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On the cohomology equivalences between
bundle-type quasitoric manifolds over a cube

SHO HASUI

The aim of this article is to establish the notion of bundle-type quasitoric manifolds
and provide two classification results on them: (i) .CP 2 # CP 2/–bundle type qua-
sitoric manifolds are weakly equivariantly homeomorphic if their cohomology rings
are isomorphic, and (ii) quasitoric manifolds over I 3 are homeomorphic if their
cohomology rings are isomorphic. In the latter case, there are only four quasitoric
manifolds up to weakly equivariant homeomorphism which are not bundle-type.

57R19, 57S25

1 Introduction

A quasitoric manifold M over a simple polytope P , which was introduced by Davis
and Januszkiewicz [8], is a 2n–dimensional smooth manifold with a locally stan-
dard T n D .S1/n–action for which the orbit space is identified with P . Quasitoric
manifolds are defined as a topological counterpart of toric varieties. Actually, as the
toric varieties are in one-to-one correspondence with the fans, the quasitoric manifolds
over P are in one-to-one correspondence with a kind of combinatorial objects, called
characteristic maps on P . Moreover, any smooth projective toric variety turns out to be
a quasitoric manifold if we regard T n as acting on it through the inclusion to .C�/n .

On the classification of quasitoric manifolds, Masuda posed the following cohomologi-
cal rigidity problem for quasitoric manifolds in [11], where he affirmatively solved the
equivariant version of it.

Problem 1.1 Are two quasitoric manifolds homeomorphic if their cohomology rings
are isomorphic as graded rings?

Since then toric topologists have studied the topological classification of quasitoric
manifolds from the viewpoint of cohomological rigidity, and now we have some
classification results which give partial affirmative answers for this problem. First, the
cohomological rigidity of quasitoric manifolds over the simplex �n , for nD1; 2; : : : , is
shown in Davis and Januszkiewicz [8]. Second, the cohomological rigidity of quasitoric
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manifolds over the convex m–gon, for m D 4; 5; : : : , is an immediate corollary of
the classification theorem of Orlik and Raymond [13]. Third, over the product of two
simplices, the cohomological rigidity is proved by Choi, Park and Suh [6]. Finally,
over the dual cyclic polytope C n.m/� , where n� 4 or m�nD 3, it is shown by the
author [9]. In addition, there are some results on the cohomological rigidity of Bott
manifolds, a special subclass of quasitoric manifolds over cubes, by Choi, Masuda
and Suh [5], Choi [2] and Choi, Masuda and Murai [3]. On the other hand, we have
found no counterexample to this problem.

In this article we mainly consider the cohomological rigidity of “bundle-type” quasitoric
manifolds over the cube In , of which we give the precise definition later. Bundle-type
quasitoric manifolds form a large subclass of quasitoric manifolds. For instance, up
to weakly equivariant homeomorphism, the equivariant connected sum CP 2 # CP 2

is the only quasitoric manifold over I 2 which is not bundle-type (Proposition 3.1
and Remark 3.2), and there are only four quasitoric manifolds over I 3 which are not
bundle-type (Lemma 4.10). Note that there are infinitely many quasitoric manifolds
over In , where n� 2, up to weakly equivariant homeomorphism.

The goal of this article is to show the following two theorems. Here a .CP 2 # CP 2/–
bundle type quasitoric manifold means an iterated .CP 2 # CP 2/–bundle over a point
equipped with a good torus action, of which the precise definition is given in Section 2.2.

Theorem 1.2 Suppose there is a graded ring isomorphism 'W H�.M 0IZ/!H�.M IZ/
between the cohomology rings of two .CP 2 # CP 2/–bundle type quasitoric mani-
folds M and M 0. Then there exists a weakly equivariant homeomorphism f W M!M 0

which induces ' in cohomology.

Theorem 1.3 Suppose there is a graded ring isomorphism 'W H�.M 0IZ/!H�.M IZ/
between the cohomology rings of two quasitoric manifolds M and M 0 over I 3. Then
there exists a homeomorphism f W M !M 0 which induces ' in cohomology.

This article is organized as follows. In Section 2, we review the basics of quasitoric
manifolds and give the precise definitions of the terms bundle-type quasitoric manifold
and so on. In Section 3, we prove the key lemma of this article (Lemma 3.7) and prove
Theorem 1.2. In Section 4, we classify the quasitoric manifolds over I 3 up to weakly
equivariant homeomorphism. Finally, we give the proof of Theorem 1.3 in Section 5.

2 Preliminaries

2.1 Basics of quasitoric manifolds

First, let us begin with the definition of a quasitoric manifold. The reader can find
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a more detailed explanation in eg Buchstaber and Panov [1] and [9]. Here we al-
ways assume that Cn is equipped with the standard T n–action, ie the action defined
by tz WD .t1z1; : : : ; tnzn/, where t D .t1; : : : ; tn/ 2 T n and z D .z1; : : : ; zn/ 2Cn .

For two T n–spaces X and Y , a map f W X ! Y is called weakly equivariant if
there exists a  2 Aut.T n/ such that f .tx/D  .t/f .x/ for any t 2 T n and x 2X ,
where Aut.T n/ denotes the group of continuous automorphisms of T n . We say a
smooth T n–action on a 2n–dimensional differentiable manifold M is locally standard
if for each z 2 M there exists a triad .U; V; '/ consisting of a T n–invariant open
neighborhood U of z , a T n–invariant open subset V of Cn , and a weakly equivariant
diffeomorphism 'W U ! V .

The orbit space of a locally standard T n–action is naturally regarded as a manifold
with corners, by which we mean a Hausdorff space locally homeomorphic to an open
subset of .R�0/n with the transition functions preserving the depth. Here depth x
of x 2 .R�0/n is defined as the number of zero components of x . By definition, for a
manifold with corners X , we can define the depth of x 2X by depth x WD depth'.x/,
where ' is an arbitrary local chart around x . Then a map f between two manifolds
with corners is said to preserve the corners if depth ıf D depth.

An n–dimensional convex polytope is called simple if it has exactly n facets at each
vertex. We regard a simple polytope as a manifold with corners in the natural way, and
define a quasitoric manifold as follows.

Definition 2.1 A quasitoric manifold over a simple polytope P is a pair .M; �/
consisting of a 2n–dimensional smooth manifold M equipped with a locally standard
T n–action and a continuous surjection � W M ! P which descends to a homeomor-
phism from M=T n to P preserving the corners. We omit the projection � unless it is
misleading.

Next we recall the two ways to construct a quasitoric manifold. In this section P
always denotes an n–dimensional simple polytope with exactly m facets and F.P /
denotes the face poset of P . In addition, we define Tn as the set of subtori of T n .

Definition 2.2 A characteristic map on P is a map `W F.P /! Tn such that

(i) dim `.F /D n� dimF for each face F ,

(ii) `.F /� `.F 0/ if F 0 � F , and

(iii) if a face F is the intersection of k distinct facets F1; : : : ; Fk , then the inclusions
`.Fi /!`.F /, iD1; : : : ; k , induce an isomorphism `.F1/�� � ��`.Fk/!`.F /.
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Remark 2.3 For each face F of P , we denote the relative interior of F by relintF .
Given a quasitoric manifold M over P , we obtain a characteristic map `M on P by

`M .F / WD .T
n/z;

where z is an arbitrary point of ��1.relintF / and .T n/z denotes the isotropy subgroup
at z . Actually we can easily check the conditions of Definition 2.2 since the T n–action
is locally standard.

Construction 2.4 For each point q 2 P , we denote the minimal face containing q
by G.q/. Then we obtain a quasitoric manifold .M.`/; �/ over P by setting

M.`/ WD .T n �P /=�`;

where .t1; q1/�`.t2; q2/ if and only if q1Dq2 and t1t�12 2`.G.q1//, and � W M.`/!P
denotes the map induced by pr2W T

n�P !P . Obviously the T n–action on T n�P
by multiplication on the first component descends to a T n–action on M.`/.

We can define a differentiable structure on M.`/ as follows. We regard P as a subset
of Rn and denote the hyperplane f.x1; : : : ; xn/2Rn j xi D 0g by Hi , for i D 1; : : : ; n.
For a vertex v of P , we denote by Uv the open subset of P obtained by deleting
all faces not containing v from P , and take n facets F1; : : : ; Fn of P such that
v D F1 \ � � � \Fn . Additionally, we take an affine transformation x'v of Rn which
maps Uv onto an open subset of .R�0/n and Fi into Hi . If we take an automorphism
 v of T n which maps `.Fi / into the i th coordinate subtorus for each i D 1; : : : ; n,
then the map  v � x'vW T n �Uv ! T n � .R�0/n descends to a weakly equivariant
homeomorphism 'v from ��1.Uv/ to some T n–invariant open subset of Cn . We can
check that the atlas f.��1.Uv/; 'v/g gives a differentiable structure on M.`/. Clearly
the T n–action on M.`/ is locally standard and the orbit space is identified with P , ie
M.`/ is a quasitoric manifold over P . Moreover, by definition, we have `D `M.`/ .

In this article, we define an isomorphism of quasitoric manifolds as follows: for two
quasitoric manifolds .M; �/ and .M 0; � 0/ over P , a map f W M !M 0 is called an
isomorphism of quasitoric manifolds if it is a T n–equivariant homeomorphism such
that � 0 ıf D � .

By using the blow-up method of Davis [7], we see that for any quasitoric manifold M
over P there exists a T n–equivariant surjection T n �P !M which descends to an
isomorphism M.`M /!M of quasitoric manifolds. Thus we obtain the following.

Proposition 2.5 The correspondence ` 7! M.`/ gives a bijection from the set of
characteristic maps on P to the set of isomorphism classes of quasitoric manifolds
over P , and the inverse is given by M 7! `M .
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The second way to construct a quasitoric manifold uses a characteristic matrix and
a moment-angle manifold. Below the term facet labeling of P means a bijection
from f1; : : : ; mg to the set of the facets of P .

Definition 2.6 An .n�m/–matrix �D .�1; : : : ; �m/ of integers is called a characteris-
tic matrix on P with respect to the facet labeling F1; : : : ; Fm if it satisfies the following
nonsingularity condition: if Fi1 ; : : : ; Fin meet at a vertex, then det.�i1 ; : : : ; �in/D˙1.

Hereafter, unless mentioned otherwise, we fix a facet labeling F1; : : : ; Fm of P .

Remark 2.7 Given a characteristic matrix � on P , we can define a characteristic
map `� by

`�.Fi1 \ � � � \Fik / WD im.�i1 ; : : : ; �ik /;

where we identify S1 with R=Z and regard .�i1 ; : : : ; �ik / as a homomorphism
from T k to T n . Obviously, any characteristic map is obtained from some characteristic
matrix in this way.

Construction 2.8 Let KP be the simplicial complex on Œm� WD f1; : : : ; mg defined
by KP WD fJF j F 2 F.P /g, where JF WD fi 2 Œm� j F � Fig. We regard D2 as the
unit disc of C and define

.D2; S1/J WD
˚
.z1; : : : ; zm/ 2 .D

2/m
ˇ̌
jzji D 1 if i … J

	
for each J � Œm�. Then the moment-angle manifold ZP is defined as the union[

J2KP

.D2; S1/J � .D2/m;

which is equipped with the Tm–action defined by

.t1; : : : ; tm/ � .z1; : : : ; zm/D .t1z1; : : : ; tmzm/:

We can define an embedding "W P!ZP as follows. Denote the barycentric subdivision
of KP by K 0P . If we take bF 2 relintF for each face F , then the correspondence
JF 7! bF gives a triangulation of P by K 0P . Then we define "W jK 0P j ! ZP so
that ".JF /D .c1.F /; : : : ; cm.F // for the vertices and it restricts to an affine map on
each simplex, where ci .F / D 0 if F � Fi and ci .F / D 1 otherwise. Note that "
descends to a homeomorphism from P Š jK 0P j to ZP =Tm . If we define G.q/ as in
Construction 2.4 and `P W F.P /! Tm by

`P .F / WD f.t1; : : : ; tm/ 2 T
m
j ti D 1 if F 6� Fig;
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then the correspondence .t; q/ 7! t � ".q/ will give an equivariant homeomorphism
from .Tm � P /=� to ZP , where .t1; q1/ � .t2; q2/ if and only if q1 D q2 and
t1t
�1
2 2 `P .G.q1//. Moreover, as in Construction 2.4, we can define a differentiable

structure on .Tm �P /=�Š ZP , and then the Tm–action on ZP is smooth.

Let � be a characteristic matrix on P . If we regard � as a homomorphism from Tm

to T n , then we can check that T� WDker� acts on ZP freely. Thus we obtain a manifold
M.�/ WD ZP =T� with a smooth action of Tm=T� Š T n , where the isomorphism is
induced by �. We can easily check that this T n–action on M.�/ is locally standard.
Actually, the map ��idP W Tm�P!T n�P descends to an equivariant diffeomorphism
from M.�/ to M.`�/. We define � W M.�/!P as the composite of the quotient map
M.�/!M.�/=T nDZP =Tm and "�1 , and then .M.�/; �/ is a quasitoric manifold
over P .

Clearly, we have the following proposition.

Proposition 2.9 For a characteristic matrix � on P , the two quasitoric manifolds
M.�/ and M.`�/ are smoothly isomorphic.

Definition 2.10 For a quasitoric manifold M over P , a characteristic matrix of M
means a characteristic matrix � on P such that M.�/ is isomorphic to M . In other
words, � is called a characteristic matrix of M if `� D `M .

Next we consider the weakly equivariant homeomorphisms between quasitoric mani-
folds. We denote by Œm�˙ the set of 2m integers ˙1; : : : ;˙m and regard Z=2 as acting
on Œm�˙ by multiplication with �1. Additionally, we define a map sgnW Œm�˙! Z=2
so that x D sgn.x/ � jxj, where we identify Z=2 with the multiplicative group f˙1g.

Definition 2.11 We define Rm as the group of .Z=2/–equivariant permutations
of Œm�˙ and pW Rm ! Sm as the canonical surjection to the symmetric group. In
addition, we define �W Rm!GLm.Z/ so that ei ��.�/D sgni .�/�e�.i/ for i D 1; : : : ; m,
where fe1; : : : ; emg is the standard basis of Zm, � WD p.�/ and sgni .�/ WD sgn.�.i//.

Remark 2.12 The map �W Rm! GLm.Z/ defined above is an antihomomorphism.
Actually, if we take �i 2 Rm and put �i WD p.�i / for i D 1; 2, we can check that
�.�1 ı�2/D �.�2/ � �.�1/ as follows. For a fixed j 2 f1; : : : ; mg, if we put k WD �2.j /,
then sgnj .�1 ı �2/D sgnj .�2/ � sgnk.�1/. Therefore

ej � �.�1 ı �2/D sgnj .�1 ı �2/ � e�1ı�2.j / D sgnj .�2/ � .sgnk.�1/ � e�1.k//

D sgnj .�2/ � .ek � �.�1//D .sgnj .�2/ � e�2.j // � �.�1/D ej � �.�2/ � �.�1/:
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Definition 2.13 For a simple polytope P , we denote by Aut.P / the group of combi-
natorial self-equivalences of P and regard it as a subgroup of the symmetric group Sm
by using the facet labeling. Then we denote by R.P / the subgroup p�1.Aut.P //
of Rm . Moreover, we define ƒP as the set of characteristic matrices on P and a left
action of GLn.Z/�R.P / on ƒP by . ; �/ �� WD  �� � �.�/.

Definition 2.14 Let P be a simple polytope, � and �0 be characteristic matrices
on P , and f W M.�/!M.�0/ be a weakly equivariant homeomorphism. We denote
by xf the corner-preserving self-homeomorphism of P induced by f . Then a pair
. ; �/ 2 GLn.Z/�R.P / is called the representation of f if the following hold:

(i) f .tx/D  .t/f .x/ for any t 2 T n and x 2M.�/, where we identify GLn.Z/
with Aut.T n/ through the left action on Rn=Zn D T n .

(ii) If we denote by �f the combinatorial self-equivalence of P induced by xf ,
then �f D p.�/.

(iii) �0 D . ; �/ ��.

It is easy to see that for any weakly equivariant homeomorphism f W M.�/!M.�0/

there exists a unique representation of f . Conversely, we have the following proposi-
tion.

Proposition 2.15 For any pair . ; �/ 2GLn.Z/�R.P / and a characteristic matrix �
on P , there exists a weakly equivariant homeomorphism f W M.�/!M.�0/ of which
the representation is . ; �/. Here �0 denotes the characteristic matrix . ; �/ �� on P .

Proof First, by using the triangulation of P given in Construction 2.8, we can
construct a corner-preserving self-homeomorphism xf of P which induces p.�/.
Since �0 D  �� � �.�/, we see  .`.F // � `0.�.F // for each face F of P , where
� WDp.�/, ` WD `� and `0 WD `�0 . This implies that . .t1/; xf .q1//�`0 . .t2/; xf .q2//
if .t1; q1/�`.t2; q2/, where �` and �`0 are defined in the same way as Construction 2.4.
Thus we see that  � xf W T n�P ! T n�P descends to a weakly equivariant homeo-
morphism f W M.`/!M.`0/, of which the representation is obviously . ; �/.

Corollary 2.16 If we denote by Mweh
P the set of weakly equivariant homeomorphism

classes of quasitoric manifolds over P , then the correspondence � 7!M.�/ gives a
bijection from ƒP =.GLn.Z/�R.P // to Mweh

P .

Then we consider the cohomology ring of a quasitoric manifold M DM.�/ over P .
The following computation is due to [8].
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Let us define the Davis–Januszkiewicz space DJP as the union[
J2KP

BT J � BTm D .CP1/m;

where BT J WD f.y1; : : : ; ym/ 2 BTm j y D � if i … J g and � denotes the basepoint
of CP1 . KP is the simplicial complex defined in Construction 2.8. Denote the Borel
constructions of M and ZP by BT n.M/ and BTm.ZP /, respectively, ie BT n.M/

(resp. BTm.ZP /) denotes the quotient of ET n �M (resp. ETm �ZP ) by the action
of T n (resp. Tm ) defined by t � .x; y/ WD .xt; t�1y/. Then we have a homotopy
commutative diagram

ZP

��

// M

��

BTm.ZP /

��

// BT n.M/

��

BTm
B�

// BT n

where the columns are fiber bundles, the middle horizontal map is a homotopy equiva-
lence, and the bottom one is the map induced by �W Tm! T n . By using homotopy
colimit, we can construct a homotopy equivalence from DJP to BTm.ZP / such that
the diagram

BTm.ZP /

��

DJP //

99

BTm

commutes up to homotopy, where the horizontal arrow is the inclusion.

Thus we obtain the following theorem.

Theorem 2.17 (Davis and Januszkiewicz) Let P be an n–dimensional simple poly-
tope with m facets and � be a characteristic matrix on P . Then M.�/ is the homotopy
fiber of the map B� ı inclW DJP ! BT n , where incl denotes the inclusion into BTm .

Since it is also shown by Davis and Januszkiewicz (in the proof of [8, Theorem 3.1])
that any quasitoric manifold has a CW structure without odd dimensional cells, we
immediately obtain the following corollary.

Corollary 2.18 (Davis and Januszkiewicz) Let P be an n–dimensional simple
polytope with m facets, �D .�i;j / be a characteristic matrix on P , and put M WDM.�/.
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Then the integral cohomology ring of M is given by

H�.M IZ/D ZŒv1; : : : ; vm�=.IP CJ�/:

Here vi WD j �ti 2H 2.M IZ/ for i D 1; : : : ; m, where j W M ! DJP is the inclusion
of fiber and the ti form the canonical basis of H 2.DJP IZ/, and IP and J� are the
ideals

IP D .vi1 � � � vik j Fi1 \ � � � \Fik D∅/;
J� D .�i;1v1C � � �C�i;mvm j i D 1; : : : ; n/:

Lemma 2.19 For each i D 1; : : : ; m, the generator vi 2H 2.M IZ/ of Corollary 2.18
is equal to the Poincaré dual of the submanifold Mi WD �

�1.Fi /.

We make some preparations before the proof of this lemma. For the sake of simplicity,
we make the following conventions:

� Unless otherwise mentioned, a space means a Hausdorff space and a map means
a continuous map. An action is also assumed to be continuous.

� A structure group F of a fiber bundle with fiber F is always assumed to act
on F effectively. Moreover, F is assumed to have the following property: for a
space X and a possibly noncontinuous map f W X!F, the map f is continuous
if the map X �F ! F defined by .x; y/ 7! f .x/ �y is continuous.

Definition 2.20 Let G and F be two topological groups and regard F as acting on a
space F . A G–equivariant fiber bundle with fiber F and structure group F is a map
pW E! B between G–spaces satisfying the following conditions:

(i) p is a fiber bundle with fiber F and structure group F.

(ii) p is G–equivariant.

(iii) For each g 2G and x 2B , if we take local trivializations �W U �F ! p�1.U /

and �0W U 0 �F ! p�1.U 0/ around x and gx , respectively, then there exists
an f 2 F such that the following diagram commutes:

p�1.x/
g
// p�1.gx/

fxg �F

�jfxg�F

OO

g�f
// fgxg �F

�0jfgxg�F

OO
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If G is a Lie group, then a G–equivariant fiber bundle is called smooth if it is smooth
as a fiber bundle, and the G–actions on the total space and the base space are smooth.
Here we say a fiber bundle is smooth if the fiber, the total space, and the base space
are differentiable manifolds and the local trivializations can be chosen to be diffeomor-
phisms.

Lemma 2.21 Let G be a topological group, H be a closed normal subgroup of G ,
pW E!P be a G–equivariant fiber bundle with fiber F and structure group F, and put
E WDE=H and B WD P=H . If the quotient map qW P ! B is a principal H –bundle,
then xpW E! B induced by p can be equipped with a G=H –equivariant fiber bundle
structure with fiber F and structure group F so that the quotient map zqW E!E is a
bundle map covering q .

Proof To summarize the setting of the lemma, we have the following commutative
diagram:

F // E
p
//

zq
��

P

q

��

E
xp
// B

Let A be the set consisting of triads .U; s; ˇ/, where U is an open subset of B ,
s is a section of qW q�1.U /!U , and ˇW V �F !p�1.V / is a local trivialization of p
such that s.U /�V . If we define �˛W U �F ! xp�1.U / by �˛.x; y/ WD zqıˇ.s.x/; y/
for each ˛ D .U; s; ˇ/ 2A, then it is clearly bijective. Note that, since E is a quotient
by a group action, zq is an open map and restricts to a quotient map zq�1.W /!W

for any open subset W of E . Since ˇ ı .s � idF / is a topological embedding and
zq ıˇ ı .s� idF /ı��1˛ D id

xp�1.U /
is continuous, ��1˛ is also continuous. Thus we see

that xp is a fiber bundle with fiber F .

Next, let us show that the transition functions associated with the local trivializations
f.U; �˛/g˛2A take values in F. Let ˛D .U; s; ˇ/ and ˛0D .U 0; s0; ˇ0/ be elements of A
and assume U \U 0 ¤∅. Due to the second convention made before Definition 2.20,
we only have to show that for each x 2 U \ U 0 there exists an f 2 F such that
�˛.x; y/D �˛0.x; f � y/ for any y 2 F . Fix x 2 U \U 0 and take h 2H such that
s0.x/D h � s.x/. Since p is a G–equivariant fiber bundle, there exists an f 2 F such
that h �ˇ.s.x/; y/D ˇ0.s0.x/; f � y/ for any y 2 F . Then, since zq.h �ˇ.s.x/; y// is
equal to zq.ˇ.s.x/; y//, we have �˛.x; y/D �˛0.x; f �y/ for any y 2 F . Thus we see
that xp is a fiber bundle with structure group F.

Finally, we show that the condition (iii) of Definition 2.20 holds for xp . Fix g 2 G
and x 2B and let ˛D .U; s; ˇ/ and ˛0 D .U 0; s0; ˇ0/ be elements of A so that x 2U
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and gx 2U 0 . We can take h 2H such that s0.gx/D h � .g � s.x//. If we put g0 WD hg ,
then there exists an f 2 F such that g0 �ˇ.s.x/; y/D ˇ0.s0.gx/; f �y/ for any y 2 F ,
since p is a G–equivariant fiber bundle. Then, since G acts on E via G=H , we have
g ��˛.x; y/D �˛0.gx; f �y/. Thus the proof is completed.

Proof of Lemma 2.19 Fix i 2 f1; : : : ; mg and let X be the inverse image of Mi

under the quotient map from ZP to M DM.�/. Then

X D
˚
.z1; : : : ; zm/ 2 ZP j zi D 0

	
(see Construction 2.8). We define a normal bundle �.X/ of X in ZP by

�.X/ WD
˚
.z1; : : : ; zm/ 2 ZP

ˇ̌
jzi j< 1

	
;

with the projection �.X/!X given by .z1; : : : ; zm/ 7!.z1; : : : ; zi�1; 0; ziC1; : : : ; zm/:
Then pri W ZP ! D2 restricts to a bundle map �.X/! intD2 covering X ! f0g.
By Lemma 2.21, since �.X/ is a Tm–equivariant vector bundle and ZP !M.�/ is a
principal T�–bundle, �.Mi / WD�.X/=T� gives a T n–equivariant normal bundle of Mi

in M . Moreover, by using Lemma 2.21 again, we see that BT n.�.Mi //! BT n.Mi /

and BTm.�.X//! BTm.X/ also have vector bundle structures. Thus we have the
following diagram, where each square is a bundle map:

�.Mi / //

��

BT n.�.Mi //

��

BTm.�.X//

��

oo // BT 1.intD2/

��

Mi
// BT n.Mi / BTm.X/oo // BT 1

Then, let us put .A;B/c WD .A;A n B/ and BT k .A;B/ WD .BT kA;BT kB/ for a
pair .A;B/ of T k –spaces, and consider the following commutative diagram:

H 2.BT 1.D2;f0g/c/

r1

��

pr�
i
// H 2.BTm.ZP ;X/c/

��

H 2.BT n.M;Mi /
c/ //

��

Š
oo H 2..M;Mi /

c/

r2

��

H 2.BT 1.D2//
pri
// H 2.BTm.ZP // H 2.BT n.M// //

Š
oo H 2.M/

Here H�. � / denotes the integral cohomology and each vertical arrow denotes the
restriction. Let us denote the Thom class of BT 1.intD2/ by � and regard it as an
element of H 2.BT 1.D2; f0g/c/ through the excision isomorphism. Moreover, we
denote the composite of the upper (resp. lower) horizontal arrows by 
1 (resp. 
2 ).
Due to the above diagram of bundle maps, 
1 maps � to the Thom class of �.Mi /, and
therefore r2 ı
1.�/ is the Poincaré dual of Mi . Moreover, since r1.�/ is the canonical
generator of H 2.BT 1.D2//ŠH 2.BT 1/, we have 
2 ı r1.�/D vi . Thus the proof is
completed.
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Note that, with the notation of Definition 2.14, a weakly equivariant homeomorphism f

maps ��1.Fi / to � 0�1.F�f .i// for each i D 1; : : : ; m, where � (resp. � 0 ) denotes
the projection from M.�/ (resp. M.�0/) to P . By taking into account the orientations
of the normal bundles, we have the following.

Corollary 2.22 Let �, �0 be two characteristic matrices on P and f W M.�/!M.�0/
be a weakly equivariant homeomorphism represented by . ; �/ 2 GLn.Z/ �R.P /.
Then, taking generators v1; : : : ; vm 2H�.M.�/IZ/ and v01; : : : ; v

0
m 2H

�.M.�0/IZ/
as in Corollary 2.18, we have

f �.v01; : : : ; v
0
m/D .v1; : : : ; vm/ � �.�/

�1:

To close this subsection, we introduce two theorems which we will use for the classifi-
cation of quasitoric manifolds over I 3 .

Theorem 2.23 [8, Corollary 6.8] With the notation in Corollary 2.18, we have the
following formulae for the total Stiefel–Whitney class and the total Pontrjagin class:

w.M/D

mY
iD1

.1C vi / and p.M/D

mY
iD1

.1� v2i /:

Theorem 2.24 (Jupp’s classification of certain 6–manifolds [10]) Let M and N be
closed, one-connected, smooth 6–manifolds with torsion-free cohomology. If a graded
ring isomorphism ˛W H�.N IZ/!H�.M IZ/ preserves the second Stiefel–Whitney
classes and the first Pontrjagin classes, then there exists a homeomorphism f W M !N

which induces ˛ in cohomology.

2.2 Bundle-type quasitoric manifolds

Given a quasitoric manifold M , we denote by D.M/ the group of smooth automor-
phisms of M equipped with the compact-open topology (recall that an isomorphism
between quasitoric manifolds .M; �/ and .M 0; � 0/ means an equivariant homeomor-
phism f W M !M 0 satisfying � 0 ı f D � ). The following proposition is immediate
from the definition of a smooth equivariant fiber bundle (Definition 2.20).

Proposition 2.25 Let Mi be a quasitoric manifold acted on by Ti , for i D 1; 2, and
suppose that pW M ! M2 is a smooth T2–equivariant fiber bundle with fiber M1

and structure group D.M1/. Then there exists a unique T1–action on M such that
t1 � �.x; y/ D �.x; t1y/ for any local trivialization �W U �M1 ! p�1.U / of p
and t1 2 T1 . Moreover, this action of T1 on M is smooth and commutes with the
action of T2 .
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Definition 2.26 Let Mi be a quasitoric manifold over Pi acted on by Ti , for i D 1; 2.
Then a quasitoric M1–bundle over M2 is a smooth T2–equivariant fiber bundle
pW M !M2 with fiber M1 , structure group D.M1/, and total space equipped with
the action of T WD T1 �T2 defined by .t1; t2/ � x WD t1.t2x/, where the T1–action is
the one defined in Proposition 2.25.

We prove later that the quasitoric bundle M is a quasitoric manifold over P1 �P2 .

Definition 2.27 Let M be a class of quasitoric manifolds and consider a sequence

Bl
pl�1

// Bl�1
pl�2

// � � �
p1
// B1

p0
// B0;

where B0 is a point. Then Bl is called an l –stage M–bundle type quasitoric manifold
if pi , for i D 0; : : : ; l � 1, is a quasitoric Mi –bundle for some Mi 2M.

Now the term .CP 2 #CP 2/–bundle type quasitoric manifold in Theorem 1.2 is defined
as follows: let us define M.CP 2 #CP 2/ as the class of quasitoric manifolds which are
homeomorphic to CP 2 # CP 2 , and use the term .CP 2 # CP 2/–bundle type quasitoric
manifold instead of M.CP 2 # CP 2/–bundle type quasitoric manifold.

Suppose that, for i D 1; 2, the facets of Pi are labeled by Fi;1; : : : ; Fi;mi
and �i is

a characteristic matrix of Mi with respect to this facet labeling. If we give a facet
labeling of P1 �P2 by F1; : : : ; Fm1Cm2

, where

Fj WD

�
F1;j �P2 for 1� j �m1;
P1 �F2;j�m1

for m1C 1� j �m1Cm2;

then we have the following.

Proposition 2.28 Let .Mi ; �i / be a quasitoric manifold over Pi acted on by Ti ,
for i D 1; 2, and pW M !M2 be a quasitoric M1–bundle over M2 . Then M is a
quasitoric manifold over P1 �P2 , which has a characteristic matrix in the form�

�1 �

0 �2

�
:

Conversely, if a quasitoric manifold M over P1 �P2 has a characteristic matrix in the
above form, then �i is a characteristic matrix on Pi , for i D 1; 2, and M is isomorphic
to the total space of a quasitoric M.�1/–bundle over M.�2/.

We use the following lemma to prove this proposition.
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Lemma 2.29 For i D 1; 2, let .Mi ; �i / be a quasitoric manifold over Pi acted
on by Ti , and let pW M ! M2 be a quasitoric M1–bundle over M2 . Moreover,
take x 2M2 and put Mx WD p

�1.x/ and T 0 WD pr�12 ..T2/x/, where .T2/x denotes the
isotropy subgroup at x 2M2 . Then the action of T on M restricts to a T 0–action on
the fiber Mx , and there exists a homomorphism �W T 0!T1 such that t �yD �.t/ �y for
any t 2 T 0 and y 2Mx . In particular, for each z 2Mx , there is a split exact sequence

0 // .T1/z // Tz // .T2/x // 0:

Proof Take a local trivialization �W U �M1! p�1.U / of p around x and define
'W M1 ! Mx by '.y/ WD �.x; y/. Since p is a T2–equivariant fiber bundle with
structure group D.M1/, there is a map 
 W T 0!D.M1/ such that t �'.y/D'.
.t/.y//
for any t 2 T 0 and y 2M1 , which is clearly a homomorphism. Moreover, since T1
acts on �1�1.intP1/ freely and each 
.t/, where t 2 T 0 , descends to idP1

, there is
a unique sq;y;t 2 T1 for each triple q 2 intP1 , y 2 �1�1.q/ and t 2 T 0 such that

.t/.y/D sq;y;t �y . Since 
.t/ is T1–equivariant, sq;y;t does not depend on y and
therefore we can put s.q; t/ WD sq;y;t . Moreover, for each q , the correspondence
t 7! s.q; t/ gives a homomorphism from T 0 to T1 . Thus we see that the correspon-
dence q 7! s.q; � / gives a map from intP1 to Hom.T 0; T1/, the set of continuous
homomorphisms equipped with the compact-open topology. Since Hom.T 0; T1/ is
discrete and intP1 is connected, this map is constant. If we define � as the value of
this map, then 
.t/.y/D �.t/ � y for any t 2 T 0 and y 2 �1�1.intP1/. This identity
holds for any t 2 T 0 and y 2M1 since �1�1.intP1/ is dense in M1 . Thus we obtain
the former part of the lemma.

For each z2Mx , the correspondence t 7!.�.t/�1; t / gives a section of pr2W Tz!.T2/x ,
and .T1/z clearly coincides with the kernel of pr2W Tz! T2 . Thus we obtain the latter
part of the lemma.

Proof of Proposition 2.28 First, we show that the T –action on M is locally standard.
Recall that any quasitoric manifold has a CW structure without odd dimensional cells,
and therefore it is simply connected and its odd-degree cohomology vanishes. By
using the long exact sequence of homotopy groups and the Serre spectral sequence
associated with p , we see that M is also simply connected and has vanishing odd-degree
cohomology. Then the local standardness follows immediately from the following
theorem of Masuda: a torus manifold with vanishing odd-degree cohomology is locally
standard [12, Theorem 4.1]. Here a torus manifold means an even-dimensional closed
connected orientable smooth manifold equipped with an effective smooth action of the
half-dimensional torus which has at least one fixed point.
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Next, we prove that M=T is homeomorphic to P1 �P2 as a manifold with corners.
It is clear that p descends to a T2–equivariant fiber bundle xpW M=T1 ! M2 with
fiber P1 and structure group fidP1

g by the definition of D.M1/. Thus we see that
there is a T2–equivariant homeomorphism f W M=T1 ! P1 �M2 , where T2 acts
on P1 �M2 by the action on the second component, such that (i) for any local
trivialization x�W U �P1! xp�1.U / of xp and any x 2 U the map P1! P1 defined
by q 7! pr1 ıf ı x�.x; q/ is the identity, and (ii) xpD pr2 ıf . Then f clearly descends
to a homeomorphism xf W M=T ! P1 �P2 . We can prove that xf preserves corners
as follows. If we take x 2 M and denote by xx 2 M=T the equivalence class con-
taining x , then depth xx D dimTx by definition. On the other hand, depth xf .xx/ is
equal to depth xx1C depth xx2 , where xf .xx/ D .xx1; xx2/ 2 P1 �P2 . If we take a local
trivialization �W U �M1! p�1.U / around p.x/ and put .x2; x1/ WD ��1.x/, then
depth xxi D dim.Ti /xi

, for i D 1; 2, since xxi D�i .xi /. Then, by Lemma 2.29, we have
depth xx D depth xf .xx/.

Next, we consider the characteristic matrix � of M . We denote by � the projection
M!M=TŠP1�P2 . Take x2M and a local trivialization �W U�M1!p

�1.U / of p
around p.x/, and put Sj WD `M .Fj / for j D 1; : : : ; m1Cm2 , where `M denotes the
characteristic map associated with M . If x 2��1.relintFj / for some j 2 f1; : : : ; m1g,
then pr2.Sj / � T2 fixes p.x/ 2 ��12 .intP2/ and therefore Sj � T1 . Since '

is T1–equivariant on each fiber, we see Sj D `M1
.F1;j / for j D 1; : : : ; m1 . On

the other hand, if x 2 ��1.relintFj / for some j 2 fm1 C 1; : : : ; m1 Cm2g, then
.T1/x D f0g and pr2.Sj / fixes p.x/ 2 ��12 .relintF2;j�m1

/. Therefore we have
pr2.Sj /D `M2

.F2;j�m1
/. Thus we obtain the former part of the proposition.

Finally, we prove the latter part. It is clear that �i , for i D 1; 2, is a characteristic
matrix on Pi . We can assume that M DM.�/ WD ZP1�P2

=T� (see Construction 2.8)
since they are isomorphic. Put m WDm1Cm2 and identify Tm1 with Tm1�f0g� Tm .
Then T�1

� T� and T � WD T�=T�1
is isomorphic to T�2

through the projection
to Tm2 . If we regard Tm as acting on ZP2

through the projection to Tm2 , then,
since ZP1�P2

D ZP1
�ZP2

and M.�/D .M.�1/�ZP2
/=T � , we have the following

commutative diagram:

M.�1/ // M.�1/�ZP2

pr2
//

��

ZP2

��

M.�/ // M.�2/

Here the upper row is a Tm=T�1
–equivariant fiber bundle with structure group D.M1/

and the right vertical arrow is a principal T �–bundle. Thus the proof is completed
by Lemma 2.21.
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Let Pi , for i D 1; : : : ; l , be an ni –dimensional simple polytope with a facet labeling
Fi;1; : : : ; Fi;mi

, and put n WD
P
ni , m WD

P
mi and P WD P1 � � � � � Pl . Given

. i ; �i / 2 GLni
.Z/�R.Pi /, for i D 1; : : : ; l , we define . 1; �1/� � � � � . l ; �l/ 2

GLn.Z/�R.P / as follows: define  2 GLn.Z/ and � 2R.P / so that

 D

0BBB@
 1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0  l

1CCCA and �.�/D

0BBB@
�.�1/ 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �.�l/

1CCCA ;
and put . 1; �1/�� � ��. l ; �l/ WD . ; �/. Here we label the facets of P by F1; : : : ; Fm ,
where

Fm1C���Cmi�1Cj

WD P1 � � � � �Pi�1 �Fi;j �PiC1 � � � � �Pl for i D 1; : : : ; l and j D 1; : : : ; mi :

Lemma 2.30 Let Mi be a quasitoric manifold over an ni –dimensional simple poly-
tope Pi , for i D 1; : : : ; l , and consider a sequence

Bl
pl�1

// Bl�1
pl�2

// � � �
p2
// B2

p1
// M1;

where each pi is a quasitoric MiC1–bundle. For each i , take a characteristic matrix �i
of Mi and . i ; �i / 2 GLni

.Z/�R.Pi /, and put �0i WD . i ; �i / ��i . Then there exists
a sequence

B 0
l

p0
l�1
// B 0
l�1

p0
l�2
// � � �

p02
// B 02

p01
// M.�01/;

where each p0i is a quasitoric M.�0iC1/–bundle, and a weakly equivariant homeomor-
phism from Bl to B 0

l
represented by . l ; �l/� � � � � . 1; �1/.

Proof Put . 0i ; �
0
i / WD . i ; �i /� . i�1; �i�1/� � � � � . 1; �1/ for i D 1; : : : ; l . By

an iterated use of Proposition 2.28, we can take, for each i , a characteristic matrix �i
of Bi in the form 0BBB@

�i � � � � �

0
: : :

: : :
:::

:::
: : :

: : : �

0 � � � 0 �1

1CCCA :
Then, if we put �0i WD . 

0
i ; �
0
i / ��i for i D 1; : : : ; l , we see that each M.�0iC1/ is a

quasitoric M.�0iC1/–bundle over M.�0i / by Proposition 2.28. The proof is completed
by setting B 0i WDM.�

0
i /.
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2.3 Quasitoric manifolds over In

Now we restrict ourselves to the case P D In . Hereafter, we always use the facet
labeling F1; : : : ; F2n of In defined by

Fi WD f.x1; : : : ; xn/ 2 I
n
j xi D 0g and FnCi WD f.x1; : : : ; xn/ 2 I

n
j xi D 1g

for iD1; : : : ; n. Note that this facet labeling is different from the one used in Section 2.2.
We easily see that Aut.In/ is generated by �i;j WD.i j /.iCn jCn/ and �k WD.k kCn/,
where i; j; k D 1; : : : ; n and we regard Aut.In/ as a subgroup of the symmetric
group S2n by using the facet labeling, as in Definition 2.13.

Definition 2.31 Let � be a square matrix of order n. We call � a characteristic square
on In if each diagonal component of � is equal to 1 and .En �/ is a characteristic
matrix on In . We denote by „n the set of characteristic squares on In . For the
convenience of notation, we identify a characteristic square � with the characteristic
matrix .En �/; for example, we write M.�/ instead of M..En �//.

Remark 2.32 Due to Proposition 2.15, any quasitoric manifold over In is weakly
equivariantly homeomorphic to M.�/ for some characteristic square � .

Definition 2.33 For a characteristic square � D .�i;j / on In , we define a graded
ring H�.�/, canonically isomorphic to H�.M.�/IZ/, as follows. Let ZŒX1; : : : ; Xn�
be the polynomial ring whose generators have degree 2, and I� be the ideal generated
by ui .�/Xi , where i D 1; : : : ; n and ui .�/ WD

Pn
jD1 �i;jXj . Then H�.�/ is defined

by
H�.�/ WD ZŒX1; : : : ; Xn�=I� :

Next, we consider the bundle-type quasitoric manifolds over In .

Definition 2.34 Let � be a characteristic square on In and n1; : : : ; nl be positive
integers summing up to n. Then � is called .�1; : : : ; �l/–type if it is in the form0BBB@

�1 � � � � �

0
: : :

: : :
:::

:::
: : :

: : : �

0 � � � 0 �l

1CCCA ;
where each �i is a characteristic square on Ini .
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Lemma 2.35 Let �i be a characteristic square on Ini, for i D 1; : : : ; l , and consider
a sequence

Bl
pl�1

// Bl�1
pl�2

// � � �
p2
// B2

p1
// B1;

where B1 DM.�1/. If each pi is a quasitoric M.�iC1/–bundle, then Bl is weakly
equivariantly homeomorphic toM.�/ for some .�l ; : : : ; �1/–type characteristic square � .

Proof Denote
Pl
iD1 ni by n. By an iterated use of Proposition 2.28, we see that Bl

has a characteristic matrix � in the form0BBB@
Enl

� � � � � �l � � � � �

0
: : :

: : :
::: 0

: : :
: : :

:::
:::

: : :
: : : �

:::
: : :

: : : �

0 � � � 0 En1
0 � � � 0 �1

1CCCA :
We denote the left n�n part of � by A. Then, since A�1 is also in the form0BBB@

Enl
� � � � �

0
: : :

: : :
:::

:::
: : :

: : : �

0 � � � 0 En1

1CCCA ;
A�1�D .En �/ for some .�l ; : : : ; �1/–type characteristic square � . Thus the proof is
completed by Proposition 2.15.

3 .CP2 # CP2/–bundle type quasitoric manifolds

In this section we give the proof of Theorem 1.2. We use the facet labeling F1; : : : ; F2n
of In defined in Section 2.3. Let us begin with the following proposition.

Proposition 3.1 Any quasitoric manifold over I 2 is weakly equivariantly homeomor-
phic to M.�/, where � denotes a characteristic square in the following form:

(1)
�
1 a

0 1

�
or

�
1 2

1 1

�
:

Proof Let � be a characteristic matrix of a quasitoric manifold M over I 2 . Since �
satisfies the nonsingularity condition, there is a pair . ; �/2GL2.Z/�.Z=2/4 such that

 �� � �D

�
1 0 1 a

0 1 b 1

�
;

where a and b are integers satisfying ab D 1˙ 1, ie .a; b/D .0; b/, .a; b/D .a; 0/
.a; b/D˙.1; 2/ or .a; b/D˙.2; 1/. Moreover, by multiplying the first row, the first
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column and the third column by �1 if necessary, we can assume that b � 0. If we put
�0 WD  �� � � and � WD .1 2/.3 4/ 2 Aut.I 2/, then we have�

0 1

1 0

�
��0 � �.�/D

�
1 0 1 b

0 1 a 1

�
:

Thus the proof is completed by Proposition 2.15.

Throughout this section, we denote by �2 the latter characteristic square in (1).

Remark 3.2 We easily see that M.�2/ is homeomorphic to CP 2#CP 2 . For instance,
since .E2 �2/ is decomposed into a connected sum [9, Section 3.2] and CP 2 is the only
quasitoric manifold over �2 [8, Example 1.18], M.�2/ is homeomorphic to CP 2#CP 2

or CP 2#CP 2 . As H�.�2/ (Definition 2.33) is not isomorphic to H�.CP 2#CP 2IZ/,
we have M.�2/ Š CP 2 # CP 2 . Note that, by [4, Proposition 6.2] of Choi, Masuda
and Suh, the other quasitoric manifolds M.�/ of Proposition 3.1 are the Hirzebruch
surfaces. In particular, they are not homeomorphic to CP 2 # CP 2 .

Next, we consider the graded ring automorphisms of H�.�2/. If we put x WDX2 and
y WD u2.�

2/DX1CX2 , using the notation of Definition 2.33, then

H�.�2/D ZŒx; y�=.x2�y2; xy/:

Let us denote by Aut.H�.�2// the group of graded ring automorphisms of H�.�2/
and regard it as a subgroup of GL2.Z/ by identifying an automorphism ' with the
matrix A defined by

'

�
x

y

�
D A

�
x

y

�
:

Lemma 3.3 Aut.H�.�2//D
��
˙1 0

0 ˙1

�
;

�
0 ˙1

˙1 0

��
.

Proof Let ' be an automorphism of H�.�2/ identified with

AD

�
a b

c d

�
:

Note that a and b (resp. c and d ) are coprime. Since '.x/'.y/D .acC bd/y2 D 0
in H�.�2/, we have acD�bd . In particular, if a¤0, we see that a divides d and vice
versa, implying aD˙d . We put � WD d=aD˙1, and then obtain cD��b . Moreover,
since ' is an automorphism, detAD �.a2C b2/D˙1. Thus we have aD �d D˙1
and bDcD0. Similarly, if we assume b¤0, then we have jbjD jcjD1 and aDd D0.
Thus the proof is completed.
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Recall (Definition 2.11) that we put Œm�˙ WD f˙1; : : : ;˙mg and defined Rm as
the group of .Z=2/–equivariant permutations of Œm�˙ . Let us describe � 2 Rm
by �D .�.1/; : : : ; �.m//. Then, if we put �1 WD .�1;�2;�3;�4/, �2 WD .3;�2; 1; 4/
and �3 WD .�1; 4; 3; 2/, they belong to R.I 2/ and there are  i 2GL2.Z/, for iD1; 2; 3,
such that . i ; �i /�.E2 �2/D .E2 �2/. By Proposition 2.15, there are weakly equivariant
self-homeomorphisms fi , for i D 1; 2; 3, of M.�2/ represented by . �1i ; ��1i /, and
by Corollary 2.22, we have

f �1 WD

�
�1 0

0 �1

�
; f �2 WD

�
1 0

0 �1

�
and f �3 WD

�
0 �1

�1 0

�
;

where we canonically identify H�.M.�2/IZ/ with H�.�2/ (note that, in the notation
of Corollary 2.18, x D v4 and y D�v2 ). Since these matrices generate Aut.H�.�2//
by Lemma 3.3, we have the following.

Lemma 3.4 Any graded ring automorphism of H�.M.�2/IZ/ is induced by a weakly
equivariant self-homeomorphism of M.�2/.

Then we consider the isomorphisms between the cohomology rings of .CP 2 # CP 2/–
bundle type quasitoric manifolds.

Definition 3.5 We denote by Kn the set of .�2; : : : ; �2/–type characteristic squares
on I 2n . For � D .�i;j / 2Kn and integers h and k such that 0 < h� k � n, we define
�Œh;k� WD .�i;j /2h�1�i;j�2k , which belongs to Kk�hC1 . We identify H�.�Œh;n�/ with
the subring of H�.�/ generated by X2h�1; : : : ; X2n and H�.�Œh;k�/ with the quotient
ring H�.�Œh;n�/=.X2kC1; : : : ; X2n/, where we use the notation of Definition 2.33.

Lemma 3.6 Any n–stage .CP 2 # CP 2/–bundle type quasitoric manifold is weakly
equivariantly homeomorphic to M.�/ for some � 2 Kn .

Proof By Proposition 3.1 and Remark 3.2, if a quasitoric manifold M over I 2

is homeomorphic to CP 2 # CP 2 , then M is weakly equivariantly homeomorphic
to M.�2/. Therefore, by Lemma 2.30, any .CP 2 # CP 2/–bundle type quasitoric
manifold is weakly equivariantly homeomorphic to a fM.�2/g–bundle type quasitoric
manifold. Then the proof is completed by Lemma 2.35.

Thus we see that we only have to consider M.�/, for � 2 Kn , to prove Theorem 1.2.

Next, let � 0 be a characteristic square on In , where n > 2, which is .�2; � 00/–type
for some characteristic square � 00 on In�2 , and denote the first and second rows of � 0

by .1; 2; s3; : : : ; sn/ and .1; 1; t3; : : : ; tn/, respectively. We continue to use the notation
of Definition 2.33.
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Lemma 3.7 Let 'W ZŒX1; X2�! ZŒX1; : : : ; Xn� be a graded ring monomorphism
which maps I�2 into I�0 . Also put '.X1/D

Pn
iD1 aiXi and '.X2/D

Pn
iD1 biXi and

assume that for any prime p the modp reductions of .a1; : : : ; an/ and .b1; : : : ; bn/
are linearly independent. Then one of the following holds:

(i) ai D bi D si D ti D 0 for i D 3; 4; : : : ; n;

(ii) a1 D a2 D b1 D b2 D 0.

Proof We prove the lemma by showing that (i) holds under the assumption that
.a1; a2; b1; b2/¤ .0; 0; 0; 0/. Since '.X1.X1C 2X2// and '.X2.X1CX2// belong
to I�0 , we have

'.X1.X1C 2X2//

D

� nP
iD1

aiXi

�n nP
iD1

.ai C 2bi /Xi

o
� ˛1X1

�
X1C 2X2C

nP
jD3

sjXj

�
Cˇ1X2

�
X1CX2C

nP
jD3

tjXj

�
mod W;

'.X2.X1CX2//

D

� nP
iD1

biXi

�n nP
iD1

.ai C bi /Xi

o
� ˛2X1

�
X1C 2X2C

nP
jD3

sjXj

�
Cˇ2X2

�
X1CX2C

nP
jD3

tjXj

�
mod W;

for some integers ˛i and ˇi , for i D 1; 2, where W denotes the submodule spanned
by fXpXq j p; q � 3g. Since the coefficients of X 2

1 in '.X1.X1 C 2X2// and
in '.X2.X1 C X2// are a1.a1 C 2b1/ and b1.a1 C b1/, respectively, we obtain
˛1 D a1.a1C 2b1/ and ˛2 D b1.a1C b1/. Similarly, we see ˇ1 D a2.a2C 2b2/ and
ˇ2 D b2.a2C b2/. Thus we obtain the following equations:

a1.a2C 2b2/C a2.a1C 2b1/D 2a1.a1C 2b1/C a2.a2C 2b2/;

a1.ai C 2bi /C ai .a1C 2b1/D a1.a1C 2b1/si for i � 3;

a2.ai C 2bi /C ai .a2C 2b2/D a2.a2C 2b2/ti for i � 3;

b1.a2C b2/C b2.a1C b1/D 2b1.a1C b1/C b2.a2C b2/;

b1.ai C bi /C bi .a1C b1/D b1.a1C b1/si for i � 3;

b2.ai C bi /C bi .a2C b2/D b2.a2C b2/ti for i � 3:

For convenience, we rewrite these equations as follows:
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.a1� a2/.a2C 2b2/D .2a1� a2/.a1C 2b1/;(2)

a1.ai C 2bi /D .sia1� ai /.a1C 2b1/ for i � 3;(3)

a2.ai C 2bi /D .tia2� ai /.a2C 2b2/ for i � 3;(4)

.b1� b2/.a2C b2/D .2b1� b2/.a1C b1/;(5)

b1.ai C bi /D .sib1� bi /.a1C b1/ for i � 3;(6)

b2.ai C bi /D .tib2� bi /.a2C b2/ for i � 3:(7)

First, we assume that a1�a2 , 2a1�a2 , b1�b2 and 2b1�b2 are all nonzero. Let k>0
be the greatest common divisor of a1�a2 and 2a1�a2 , and l > 0 be that of b1� b2
and 2b1 � b2 . Suppose that r divides a1C 2b1 and a2C 2b2 . If we assume that r
does not divide k , then there is a prime number r 0 which divides r=.k; r/ but does not
divide k=.k; r/, where .k; r/ means the greatest common divisor. Then, by (3) and (4),
r 0 divides ai C 2bi for i D 1; 2; : : : ; n, but this contradicts the assumption of linear
independence. Thus we see that any common divisor of a1 C 2b1 and a2 C 2b2
divides k . In particular, a1C 2b1 , a2C 2b2 ¤ 0. Similarly, we shall show that any
common divisor of a1C b1 and a2C b2 divides l .

Let p >0 be the greatest common divisor of a1C2b1 and a2C2b2 , and q > 0 be that
of a1C b1 and a2C b2 . Since .a1� a2/=k and .2a1� a2/=k (resp. .a1C 2b1/=p
and .a2C 2b2/=p ) are prime to each other, we obtain

.a1� a2/=k

.a1C 2b1/=p
D
.2a1� a2/=k

.a2C 2b2/=p
D˙1

from (2). This can be written as

(8)
a1� a2

a1C 2b1
D
2a1� a2

a2C 2b2
D˙

k

p
2 Z:

Similarly, we obtain

(9)
b1� b2

a1C b1
D
2b1� b2

a2C b2
D˙

l

q
2 Z:

Define

k0 WD
a1� a2

a1C 2b1
2 Z and l 0 WD

b1� b2

a1C b1
2 Z:

Then, from (8) and (9), we have the following equations:

(10)

8̂̂̂<̂
ˆ̂:

.1� k0/a1� a2� 2k
0b1 D 0;

2a1C .�1� k
0/a2� 2k

0b2 D 0;

�l 0a1C .1� l
0/b1� b2 D 0;

�l 0a2C 2b1C .�1� l
0/b2 D 0:
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Since we assume ai ; bi ¤ 0 for i D 1; 2, the determinant of the matrix

A WD

0BB@
1� k0 �1 �2k0 0

2 �1� k0 0 �2k0

�l 0 0 1� l 0 �1

0 �l 0 2 �1� l 0

1CCA
equals 0. Therefore, since detAD .k0Cl 0/2C.k0l 0C1/2 , we obtain .k0; l 0/D .1;�1/
or .k0; l 0/D .�1; 1/.

If .k0; l 0/D .1;�1/, we have

a1 D b2� 2b1 and a2 D�2b1

from (10). If b1 D 0, we easily obtain aj D bj D sj D tj D 0 for j � 2 from
(3), (4), (6) and (7). On the other hand, if we assume b2 D 0, we similarly obtain
that aj D bj D sj D tj D 0 for j � 2 (but this contradicts the assumption of linear
independence since .a1; : : : ; an/� 0 mod 2).

Then we can assume that b1; b2 ¤ 0. Putting b0i WD bi=l for i D 1; 2, we obtain the
following equations from (3), (4), (6) and (7):

.b02� 2b
0
1/.ai C 2bi /D fsi .b2� 2b1/� aigb

0
2 for i � 3;(11)

b01.ai C 2bi /D .�2tib1� ai /.b
0
1� b

0
2/ for i � 3;(12)

b01.ai C bi /D .sib1� bi /.b
0
2� b

0
1/ for i � 3;(13)

b02.ai C bi /D .tib2� bi /.�2b
0
1C b

0
2/ for i � 3:(14)

If b2 is odd, b02 � 2b
0
1 and b02 (resp. b01 and b01 � b

0
2 ) are prime to each other, and

hence we obtain the following:

ai C 2bi

b02
D si l �

ai

b02� 2b
0
1

2 Z for i � 3;(15)

ai C 2bi

b01� b
0
2

D�2ti l �
ai

b01
2 Z for i � 3;(16)

ai C bi

b02� b
0
1

D si l �
bi

b01
2 Z for i � 3;(17)

ai C bi

b02� 2b
0
1

D ti l �
bi

b02
2 Z for i � 3:(18)

In particular, b01 divides ai and bi for i D 3; 4; : : : ; n. Putting a0i WD ai=b
0
1 and
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b0i WD bi=b
0
1 for i � 3, from (15) and (17) (resp. (16) and (18)), we obtain

(19) f.a0i C 2b
0
i /.b
0
2� 2b

0
1/C a

0
ib
0
2g.b

0
2� b

0
1/b
0
1

D f.a0i C b
0
i /b
0
1 C b

0
i .b
0
2 � b

0
1/g.b

0
2 � 2b

0
1/b
0
2 ;

(20) f.a0i C 2b
0
i /b
0
1C a

0
i .b
0
1� b

0
2/g.b

0
2� 2b

0
1/b
0
2

D�2f.a0i C b
0
i /
0
2C b

0
i .b
0
2� 2b

0
1/gb

0
1.b
0
1� b

0
2/;

for i D 3; : : : ; n. Since b01 is prime to each of b02 � 2b
0
1 , b02 and b02 � b

0
1 , we see

from (19) that b01 divides b0i for i D 3; : : : ; n and from (20) that b01 divides a0i
for i D 3; : : : ; n. Repeating this procedure, we see that any power of b01 divides ai
and bi for i D 3; : : : ; n. By similar arguments, we can show that any powers of b02 ,
2b01 � b

0
2 and b01 � b

0
2 divide ai and bi for i D 3; : : : ; n. Since b01 , b02 , 2b01 � b

0
2

and b01� b
0
2 cannot be ˙1 simultaneously, ai D 0 and bi D 0 for i D 3; : : : ; n. Then

we obtain si D 0 and ti D 0 for i D 3; : : : ; n from (15) and (16).

Otherwise, if b02 is even (and hence b01 is odd), put b002 WD b
0
2=2. Then we have

.b002 � b
0
1/.ai C 2bi /D fsi .b2� 2b1/� aigb

00
2 for i � 3;

b01.ai C 2bi /D .�2tib1� ai /.b
0
1� 2b

00
2/ for i � 3;

b01.ai C bi /D .sib1� bi /.2b
00
2 � b

0
1/ for i � 3;

b002.ai C bi /D .tib2� bi /.b
00
2 � b

0
1/ for i � 3:

By an argument similar to that above, we again obtain that ai , bi , si and ti are all 0
for i D 3; : : : ; n. We obtain (i) in the same way if .k0; l 0/D .�1; 1/.

Finally, we consider the case where at least one of a1 � a2 , 2a1 � a2 , b1 � b2
and 2b1�b2 equals zero. Note that X 2

2 and XpXq , where pD 1; 2 and qD 3; : : : ; n,
form a basis of H 4.� 0/=W . Then, by considering the equation '.X2.X1CX2//D 0
in H 4.� 0/=W , we see that .a1; a2/D .0; 0/ implies .b1; b2/D .0; 0/ and vice versa.
Since we assume .a1; a2; b1; b2/¤ .0; 0; 0; 0/, as mentioned at the beginning of this
proof, we have .a1; a2/¤ .0; 0/ and .b1; b2/¤ .0; 0/.

If a1� a2 D 0, then we have 0D a1.a1C 2b1/ by (2), which implies a1C 2b1 D 0
since .a1; a2/¤ .0; 0/. Similarly, we obtain ai C 2bi D 0 for i � 3 by (3), but this
contradicts the assumption of linear independence since .a1; : : : ; an/� 0 mod 2.

If 2a1 � a2 D 0, then we have a2 C 2b2 D 0 by (2), which implies b2 D �a1 .
By (4) and (3), we have ai C 2bi D 0 for i � 3 and then sia1 � ai D 0 for i � 3.
Moreover, ai C tib2 D 0 by (7). We have b1.a1C b1/ D 0 by (5). If b1 D 0, then
(6) implies bi D 0 for i � 3, and therefore we obtain ai D si D ti for i � 3, since
both a1 and b2 are nonzero. If a1C b1 D 0, then (6) implies ai C bi D 0 for i � 3,
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and therefore ai D bi D si D ti D 0 for i � 3. We can show ai D bi D si D ti D 0

for i � 3 similarly in the other two cases.

For � 2Sm , the symmetric group, and a positive integer k , we define �Œk� 2Skm so
that �Œk�.ik� j /D �.i/ � k� j for i D 1; : : : ; m and j D 0; : : : ; k� 1.

Lemma 3.8 Let � 0 2 Kn and let si;j be its .i; j /th entry. Suppose that there exist two
integers p and q which satisfy the following:

(a) 0 < p < q � n;

(b) si;j D 0 if i D 2p� 1; 2p and j D 2pC 1; : : : ; 2q .

Then there exist �0 2Kn and a weakly equivariant homeomorphism f W M.�0/!M.� 0/

such that f �.Xi /DX�Œ2�.i/ for iD 1; : : : ; 2n, where � denotes the cyclic permutation
.q q� 1 : : : p/.

Proof Recall that �i;j WD .i j /.iCn jCn/2Aut.In/. If we put !k WD�k;kC1Œ2� and
!p;q WD!q�1ı� � �ı!p , then !p;q 2Aut.I 2n/. Also, we put  WD �.�Œ2�/�12GL2n.Z/
and �k WD .k kC 1/ 2Sn . Since � is an antihomomorphism,

. ; !p;q/ � .E2n �
0/D �.�q�1Œ2�/

�1
� � � �.�pŒ2�/

�1
� .E2n �

0/ � �.!p/ � � � �.!q�1/:

We can easily check that �.�pŒ2�/�1�.E2n � 0/��.!p/D .E2n � 00/ where � 00D .s0i;j /2Kn
and the following is satisfied: s0i;j D 0 if i D 2pC1; 2pC2 and j D 2pC3; : : : ; 2q .
By induction, we see that . ; !p;q/ � .E2n � 0/D .E2n �0/ for some �0 2 Kn . Then the
proof is completed by Proposition 2.15 and Corollary 2.22.

Lemma 3.9 Let �; � 0 2 Kn and 'W H�.�/!H�.� 0/ be a graded ring isomorphism.
Then there exist �0 2Kn and a weakly equivariant homeomorphism f W M.�0/!M.� 0/

such that f � ı' preserves the ideal .X2i�1; : : : ; X2n/ for each i D 1; : : : ; n.

Proof First, by Lemma 3.7 and Lemma 3.8, there are �00 2 Kn and a weakly
equivariant homeomorphism f 0W M.�00/! M.� 0/ such that f 0� ı ' preserves the
ideal .X2n�1; X2n/. Therefore, without loss of generality, we can assume that '
preserves .X2n�1; X2n/.

We prove the lemma by induction on n. The lemma is trivial if n D 1. Sup-
pose that the lemma holds for n� 1. If ' preserves the ideal .X2n�1; X2n/, then
it descends to a graded ring isomorphism x'W H�.�Œ1;n�1�/ ! H�.� 0

Œ1;n�1�
/; see

Definition 3.5. By the induction hypothesis, there are �00 2 Kn�1 and a weakly
equivariant homeomorphism f0W M.�

0
0/!M.� 0

Œ1;n�1�
/ such that f �0 ı x' preserves the
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ideal .X2i�1; : : : ; X2n�2/ for each iD1; : : : ; n�1. Let . 0; �0/ be the representation
of f0 , and put . ; �/ WD . 0; �0/� .E2; e/ 2 GL2n.Z/�R.I 2n/, where e denotes
the identity element of R.I 2/. The product . 0; �0/ � .E2; e/ is defined before
Lemma 2.30, but we should note that now we use a different facet labeling. If we define
a characteristic square �0 on I 2n so that . ; �/ � .E2n �0/D .E2n � 0/, then there exists
a weakly equivariant homeomorphism f W M.�0/!M.� 0/ represented by . ; �/. We
can easily check that �0 2 Kn and f � ı ' preserves the ideal .X2i�1; : : : ; X2n/ for
each i D 1; : : : ; n.

Corollary 3.10 Let �; � 02Kn and 'W H�.�/!H�.� 0/ be a graded ring isomorphism.
Then there exist �0 2Kn and a weakly equivariant homeomorphism f W M.�0/!M.� 0/

such that

f � ı'

0B@ X1:::
X2n

1CAD
0BBB@
E2 � � � � �

0
: : :

: : :
:::

:::
: : :

: : : �

0 � � � 0 E2

1CCCA
0B@ X1:::
X2n

1CA :
Proof By Lemma 3.9, there exist �00 2Kn and a weakly equivariant homeomorphism
f1W M.�

00/!M.� 0/ such that

f �1 ı'

0B@ X1:::
X2n

1CAD
0BBB@
˛1 � � � � �

0
: : :

: : :
:::

:::
: : :

: : : �

0 � � � 0 ˛n

1CCCA
0B@ X1:::
X2n

1CA ;
where each of the ˛i , for i D 1; : : : ; n, gives an automorphism of H�.�2/ since
�Œi;i� D �

0
Œi;i�
D �2 . Furthermore, by Lemma 3.4, there is a weakly equivariant self-

homeomorphism hi W M.�
2/! M.�2/ such that h�i D ˛i . For i D 1; : : : ; n, take

the representation . i ; �i / of hi , and put . ; �/ WD . 1; �1/� � � � � . n; �n/. If we
define a characteristic square �0 on I 2n so that .E2n �0/D . ; �/ � .E2n �00/ and take a
weakly equivariant homeomorphism f2W M.�

0/!M.�00/ represented by . �1; ��1/,
then �0 2 Kn and

f �2

0B@ X1:::
X2n

1CAD
0BBB@
˛�11 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 ˛�1n

1CCCA
0B@ X1:::
X2n

1CA :
If we put f WD f1 ıf2 , then it satisfies the condition of the lemma.

Lemma 3.11 Let �0 be a characteristic square on In�2 , where n � 3, let � and � 0

be two .�2; �0/–type characteristic squares on In , and let 'W H�.�/!H�.� 0/ be a
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graded ring isomorphism such that

'

0B@X1:::
Xn

1CAD �E2 A

0 En�2

�0B@X1:::
Xn

1CA ;
where A denotes some .2�.n�2//–matrix of integers. Then we have AD0 and �D � 0 .

Proof We denote the first rows of A, � and � 0 by .a3; : : : ; an/, .1; 2; s3; : : : ; sn/ and
.1; 2; s03; : : : ; s

0
n/, respectively. Similarly, we denote their second rows by .b3; : : : ; bn/,

.1; 1; t3; : : : ; tn/ and .1; 1; t 03; : : : ; t
0
n/. Then, in H�.� 0/, we have

'.X1.X1C 2X2C s3X3C � � �C snXn//

D .X1C a3X3C � � �C anXn/
˚
X1C 2X2C .a3C 2b3C s3/X3

C � � �C .anC 2bnC sn/Xn
	

D X1f.2a3C 2b3C s3� s
0
3/X3C � � �C .2anC 2bnC sn� s

0
n/Xng

C 2X2fa3X3C � � �C anXngC .a polynomial in X3; : : : ; Xn/

D 0;

'.X2.X1CX2C t3X3C � � �C tnXn//

D .X2C b3X3C � � �C bnXn/
˚
X1CX2C .a3C b3C t3/X3

C � � �C .anC bnC tn/Xn
	

D X2f.a3C 2b3C t3� t
0
3/X3C � � �C .anC 2bnC tn� t

0
n/Xng

CX1fb3X3C � � �C bnXngC .a polynomial in X3; : : : ; Xn/

D 0:

If we define W as the submodule of H 4.� 0/ generated by XpXq , where p; q � 3,
then X 2

2 and XiXj , where i D 1; 2 and j D 3; : : : ; n, form a basis of H 4.� 0/=W .
Therefore we obtain ai D bi D si � s0i D ti � t

0
i D 0, ie AD 0 and � D � 0 .

Corollary 3.12 Let �; � 02Kn and 'W H�.�/!H�.� 0/ be a graded ring isomorphism
such that

'

0B@ X1:::
X2n

1CAD
0BBB@
E2 A1;2 � � � A1;n

0
: : :

: : :
:::

:::
: : :

: : : An�1;n
0 � � � 0 E2

1CCCA
0B@ X1:::
X2n

1CA :
Then Ai;j D 0 for 1� i < j � n, and � D � 0 . In particular, ' is induced by idM.�/ .
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Proof We prove the corollary by induction on n. If nD 2, the corollary is immediate
from Lemma 3.11. Suppose the corollary holds for n�1. Since ' restricts to a graded
ring isomorphism from H�.�Œ2;n�/ to H�.� 0

Œ2;n�
/, by the induction hypothesis, we

obtain Ai;j D 0 for 2 � i < j � n and �Œ2;n� D � 0
Œ2;n�

. Then we have A1;j D 0

for 1 < j � n, and � D � 0 by Lemma 3.11.

Then the following theorem is immediate from Corollary 3.10 and Corollary 3.12.

Theorem 3.13 Let �; � 0 2Kn and 'W H�.�/!H�.� 0/ be a graded ring isomorphism.
Then there exists a weakly equivariant homeomorphism f W M.� 0/ ! M.�/ such
that ' D f � .

By Lemma 3.6 and Theorem 3.13, we obtain Theorem 1.2.

4 Computation of Mweh
I3

Toward the proof of Theorem 1.3, in this section, we list all the quasitoric manifolds
over I 3 up to weakly equivariant homeomorphism. We denote by Mweh

I3 the set of
weakly equivariant homeomorphism classes of quasitoric manifolds over I 3 , as in
Corollary 2.16.

Notation 4.1 To compute Mweh
I3 , we use the following notation. Recall that we denote

by „3 the set of characteristic squares on I 3 .

� We denote by �W „3!Mweh
I3 the surjection given by � 7!M.�/.

� For V1; V2; V3 � Z2 , we define

„.V1; V2; V3/ WD

8<:
0@ 1 x1 x2
y1 1 x3
y2 y3 1

1A 2„3
ˇ̌̌̌
ˇ
�
xi
yi

�
2 Vi for i D 1; 2; 3

9=; :
� We put PC WD

��
k

0

� ˇ̌̌
k 2 Z

�
; P� WD

��
0

k

� ˇ̌̌
k 2 Z

�
;

NC WD

�
˙

�
2

1

��
; N� WD

�
˙

�
1

2

��
;

C0 WD PC[P�; C2 WDNC[N�:

� We put C�1;�2;�3
WD„.C�1

; C�2
; C�3

/ for .�1; �2; �3/ 2 f0; 2g3 .
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� We define �i ; �i 2 Aut.I 3/, for i D 1; 2; 3, by

�1 WD .1 2/.4 5/; �2 WD .1 3/.4 6/; �3 WD .2 3/.5 6/; �i WD .i i C 3/

and ıi 2 GL3.Z/, for i D 1; 2; 3, by

ı1 WD

0@0 1 01 0 0

0 0 1

1A ; ı2 WD

0@0 0 10 1 0

1 0 0

1A and ı3 WD

0@1 0 00 0 1

0 1 0

1A :
Additionally, for i D 1; 2; 3, we take �i 2 .Z=2/6 such that the i th and .iC3/th

components are �1 and the other components are 1 and take �i 2 GL3.Z/
which acts on Z3 by multiplication by �1 on the i th component.

Remark 4.2 Since .ıi ; �i / � .E3 �/ and .�i ; �i / � .E3 �/ (see Definition 2.13) are in
the form .E3 �

0/ for each � 2„3 and i D 1; 2; 3, we can regard .ıi ; �i / and .�i ; �i /
as acting on „3 .

Lemma 4.3 The restriction of � to C0;0;0[C0;0;2[C0;2;2[C2;2;2 is surjective.

Proof Let � be a characteristic square on I 3 and write

� D

0@ 1 x1 x2
y1 1 x3
y2 y3 1

1A :
From the nonsingularity condition, 1� xiyi D˙1 for i D 1; 2; 3. This implies that
each t.xi ; yi / belongs to C0 or C2 . Therefore we obtain

„3 D
[

�1;�2;�32f0;2g

C�1;�2;�3
:

Since .ı1; �1/ �C�1;�2;�3
D C�1;�3;�2

, we have �.C�1;�2;�3
/D �.C�1;�3;�2

/. Similarly,
we have �.C�1;�2;�3

/D �.C�3;�2;�1
/ and �.C�1;�2;�3

/D �.C�2;�1;�3
/. Hence we see

that

Mweh
I3 D

[
�1;�2;�32f0;2g

�.C�1;�2;�3
/D �.C0;0;0/[�.C0;0;2/[�.C0;2;2/[�.C2;2;2/:

Thus we obtain the lemma.

Let us put Ps1;s2;s3 WD„.Ps1 ; Ps2 ; Ps3/, where si 2 fC;�g for i D 1; 2; 3. Then we
have

C0;0;0 D
[

s1;s2;s32fC;�g

Ps1;s2;s3 :
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Moreover, .ıi ; �i / for i D 1; 2; 3 act as follows:

PC;C;C

.ı3;�3/

��

.ı2;�2/

''

.ı1;�1/
// P�;C;C

.ı3;�3/

''

.ı2;�2/
//oo P�;�;Coo PC;�;C

.ı2;�2/

��

PC;C;�

OO

P�;�;�

gg

PC;�;�

gg

P�;C;�

OO

Thus we obtain the following lemma.

Lemma 4.4 �.C0;0;0/D �.PC;C;C[PC;�;C/.

Suppose that

� D

0@ 1 x1 0

0 1 x3
x2 0 1

1A 2 PC;�;C:
Then, from the nonsingularity condition, we have x1x2x3 D�1˙ 1.

� If x1x2x3 D 0, then � 2 P�;�;C[PC;C;C[PC;�;� .

� If x1x2x3D�2, then there is a  2GL3.Z/ such that . ; �1/�.E3 �/D .E3 � 0/,
where

� 0 D

0@ 1 x1 0

0 1 x3
�x2 �x1x2 1

1A 2 C0;0;2:
Thus we obtain the following lemma.

Lemma 4.5 Put A1 WD PC;C;C . Then we have �.C0;0;0/� �.A1/[�.C0;0;2/.

For C0;0;2 , we prove the following lemma first. Put

C 00;0;2 WD

8<:
0@ 1 x1 x2
y1 1 2

y2 1 1

1A 2 C0;0;2
9=; :

Lemma 4.6 �.C 00;0;2/D �.C0;0;2/.

Proof Since .ı3; �3/ gives a bijection between „.C0; C0; NC/ and „.C0; C0; N�/,
we have �.C0;0;2/ D �.„.C0; C0; NC//. By using .�3; �3/, we see that we also
have �.C 00;0;2/D �.„.C0; C0; NC//.
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Suppose that

� D

0@ 1 x1 0

0 1 2

y2 1 1

1A 2 C 00;0;2:
From the nonsingularity condition, we have 2x1y2 D 1˙ 1.
� If x1y2 D 0, then � 2„.PC; PC; NC/[„.P�; P�; NC/.
� If x1y2 D 1, then x1 D˙1 and

� D

0@ 1 x1 0

0 1 2

x1 1 1

1A :
Similarly, if we assume

� D

0@ 1 0 x2
y1 1 2

0 1 1

1A 2 C 00;0;2;
then we see that � 2„.PC; PC; NC/[„.P�; P�; NC/ or

� D

0@1 0 2aa 1 2

0 1 1

1A or � D

0@ 1 0 b

2b 1 2

0 1 1

1A ;
where a and b are ˙1. By using the action of .�1; �1/, we obtain the following.

Lemma 4.7 Put A2 WD C 00;0;2\„.PC; PC; NC/, A3 WD C
0
0;0;2\„.P�; P�; NC/,

�1 WD

0@1 0 21 1 2

0 1 1

1A ; �2 WD

0@1 0 12 1 2

0 1 1

1A and �3 WD

0@1 1 00 1 2

1 1 1

1A :
Then we have �.C0;0;2/D �.A2[A3[f�1; �2; �3g/.

For C0;2;2 , we have the following.

Lemma 4.8 Put

�4 WD

0@1 1 10 1 1

2 2 1

1A ; �5 WD

0@1 2 10 1 1

2 2 1

1A ; �6 WD

0@1 1 10 1 2

2 1 1

1A ; �7 WD

0@1 2 20 1 1

1 2 1

1A ;
�8 WD

0@1 4 20 1 1

1 2 1

1A ; �9 WD

0@1 1 20 1 2

1 1 1

1A and �10 WD

0@1 2 20 1 2

1 1 1

1A :
Then we have �.C0;2;2/D �.f�4; : : : ; �10g/.
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Proof Take � 2 C0;2;2 . By using .ı1; �1/, .�2; �2/ and .�3; �3/, we can assume
that � is in one of the following forms:

� D

0@1 x 1

0 1 1

2 2 1

1A ; � D

0@1 x 1

0 1 2

2 1 1

1A ; � D

0@1 x 2

0 1 1

1 2 1

1A or � D

0@1 x 2

0 1 2

1 1 1

1A :
If � is in the first form, then we have x D 1 or 2 by the nonsingularity condition.
Similarly, xD 1 if � is in the second form, xD 2 or 4 in the third form, and xD 1 or 2
in the fourth form. Thus we obtain the lemma.

Similarly, we have the following lemma for C2;2;2 .

Lemma 4.9 Put

�11 WD

0@1 2 21 1 2

1 1 1

1A :
Then we have �.C2;2;2/D f�.�11/g.

Proof Take

� D

0@ 1 x1 x2
y1 1 x3
y2 y3 1

1A 2 C2;2;2:
By using .ı1; �1/, .�2; �2/ and .�3; �3/, we can assume x1D2, y1D1 and x2; y2>0.
From the nonsingularity condition, we have that 2y2x3C x2y3 D 5˙ 1. Then it is
straightforward to obtain

� D

0@1 2 21 1 2

1 1 1

1A ; � D

0@1 2 21 1 1

1 2 1

1A or � D

0@1 2 11 1 1

2 2 1

1A :
Moreover, if we set the above to be �1 , �2 and �3 , then we have .ı3; �3/ � �1 D �2
and .ı2; �2/ � �2 D �3 .

Taking �i for i D 1; 2; 3 into account, we have the following diagram:

�1

�3

��

�2

!!

�1
// 
1

�3

!!

�2
// 
2

�1
// �3 �4

�1

��

�6

�3

��


3

�3

��


4

�3

��

�1

!!


5
�3ı�2

// �2 
6

�3ı�1

��


7

�1

��

�7 �11 �9 �3 �8
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Here the arrow �1
�
�! �2 means that there exist  2 GL3.Z/ and � 2 .Z=2/6 such

that . ; � ı �/ � .E3 �1/ D .E3 �2/, and 
i for i D 1; : : : ; 7 denote the following
characteristic squares:


1 WD

0@ 1 0 2

�1 1 0

1 1 1

1A ; 
2 WD

0@1 0 21 1 0

1 1 1

1A ; 
3 WD

0@1 2 21 1 2

0 1 1

1A ; 
4 WD

0@1 0 21 1 2

1 1 1

1A ;

5 WD

0@1 2 21 1 0

0 1 1

1A ; 
6 WD

0@1 1 10 1 1

2 0 1

1A and 
7 WD

0@1 0 14 1 2

2 1 1

1A :
Summarizing Lemma 4.3, Lemma 4.5, Lemma 4.7, Lemma 4.8, Lemma 4.9 and the
above diagram, we obtain the following. Note that �3 appears twice in the diagram
and �5 and �10 do not appear.

Lemma 4.10 Mweh
I3 D �.A1[A2[A3[f�1; �5; �6; �10g/.

Definition 4.11 For s; t 2 Z, we define �s;t and �s;t by

�s;t WD

0@1 s t0 1 2

0 1 1

1A 2 A2 and �s;t WD

0@1 0 0s 1 2

t 1 1

1A 2 A3:
Note that A2 D f�s;tgs;t2Z and A3 D f�s;tgs;t2Z .

5 Strong cohomological rigidity of MI3

In this section, for � 2„3 , we denote the generators of H�.�/ by X , Y and Z instead
of X1 , X2 and X3 (see Definition 2.33). Also, we define H�.�IZ=2/ WDH�.�/=2,
w2.�/ WD

P6
iD1 ui .�/ 2 H

2.�IZ=2/ and p1.�/ WD �
P6
iD1 ui .�/

2 2 H 4.�/ and
identify w2.�/ and p1.�/ with w2.M.�// and p1.M.�//, respectively, through the
canonical isomorphism between H�.�/ and H�.M.�/IZ/ (see Theorem 2.23).

Definition 5.1 Let MI3 be the set of homeomorphism classes of quasitoric manifolds
over I 3 and �1 be the canonical surjection from Mweh

I3 to MI3 . We define subsets
M1 , M2 and M3 of MI3 by

M1 WD �1 ı�.A1/; M2 WD �1 ı�.A2 n f�0;0g/ and M3 WD �1 ı�.A3/:

Additionally, we define Mceq
I3 as the quotient MI3=�, where M �M 0 if and only

if H�.M IZ/ Š H�.M 0IZ/ as graded rings, and we denote the quotient map by
�2WMI3 !Mceq

I3 .

Algebraic & Geometric Topology, Volume 17 (2017)



58 Sho Hasui

Definition 5.2 A class C of topological spaces is called strongly cohomologically
rigid if for any graded ring isomorphism ' between the cohomology rings of X; Y 2 C
there exists a homeomorphism f between them such that ' D f � .

Remark 5.3 By [4, Proposition 6.2], we see that M1 corresponds with the class of
3–stage Bott manifolds. Then we obtain the strong cohomological rigidity of M1 by [2,
Theorem 3.1] which shows the strong cohomological rigidity of 3–stage Bott manifolds.

Lemma 5.4 M.�5/; M.�6/; M.�10/ 2M2 . Thus MI3 DM1[M2[M3[f�1g.

Proof Define graded ring automorphisms ˛5 , ˛6 and ˛10 of ZŒX; Y;Z� so that

˛i

0@XY
Z

1AD Ai
0@XY
Z

1A ;
where Ai for i D 5; 6; 10 denote the following matrices:

A5 WD

0@1 0 00 0 1

1 1 0

1A ; A6 WD

0@�1 0 02 1 0

0 0 1

1A and A10 WD

0@1 0 01 1 0

0 0 1

1A :
The ˛i descend to isomorphisms ˛5W H�.��1;�2/!H�.�5/, ˛6W H�.�1;1/!H�.�6/
and ˛10W H�.��2;�2/!H�.�10/ and they preserve the second Stiefel–Whitney classes
and the first Pontrjagin classes. Thus we obtain the lemma by Theorem 2.24.

Lemma 5.5 Let ZŒY;Z� be the polynomial ring generated by Y and Z of degree 2,
and R be the quotient ring ZŒY;Z�=.Y.Y C2Z/;Z.Y CZ//. Then R has no nonzero
element of degree 2 whose square is equal to 0.

Proof Let W D sY C tZ be an element whose square is 0. Then

0DW 2
D .sY C tZ/2 D .�2s2C 2st � t2/YZ D�fs2C .s� t /2gYZ;

so we have s D s� t D 0, ie W D 0.

Remark 5.6 For any � 2„.Z2;Z2; C2/, since H�.�/=.X/ is isomorphic to R , the
set fW 2H 2.�/ jW 2 D 0g is equal to ZX or f0g.

This remark immediately yields the following lemma.

Lemma 5.7 Let M be a quasitoric manifold over I 3 . Then there exists a nonzero W
in H 2.M IZ/ such that W 2 D 0 if and only if M 2 M1 [M3 . In particular,
�2.M1[M3/\�2.M2[f�1g/D∅.
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Lemma 5.8 �2.M1/\�2.M3/D∅.

Proof Let �1 2 A1 and �3 2 A3 and suppose that there exists an isomorphism
˛W H�.�1/!H�.�3/. Since ˛ preserves the elements whose squares are zero, ˛ de-
scends to an isomorphism x̨W H�.�1/=.Z/!H�.�3/=.X/. However, H�.�1/=.Z/
has nonzero degree-2 elements whose squares are zero, but H�.�3/=.X/Š R does
not. This is a contradiction.

Lemma 5.9 Let �0 be a characteristic square on In�1 , where n � 3, let � be a
.1; �0/–type characteristic square on In , and let 'W ZŒX; Y;Z�! ZŒX1; : : : ; Xn� be
a graded ring monomorphism which maps X , Y and Z to

Pn
iD1 aiXi ,

Pn
iD1 biXi

and
Pn
iD1 ciXi , respectively. Moreover, we assume the following:

(a) ' maps I�1
into I� .

(b) The modp reductions of .a1; : : : ;an/, .b1; : : : ;bn/ and .c1; : : : ; cn/ are linearly
independent for each prime p .

Then we have a1D b1D c1D 0. In particular, there exists no graded ring isomorphism
from H�.�1/ to H�.�s;t / for any integers s and t .

Proof Denote the first row of � by .1; s2; s3; : : : ; sn/. Since � is .1; �0/–type and

'.X.X C 2Z//D
� nP
iD1

aiXi

�n nP
iD1

.ai C 2ci /Xi

o
D X1

n
a1.a1C 2c1/X1C

nP
iD2

fa1.ai C 2ci /C ai .a1C 2c1/gXi

o
C .a polynomial in X2; : : : ; Xn/

D X1
nP
iD2

fa1.ai C 2ci /C .ai � sia1/.a1C 2c1/gXi

C .a polynomial in X2; : : : ; Xn/

D 0 in H�.�/,

we obtain a1.ai C 2ci /D .sia1 � ai /.a1C 2c1/ for i D 2; : : : ; n. Note that, by the
assumption of linear independence, a1C 2c1 D 0 if a1 D 0 and vice versa. If a1 and
a1C2c1 are nonzero, denoting by k the greatest common divisor of a1 and a1C2c1 ,
we see that a1=k and .a1 C 2c1/=k divide sia1 � ai and ai C 2ci , respectively,
for i D 2; : : : ; n. By assumption (b), we obtain a1=k D˙1 and .a1C 2c1/=k D˙1,
namely, a1C c1 D 0 or c1 D 0. This holds also in the case a1 D a1C 2c1 D 0.

Similarly, for i D 2; : : : ; n we have b1.aiCbiC2ci /D .sib1�bi /.a1Cb1C2c1/ and
c1.biCci /D .sic1�ci /.b1Cc1/ from '.Y.XCY C2Z//D 0 and '.Z.Y CZ//D 0,
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respectively, and then obtain that a1C2c1D 0 or a1C2b1C2c1D 0 and that b1D 0
or b1 C 2c1 D 0 in the same way as above. We solve these equations to see that
a1 D b1 D c1 D 0.

Remark 5.10 By Remark 5.3, Lemma 5.4, Lemma 5.7, Lemma 5.8 and Lemma 5.9,
to show the strong cohomological rigidity of MI3 , we only have to show that of
M2 , M3 and fM.�1/g.

Lemma 5.11 Let �0 be a characteristic square on In�1 , where n � 2, let � be a
.1; �0/–type characteristic square on In , and let 'W ZŒX1; X2�! ZŒX1; : : : ; Xn� be a
graded ring monomorphism which maps X1 and X2 to

Pn
iD1 aiXi and

Pn
iD1 biXi ,

respectively. Moreover, we assume the following:

(a) ' maps I�2 into I� .

(b) For any prime p , the modp reductions of .a1; : : : ; an/ and .b1; : : : ; bn/ are
linearly independent.

Then we have a1 D b1 D 0.

Proof Denote the first row of � by .1; s2; s3; : : : ; sn/. Since � is .1; �0/–type and

'.X1.X1C2X2//D
� nP
iD1

aiXi

�n nP
iD1

.aiC2bi /Xi

o
D X1

˚
a1.a1C2b1/X1C

nP
iD2

fa1.aiC2bi /Cai .a1C2b1/gXi
	

C.a polynomial in X2; : : : ; Xn/

D X1
nP
iD2

fa1.aiC2bi /C.ai�sia1/.a1C2b1/gXi

C.a polynomial in X2; : : : ; Xn/

D 0 in H�.�/,

we obtain a1.ai C 2bi /D .sia1 � ai /.a1C 2b1/ for i D 2; : : : ; n. In the same way
as the proof of Lemma 5.9, we obtain a1 C b1 D 0 or b1 D 0, which implies that
the coefficient of X1 in '.X1 C X2/ or '.X2/ is zero. Then we easily see that
'.X2.X1CX2//¤ 0 in H�.�/ unless both b1 and a1C b1 are zero.

Lemma 5.12 M2 is strongly cohomologically rigid.
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Proof Let 'W H�.�s;t /!H�.�x;y/ be a graded ring isomorphism. By Lemma 5.11,

'

0@XY
Z

1AD
0@a b c

0
�0

1A0@XY
Z

1A ;
where a D ˙1 and � is an automorphism of H�.�2/. By Lemma 3.4, � can be
realized as a weakly equivariant self-homeomorphism of M.�2/, and therefore we can
construct a weakly equivariant homeomorphism f from M.�x;y/ to some M.�x0;y0/
such that

f �

0@XY
Z

1AD
0@a 0 0

0
�0

1A0@XY
Z

1A ;
in a way similar to the proof of Corollary 3.10. Thus we see that we can assume aD 1
and � DE2 . Since ' maps I�s;t

into I�x;y
,

'.X.X C sY C tZ//D .X C bY C cZ/fX C .sC b/Y C .t C c/Zg

D Xf.s� xC 2b/Y C .t �yC 2c/Zg

C f�2b.sC b/� c.t C c/C b.t C c/C c.sC b/gYZ

D 0 in H�.�x;y/.

Thus we obtain

b D 1
2
.x� s/; c D 1

2
.y � t / and .s� t /2C s2 D .x�y/2C x2:

In particular, s � x and t � y modulo 2. Then we have

'.w2.�s;t //D '..sC1/Y C tZ//D .sC1/Y C tZ Dw2.�x;y/ in H�.�x;y IZ=2/:

Similarly, since '.2X C sY C tZ/� .2X C xY CyZ/D 0, we have

p1.�x;y/�'.p1.�s;t //

D '.X/2C'.XCsY CtZ/2�X2�.XCxY CyZ/2

D '.2XCsY CtZ/2�.2XCxY CyZ/2

D f'.2XCsY CtZ/C.2XCxY CyZ/gf'.2XCsY CtZ/�.2XCxY CyZ/g

D 0 in H�.�x;y/.

Thus we obtain the lemma by Theorem 2.24.

Lemma 5.13 Any graded ring isomorphism between the cohomology rings of two
members of �.A3/ is induced by a weakly equivariant homeomorphism. In particular,
M3 is strongly cohomologically rigid.
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Proof Note . 3 2; �3 ı�2/ ��s;t is a .�2; 1/–type characteristic square. Let � and � 0

be two .�2; 1/–type characteristic squares and 'W H�.�/!H�.� 0/ be a graded ring
isomorphism. Since ' preserves the elements of degree 2 whose squares are zero, we
have

'

0@XY
Z

1AD
0@ � a

b

0 0 c

1A0@XY
Z

1A :
As in the proof of the previous lemma, we can assume c D 1 and � DE2 . Then we
have � D � 0 and ' D .idM.�//� by Lemma 3.11.

Lemma 5.14 Let ' be a graded ring automorphism of H�.�1/. Then ' D˙ id.

Proof Take A 2 GL3.Z/ so that

'

0@XY
Z

1AD A
0@XY
Z

1A
and denote the i th row of A by .ai ; bi ; ci / for i D 1; 2; 3. Then the entries of A satisfy

.a1� b1/.b1C 2b3/D�b1.a1C 2a3/;(21)

.c1� 2b1/.b1C 2b3/D .c1� b1/.c1C 2c3/;(22)

.c1� 2a1/.a1C 2a3/D�a1.c1C 2c3/;(23)

.a2� b2/.b1C b2C 2b3/D�b2.a1C a2C 2a3/;(24)

.c2� 2b2/.b1C b2C 2b3/D .c2� b2/.c1C c2C 2c3/;(25)

.c2� 2a2/.a1C a2C 2a3/D�a2.c1C c2C 2c3/;(26)

.a3� b3/.b2C b3/D�b3.a2C a3/;(27)

.c3� 2b3/.b2C b3/D .c3� b3/.c2C c3/;(28)

.c3� 2a3/.a2C a3/D�a3.c2C c3/:(29)

By solving these equations modulo 2, we obtain

A�

0@1 0 0

0 1 0

0 b3 1

1A mod 2:

Since a1 is odd and b1 is even, we have

1
2
b1C b3 ��

1
2
b1 mod 2

from (21), which implies b3 � 0 mod 2.
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Moreover, we obtain that c2� b2 , c3� b3 and c3� 2b3 are equal to ˙1 as follows.
Note that c2�b2 , c3�b3 and c3�2b3 are odd. Let p be an odd prime, and consider
equations (21)–(29) and detA D ˙1 modulo p . Then, by a direct calculation, one
can show that there exists no solution with c2� b2 � 0, c3� b3 � 0 or c3� 2b3 � 0
modulo p . This implies that no prime divides them, ie they are all equal to ˙1. Then
we can solve (21)–(29) straightforwardly and obtain the lemma.

The following theorem, which is a paraphrase of Theorem 1.3, is immediate from
Remark 5.10, Lemma 5.12, Lemma 5.13 and Lemma 5.14.

Theorem 5.15 Mhomeo
I3 is strongly cohomologically rigid.
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