to singular braids in the following way. If S
is a singular braid, we can define labelings of S in the same way as labelings for
knots. We will drop the admissibility condition at 4–valent vertices since they no
longer correspond to positive or negative crossings. Note that as with the nonsingular
diagrams, we have r.Sf;1/C r.Sf;2/D r.S/. Given a labeling f of S, let T1.Sf;1/
denote the number of vertices v 2 V4.S/ at which f �1.1/ contains the edges e1
and e3 in Figure 6. Similarly, let T2.Sf;1/ denote the number of vertices v 2 V4.S/ at
which f �1.1/ contains the edges e2 and e4 . With this terminology, the composition
product for singular braids can be stated as

P 0mCn.S/D
X

f 2L.S/

q�m;n.f /P 0n.Sf;1/P
0
m.Sf;2/;

where P 0
k
.S/ is the unreduced slk polynomial of S,

�m;n.f /D T2.Sf;1/�T1.Sf;1/Cmr.Sf;1/�nr.Sf;2/

and r.Sf;i / is the negative of the number of strands in the singular braid Sf;i .

Remark 3.1 The slk polynomials for singular braids are defined by the skein relations

Pk.Dx/D qPk.D0/� q
kPk.DC/D q

�1Pk.D0/� q
�kPk.D�/

and

P 0k.Dx/D qP
0
k.D0/�P

0
k.DC/D q

�1P 0k.D0/�P
0
k.D�/;
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where DC , D� , Dx and D0 are diagrams which are the same away from a crossing,
but locally DC has a positive crossing, D� has a negative crossing, Dx has the
singularization and D0 has the oriented smoothing. For a fully singular graph S, the
writhe is zero, so P 0

k
.S/D .qk � q�k/=.q� q�1/Pk.S/. Thus, P 0

k
.S/ is categorified

by the unreduced slk homology of S, and Pk.S/ is categorified by the reduced slk
homology of S.

3.2 The categorification for sln homology

Wagner further showed that the composition product formula is true on the level of
categorifications:

HmCn.S/D
M

f 2L.S/

Hn.Sf;1/˝Hm.Sf;2/f�m;n.f /g (with polynomial grading),

where the sln homology groups are singly graded, using the polynomial grading grn .
In order for us to generalize this theorem, it will be useful to have a bigraded version of
it using our .grq; grh/ gradings. Since the bigraded Hn.S/ lies in a single horizontal
grading, namely grhD 2r.S/, and grnD grqC

1
2
.n�1/ grh , the q–grading is uniquely

determined by grn :
grn D grqC .n� 1/r.S/:

Thus, if we view each Hn.S/ as singly graded, where the grading is grq instead, the
formula becomes

HmCn.S/f.nCm� 1/r.S/g

D

M
f 2L.S/

Hn.Sf;1/˝Hm.Sf;2/f�m;n.f /C .n� 1/r.Sf;1/C .m� 1/r.Sf;2/g:

This can be simplified to

HmCn.S/D
M

f 2L.S/

Hn.Sf;1/˝Hm.Sf;2/fT2.Sf;1/�T1.Sf;1/� 2nr.Sf;2/g:

Finally, to make this bigraded, we need to add in the horizontal grading. Since HmCn.S/
lies in horizontal grading 2r.S/, Hn.Sf;1/ lies in horizontal grading 2r.Sf;1/, and
Hm.Sf;2/ lies in horizontal grading 2r.Sf;2/, we see that the tensor product

Hn.Sf;1/˝Hm.Sf;2/

always lies in horizontal grading 2r.Sf;1/C2r.Sf;2/. Since r.Sf;1/Cr.Sf;2/D r.S/, it
follows that the tensor product lies in grading 2r.S/ — the same grading as HmCn.S/.
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Thus, we can add the horizontal grading to the composition product formula, with no
grading shift required for each labeling f . The bigraded formula is then

HmCn.S/D
M

f 2L.S/

Hn.Sf;1/˝Hm.Sf;2/fT2.Sf;1/�T1.Sf;1/� 2nr.Sf;2/; 0g;

where the bigrading is given by .grq; grh/.

3.3 A categorification for HOMFLY-PT homology

In relating these formulas to knot Floer homology, we will be most interested in the
case when nD 1. In this case, the previous formula becomes

(3) HmC1.S/D
M

f 2L.S/

H1.Sf;1/˝Hm.Sf;2/fT2.Sf;1/�T1.Sf;1/� 2r.Sf;2/; 0g:

In this section we will prove a generalization of this formula to HOMFLY-PT homol-
ogy. Letting HH .S/ denote the HOMFLY-PT homology with the standard bigrad-
ing .grq; grh/, define HH .S/hki to be HOMFLY-PT homology with a new grading
.grqC k grh; grh/.

Theorem 3.2 There is an isomorphism of bigraded vector spacesM
f

H1.Sf;1/˝HH .Sf;2/fT2.Sf;1/�T1.Sf;1/� 2r.Sf;2/; 0g ŠHH .S/h1i:

The proof of this theorem will rely heavily the fact that for all n � 1, there is a
differential d�.n/ on HH .S/ which is homogeneous with bigrading f2n;�2g, and

H�.HH .S/; d�.n//ŠHn.S/;

where we are viewing Hn.S/ as a bigraded vector space. (This is the homology H˙n .S/
from Section 2.3.) Recall that as a bigraded vector space, Hn.S/ lies in a single
horizontal grading, namely grh D 2r.S/.

The theorem will be proved in two parts. First we will show that any bigraded vector
space with certain algebraic properties must be isomorphic to HH .S/hki, and then we
will show that our construction satisfies those properties for k D 1.

Lemma 3.3 Let H.S/ denote a bigraded vector space over Q with the following
properties:

(1) H.S/ is bounded above and below in horizontal grading.
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(2) H.S/ is bounded below in q–grading.

(3) H.S/ is finite-dimensional in each bigrading.

(4) For each n� n0 , there is a differential dn on H.S/ which is homogeneous with
bigrading f2n;�2g such that H�.H.S/; dn/ŠHn.S/, where the isomorphism
is as bigraded vector spaces.

Then H.S/ŠHH .S/.

Note that HOMFLY-PT homology itself satisfies these conditions, so they are not vacuous.

Proof Let H i;j denote the homology in bigrading fi; j g, and similarly for H i;j
H .S/.

The lemma states that for any integers i and j , dim.H i;j .S//D dim.H i;j
H .S//.

Suppose for some i and j , the dimensions do not agree. Since H.S/ is bounded in
horizontal grading, we can take choose i0 and j0 so that j0 is minimized subject to
the constraint that dim.H i0;j0.S//¤ dim.H i0;j0

H .S//. Note that the choice for i0 may
not be unique.

Since both H.S/ and HH .S/ are bounded below in q–grading, there exists a constant
a.S/ such that for all i � a.S/, dim.H i;j .S//D dim.H i;j

H .S//D 0.

Choose n >max.i0� a; n0/. We will now use the fact that H�.H.S/; dn/ŠHn.S/
as bigraded vector spaces. We can rewrite sln homology as the homology of HH .S/
with respect to d�.n/:

H�.H.S/; dn/ŠH�.HH .S/; d�.n//:

The differentials on both of these complexes have bigrading f2n;�2g. We can put an
equivalence relation on Z2 , where .i; j /� .i 0; j 0/ if .i � i 0; j �j 0/D k.2n;�2/, and
both complexes must split according to this equivalence relation. In other words, for a
fixed equivalence class A, the sum M

.i;j /2A

H i;j .S/

gives a subcomplex of .H.S/; dn/, and similarly for .HH .S/; d�.n//.

Consider the summand corresponding to the equivalence class of .i0; j0/. For the
complex .H.S/; dn/, this summand looks like

� � �
dn
�!H i0�2n;j0C2.S/

dn
�!H i0;j0.S/

dn
�!H i0C2n;j0�2.S/

dn
�!� � �
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and, for .HH .S/; d�.n//,

� � �
d�.n/
���!H

i0�2n;j0C2
H .S/

d�.n/
���!H

i0;j0

H .S/
d�.n/
���!H

i0C2n;j0�2
H .S/

d�.n/
���!� � � :

Now, since the complex is bounded below in q–grading and we’ve chosen n sufficiently
large, all of the chain groups before the .i0; j0/ summand are trivial, so the complexes
become

� � � 0
dn
�! 0

dn
�!H i0;j0.S/

dn
�!H i0C2n;j0�2.S/

dn
�!� � �

and
� � � 0

d�.n/
���! 0

d�.n/
���!H

i0;j0

H .S/
d�.n/
���!H

i0C2n;j0�2
H .S/

d�.n/
���!� � � :

Since both complexes are bounded in horizontal grading, the two chain complexes are
both finitely generated. They therefore have a well-defined Euler characteristic, and
since the homologies are isomorphic, the Euler characteristics must be the same. Since
the alternating sum of the dimension of homology is the same as the alternating sum of
the dimension of the chain groups themselves, we have

NX
kD0

.�1/k dim.H i0C2nk;j0�2k.S//D

NX
kD0

.�1/k dim.H i0C2nk;j0�2k
H .S//:

Furthermore, we know that there is an equality dim.H i;j .S// D dim.H i;j
H .S// for

j < j0 . Thus, the two subcomplexes above have the same dimension in all of the
bigradings except bigrading .i0; j0/. But this means that for k � 1, the terms in the
two sums are equal, which forces the k D 0 terms to be equal. This contradicts our
assumption that dim.H i0;j0.S//¤ dim.H i0;j0

H .S//, proving the isomorphism.

Corollary 3.4 Let H.S/ be a bigraded vector space over Q that satisfies the condi-
tions in Lemma 3.3 with one difference — instead of dn having bigrading f2n;�2g, it
has bigrading f2n� 2k;�2g. Then H.S/ŠHH .S/hki.

Proof After the change in grading .grq; grh/ 7! .grqC k grh; grh/, the conditions of
Lemma 3.3 are satisfied, so this homology is isomorphic to HH .S/. Shifting back to
the original gradings proves the corollary.

Proof of Theorem 3.2 To prove Theorem 3.2, we need to show that our homologyM
f

H1.Sf;1/˝HH .Sf;2/fT2.Sf;1/�T1.Sf;1/� 2r.Sf;2/; 0g

satisfies the conditions of this corollary for k D 1. It satisfies Lemma 3.3(1)–(3) since
each of the summands do, so we just need to define the dn differentials.
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We will define dn for n� 2 as follows. It will preserve the direct sum decomposition,
and it will act on each H1.Sf;1/˝HH .Sf;2/ summand by 1˝ d�.n � 1/, where
d�.n� 1/ is the standard sln�1 differential on the HOMFLY-PT homology of Sf;2 .

Since H�.HH .Sf;2/; d�.n� 1//ŠHn�1.Sf;2/, the homology with respect to dn isM
f

H1.Sf;1/˝Hn�1.Sf;2/fT2.Sf;1/�T1.Sf;1/� 2r.Sf;2/; 0g:

From Section 3.2, we know that this sum is isomorphic as a bigraded vector space
to Hn.S/. The differential dn has bigrading f2n� 2;�2g, so applying Corollary 3.4,
this proves Theorem 3.2.

4 The knot Floer complex at a vertex in the cube of
resolutions

4.1 Definition of the complex

We will assume that the reader is familiar with Heegaard diagrams and knot Floer
homology. For background on the subject, refer to [13; 14; 17]. The oriented cube
of resolutions for HFK was originally defined with twisted coefficients by Ozsváth
and Szabó, and they noted some similarities between their complex and HOMFLY-PT

homology [15]. The complex was further studied by Gilmore, who reframed the
relationships in terms of framed trivalent graphs [5].

However, we will be dealing with the untwisted version defined by Manolescu [12].
This is in some ways the most natural version, as it doesn’t involve twisted coefficients,
and the total homology of the complex is the usual knot Floer homology. The oriented
cube of resolutions uses the Heegaard diagram H.S/ shown in Figure 7.

Note that in [12], there is a marked bivalent vertex on the leftmost strand in the braid at
which an ˛ and a ˇ circle are removed. Our picture is slightly different — instead of
having a marked edge, we place an additional X and O outside of our braid; we will
denote them by Xnew and Onew . Since discs are not allowed to pass through Xnew , this
can be viewed as puncturing the sphere, making our diagram a truly planar diagram.
We will also set Unew equal to zero to avoid increasing the ground ring.

The knot Floer complex corresponding to this Heegaard diagram is denoted by
CFK�.S/. There are several versions of knot Floer homology, and the minus sign
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O1 O2

O3 O4

XX

˛

˛ ˛

ˇ ˇ

ˇ

a2

a1

b1

b2

c1 c2

d1

d2 e1

e2

O1f1 f2

O2h1 h2

Xg1 g2

˛

ˇ

ˇ

˛

Figure 7: The local Heegaard diagram for a singular link at a 4–valent vertex
(left) and a 2–valent vertex (right)

refers to the fact that none of the Ui in the ground ring will be set to 0 (except for Unew ).
For consistency with the HOMFLY-PT and sln definitions, we will be working with Q

coefficients.

We can relate the complex CFK�.S/ to the complex from Manolescu’s Heegaard
diagram as follows. Place a bivalent vertex on the leftmost strand of the braid, and
let ˛1 and ˇ1 be the corresponding ˛ and ˇ circles. We can handleslide ˛1 over
all the other ˛ circles and ˇ1 over all of the other ˇ circles, so that we are left with
Manolescu’s diagram together with the diagram shown in Figure 8. The complex for
this diagram is homotopy equivalent to the tensor product of Manolescu’s complex
with H�.S1/, so its homology has twice the rank of Manolescu’s. (This can also be
seen by Manolescu’s formula for disjoint union of singular braids [12, page 198].)

Remark 4.1 Strictly speaking, this complex also depends on some auxiliary infor-
mation, including a choice of a path of almost complex structures and orientations on
the moduli spaces of the holomorphic disks, called a system of orientations. There
are many choices for orienting these moduli spaces, but it was shown by Alishahi
and Eftekhary that there is always a system of orientations such that Maslov index 2
˛–degenerations come with positive sign, and the ˇ–degenerations come with negative
sign (see [1, Section 5.1]). Note that CFK� is a special case of their sutured HF�
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Xnew Onewx y

˛1

ˇ1

Figure 8: The extra unknot outside the braid diagram

construction. Sarkar [20] showed that any two systems of orientations satisfying this
property give chain homotopy equivalent complexes. We will leave out any discussion
about complex structure, since none of the discs counted in our computations depend
on the complex structure.

The complex ascribed to a vertex in the cube of resolutions, which we will denote
by CF .S/, is the tensor product of CFK�.S/ with a certain Koszul complex. Using
the terminology from the previous section, we can define CF .S/ as

CF .S/D CFK�.S/˝
O

v2V4.S/

.R
L.v/
��!R/:

We denote the Koszul complex by K.S/. The bigrading on CF .S/ will be described
in Section 4.2.3.

4.1.1 The generators of CFK�.S / In order to understand the homology of CF .S/,
we are going to need some tools for understanding CFK�.S/. Let E.S/ denote the
set of edges of S, and let x be a generator of the complex CFK�.S/ (ie an n–tuple
of intersection points of the ˛ and ˇ curves). We ascribe a subset Z of E to the
generator x as follows.

Each Oi in the Heegaard diagram is contained in a unique minimal bigon. The boundary
of this bigon contains two intersection points — if either of these intersection points are
in the n–tuple x , then ei is in Z . For example, in Figure 7, left, there are five types
of generators: .a; d/, .a; e/, .b; d/, .b; e/ and .c/. The underlying sets of edges of
these generators are e1e3 , e1e4 , e2e3 , e2e4 and ∅, respectively.
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As observed in [15], Z must satisfy two conditions. First, for any vertex v in S, the
number of incoming edges in Z must equal the number of outgoing edges in Z , and
second, Z cannot contain all four edges at any 4–valent vertex in S. In other words,
Z must be a disjoint union of oriented circles contained in S. We call such a set
of edges a multicycle. Note that multicycles differ from the homological cycles in
Section 3.1 in that multicycles cannot contain all four edges at a vertex.

Let CFK�.Z/ denote the R–module spanned by generators x where the multicycle
underlying x is Z , and let CF .Z/ be the tensor product of CFK�.Z/ with the Kozsul
complex:

CF .Z/D CFK�.Z/˝
O

v2V4.S/

.R
L.v/
��!R/:

4.2 The filtered complex and the spectral sequence from HOMFLY-PT
homology to HFK

4.2.1 A filtration on CFK�.S / It turns out that there is a filtration on CFK�.S/
that divides generators according to their underlying cycles. In other words, if there is a
filtration-preserving differential from x to y , then x and y have the same underlying
cycle.

In [15, Section 3], Ozsváth and Szabó choose a distinguished generator x0 of CFK�.S/
corresponding to the empty cycle. Using Figure 9, this generator is defined to contain
the intersection point c1 at each 4–valent vertex and the intersection point g1 at each
bivalent vertex.

The filtration is induced by placing additional basepoints pi in our Heegaard diagram,
as shown in Figure 9. The markings pi are in canonical bijection with regions in
R2�S. Let N denote the number of such regions.

Definition 4.2 The basepoint filtration is a map

F W T˛ \Tˇ ! ZN :

The i th component of F.x/ is defined to be the multiplicity of � at pi , where � is
a homotopy class in �2.x; x0/ with multiplicity 0 at Xnew . The map F extends to a
(multi)filtration on CFK�.S/ with multiplication by Uj preserving the filtration level.

Lemma 4.3 The filtration F is well defined, ie it does not depend on the choice of � .
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� �

�

�

p2
p3

p4

p1

O1 O2

O3 O4

XX

˛

˛ ˛

ˇ ˇ

ˇ

a2

a1

b1

b2

c1 c2

d1

d2 e1

e2

p5 p6
� �g1 g2

h1 h2

f1 f2O1

O2

X

˛

ˇ

ˇ

˛

Figure 9: Local diagrams with additional markings

Proof Since any two such � differ by a periodic domain, it is sufficient to show that
any periodic domain with multiplicity 0 at Xnew has multiplicity 0 at these markings.
This follows from that fact that for any ˛ or ˇ circle, the markings and Xnew lie on
the same side. So, for any periodic domain, the multiplicity at any of these points is
the same as that of Xnew , which is required to be 0.

Let x.Z/ denote the generator which, at each v not in Z , has the same intersection
point as x0 and for each ei in Z has the leftmost generator on the bigon containing Oi .

Lemma 4.4 If x is CFK�.S/ with underlying cycle Z , then F.x/D F.x.Z//.

Proof We will build a homotopy class � 2�2.x; x.Z// such that � has multiplicity 0
at every pi . Start with � being constant on x . For each bivalent vertex v not in Z ,
if y has the left intersection point, we do nothing, and if x has the right intersection
point, we add one of the two bigons which goes from the right intersection point to
the left intersection point. In Figure 9, these are the bigons from g2 to g1 which pass
through O1 and O2 , respectively.

Similarly, for each 4–valent vertex v not in Z and each edge e in Z where x has a
different intersection point from x.Z/, we can find a bigon from the x intersection point
to the x.Z/ intersection point. Defining �1 to be the union of these bigons, we get a
homotopy class from x to x.Z/ which does not pass through any of the basepoints.
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Define F W fmulticyclesg ! ZN as follows. Let Z be a multicycle, and let C be a
2–chain in S2 with boundary Z . If we require that C has multiplicity 0 on the outer
region (the one corresponding to Xnew ), it is clear that this 2–chain is unique. Define
the i th component of F.Z/ to be the multiplicity of C at the region corresponding
to pi .

Lemma 4.5 If x is a generator of CFK�.S/ with underling cycle Z , then F.x/D
F.Z/.

Proof We have already shown that F.x/ D F.x.Z//, so it suffices to show that
F.x.Z//D F.Z/.

Write Z in terms of its components Z D Z1 [Z2 [ � � � [Zk . For each i , Ozsváth
and Szabó identify two Maslov index 1 homotopy classes �i1.Zi / and �i2.Zi / in
�2.x.Z/; x.Z � Zi // (see [15, Section 3]). Let �1.Z/ be the homotopy class in
�2.x.Z/; x0/ obtained by composing the �i1.Zi / homotopy classes. The multiplicities
of �1.Z/ at each basepoint are equal to the multiplicity of C in that region, so
F.x.Z//D F.Z/.

Remark 4.6 Although there were two choices of homotopy �i1.Zi / and �i2.Zi / for
each component of the cycle Zi , the two classes have the same multiplicity at all of
the basepoints, so it doesn’t matter which one we choose.

Corollary 4.7 Two generators x and y of CFK�.Z/ have the same filtration level if
and only if they have the same underlying cycle.

Proof If x and y have the same underlying cycle Z , then F.x/D F.Z/D F.y/.
For the other direction, suppose F.x/DF.y/, and let Zx and Zy be their underlying
cycles. Then F.Zx/D F.x/D F.y/D F.Zy/. But F is injective, so this implies
Zx DZy .

We extend this filtration to CF .S/ by placing the whole Koszul complex in filtration
level f0; 0; : : : ; 0g. The ZN –filtration can be turned into a Z–filtration by summing
over the components of F . Let dk denote the component of the differential on CF .S/
which decreases the Z–filtration by k .

Corollary 4.8 The differential d0 preserves CF .Z/, ie it does not change the under-
lying cycle of a generator.
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This corollary tells us that the filtered complex .CF .S/; d0/ splits as a direct sum

.CF .S/; d0/D
M
Z

.CF .Z/; d0/:

4.2.2 Homology of a cycle Before computing the homology H.CF .Z/; d0/, we
will need a definition. If S is a singular braid and Z is a multicycle in S, let S �Z
denote the diagram obtained by removing all edges in Z from S. Note that S �Z is
still a singular braid because Z is an oriented cycle in the graph.

Given a cycle Z , the complex CFK�.Z/ is easy to compute. Each intersection point
in the Heegaard diagram lies on a unique convex bigon (convex in the traditional planar
geometry sense), and this bigon either contains an X, an XX or a Oi . There are
canonical bijections between the Oi bigons and the edges ei , between the X bigons
and V2.S/, and between the XX bigons and V4.S/.

Given a generator x , let W2.x/ denote the set of vertices at which x has an intersection
point on one of the X bigons, and let W4.x/ denote the set of vertices at which x
has an intersection point on one of the XX bigons. W2.x/ and W4.x/ are uniquely
determined by the underlying cycle Z of x . In particular, W2.x/ and W4.x/ are those
vertices which are not endpoints of any edges in Z . We can therefore define W2.Z/
and W4.Z/ accordingly. Note that x is uniquely determined by a choice of one of the
two corresponding intersection points at each edge e in Z, each vertex v in W2.Z/
and each vertex v in W4.Z/.

The complex for a cycle Z can now be described as follows. Each edge ei in Z
corresponds to two intersection points, which are connected by a bigon containing Oi .
These are the only filtered differentials involving these two intersection points, so
CFK�.Z/ is going to come with a tensor factor of the Koszul complexO

ei2Z

R
Ui
�!R:

Remark 4.9 The fact that bigons are the only discs that contribute can be seen by a
Maslov index argument — in fact, bigons are the only Maslov index one 2–chains in
�2.x; y/ for any two generators x and y in CFK�.Z/. We show this in detail (and in
greater generality) in Lemma 4.18.

Each vertex v in W2.Z/ also corresponds to two intersection points. They are connected
by two bigons, one which passes through Oi (where ei is the outgoing edge from v )
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and one which passes through Oj (where ej is the incoming edge at v ). These two
bigons will give a coefficient of ˙.Ui �Uj /. Thus, we also get a tensor factor of the
Koszul complex O

v2W2.Z/

R
L.v/
��!R:

Proving that the signs are correct requires slightly more advanced machinery, and will
be discussed at the end of the section.

Finally, the vertices v in W4.Z/ correspond to two intersection points, also connected
by two bigons. One passes through Oi and Oj , where ei and ej are the outgoing
edges of v , and the other passes through Ok and Ol , where ek and el are the incoming
edges at v . These two bigons will contribute a coefficient of ˙.UiUj �UkUl/, giving
us the last Koszul complex O

v2W4.Z/

R
Q.v/
��!R:

These are all the generators and all the differentials, so the total complex is given by

(4) CFK�.Z/D
� O
ei2Z

R
Ui
�!R

�
˝

� O
v2W2.Z/

R
L.v/
��!R

�
˝

� O
v2W4.Z/

R
Q.v/
��!R

�
and so the total complex for CF .Z/ is given by

CF .Z/D

� O
ei2Z

R
Ui
�!R

�
˝

� O
v2W2.Z/

R
L.v/
��!R

�
˝

� O
v2W4.Z/

R
Q.v/
��!R

�

˝

� O
v2V4.S/

R
L.v/
��!R

�
:

Lemma 4.10 The filtered homology H�.CF .Z/; d0/ is isomorphic to HH .S �Z/.

Proof The Ui in the first tensor product form a regular sequence in R , so we can
cancel all of these differentials. The resulting complex is chain homotopy equivalent to
the original complex over Q. This has the effect of setting Ui equal to zero for all ei
in Z . Let RZ be the quotient R=fUi D 0 for ei 2Zg. Note that this is precisely the
ground ring for the singular braid S �Z .

We are left with the complex� O
v2W2.Z/

RZ
L.v/
��!RZ

�
˝

� O
v2W4.Z/

RZ
Q.v/
��!RZ

�
˝

� O
v2V4.S/

RZ
L.v/
��!RZ

�
:
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RZ RZ

RZ RZ

Q.v/

L.v/

Q.v/

�L.v/

Figure 10: The complex CF .Z/ at a vertex v 2 V4.S �Z/

For each 4–valent vertex v in S � Z , we have tensor factors RZ
L.v/
��! RZ and

RZ
Q.v/
��!RZ , which together give a factor of the complex shown in Figure 10, which

is precisely the HOMFLY-PT complex CH .v/.

For 2–valent vertices v in S �Z , there are two possibilities to consider — v is 2–
valent in S (v 2W2.Z//, and v is 4–valent in S (v 2 V4.S/; v …W4.Z/). When v
is 2–valent in S, we get the factor

RZ
L.v/
��!RZ ;

which is again the HOMFLY-PT complex CH .v/ for S�Z . For v 4–valent in S, let ei
and ej be the outgoing edges at v , and ek and el the incoming edges at v . Since S�Z
is 2–valent at v , we know that Z must include one outgoing edge and one incoming
edge. Without loss of generality, assume they are ei and ek . To avoid confusion, we
will write out the terms of the linear elements, as L.v/ refers to Ui CUj �Uk �Ul
in S, while L.v/ refers to Uj �Ul in S �Z .

In CF .Z/, we have the factor

RZ
UiCUj�Uk�Ul
�����������!RZ :

In the HOMFLY-PT complex for S �Z , on the other hand, we have the factor

RZ
Uj�Ul
���!RZ :

Fortunately, since ei and ek are in Z , Ui and Uk are zero in RZ , so UiCUj�Uk�UlD
Uj �Ul , making the above complexes isomorphic.

Thus, after canceling the Koszul complex on the edges in Z , we get exactly the
HOMFLY-PT complex for S �Z . It follows that H�.CF .Z/; d0/ŠHH .S �Z/.

Corollary 4.11 The filtered homology decomposes as the direct sum

H�.CF .S/; d0/Š
M
Z

HH .S �Z/:
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R R

˙.Ui �Uj /

˙1

Figure 11: Local complex when allowing discs to pass through the X basepoint

Remark 4.12 (signs) Since we are discussing Koszul complexes, the ˙ in the terms
˙.Ui � Uj / and ˙.UiUj � UkUl/ are not relevant. Some will have to come with
positive signs and some with negative to make d2 D 0, but where they are doesn’t
impact the chain homotopy type. What we need to show is that the two bigons in each
case come with different signs.

Each two-valent vertex corresponds to a specific X marking in the diagram. This X
lies within the same ˛ circle as Oi and the same ˇ circle as Oj . In CFK� , we do
not allow discs to pass through the X basepoints. However, if we do allow them to
pass through only this X, we get a new complex. In this complex, d2 is nonzero —
instead, it is a multiple of the identity. This multiple is determined by the ˛ and ˇ
degenerations, which will correspond to the ˛ and ˇ circles containing X. Since the
˛ circle contains Oi , it gives a coefficient of Ui , and similarly, the ˇ circle gives
a coefficient of Uj . Since we chose a system of orientations such that the ˛ and ˇ
degenerations come with opposite signs, this gives

d2 D˙.Ui �Uj /I:

Moreover, the additional differentials are also subject to the basepoint filtration, so we
get

d20 D˙.Ui �Uj /I:

This X basepoint lies inside a minimal bigon, and this bigon now contributes to the
differential with a coefficient of ˙1. The local contribution therefore must be the
complex in Figure 11, so Ui and Uj must come with opposite sign.

The argument for the quadratic term is the same, only instead of allowing discs to pass
through an X, we are allowing them to pass through an XX. The ˛ degeneration is
UiUj and the ˇ degeneration is UkUl , and they must come with opposite sign, so we
get the complex in Figure 12, which proves that UiUj and UkUl come with opposite
sign.

4.2.3 Gradings The knot Floer complex comes equipped with two gradings: the
Maslov grading M and the Alexander grading A. The differential decreases the Maslov

Algebraic & Geometric Topology, Volume 18 (2018)



Knot Floer homology and Khovanov–Rozansky homology for singular links 3867

R R

˙.UiUj �UkUl /

˙1

Figure 12: Local complex when allowing discs to pass through the XX basepoint

grading by 1 and preserves the Alexander grading. Multiplication by Ui decreases the
Maslov grading by 2 and decreases the Alexander grading by 1.

Certain linear combinations of the Maslov and Alexander gradings return analogs of the
quantum and horizontal gradings from the Khovanov–Rozansky complex. Let grq be
given by �2M C2A and grh by �2M C4A. Note that the knot Floer differential has
bigrading f2; 2g with respect to this differential and multiplication by Ui changes the bi-
grading by f2; 0g, the same as the Khovanov–Rozansky complex. Instead of the Maslov
and Alexander gradings, we will henceforth use the quantum and horizontal gradings.

Before computing gradings, we need to introduce some terminology. For a multicycle Z ,
let T1.Z/ denote the number of vertices v 2 V4.S/ at which Z contains the edges e1
and e3 in Figure 13. Similarly, let D1.Z/ denote the number of vertices at which Z
contains the edges e1 and e4 , D2.Z/ the number of vertices at which Z contains the
edges e2 and e3 , and T2.Z/ the number of vertices at which Z contains the edges e2
and e4 .

We will now compute the bigrading on the knot Floer complex to get a graded version
of Corollary 4.11. Since until now we have only defined our complex up to an overall
grading shift, the following definition pins down the absolute bigrading on CF .S/.
Recall that the subcomplex corresponding to the empty cycle CF .Z∅/ is canonically
isomorphic to the HOMFLY-PT complex CH .S/, and with the new gradings .grq; grh/,
they are isomorphic as bigraded complexes up to an overall grading shift.

Definition 4.13 We define the bigrading .grq; grh/ on CF .S/ so that the subcomplex
CF .Z∅/ is isomorphic to CH .S/f�2r.S/; 0g as bigraded chain complexes, where
Z∅ is the empty cycle.

e1 e2

e3 e4

Figure 13: A labeled 4–valent vertex
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Let Z denote a k–component multicycle in S. Viewing Z as a braid diagram for
the k–component unlink, we can define r.Z/ to be the rotation number of Z , so
r.Z/ D �k . As before, let x.Z/ denote the generator corresponding to Z at the
bottom of the Koszul complex (ie with the largest horizontal grading). Similarly, let x0
denote the generator corresponding to the empty cycle with the largest horizontal
grading. In the proof of Lemma 4.5 we utilize a set of k Maslov index one discs whose
composition takes x.Z/ to x0 defined by Ozsváth and Szabó [15]. This composition
has coefficient which is a polynomial in R of degree T2.Z/C 1

2
.D1.Z/CD2.Z//.

Using the fact that differentials have bigrading f2; 2g and that this is a composition of
k differentials, we can see that x.Z/ and x0 differ in grading by

f2r.Z/C 2T2.Z/CD1.Z/CD2.Z/; 2r.Z/g:

The bottom generator of the HOMFLY-PT complex has bigrading f�jV4.S/j; 0g, so x0
has bigrading f�2r.S/� jV4.S/j; 0g. Thus, x.Z/ has bigrading

f�2r.S/� jV4.S/jC 2r.Z/C 2T2.Z/CD1.Z/CD2.Z/; 2r.Z/g

D f�2r.S �Z/� jV4.S/jC 2T2.Z/CD1.Z/CD2.Z/; 2r.Z/g:

The bottom generator of the HOMFLY-PT complex for S �Z has bigrading equal to
f�jV4.S �Z/j; 0g, so we get

H.CF .Z/; d0/Š

HH .S�Z/f�2r.S�Z/CjV4.S�Z/j�jV4.S/jC2T2.Z/CD1.Z/CD2.Z/; 2r.Z/g:

The grading shift in this formula can be simplified somewhat. The quantity jV4.S�Z/j�
jV4.S/j is the negative of the number of 4–valent vertices in S at which Z contains
two edges:

jV4.S �Z/j � jV4.S/j D �T1.Z/�T2.Z/�D1.Z/�D2.Z/:

Thus, the formula becomes

H.CF .Z/; d0/ŠHH .S �Z/f�2r.S �Z/CT2.Z/�T1.Z/; 2r.Z/g

and we get a graded version of Corollary 4.11:

H�.CF .S/; d0/Š
M
Z

HH .S �Z/f�2r.S �Z/CT2.Z/�T1.Z/; 2r.Z/g:

We will be able to connect this formula to the composition product with the following
lemma:
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Lemma 4.14 Let f be a labeling of S. The sl1 homology of Sf;1 is given by

H1.Sf;1/D

�
Qf0; 2r.Sf;1/g if Sf;1 is a multicycle,
0 otherwise:

Applying this lemma, the formula becomes

H�.CF .S/; d0/Š
M
f

H1.Sf;1/˝HH .Sf;2/fT2.Sf;1/�T1.Sf;1/� 2r.Sf;2/; 0g:

But by Theorem 3.2, this is isomorphic to HH .S/h1i. Thus, we have proved the
following theorem:

Theorem 4.15 There is an isomorphism of bigraded groups

H�.CF .S/; d0/ŠHH .S/h1i:

Corollary 4.16 There is a spectral sequence whose E1 page is HH .S/h1i and which
converges to HF .S/.

Proof This is just the spectral sequence induced by the basepoint filtration on CF .S/.

Manolescu’s conjecture is thus equivalent to this spectral sequence collapsing at the
E1 page.

4.3 Additional differentials and the spectral sequences from HFK to sln

We are going to add differentials to the complex CF .S/ so that the total homology
is isomorphic to HnC1.S/ for any n � 1. These new differentials do not preserve
the Alexander grading, so using the Alexander grading as a filtration, this induces a
spectral sequence from HF .S/ to HnC1.S/.

The complex CF .S/ is constructed as a tensor product of complexes CFK�.S/ and a
Koszul complex K.S/ on linear elements:

CF .S/D CFK�.S/˝K.S/:

The complex CFK�.S/ does not count discs which pass through the X or XX mark-
ings. For the new differential, we are going to count these discs with certain polynomial
coefficients.
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Each X marking in the Heegaard diagram corresponds to a 2–valent vertex v in S.
Whenever a holomorphic disc passes through this X with multiplicity k , it picks up a
coefficient of u1.v/k . The only exception is the special marking Xnew , at which we
still require discs to have multiplicity 0. Similarly, each XX corresponds to a 4–valent
vertex v in S. If a holomorphic disc passes through this XX with multiplicity k , it
picks up a coefficient of u2.v/k . We will call this new complex CFK�n .S/.

Note that there is no guarantee that the differential on this complex squares to zero — in
fact, it doesn’t. To fix this, we will also modify the differential on the Koszul complex.
Originally, it was given by

K.S/D
O

v2V4.S/

R
L.v/
��!R:

We are going to add in differentials to make it a matrix factorization:

Kn.S/D
O

v2V4.S/

R ���!���!
u1.v/

L.v/
R:

The total complex CF.n/.S/ is defined to be the tensor product of CFK�n .S/ and
Kn.S/,

CF.n/.S/D CFK�n .S/˝Kn.S/:

Lemma 4.17 The differential on CF.n/.S/ satisfies d2 D 0.

Proof At each vertex v in S, we will show that d2 has a contribution of wn.v/I,
with

wn.v/D
X
ei2Eout

U nC1i �

X
ej2Ein

U nC1j :

The lemma will then follow from the fact that
P
v2S wn.v/I D 0.

The quantity d2 has two contributions, one from CFK�n .S/ and one from Kn.S/. The
contribution from Kn.S/ can be computed directly to beX

v2V4.S/

L.v/u1.v/:

The contribution from CFK�n .S/ can be computed via the ˛ and ˇ degenerations.
We orient the moduli spaces so that the ˛ and ˇ degenerations come with opposite
signs, with the ˛ degenerations being positive and the ˇ degenerations negative (see
Remark 4.1 for an explanation of the signs).
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O1

O2

X

˛

ˇ

ˇ

˛

O1

O2

X

˛

ˇ

ˇ

˛

Figure 14: ˛–degenerations (left) and ˇ–degenerations (right) at a bivalent vertex

At each 2–valent vertex v in S, we have one ˛ circle and one ˇ circle, shown in
Figure 14 . The ˛ circle contains Ui and X, and the X contributes coefficient u1.v/,
so the ˛ degeneration contributes Uiu1.v/. Similarly, the ˇ circle contains Uj and X,
so its contribution is �Uju1.v/. Thus, the net contribution at v is .Ui �Uj /u1.v/.
This can be simplified to L.v/u1.v/D wn.v/.

At each 4–valent vertex v in S, we also have one ˛ circle and one ˇ circle, shown in
Figure 15. The ˛ circle contains Ui , Uj and XX, and the XX contributes coefficient
u2.v/, so its contribution is UiUju2.v/. The ˇ circle contains Uk , Ul and XX, so its
contribution is �UkUlu2.v/. Thus, the net contribution at v is .UiUj �UkUl/u2.v/.
This can be simplified to Q.v/u2.v/.

Thus, counting the contribution from Kn.S/, we see that d2 is given by

d2 D
X

v2V2.S/

wn.v/C
X

v2V4.S/

Q.v/u2.v/C
X

v2V4.S/

L.v/u1.v/

D

X
v2V2.S/

wn.v/C
X

v2V4.S/

L.v/u1.v/CQ.v/u2.v/
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D

X
v2V2.S/

wn.v/C
X

v2V4.S/

wn.v/

D

X
v2S

wn.v/D 0:

This concludes the proof.

We can extend the (Z–valued) basepoint filtration from Section 4.2.1 to make CF.n/.S/
a filtered complex — since we still require discs to have multiplicity 0 at Xnew , the same
argument works as in the proof of Lemma 4.3. As before, let di denote the differentials
which decrease the filtration level by i . Since d0 must preserve multicycles, the
homology H.CF.n/.S/; d0/ splits over the multicycles

H.CF.n/.S/; d0/D
M
Z

H.CF.n/.Z/; d0/:

We want to compute the complex CF.n/.Z/. Recall that CF .Z/ was computed to be�O
ei2Z

R
Ui
�!R

�
˝

� O
v2W2.Z/

R
L.v/
��!R

�
˝

� O
v2W4.Z/

R
Q.v/
��!R

�
˝

� O
v2V4.S/

R
L.v/
��!R

�
:

We can therefore compute CF.n/.Z/ by adding the new differentials to this complex.
The only new discs in CFK�n .Z/ correspond to bigons containing X or XX basepoints
(we will prove this in Lemma 4.18). For example, let ei be an edge in Z , with x and y
the two intersection points corresponding to ei . When we weren’t allowing discs to

O1 O2

O3 O4

XX

˛

˛
˛

ˇ ˇ

ˇ

O1 O2

O3 O4

XX

˛

˛
˛

ˇ ˇ

ˇ

Figure 15: ˛–degenerations (left) and ˇ–degenerations (right) at a four-
valent vertex
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Oi ��y x Oi ��y x

Figure 16: Two new bigons from y to x

pass through X or XX, the only disc connecting x and y was the bigon containing Ui .
This contributed the tensor factor of

R
Ui
�!R:

However, when we allow discs to pass through X and XX, we get two new bigons
which map from y to x , shown in Figure 16.

The type of contribution from these bigons depends on whether the endpoints of ei
are 2–valent or 4–valent. These two cases are shown in Figure 17. In either case, the
contribution has a coefficient of degree n. We will denote the contribution from these
new bigons at an edge ei in Z by p.ei / (the precise polynomial will not be relevant

O1 O2

O3 O4

XX

˛

˛
˛

ˇ ˇ

ˇ

O1

O2

X

˛

ˇ

ˇ

˛

Figure 17: The two types of new bigons
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for our computations). The tensor factor then becomes

R ��!��!
p.ei /

Ui
R:

For a vertex v in W2.Z/, there are two intersection points x and y corresponding
to v . In CF .Z/, they contributed a tensor factor of

R
L.v/
��!R:

In CF.n/.Z/, there is an extra differential corresponding to the bigon from y to x
through X (See Figure 18). Since X carries a coefficient of u1.v/, the factor becomes

R ��!��!
u1.v/

L.v/
R:

Similarly, for 4–valent vertices v in W4.Z/, CF .Z/ contains a tensor factor

R
Q.v/
��!R:

In CF.n/.Z/, there is an extra differential corresponding to the bigon through XX
shown in Figure 18. The XX contributes a coefficient of u2.v/, so the factor becomes

R ��!��!
u2.v/

Q.v/
R:

Thus, only counting bigons, we get the following complex for CFK�n .Z/:

(5)
� O
ei2Z

R ��!��!
p.ei /

Ui
R

�
˝

� O
v2W2.Z/

R ��!��!
u1.v/

L.v/
R

�
˝

� O
v2W4.Z/

R ��!��!
u2.v/

Q.v/
R

�
:

We will now show that these are in fact the only differentials in the complex CFK�n .Z/.

Lemma 4.18 All of the differentials in CFK�n .Z/ come from bigons in H.S/.

Proof Suppose x and y are two distinct generators of CFK�n .Z/ such that there is
a Maslov index 1 homotopy class �x;y 2 �2.x; y/ which does not pass through the
basepoints pi , and let D.�x;y/ denote the corresponding 2–chain in H.S/. (See [19]
for a discussion of the Maslov index.)

From (4), we see that when counting only bigons in the differential, CFK�.Z/ can
be written as a tensor product of Koszul complexes. Therefore, it is natural to view it
as a hypercube in which the differentials from bigons correspond to oriented edges.
The generators x and y are two of the vertices of this hypercube. The new bigons in
CFK�n .Z/ also correspond to edges in the cube, but they have the opposite orientation
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O1

O2

X

˛

ˇ

ˇ

˛

y x y x

O1 O2

O3 O4

XX

˛

˛ ˛

ˇ ˇ

ˇ

Figure 18: New differentials: the bigons passing through X (left) and XX (right)

compared with the edges coming from bigons in CFK�.Z/. It is clear that this cube
is fully connected in the sense that for any two vertices a and b , there is an oriented
path from a to b .

Let 
 be a path of minimal length from y to x — call this length l . Each edge in 

corresponds to a set of bigons (this set has either one element or two). Pick one bigon
from each edge in 
 , so that we have a sequence B1; : : : ; Bl . Since D.�x;y/ and
B1; : : : ; Bl all have Maslov index 1, the 2–chain D.�x;y/CB1C � � � CBl gives a
Maslov index l C 1 homotopy class in �2.x; x/.

The only 2–chains which do not change the underlying generator are sums of periodic
domains. The periodic domains with multiplicity 0 at the basepoints are the interiors
of the ˛ and ˇ circles — let Pi denote these periodic domains. We can write

D.�x;y/CB1C � � �CBl D

kX
iD1

Pi :

We know that the sum on the right will have only positive coefficients because the total
sum must have nonnegative multiplicity at every region in H.S/, and each ˛ or ˇ
circle contains a region which is not contained in any other ˛ or ˇ circles.

Algebraic & Geometric Topology, Volume 18 (2018)



3876 Nathan Dowlin

We see by looking at the Heegaard diagram that if two distinct Bi are contained in a
single Pj , then the two Bi correspond to the same edge in the cube but with opposite
orientations. Note that this is not true for arbitrary bigons in the H.S/, but the Bi
which can appear in the cube are restricted in that the two endpoints must correspond
to intersection points of generators with underlying cycle Z .

Since 
 is a minimal-length path in the cube, 
 does not traverse any edge in both
directions. Thus, no two of the Bi are contained in a single Pj , so k � l . The Maslov
index of the 2–chain on the left is lC1, while the Maslov index of the 2–chain on the
right is 2k , because each ˛– or ˇ–degeneration has Maslov index 2. But the equality
l C 1D 2k with k � l � 0 forces l D k D 1. So we have

D.�x;y/CB1 D P1;

where B1 is a bigon and P1 is the interior of an ˛ or ˇ circle. Then D.�x;y/DP1�B1 .
Since D.�x;y/ can have only nonnegative coefficients, B1 � P1 . But removing a
bigon from the interior of any ˛ or ˇ circle in H.S/ results in another bigon, proving
that D.�x;y/ is a bigon, as desired.

It follows that CFK�n .Z/ is given by (5). Finally, the complex K.S/ gets changed
to Kn.S/, so the whole complex for CF.n/.Z/ can be written as� O
ei2Z

R ��!��!
p.ei /

Ui
R

�
˝

� O
v2W2.Z/

R ��!��!
u1.v/

L.v/
R

�
˝

� O
v2W4.Z/

R ��!��!
u2.v/

Q.v/
R

�

˝

� O
v2V4.S/

R ��!��!
u1.v/

L.v/
R

�
:

Now that we have our complex computed, we want to compare its homology with
Hn.S �Z/. We will denote the differentials which do not pass through any X or XX
basepoints by d0C , and the new differentials by d0� . Observe that with respect to the
bigrading .grq; grh/ introduced in Section 4.2.3, d0C has bigrading f2; 2g and d0�
has bigrading f2n;�2g.

Lemma 4.19 Up to an overall grading shift, H�
�
H�.CF.n/.Z/; d0C/; d

�
0�

�
is iso-

morphic to H�
�
H�.Cn.S �Z/; dC/; d

�
�

�
.

Proof It follows from Lemma 4.10 that H.CF.n/.Z/; d0C/ Š HH .S � Z/. To
complete the proof, we need to show that d�0� corresponds to the d� differential
under this isomorphism. For vertices which are 2–valent in both S and S �Z (ie
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v 2W2.Z/), this is obvious. The same is true for vertices which are 4–valent in both
S and S �Z (ie v 2W4.Z/).

The only identification which is nontrivial is that the d0� differential corresponding
to a vertex which is 4–valent in S but 2–valent in S � Z is the same as the d�
differential on the 2–valent vertex in S �Z . Let ei and ej be the outgoing edges at v
and ek and el the incoming edges. The multicycle Z must contain one incoming and
one outgoing edge — without loss of generality, assume Z contains ei and ek . The
coefficient of the d� differential is given by

U nC1j �U nC1
l

Uj �Ul
;

while the coefficient of the d0� differential is given by

U nC1i CU nC1j �U nC1
k
�U nC1

l
�Q.v/u2.v/

Ui CUj �Uk �Ul
:

Recall that to achieve the isomorphism in Lemma 4.10, we first canceled the Koszul
complex on the Up for ep in Z , as these elements formed a regular sequence. We there-
fore want to show that these two coefficients are equal in RZDR=fUpD0 for ep 2Zg.
Substituting Ui D Uk D 0 into the above equation and noting that this causes Q.v/ to
be zero, we get the desired equality.

Define H˙.CF.n/.S// D H�
�
H�.CF.n/.S/; d0C/; d

�
0�

�
. Since both d0C and d0�

are homogeneous with respect to the bigrading, this homology is bigraded as well.
Applying the lemma and adding in the gradings from Section 4.2.3, we see that

(6) H˙.CF.n/.S//Š
M
Z

H˙.Cn.S�Z//f�2r.S�Z/CT2.Z/�T1.Z/; 2r.Z/g:

Recall from Corollary 2.7 that H˙.Cn.S �Z// lies in a single horizontal grading,
namely 2r.S�Z/. Adding in the shift, the homology corresponding to a multicycle Z
must lie in horizontal grading 2r.S �Z/C 2r.Z/D 2r.S/. But this does not depend
on Z , so we have shown the following:

Lemma 4.20 The homology H˙.CF.n/.S// lies in a single horizontal grading.

The original differentials on CF .S/ all have bigrading f2; 2g. The new differentials
on CFK�n .S/ have bigrading f2C 2k.n � 1/; 2 � 4kg, where k is the sum of the
multiplicities of the holomorphic discs at all X and XX markings. The new differentials
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on Kn.S/ all have bigrading f2n;�2g. Thus, all differentials on Cn.S/ change the
horizontal grading by 2 .mod 4/. This implies that no induced differentials can have
horizontal grading 0, which tells us that the remaining differentials on our complex are
all trivial, giving us the following:

Lemma 4.21 The total homology H�.CF.n/.S/; d/ is isomorphic to H˙.CF.n/.S//.

This isomorphism is singly graded with grading grn D grqC
1
2
.n� 1/ grh , as the total

differential on CF.n/.S/ is homogeneous of degree nC 1 with respect to this grading.

Going back to (6), we know that as bigraded vector spaces, we have the isomorphism

H˙.CF.n/.S//Š
M
Z

H˙.Cn.S �Z//f�2r.S �Z/CT2.Z/�T1.Z/; 2r.Z/g:

We can use Lemma 4.14 in the same way as in the previous section to convert this
equation into a direct sum over labelings,

H˙.CF.n/.S//Š
M
f

H1.Sf;1/˝Hn.Sf;2/f�2r.Sf;2/CT2.Sf;1/�T1.Sf;1/; 0g:

Applying the bigraded composition product formula (3), this gives an isomorphism of
bigraded vector spaces

(7) H˙.CF.n/.S//ŠHnC1.S/:

Since H�.CF.n/.S/; d/ŠH˙.CF.n/.S// as graded vector spaces with grading grn ,
this gives an isomorphism

H�.CF.n/.S/; d/ŠHnC1.S/;

where we are viewing HnC1.S/ as singly graded, with grading grn . Since singly
graded slnC1 homology is typically viewed with respect to the grading grnC1 , this
isn’t quite what we want. Fortunately, since the homology is concentrated in horizontal
grading grh D 2r.S/, we see that grnC1 D grnC 2r.S/.

Theorem 4.22 The total homology H�.CF.n/.S/; d/ is isomorphic to the homol-
ogy HnC1.S/f2r.S/g, where H�.CF.n/.S/; d/ has grading grn and HnC1.S/ has
grading grnC1 .

Remark 4.23 The grading shift by 2r.S/ is only an artifact of passing from the
grading grn to grnC1 , and no grading shift is needed when comparing the bigraded
complexes (see (7)).
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This shift appears on the HOMFLY-PT side as well in the singly graded case. When
looking at the spectral sequence from HH .S/h1i to HnC1.S/ induced by dn , the grad-
ing on HH .S/h1i is given by grn , while the grading on HnC1.S/ is given by grnC1 .
Thus, with respect to these gradings, there is a spectral sequence from HH .S/h1i to
HnC1.S/f2r.S/g.

Corollary 4.24 For all n� 1, there is a spectral sequence whose E1 page is HF .S/
which converges to HnC1.S/.

Proof All of the original differentials on CF .S/ have Alexander grading 0. The new
differentials on CFK�n have Alexander grading k.�n� 1/, where k is the sum of the
multiplicities of the disc at the X and XX basepoints, and the new differentials on the
Koszul complex have Alexander grading �n�1. In particular, all of the new differentials
strictly decrease the Alexander grading, so it induces a filtration with respect to which
the filtered homology is H�.CF .S//. Thus, the corresponding spectral sequence has
E1 page HF .S/, and converges to the total homology H.CF.n/.S//ŠHnC1.S/.

Remark 4.25 Using the tools from this section, we can give another proof of Theorem
4.15, which does not rely on the composition product formula for HOMFLY-PT homology.
From (7), we have that

H�.H�.CF.n/.S/; d0C/; d
�
0�/ŠHnC1.S/:

Since H�.CF.n/.S/; d0C/ is precisely H�.CF .S/; d0/, this shows that there a differ-
ential dnC1 on H�.CF .S/; d0/ satisfying the conditions of Corollary 3.4 for k D 1,
where dnC1 is given by d�0� .

4.4 Proof of Manolescu’s conjecture

At this point, we have three spectral sequences: one from HOMFLY-PT homology to
sln homology, one from HOMFLY-PT homology to knot Floer homology, and one from
knot Floer homology to sln homology. Diagrammatically, this looks like

HH .S/h1i HF .S/

Hn.S/f2r.S/g

where the arrows correspond to spectral sequences. Since both HOMFLY-PT homology
and knot Floer homology have spectral sequences going to sln homology for all n� 2,
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it is clear that they have a great deal in common. The conjecture of Manolescu is
that they are in fact isomorphic. Since we have a spectral sequence from HOMFLY-PT

homology to knot Floer homology, this is equivalent to the spectral sequence collapsing
at the E1 page. In this section, we will prove Manolescu’s conjecture.

Theorem 4.26 The HOMFLY-PT homology HH .S/h1i and knot Floer homology
HF .S/ are isomorphic as bigraded vector spaces.

Proof We will start with the complex CF.n/ from the previous section. There are two
filtrations defined on this complex so far — the one induced by the Alexander grading,
and the one induced by the basepoints. Consider the associated bigraded object from
these two filtrations.

The differentials always change the Alexander grading by a multiple of nC1, so let dij
denote those differentials which change the Alexander grading by i.nC1/ and change
the basepoint grading by j .

Theorem 4.15 states that

H�.CF.n/.S/; d00/ŠHH .S/h1i:

Since HF .S/ Š H�.CF.n/; d0�/, our theorem is equivalent to d�
0k

being zero on
H�.CF.n/; d00/. We will prove this by contradiction. In particular, suppose that
some d�

0k
is nonzero, and let a denote the smallest such k .

Because a is minimal, it is clear that d�0a and d�10 anticommute, as d�0a ı d
�
10 and

d�10ıd
�
0a are the only components of d2 which change the basepoint filtration by a and

the Alexander filtration by nC 1. These are the differentials that we will be interested
in, so we will rename them. We will write dF instead of d�0a and dn instead of d�10 ,
since d�10 depends on n. The differentials dF and dn both act on H�.CF.n/; d00/,
so using the above isomorphism we will view them as acting on HH .S/h1i.

We know from (7) that there is an isomorphism of bigraded vector spaces

H�.HH .S/h1i; dn/ŠHnC1.S/:

To summarize our setup, we have a family of differentials dn on HH .S/h1i, each
having bigrading .2n;�2/, such that the homology with respect to each is HnC1 , and
there is a differential dF on HH .S/h1i with bigrading .2; 2/ which is nontrivial and
anticommutes with each dn .
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We know that the smallest horizontal grading in which HH .S/h1i is nontrivial is 2r.S/,
and that the homology H�.HH .S/h1i; dn/ lies only in this horizontal grading. Let
hmin be the minimal horizontal grading on which dF is nonzero, and let x be an
element of HH .S/h1i in bigrading .q; hmin/ for some q with dF .x/ ¤ 0. Define
dF .x/D y .

We know also that HH .S/h1i is bounded below in quantum grading and dn changes
the quantum grading by 2n, so choose N sufficiently large that y cannot be in the
image of dN . Since y lies in horizontal grading hminC 2 (in particular, not hmin ),
it follows that y 2 Ker.dN / if and only if y 2 Im.dN /. Thus, y is not in the kernel
of dN .

But then dN ıdF .x/ is nonzero, while dF ıdN .x/ must be zero because dN .x/ lies
in horizontal grading hmin� 2, and dF D 0 for all horizontal gradings less than hmin ,
which contradicts the fact that dN and dF anticommute.

This theorem is proved with Q coefficients. However, HOMFLY-PT homology over Z

of braid graphs is known to be torsion-free. This can be seen from the MOY relations
(see [11; 18]), which we won’t describe explicitly here, but the argument can be
summarized as follows. There is a map �W fsingular braidsg!N , called the complexity,
such that the HOMFLY-PT homology of any singular braid can be written in terms of
the HOMFLY-PT homologies of singular braids with lower complexity. The fact that
HH .S;Z/ is Z–torsion-free then follows from an induction argument.

Thus, HOMFLY-PT homology still satisfies the composition product formula over Z,

HH .S;Z/h1i Š
M
Z

HH .S �Z;Z/:

In our computation of H�.CF .S/; d0/, we only canceled those differentials with
coefficient ˙1, so

H�.CF .S/; d0;Z/Š
M
Z

HH .S �Z;Z/ŠHH .S;Z/h1i:

So, for the theorem to hold with Z coefficients, we need the filtered homology
H�.CF .S/; d0;Z/ to be isomorphic to the unfiltered homology H�.CF .S/; d;Z/, ie
we need the induced higher differentials on H�.CF .S/; d0;Z/ to be zero. But any
nonzero differential over Z would also be nonzero over Q, contradicting Theorem 4.26.
Thus, Theorem 4.26 is true with Z coefficients as well.
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We relate this theorem to Manolescu’s conjecture with the following corollary. Note
that the original conjecture was over Z rather than Q. By the previous argument, there
is no Z–torsion, so the two contexts are equivalent.

Corollary 4.27 If S is a connected braid graph, then there is an isomorphism of Tor
groups

TorR.R=L;R=N/Š TorR.R=L;R=Q/

as bigraded vector spaces. The bigrading on TorR.R=L;R=N/ is given by .q; h/,
where q is the quantum grading coming from the polynomial ring and h is the
homological grading, and the bigrading on TorR.R=L;R=Q/ is .qC h; h/.

Proof The difference between our complex CF .S/ and Manolescu’s knot Floer
complex for S is that we have added an additional unknotted component at infinity,
placed the marked edge on that component and reduced that component (ie set that Ui
equal to zero).

Manolescu instead placed the marked edge on the leftmost strand of the braid. Let
CMF .S/ denote Manolescu’s complex. By the argument at the beginning of Section 4,
we know that this has the effect of doubling the homology. In particular, with respect
to the .q; h/ bigrading there is an isomorphism

HF .S/ŠH
M
F .S/˝V;

where V DQf�1;�1g˚Qf1; 1g.

Similarly, the middle HOMFLY-PT homology can be viewed as the unreduced HOMFLY-
PT homology of the 1–1 tangle obtained by breaking an edge in the diagram. Let
CMH .S/ denote the middle HOMFLY-PT homology of S. Then, with respect to the
.q; h/ grading, we have the isomorphism

HH .S/ŠH
M
H .S/f0;�1g˚HM

H .S/f0; 1g:

But when we switch to the .qC h; h/ grading, this becomes

HH .S/h1i ŠH
M
H .S/h1i˝V:

The previous theorem states that HF .S/ŠHH .S/h1i. Using the above arguments,
this becomes

HM
F .S/˝V ŠHM

H .S/h1i˝V

as bigraded groups.
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Since all of our theories are bounded in h–grading and bounded below in q–grading,
the above isomorphism implies an isomorphism without tensoring with V ,

HM
F .S/ŠHM

H .S/h1i:

But Manolescu showed that

HM
F .S/Š TorR.R=L;R=N/ and HM

H .S/Š TorR.R=L;R=Q/;

which proves the corollary.

Another significant corollary of this result relates to the E2 page of the spectral sequence
on CF .D/ induced by the cube filtration. This is the page which was conjectured by
Manolescu to give HOMFLY-PT homology. In [2], we showed that the graded Euler
characteristic of the homology

E
f
2 .D/DH�

�
H�.CF .D/; d

f
0 /; .d

f
1 /
�
�

is the HOMFLY-PT polynomial, where dfi denotes the component of the differential on
CF .D/ which increases the cube grading by i and preserves the basepoint filtration.
In particular, we define the triple grading on this complex by the i , j and k gradings,
where k denotes twice the cube grading, and

i D 2A� 2M � k; j D 4A� 2M � k;

where M and A are the Maslov and Alexander gradings, respectively. With respect to
this triple grading, we showed thatX

i;j;k

.�1/.k�j /=2 dim.Ef2 .D/
i;j;k/D PH .aq; q;D/:

But we have just seen that H�.CF .D/; d
f
0 /ŠH�.CF .D/; d0/, so there is a spectral se-

quence from H�
�
H�.CF .D/; d

f
0 /; .d

f
1 /
�
�

to the E2 page H�
�
H�.CF .D/; d0/; d

�
1

�
.

But all of these differentials have triple grading f0; 0; 2g, so they do not change the
Euler characteristic. Thus we have shown the following:

Corollary 4.28 Let CF .D/ denote the oriented cube of resolutions complex for a
braid diagram D, and let E2.D/ denote the E2 page of the spectral sequence on
CF .D/ induced by the cube filtration. Then the graded Euler characteristic of E2.D/
with the triple grading given above is the HOMFLY-PT polynomial PH .aq; q;D/.
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