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Noncharacterizing slopes for hyperbolic knots

KENNETH L. BAKER
KIMIHIKO MOTEGI

A nontrivial slope 7 on aknot K in S3 is called a characterizing slope if whenever
the result of r—surgery on a knot K’ is orientation-preservingly homeomorphic to
the result of r—surgery on K, then K’ is isotopic to K. Ni and Zhang ask: for
any hyperbolic knot K, is a slope r = p/q with |p| + |¢| sufficiently large a
characterizing slope? In this article, we prove that if we can take an unknot ¢ so
that (0, 0)—surgery on K U ¢ results in S and ¢ is not a meridian of K, then K
has infinitely many noncharacterizing slopes. As the simplest known example, the
hyperbolic, two-bridge knot 8¢ has no integral characterizing slopes. This answers
the above question in the negative. We also prove that any L-space knot never admits
such an unknot c.

57TM25

1 Introduction

Let K be a knot in the oriented 3—sphere S3. Denote by K(p/q) the 3-manifold
obtained by p/g-Dehn surgery on K which has the orientation induced from S°3.
We call p/q € Q a characterizing slope for K if whenever K'(p/q) is orientation-
preservingly homeomorphic to K(p/q), then K’ is isotopic to K. For the trivial knot,
Gordon [10] conjectured that every nontrivial slope p/q € Q is a characterizing slope.
Kronheimer, Mrowka, Ozsvath and Szab6 [19] proved this conjecture in the positive
using Seiberg—Witten monopoles. See Ozsvath and Szabé [28; 31] for alternative proofs
using Heegaard Floer homology. Furthermore, Ozsviath and Szabé [30] showed that for
the trefoil knot and the figure-eight knot, every nontrivial slope is a characterizing slope.

On the other hand, it is known that many knots have noncharacterizing slopes. The first
such example was given by Lickorish [21]. Some torus knots have noncharacterizing
slopes. For instance, 21-surgeries on 754 and 771, produce the same oriented 3—
manifold, and hence 21 is a noncharacterizing slope for both 7’5 4 and 771, [26].
However, Ni and Zhang [26] prove that for a torus knot 7} 5 with r > s > 1, a slope
p/q is a characterizing slope if p/q > 30(r?> —1)(s®> — 1)/67. Later, McCoy [23]
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lowers the bound to 43(rs —r —s)/4. See also McCoy [24]. This suggests that for a
given knot K, sufficiently large slopes should be characterizing ones. For hyperbolic
knots, Ni and Zhang ask the following:

Question 1.1 [26] Let K be a hyperbolic knot. Is a slope r = p/q with |p| + |q|
sufficiently large a characterizing slope of K ?

Remark 1.2 For any given hyperbolic knot K, there is a number Ng > 0 such that a
slope p/q with |p|+ |¢| > Nk has a special geometric meaning due to Thurston’s
hyperbolic Dehn surgery theorem; see Benedetti and Petronio [4], Boileau and Porti [5],
Petronio and Porti [32] and Thurston [34; 35]. For such a slope p/¢, the 3—manifold
K(p/q) is hyperbolic, and the surgery dual to K is the unique shortest closed geodesic
in K(p/q). Hence for any finite family of hyperbolic knots /C, there is a number
Ni > 0 such that any slope p/q with |p|+ |¢| > Nx is a characterizing slope for
every knot K € K.

The purpose in this article is to answer Question 1.1 in the negative. To this end, we
need to construct a hyperbolic knot with infinitely many noncharacterizing slopes.
The theorem below gives a sufficient condition for a knot K to have infinitely many
noncharacterizing slopes.

Theorem 1.3 Let K be a knot in S3. Suppose that we can take an unknot ¢ disjoint
from K so that (0,0)—surgery on K U ¢ results in S3 and c is not a meridian of K .
Then K has infinitely many noncharacterizing slopes.

Note that the condition that (0,0)-surgery on K U ¢ results in S? implies that
[Ik(K, c)| =1 for homological reasons, where 1k(K, ¢) denotes the linking number
between K and c. Of course, if ¢ is a meridian of K, then the result of (0, 0)-surgery
on K Uc is always S?; see Lemma 2.4.

As shown by Theorem 2.5, if we find a link K U ¢ which satisfies the condition in
Theorem 1.3, then we have infinitely many distinct knots, each of which has infinitely
many noncharacterizing slopes. We apply this to present explicit examples.

First, for comparison, recall that every nontrivial slope is a characterizing slope for a
trefoil knot and the figure-eight knot [30], which are genus-one fibered knots. If we
drop one of these conditions, we have:
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Example 1.4 (1) Let K be the hyperbolic, fibered knot 94, in Rolfsen’s table,
which has genus two. Then every integer except possibly 2 is not a characterizing
slope for K.

(2) Let K be the hyperbolic, genus-one pretzel knot P(—3,3,5), which is not
fibered. Then every integer except possibly 0 is not a characterizing slope
for XK.

A modification of the above examples leads us to demonstrate:

Theorem 1.5 There exists a hyperbolic knot for which every integral slope is a non-
characterizing slope. In particular, every integral slope is not a characterizing slope for
the hyperbolic, two-bridge knot 8¢ in Rolfsen’s table.

Such a phenomenon can occur for prime satellite knots and composite knots as well.
More precisely, we are able to prove:

Theorem 1.6 (1) Given a nontrivial knot k , there exists a prime satellite knot with
companion knot k for which every integral slope is a noncharacterizing slope.

(2) Given a nontrivial knot k, there exists a composite knot with k a connected
summand for which every integral slope is a noncharacterizing slope.

Among known examples, the knot 8¢ is the simplest knot (with respect to crossing
numbers) which has infinitely many noncharacterizing slopes. So we would like to ask:

Question 1.7 Are there any knots of crossing number less than 8 that have infinitely
many noncharacterizing slopes?

It is natural to ask which knots K admit an unknot ¢ that satisfies the condition in
Theorem 1.3.

Theorem 1.8 Let K U c be a two-component link in S* with unknotted component ¢
which is not a meridian of K. Suppose that (0,0)—surgery on K U ¢ results in S3.
Then K is not an L-space knot.

In the last section, we will give further questions concerning characterizing and non-
characterizing slopes for knots.

Throughout the paper we will use N (*) to denote a tubular neighborhood of * and
N () to denote the interior of N (x) for notational simplicity.
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2 Noncharacterizing slopes and twist families of surgeries

In this section, we establish the general principle Theorem 2.1 and its extension
Theorem 2.5, from which Theorem 1.3 follows. Throughout this article, for two oriented
3—manifolds M and N, by M =~ N we mean that M is orientation-preservingly
homeomorphic to N .

Theorem 2.1 Let k U ¢ be a two-component link in S such that ¢ is unknotted.
Suppose that (0, 0)—surgery on k U ¢ results in S*. Let K be the knot in S* which is
surgery dual to ¢, the image of c, in the surgered S3, and let k, be the knot obtained
from k by twisting n times along c¢. Then K(n) = ky(n) for all integers n.

Moreover, if ¢ is not a meridian of k, then K % k, for all but finitely many integers n.

Proof Since (0,0)-surgery on k U ¢ is S3 a homology calculation shows that
|Ik(k, ¢)| = 1. Performing (—1/n)-surgery along ¢ takes the knot k& with the surgery
slope 0 to a knot k, with a surgery slope n = 0 + n(lk(k, ¢))?; ie an n—twist along ¢
converts a knot-slope pair (k, 0) into another knot-slope pair (k,,n). Thus we obtain a
twist family of knot-slope pairs {(k,,n)}. Let V be the solid torus S — A/(c) which
contains k in its interior. Observe that V(k;0) = V(ky,;n) for all n.

Let (f¢, Ae) be a preferred meridian-longitude pair of ¢ C S3, oriented with the right-
handed orientation (so that if ¢ is oriented in the same direction as A, in A(c), then
Ik(ie, ¢) =1). Note that A represents the O—slope on N(c¢), and A, bounds a meridian
disk of the solid torus V. Let ¢, be the surgery dual to the (—1/n)—surgery on ¢ (ie a
core of the filled solid torus) with meridian pu,, the (—1/n)—surgery slope of ¢ in dV.
These curves ., are each longitudes of V' and satisfy [,] = —[uc]+n[Ac] € Hi(AV);

hence [10] = —{pte]-

Since k wraps algebraically once in V, a preferred longitude of k C V C S? is
homologous to . in V — N(k). Hence j. is null-homologous in V(k;0).
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Let K be the surgery dual to ¢ with respect to A.—surgery. (Adapting the above
notation, K may be regarded as cso.) Since (0,0)—surgery on k U ¢ results in S3,
we have that K is a knot in this surgered S3 with exterior S3 — N(K) = V(k;0)
and meridian A.. Because (. is null-homologous in V(k;0), it is the boundary of a
Seifert surface for K.

With right-handed orientation, a preferred meridian-longitude pair for K in S3 is
given by (Ac, —ftc). Thus [n] = —[pc] + n[he] = nfAe] + (—[pc]) corresponds to a
slope n with respect to the preferred meridian-longitude pair (A., —jtc). Therefore,
kn(n) = K(n) for all integers #.

If ¢ is not a meridian of k, then since 1k(k, ¢) # 0, any disk bounded by ¢ intersects k
more than once. Then it follows from [18] that there are only finitely many n such that
ky is isotopic to K. O

Remark 2.2 Gompf and Miyazaki [9] had previously utilized the mirror of the knot K
associated to k as described in Theorem 2.1 for a satellite construction of ribbon knots
that generalizes the connected sum of a knot and its mirror.

Let k Uc be alink as in Theorem 2.1; ie ¢ is unknotted and the result of (0, 0)—surgery
on kUc is S3. In Theorem 2.1, K denotes the surgery dual to ¢. Similarly we denote
by C the surgery dual to k. Thus we have the surgery dual link C U K to k Uc in the
surgered S°3.

Lemma 2.3 Let k Uc be a link as in Theorem 2.1 with surgery dual link C U K. Then
C is unknotted in S°.

Proof After O—surgery on ¢, we have that & becomes some knot in ¢(0) = S! x S2.
Since a nontrivial surgery (corresponding to the O—surgery) on k C S! x S? yields
S3, due to Gabai [8, Corollary 8.3], it turns out that k& (as a knot in STx S?)isan
S!_fiber in some product structure P of S! x S2, and intersects an S>—fiber in P
exactly once. As usual, we may isotope an S2—fiber in P to S = S2 x {0} in the
original product structure; the knot k is simultaneously isotoped to a knot intersecting
S in a single point. Then a further ambient isotopy, possibly with “light bulb” moves
which are accomplished by an ambient isotopy of the type illustrated in Figure 1
(see [33, page 257]), enables us to deform k to an S!—fiber in the original product
structure of ¢(0) = S! x S2. Thus the surgery dual C to k in (kU¢)(0,0) = S3 is an
unknot while the surgery dual K to ¢ is not necessarily unknotted in this S3. Figure 2
illustrates such a situation. a
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SO

S!x §?
Figure 1: The “light bulb” move in S! x §2

In the special case where ¢ is a meridian of k, we have:

Lemma 2.4 Let k Uc be a two-component link in S such that ¢ is a meridian of k .
Then (0, 0)—surgery on k U c results in S3 with its surgery dual link C U K , for which
C is a meridian of K, and K is isotopic to k in S3.

Proof This is essentially shown in [9, page 119] without a proof. So for completeness,
we give a proof. Since ¢ is a meridian of k, we may straighten k in ¢(0) = S! x S?
using light bulb moves and isotopies; the framing 0 of k is changed into some even
integer, and the image K of ¢ in ¢(0) = S! x S? intersects {x} x S? once for some
x € S'. Then we see that (0, 0)—surgery on k U ¢ results in S3 with its surgery dual
C U K in which the dual C to k is a meridian of K in S3. Let us see that K is
isotopic to k. Since ¢ is a meridian of k, the exterior S* —A/(k Uc) is the union of the
2—fold composing space X (ie [disk with 2—holes] x S!) and a knot space E which
is homeomorphic to S3 — A/ (k). Note that a regular fiber  of X which lies in dN(c)
intersects a meridian g, exactly once, and a regular fiber ¢ of X which lies in dN (k)
coincides with a meridian gtz . The former condition implies X UN (¢) = S xS!x[0, 1].
After (0,0)—surgery on k U ¢, we obtain the dual link C U K in this surgered S°>.
Observe that the regular fiber ¢+ which lies in N (K) coincides with a meridian p g,
and the regular fiber ¢ of X which lies in dN(C) intersects a meridian pc exactly
once. The latter condition implies that X U N(C) = S! x S! x [0, 1]. Hence

S3—N(K)=(kUc)(0,0)—N(K)=EU(XUN(C)) =~ E = S*—N(k).
Thus Gordon and Luecke [11, Theorem 1] show K is isotopic to k. O
In the proof of Theorem 2.1, we observe that (k U ¢)(0,—1) = (C U K)(§.n),
(kUc)(0,—%) = ky(n) and (C UK)(g.n) = K(n). Starting with m-surgery instead

of O—surgery on k, the argument in the proof of Theorem 2.1 leads us to the following
extension. Recall that the surgery dual C to k is unknotted in S by Lemma 2.3. In
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what follows, K, denotes the knot obtained from K by twisting m times along the
unknot C.

Theorem 2.5 Let k Uc be a link as in Theorem 2.1 with surgery dual link C U K,
where K is dual to ¢ and C is dual to k. Then for any integers m and n,

Kpy(n4+m) = ky(m + n).

Moreover, if ¢ is not a meridian of k , then each family {K,,} and {k,} contains infin-
itely many distinct knots, each of which has only finitely many integral characterizing
slopes.

Proof Observe that S3 — N (kUc) = S? —N(C U K) and the meridian-longitude
pairs (g, rr) for k and (uc, Ac) for ¢ become meridian-longitude pairs (Ag, —itx)
for C and (A., —pu.) for K. The latter correspondence was shown in the proof of
Theorem 2.1. For the former correspondence, by definition, A; becomes a meridian
of C, the surgery dual to k. Observe also that u; is homologous to A, (because
[Ik(k, ¢)| = 1), which bounds a disk of the filled solid torus after O—surgery on c¢. Thus
Wk is a preferred longitude of C'. Now the orientation convention gives the desired
result. We note here that the above observation shows that (0, 0)—surgery on C U K
yields S3 with surgery dual k£ U c. In particular, |Ik(K,C)| = 1.

Then we have the surgery relation
Ky(n+m)=(CU K)(—%,n) ~ (kU c)(m, —%) =~ ky(m +n)
as claimed.

Following Lemma 2.4, if C is a meridian of K, then c¢ is a meridian of k. Thus if ¢
is not a meridian of k, then C is not a meridian of K either. Since |lk(k,c)| =1
and [Ik(K, C)| = 1, the wrapping numbers of k£ about ¢ and K about C are at
least 2. Then [18, Theorem 3.2] implies that each twist family of knots {k,} and { K, }
partitions into infinitely many distinct knot types containing finitely many members.
Therefore, since K, (n + m) = k,(m + n), each knot in these two families has only
finitely many characterizing slopes. O

Proof of Theorem 1.3 By the assumption, the link K U ¢ satisfies the condition in
Theorem 2.5, where K should be read as k; ie notationally K and k& are exchanged.
Then we have k,, (m) = K(m) by putting n = 0. Since {k;,} contains infinitely many
distinct knots, K has infinitely many noncharacterizing slopes. a
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3 Alexander polynomials of knots in twist families

We take A 44 p(x, ) to be the symmetrized multivariable Alexander polynomial of the
oriented two-component link 4 U B, where x corresponds to the oriented meridian i 4
of A and y corresponds to the oriented meridian pp of B. Due to the symmetrization,

Aaup(x.y) = Baup(x™ T = A_au-p(x. ).
However, in general, A 4up(x, ) # Aqu—B(x, ).

Recall that if k Uc is alink in S* such that ¢ is unknotted and (0, 0)—surgery on k Uc
yields S3 with surgery dual link C U K, then C is also unknotted and |Ik(K,C)| = 1.

Proposition 3.1 Assume k U ¢ is an oriented two-component link with lk(k,c) =1
such that ¢ is an unknot. Further assume (0, 0)—surgery on k U ¢ results in S with
surgery dual C U K, where K is dual to ¢ and C is dual to k, oriented so that
Ik(K,C) = 1. Then Aguc(x,y) = Aguc(x, y~Y), or equivalently, Agyuc(x, y) =
Aguc(x.y7h).

Proof Letus write iy and Ay for the meridian and preferred longitude of an oriented
knot J in S3 which we view as oriented curves in dN(J) such that 1k(J, uy) =1
and A s is homologous to J. Let X = S3 — N (k Uc) be the exterior of the link k Uc.
Since the linking number of Kk Uc¢ is 1, in H;(X;Z), we have that [ug] = [A¢] and
[tte] = [Ak]. Furthermore, these homologies are realized by oriented Seifert surfaces X
and X that are each punctured once by k and ¢, respectively. In particular, restricting
to X, we have that 03, = Ao — y and 035 = Ap — .

Since K is the surgery dual to ¢ with respect to O—surgery on c, and C is the surgery
dual to k with respect to O—surgery on k, we have X = S3 — A (K U C). Upon
surgery, the punctured Seifert surfaces X; and X, respectively cap off to oriented
Seifert surfaces X g and X¢ for K and C. Using these surfaces to orient K and C
and thus their meridians and longitudes, we obtain that (ug,Ax) = (A¢, —tc) and
(nc.Ac) = (hk,—pk). Therefore, [ug] = [ux] and [nc] = [pe] in Hi(X;Z).
However, since [A¢c] = —[ur] = —[k], we find that Ik(K, C) = —1. To orient K
and C so that Ik(K, C) = 1, we must flip the orientation on C, say. Then for this
correctly oriented C, we have [ic] = —[uc]. Hence Aguc(x, ¥) = Arue(x, y~1). O

We recall also the following twisting formula for Alexander polynomials.
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Proposition 3.2 [1, Theorem 2.1] Let k Uc be an oriented two-component link such
that ¢ is an unknot and w = lk(k, ¢) > 0. Denote by k;, a knot obtained from k by an
n—twist along ¢. Then Ay, (t) = Agyc(t,1"?).

Propositions 3.1 and 3.2 lead us some symmetry among Alexander polynomials of &
and K,,.

Corollary 3.3 Let k Uc be a link as in Theorem 2.1 with surgery dual link C U K,
where K is dual to ¢ and C is dual to k. Then for the twist families of knots {k;}
and {K,}, we have Ay, (t) = Ag_,(t). In particular, Ay (1) = Ag(1).

Proof We may orient £ and c¢ so that 1k(k, c¢) = 1. Then Propositions 3.1 and 3.2
show that Ay (1) = Aguc(t.t") = Aguc(t,t™") = Ag_, (t). In particular, putting
n=0,wehave Ap(t) = Ag(?). a

4 Examples

In this section, we will provide examples which satisfy the condition in Theorem 2.1,
and hence Theorem 2.5. Example 1.4 follows from Examples 4.1 and 4.3. A slight mod-
ification gives a nonhyperbolic example, Example 4.5, that demonstrates Theorem 1.6.
We will make a further modification of the first example to present Example 4.6 which
implies Theorem 1.5.

Let us take a two-component link k U ¢ in S3 with |Ik(k,c)| = 1 as in Figure 2.
To perform O—surgery on the unknot ¢, we first remove N(c) and glue it back to
V = 83— N(c) so that a meridian of N(c) is identified with a meridian of V, a
preferred longitude of ¢. Then the union of meridian disks of N(¢) and V forms a
nonseparating 2—sphere S in ¢(0) = S! x S2. The second picture from the left of
Figure 2 describes ¢(0) = S x S? in which the bottom 2-sphere and the top 2—sphere
are identified (without twisting) to result in the nonseparating 2—sphere S. From the
second to the seventh picture, since the total space is S' x S? rather than S3, we do
not put extra labels to corresponding components. We apply light bulb moves from
the third to the fourth and from the fifth to the sixth picture of Figure 2. In the second
picture from the right of Figure 2, the straight knot is the image of k in ¢(0) = S! x S2,
and O-surgery on this knot gives S3. This S3 resulting from (0, 0)—surgery on k U ¢
is shown with the surgery dual link C U K C S in the rightmost picture of Figure 2.
Thus k& U ¢ satisfies the condition in Theorem 2.1, and K(n) = k; (n) does hold for all
integers 7.
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Figure 4: The knot k = kj is isotoped into a presentation as the pretzel knot
P (=5, 3,—3). The twisting circle ¢ is carried along with the isotopy.
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Furthermore, orienting k U ¢ so that Ik(k, ¢) = 1, one may calculate! the multivariable
Alexander polynomial of k& U ¢ to be

Ague(x,y) == =24x)y '+ 1-(x"" =2+ x)y.

For a computer-assisted calculation, one may first use PLink within SnapPy [6] to obtain a Dowker—
Thistlethwaite code (DT code) for the link. Then the KnotTheory package [3] for Mathematica can produce
the multivariable Alexander polynomial from the DT code.
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Hence by Proposition 3.2, we have
(%) Ak, () = Aguct, ") = =@ =24+ 0" +1 - =2+ 11"

In particular, since the Alexander polynomial of &, varies depending on n, we have
that ¢ is not a meridian of k.

Let us generalize this following Theorem 2.5. Let K, be a knot obtained from K by
an m—twist along C. Then Theorem 2.5 asserts that K, (n 4+ m) = k,(m + n) for any
integers m and n. Figure 3 demonstrates this fact pictorially.

Let us choose an integer m arbitrarily. Observe that in this example, we have K, = ky, ;
see Figure 3. Hence if k, = K, for some integer n, then k;,, = ky,. Thus A(k,) =
A(kp), and (%) implies that n = +m. Thus at most k,, and k_,, can be isotopic
to K. Since Ky, (n+m) =k, (m+n) for all integers m and n, we have the following:

e For a given integer m, every integral slope except possibly 0 and 2m fails to be
a characterizing slope for K.

e If furthermore K_,, # Kj,, then 0 will fail to be a characterizing slope as well.

Example 4.1 (genus-one, nonfibered knot) Let us choose m = 0 in the above. Then
Ko(n) = ky(n) for all integers n, and as mentioned above, every nonzero integral
slope fails to be a characterizing slope for K. In Figure 4, we identify Ky = k¢ as
the pretzel knot P(—5, 3, —3), which is known to be hyperbolic by [27]. The pretzel
knot P(—5, 3, —3) is a genus-one knot, but it is not fibered. Seifert’s algorithm easily
produces a genus-one Seifert surface of P(—5, 3, —3).

Remark 4.2 Notably, the (mirror of the) knot P(—5, 3, —3) was the basic example
of the first two families of nonstrongly invertible knots with a small Seifert fibered
space surgery [22]. Indeed, (—1)—surgery on P(—5, 3, —3) is the Seifert fibered space

53(-2.3.-).

Since P(-5,3,—3) is the knot K, and Ko(n) = k,(n) for all integers n, we have
Ko(—1) = k_1(—=1) = K_1(—1). Thus (—1)-surgery on K_; is the same Seifert
fibered space. SnapPy recognizes the complement of K_; as the mirror of the census
manifold 0934801 . Furthermore, SnapPy reports this manifold as asymmetric, implying
that K_; is neither strongly invertible nor cyclically periodic, and hence cannot be
embedded in a genus-2 Heegaard surface; see [7, Lemma 7.4].
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Figure 5: The knot K; in Figure 3 is isotoped into a presentation as the 9

crossing Montesinos knot M (%, —%, %) which may be recognized as the

knot 94, in Rolfsen’s table [33].
Example 4.3 (fibered, genus-two knot) By choosing m =1 instead of 0, we obtain a
knot K for which we have K;(n+1) = k,(1+n) for all integers n. As we mentioned,
every integral slope other than O or 2 are noncharacterizing slope for K. In Figure 5,
we recognize the knot K as the 9—crossing Montesinos knot M (%, —%, %) which is
the knot 94, in Rolfsen’s table [33]. Following [27], K is a hyperbolic knot. The

knot 94, is a fibered knot, but it has genus two [13, Theorem 3.2].

Now let us show that O—slope is also a noncharacterizing slope for K;. Since K;(0) =
k—_1(0), it is sufficient to see that K; # k_;. Recall that K, = k,, for any m.
Alexander polynomials distinguish k; from k, for all n # +1; see (x). The Jones
polynomial® will however distinguish k; = K; and k_;:

Vi @)=q¢—q¢*+q~"

—14+q—qg*+4°,
while

3 6 9 11

Vi@ =q ' +q70 ¢ ¢ +¢7 —¢7 0 +q”
(As noted in Remark 4.2, SnapPy also identifies the complement of K_; = k_; as
distinct from the complement of K; = 94, , thereby distinguishing these knots.) Hence
all integers except possibly 2 are noncharacterizing slopes for the hyperbolic knot

K1 ="94.

Question 4.4 Is 0 a characterizing slope for P(—3,3,5) ? Is 2 a characterizing slope
for 942 ?

Next we provide examples of nonhyperbolic knots such that all integral slopes are
noncharacterizing slopes, from which Theorem 1.6 follows.

2Kodama’s software KNOT [17] was used confirm the Jones polynomials of knots.
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Figure 6: The sum of l-string tangles 7/ and t” is the connected sum
k=k'#k".
Example 4.5 (nonhyperbolic example) Given any nontrivial knot k&, let us take a
two-component link k& U ¢ as in Figure 6, where k is a connected sum of a knot k’
(which is k in Figure 2, the closure of the 1-string tangle t’) and the nontrivial knot k”
(the closure of the 1-string tangle t”’).

Then as in Figure 2, we see that (0, 0)—surgery on k Uc gives S3 with the surgery dual
C U K. Actually, we follow the isotopy and light bulb moves as indicated in Figure 2
to obtain the sixth figure, in which & is almost an S ! fiber, but it has the connected
summand k" (ie the knotted arc t”"). Then we apply further light bulb moves to & so that
it becomes an S! fiber; K becomes a satellite knot with k" as a companion knot; see
Lemma 2.4. Then by Theorem 2.5, K, (n+m) = k,(m + n) for all integers m and n.

It is easy to observe that &, is a connected sum k), # k", where k;, is a knot obtained
from k&’ by an n—twist along c. For instance, ko = P(—5, 3, —3)#k” and k1 =94, #k" .
Since kj, is nontrivial for all integers n by (%), kj, is not prime for all integers 7.

On the other hand, we show that K, is prime for all integers m. (We note that,
by construction, K,, has k” as a companion knot for every integer m.) In the
following, we fix an integer m arbitrarily. First we observe that k,(m + n) is
obtained by gluing E(k;) and E(k”) along their boundary tori. Recall that the
exterior E(k;,) may be expressed as the union of the 2—fold composing space X (ie
[disk with 2-holes]x S!) and two knot spaces E(k},) and E(k""). We note that dX con-
sists of 0E (kp), 0E (k,) and 0E(k"), and a regular fiber in dX NJE (k) is a meridian
of k. Since the surgery slope m +n is integral, the corresponding Dehn filling of X re-
sultsin S!xS!x[0, 1], and k, (m+n) can be viewed as the union of E(k},) and E(k").
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Hence K, (n+m) = ky(m-+n)= E(k,)UE (k") for all integers n. It should be noted
here that E(k”) is independent of n, but the topological type of E(k;,) depends on n.

Now assume for a contradiction that Ky, is not prime and express K, =1; #---#1,,
where ¢; is a prime knot for 1 <i < p. Then E(K,,) is the union of the p—fold
composing space Y = [disk with p—holes] x S and p knot spaces E(¢1),..., E (tp),
where a regular fiber in 0Y N dE(K},) is a meridian of K,;,. Since the surgery slope
n+m is integral, the corresponding Dehn filling of Y results in (p—1)—fold composing
space Y’ = [disk with (p—1)-holes]x S'. Hence K,,(n+m) is expressed as the union
Y'UE(t;)U---U E(ty). If necessary, decomposing each E(z;) further by essential
tori, we obtain a torus decomposition of K, (n 4+ m) in the sense of Jaco, Shalen and
Johannson [14; 15]. Note that identifications of Y’ and E(;) (1 <i < p) depends
on 7, but the topological type of E(#;) (1 <i < p) does not depend on 7. To be precise,
let us focus on the case of n =0, 1. Then K, (n+m) = k,(m+n) = E(k))U E(k"),
and E(k,) admits a hyperbolic structure in its interior: E (k) is the exterior of the
hyperbolic knot P(—5,3,—3) and E(k}) is the exterior of the hyperbolic knot 94;.
If E(k"”) is neither hyperbolic nor Seifert fibered, we decompose E(k”') by essential
tori to obtain a torus decomposition of K, (n 4+ m) = k,(m + n) in the sense of Jaco,
Shalen and Johannson. Since E(k;) 2 E(k]), uniqueness of the torus decomposition
of K;,(n + m) shows that some FE(#;) changes according as n = 0,1. This is a
contradiction. It follows that K, is a prime knot.

Since the knot K, is prime, while k; is not prime for all integers m and n, we have
{Km}N{k,} = &. Thus every integral slope fails to be a characterizing slope for a
prime satellite knot K, (with a given knot k" a companion knot) for any integer m,
establishing Theorem 1.6(1). Similarly, every integral slope fails to be a characterizing
slope for a composite knot k, (with a given knot k” a connected summand) for any
integer n. This establishes Theorem 1.6(2).

Example 4.6 (Proof of Theorem 1.5) Figure 7 shows a sequence of transformations
relating (m+n, co)—surgery on a link k, U ¢ to (oo, n+m)—surgery on a link C U K, .
In particular, it gives two twist families of knots {k,} and {K},} such that k,(m +n) =
Kp(n+m).

Replace (m+n, oo)-surgery on k, Uc by (0, 0)—surgery on kyUc, and follow isotopies
and light bulb moves as indicated in Figure 7 to see that (0, 0)—surgery on k¢ U ¢
yields S3 with surgery dual C U K, where K is dual to ¢ and C is dual to kq.
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As Figure 8 demonstrates, the knot k1 is the hyperbolic 8—crossing Montesinos knot

M (3, 4. %). Itis the knot 8 in Rolfsen’s table, the two-bridge knot 23 . Following [27],
(compare [25; 12]) it is a hyperbolic knot.

Using n = 0, we may calculate that

(%) Agoue(x,y)= (x_1 —2-|—x)y_1 -|—()c_2—4x_1 +5—4x+xz)—i—(x_1 —24x)y,
which is equal to Ag,uc (X, »~1) by Proposition 3.1. Note also that Agoue(x,y) =
Ak()UC(xs y_l); see (**)' Hence AkoUC(ts tn) = Ak()UC(l(’ t_n) = AI(()UC (t’ tn)7 and
it follows from Proposition 3.2 that

A, ) =Ag, ()= (" =240+ (2 =47 4 5—dt )+ T =24 01"
Thus Alexander polynomials distinguish k; from K,, for all integers m # +1.

We further calculate the Jones polynomials of kqy, K, and K_; to be

12,3 4,4 4.3 ..

A
I e E P e e

to conclude that k; # K11. Thus k; is an 8—crossing hyperbolic knot for which every
integral slope is not a characterizing slope.

5 Further discussions

Let K Uc be a two-component link such that ¢ is unknotted and not a meridian of K.
If (0, 0)—surgery on K Uc yields S3, then Theorem 1.3 assures that K has infinitely
many noncharacterizing slopes. Moreover, by Theorem 2.5, each knot K, (obtained
from K by an n—twist along ¢) has also infinitely many noncharacterizing slopes.

Proposition 5.1 The (0, 0)—surgery on K, U ¢ results in S3.

Proof Note that (K, Uc)(0,0) = (K Uc)(—n,0). Since (K Uc)(0,0) = S3, viewing
K Cc(0) = ST x S? it is isotopic to an S '—fiber in ¢(0); see the proof of Lemma 2.3
and Figure 2 for an illustration. Hence, we see that (K U ¢)(—n, 0) is also S3. This
then implies that (0, 0)-surgery on K, U c results in S* as well. a
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Toward characterization of knots with infinitely many noncharacterizing slopes, we
would like to ask:

Question 5.2 Assume that K is a knot with infinitely many noncharacterizing slopes.
Then can we take an unknot ¢ so that ¢ is not a meridian of K and (0, 0)—surgery on
K Uc yields S3?

Question 5.3 For which knot K can we take an unknot ¢ so that the link K Uc enjoys
the following properties:

e ¢ is not a meridian of K, and

o the result of the (0, 0)—surgery on K Uc is S3?

Following Lemma 2.4, if ¢ is a meridian of K, then (0, 0)—surgery on K U ¢ always
results in S3 independent of the knot K. However, if ¢ is not a meridian of K, the
second condition in Question 5.3 imposes a strong restriction on K. It follows from
Ni and Zhang [26] and McCoy [23] that if X is a torus knot 7} ¢ with r > s > 1 (resp.
—r > > 1), then sufficiently positive (resp. negative) slopes are characterizing slopes.
Hence any nontrivial torus knot does not admit an unknot ¢ described in Question 5.3.

Aknot K is an L-space knot if for some nonzero slope p/q € Q the manifold K(p/q) is
an L-space, a rational homology 3-sphere for which rk ﬁF(K (p/q))=|Hi(K(p/9)|;
see [29]. If p/q > 0, then K is called a positive L-space knot, and if p/q < 0, then it
is called a negative L-space knot. Motivated by the fact that torus knots are fundamental
examples of L-space knots, we can prove:

Theorem 1.8 Let K U c be a link with ¢ a trivial knot. If ¢ is not a meridian of K
and the result of the (0, 0)—surgery on K Uc is S3, then K is not an L-space knot.

Proof Since (0, 0)-surgery on K Uc results in S?, the linking number between K
and ¢ must be £1. Now suppose for a contradiction that K = K is an L-space
knot. Then K (m) is an L-space for infinitely many integers m [29, Proposition 2.1];
more precisely, if K is a positive (resp. negative) L-space knot, then K(m) is an
L-space for m > 2g(Ky) — 1 (resp. m < —2g(Kgy) + 1); see [31]. By Theorem 2.5,
Ko(m) = ky,(m) for all integers m; hence the twist family {(k,,72)} contains infinitely
many L-space surgeries. Recall that the linking number between k£ and C is also £1;
see the proof of Theorem 2.5. Furthermore, it follows from [1, Proposition 1.10] that

Algebraic & Geometric Topology, Volume 18 (2018)



1478 Kenneth L Baker and Kimihiko Motegi

the k5, have the same Alexander polynomial for all m € Z, and g(k;,) is constant for
infinitely many integers »2. On the other hand, since |Ik(K, C)| = 1, a recent work of
Baker and Taylor [2] shows that g (k) — oo when |m| — co, a contradiction. O

So we may expect a positive answer to the following:
Question 5.4 Does an L-space knot have only finitely many noncharacterizing slopes?

Although the construction given by Theorem 2.1 and Theorem 2.5 provides infinitely
many knots with infinitely many noncharacterizing slopes, we still expect that these
knots have characterizing slopes as well.

Question 5.5 Does every knot K have a characterizing slope? More strongly, does
every knot have infinitely many characterizing slopes?

Our technique does not work directly for nonintegral slopes. So we would like to
propose a modified version of Ni and Zhang’s question:

Question 5.6 For a hyperbolic knot K, is a nonintegral slope p/q with |p| + |q|
sufficiently large a characterizing slope?

Remark 5.7 Lackenby [20] shows that for each atoroidal, homotopically trivial knot K
in a 3-manifold Y with H;(Y; Q) # {0}, there exists a number C(Y, K) such that
p/q is a characterizing slope for K if |¢| > C(Y, K).

Ni and Zhang ask if every rational number is a noncharacterizing slope for some knot
[26, Question 1.5]. We ask the opposite:

Question 5.8 Is there a rational number r which is a characterizing slope for all knots?
More strongly and specifically, we would like to ask:

Question 5.9 Let r be a rational number which cannot be written in the form m + %
for any integers m and n. Then is r a characterizing slope for all knots?

It should be noted here that Kawauchi [16] demonstrates that if » is written as m + %
for some nonzero integers m and 7, then it is not a characterizing slope for some
hyperbolic knot. More precisely, he demonstrates that for any integer N > 1 and any
such an r, there are hyperbolic knots K1, ..., K) whose r—surgery result in the same
oriented 3—manifold.
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