
msp
Algebraic & Geometric Topology 16 (2016) 3419–3443

Stabilizing Heegaard splittings of high-distance knots

GEORGE MOSSESSIAN

Suppose K is a knot in S3 with bridge number n and bridge distance greater than 2n .
We show that there are at most

�
2n
n

�
distinct minimal-genus Heegaard splittings of

S3 n �.K/ . These splittings can be divided into two families. Two splittings from
the same family become equivalent after at most one stabilization. If K has bridge
distance at least 4n , then two splittings from different families become equivalent
only after n � 1 stabilizations. Furthermore, we construct representatives of the
isotopy classes of the minimal tunnel systems for K corresponding to these Heegaard
surfaces.

57M25; 57M27

1 Introduction

In 1933, Reidemeister [11] and Singer [13] independently showed that any two Heegaard
splittings of a 3–manifold become equivalent after some finite number of stabilizations
to each. No upper bound on the genus of this common stabilization was known until
1996, when Rubinstein and Scharlemann [12] showed that, for a non-Haken manifold,
there is an upper bound which is linear in the genera of the two respective Heegaard
splittings. Later, they extended these results to a quadratic bound in the case of a Haken
manifold. In 2011, Johnson [6] showed that for any 3–manifold, there is a linear upper
bound 3p=2C2q�1, where p� q are the genera for the Heegaard surfaces. Examples
of Heegaard splittings which required more than one stabilization to the larger-genus
surface were not known until Hass, Thompson and Thurston [2] constructed examples
with stable genus pC q in 2009. Later that year, Bachman [1] gave examples with
stable genus pC q� 1, and Johnson and Tomova [7] gave a combinatorial description
of the geometric construction given by Hass, Thompson and Thurston.

One goal of this paper is to show that for most n–bridge knots, there are many pairs of
genus-n Heegaard splittings of the knot exterior which have stable genus 2n� 1. This
is accomplished by means of the same machinery that Rubinstein and Scharlemann
developed and Johnson refined for their respective upper bounds, the Rubinstein–
Scharlemann graphic.
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It was not previously known whether a knot complement can have Heegaard surfaces
which require more than one stabilization to become equivalent. Theorem 2.1 shows
that such knots do exist. Though we do not prove it here, it is easy to see that the knots
we consider are all hyperbolic. The 3–manifolds with stable genus pC q constructed
by Hass, Thompson and Thurston in [2] are negatively curved, but not hyperbolic.
Their methods can be used to construct a hyperbolic 3–manifold with two Heegaard
surfaces with stable genus pC q� 4, so Theorem 2.1 extends this bound, as well. The
geometry of high-distance knot complements and tunnel systems is a topic for future
investigation.

The starting point of this work is a theorem of Tomova which states that for a knot
with sufficiently high distance, the minimal bridge sphere is unique up to isotopy. This
allows us to give a combinatorial description of all of the minimal-genus Heegaard
splittings of the complement of such a knot. In turn, we use this description to come
up with a list of all the tunnels belonging to any minimal tunnel system for such a knot.
It turns out that this description precisely generalizes Kobayashi’s [8] classification of
unknotting tunnels for 2–bridge knots.

This work suggests some questions for further investigation. In particular, is it possible
to extend this construction to closed manifolds? How can this construction be extended
to positive-genus bridge surfaces in arbitrary manifolds? And, can a criterion be
found for determining whether two Heegaard splittings of a knot complement with
low-genus common stabilization are isotopic, as Morimoto and Sakuma [10] did for
2–bridge knots?

In Section 2, we will define all the terms necessary for stating the main theorem. In
Section 3, we construct these Heegaard splittings. It follows from work of Tomova [14]
that there are no others. In Section 4, we show how they divide into two families, and we
show that two splittings from the same family become equivalent after one stabilization.
Section 5 is devoted to recalling the machinery of Johnson developed in [4] and [7],
and proving that it can be used in this situation. In Section 6, this machinery is used
to place a lower bound on the stable genus of two splittings from different families.
Finally, in Section 7, we show how to construct a tunnel system which corresponds
to one of the Heegaard splittings constructed in the proof of Theorem 2.1, so that any
minimal tunnel system for K is equivalent to one of these tunnel systems.
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suggestions without which this work would not have been possible, Jesse Johnson for
the initial conversation which led to this work, and the anonymous referee who read
the paper very thoroughly and suggested a very large number of improvements.
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2 Preliminaries

Let M be a closed, compact, connected, orientable 3–manifold. A Heegaard surface
for M is a closed, orientable, connected surface † embedded in M so that M n† is
a pair of handlebodies H1 , H2 . The triple .†;H1;H2/ is a Heegaard splitting of M.
The minimal genus of all such surfaces † is the Heegaard genus of M . Two Heegaard
splittings .†;H1;H2/ and .†0;H 0

1
;H 0

2
/ are isotopic or equivalent if there is an am-

bient isotopy of M taking † to †0 and Hi to H 0i . Otherwise, they are distinct. For a
manifold with boundary, there is a natural generalization of this idea, discussed below.

Given a handlebody H , let � �H be a graph which is a deformation retract of H .
Then � is a spine of H . Removing a regular neighborhood N � Int H of some
(possibly empty, possibly disconnected) subgraph of � contained in H results in a
compression body. However, we assume that no component of the boundary of this
regular neighborhood is spherical. The spine of this compression body is the remainder
of � , union the boundary of the regular neighborhood which was removed. If M is a
compact orientable manifold with boundary, then @M is a closed orientable surface,
and thus a Heegaard splitting of M can be defined as a triple .†;W1;W2/, where
the Wi are compression bodies.

If K �M is a knot, a bridge surface for K is a Heegaard surface † for M such
that K intersects † transversely and K\H˙ is a boundary-parallel collection of arcs
in each handlebody, called bridge arcs. It is possible that K\†D∅, in which case
we require that K can be isotoped to lie in †. Equivalently, K\H˙ is a collection of
arcs 
i such that there is a collection of arcs .˛i ; @˛i/� .†; @
i/ which, together with
the 
i , cobound disks Di which, within each handlebody, are pairwise disjoint. These
are called bridge disks. If the genus of † is g and the number of points of †\K

is 2n, then † is a .g; n/–bridge surface. If n is minimal over all surfaces of some
fixed genus g , then K is said to be a .g; n/–bridge knot. If g D 0, this is reduced to
simply saying that K is n–bridge, and † is a bridge sphere.

If a simple closed curve 
 on a Heegaard or bridge surface † does not bound a disk
in † or a disk punctured once by K\† in †, we say that 
 is essential. We define the
curve complex C.†/, first introduced by Hempel in [3], of the surface † as follows:
let vertices correspond to isotopy classes of essential simple closed curves on †, and
let any two vertices corresponding to curves which have disjoint representatives on †
be connected by an edge. To define the distance of the splitting .†;H1;H2/, let K1

and K2 be the collections of vertices corresponding to curves that bound disks to either
side of †, which are disjoint from K in the case of a bridge splitting. Then the minimal
length edge path in C.†/ between a vertex of K1 and a vertex of K2 is called the
distance of †, and is denoted d.†/. If † is a bridge sphere for a knot K � S3 which
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realizes the minimal distance of all bridge spheres for K , then we say that the knot has
distance d.†/, which is denoted as d.K/.

Let .†;W1;W2/ be a genus-g Heegaard splitting of M . If 
 is a properly em-
bedded arc in, say, W2 , which is parallel into †, let W 0

1
D W1 [N.
 / and W 0

2
D

W2 nN.
 /, with †0 D @W 0
2
D @W 0

1
. Then W 0

2
and W 0

1
are still compression bodies,

and .†0;W 0
1
;W 0

2
/ is a genus-.gC1/ Heegaard splitting for M which is a stabilization

of .†;W1;W2/. If † was a .g; n/–bridge surface for a knot K , and 
 a bridge
arc, then †0 is a meridional stabilization of † and is a .gC1; n�1/–bridge surface.
Reidemeister [11] and Singer [13] showed independently that any two inequivalent
Heegaard surfaces for M have stabilizations which are equivalent. The minimal genus
of this common stabilization is called the stable genus of the two surfaces.

Let XK D S3 n�.K/. In this paper, we classify the minimal-genus Heegaard splittings
and their common stabilizations for XK when K is a high-distance knot:

Theorem 2.1 Let K � S3 be an n–bridge knot with n � 3 and bridge distance
d > 2n. Then the Heegaard genus of XK is n, and there are at most

�
2n
n

�
distinct

minimal-genus Heegaard splittings of XK . If two Heegaard surfaces have K on the
same side, then they have a stable genus of at most nC 1. If two Heegaard surfaces
have K on opposite sides, then their stable genus is at least min

�
2n� 1; 1

2
d
�
.

Corollary 2.2 Let K � S3 be an n–bridge knot with n � 3 and bridge distance
d > 2n. Then the tunnel number of K is n� 1, and there are at most

�
2n
n

�
distinct

tunnel systems for K , up to isotopy and edge slides.

This extends Kobayashi’s classification of unknotting tunnels for 2–bridge knots in [8]:
the

�
4
2

�
D 6 unknotting tunnels classified there correspond to genus-2 Heegaard split-

tings of S3 nK , all of which become equivalent after at most one stabilization.

3 Constructing Heegaard splittings

The following is a special case of a theorem of Tomova:

Theorem 3.1 [14, Theorem 10.3] Let K be a nontrivial knot in S3 with bridge
number n � 3. Let S be a bridge sphere for K . If † is a bridge surface for K ,
or a Heegaard surface for XK , then either † is obtained from S by a sequence of
meridional stabilizations and stabilizations, or d.S/� 2��.†�K/.
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Figure 1: Diagram of proof of Lemma 3.2

Thus, if K is n–bridge and d.K/ > 2n, then every nonstabilized .g; n/–bridge surface
for K , and every genus-n Heegaard surface for XK , is constructed by meridionally
stabilizing the unique bridge sphere S . This in turn implies that no sequence of
meridional stabilizations of S yields a surface which is stabilized. This also implies
that the bridge sphere S which realizes the bridge distance is unique up to isotopy.

For the purposes of establishing some notation, we prove the following obvious lemma:

Lemma 3.2 If †0 is obtained from a .g; n/–bridge surface † by a single meridional
stabilization, then †0 is a .gC 1; n� 1/–bridge surface.

Proof Note that, in order to be able to perform a meridional stabilization, n must be
greater than 0.

Let V and W be the handlebodies on either side of † and 
 an arc of K \ V .
Let W 0 D W [ N.
 / and V 0 D V nN.
 /, so V 0 \W 0 D †0 . Since 
 can be
isotoped into @V , there is a disk D
 � V such that @D
 D 
 [˛ with ˛ � @V . Let
D0
 DD
 nN.
 /. If 'W N.
 /! I �D2 is the obvious homeomorphism sending 

to I �f0; 0g, let DD '�1

�˚
1
2

	
�D2

�
be a meridian disk of N.
 /. Since D0
 \N.
 /

is an arc parallel to 
 , we have that D0
 \D is a single point, and therefore †0 is a
stabilization of †, and is a Heegaard splitting of S3 . The genus of †0 is gC 1, and
the number of arcs of K in W 0 and V 0 each is n� 1. See Figure 1.

If † is an n–bridge sphere, a sequence of n meridional stabilizations results in an
.n; 0/–bridge surface †0 . If the two handlebodies on either side of †0 are V 0 and W 0 ,
one of them contains the knot K , say V 0 . Then V 0 has n compression disks Di (the
meridian disks D of N.
 / in the proof of Lemma 3.2), which each intersect K in
exactly one point. Thus K is parallel to a subset of a spine of V 0 , and therefore, †0

is also a Heegaard surface for the knot complement XK , with handlebody W 0 and
compression body V 0 nN.K/.

The isotopy class of †0 may depend on the choice of meridional stabilizations, or
the order in which they are performed. For example, Figure 2 shows three possible
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Figure 2: Three possible splittings of a 2–bridge knot complement

splittings of a 2–bridge knot complement resulting from meridional stabilizations of a
bridge sphere. Though Theorem 2.1 concerns knots with bridge number 3 or greater,
Figure 2 presents heuristic pictures of 2–bridge knots for simplicity. As we will see in
Section 4, for a 3–bridge knot with distance 6 or greater, the constructions in the left
and middle of Figure 2 do not represent the same surface because K is on opposite sides
of the resulting surface. For a figure-8 knot, these two Heegaard splittings correspond
to the two unique unknotting tunnels. The surface in Figure 2 (right) may or may not be
isotopic to the surface of Figure 2 (left). For the figure-8 knot, they are indeed isotopic,
but the question of when they are distinct remains open for knots with bridge number 2

or greater. For 2–bridge knots, it is answered by Morimoto and Sakuma in [10].

Before proving the next lemma, we note some definitions. Let S be an n–bridge sphere
for K , so that K\SDfx1;x2; : : : ;x2ng, labeled by picking a point on K , following K

along a fixed orientation, and labeling the points of S \K in order of increasing index.
The Heegaard surface † which was constructed by meridionally stabilizing S may
be viewed as

�
S n

S2n
jD1N.xj /

�
[
�Sn

iD1 Ai

�
, where the neighborhoods N.x/ are

pairwise disjoint and the Ai are annuli with Ai \ S D @Ai for all i . Each such
annulus Ai is the image of an embedding

'i W
�
S1
� I;S1

� f0g;S1
� f1g

�
!
�
S3
nK; @N.xi/; @N.xj /

�
;

and the images of all the 'i are pairwise disjoint.

Definition 3.3 A tubed Heegaard surface is a Heegaard surface for XK consisting of
the 2n–punctured bridge sphere together with n annuli as shown above.

Note again that Theorem 3.1 implies that if K is n–bridge and d.K/ > 2n, then every
minimal-genus Heegaard surface of XK is a tubed Heegaard surface.

Definition 3.4 Let 
; ˛;D
 ;D
0

 be as in Lemma 3.2, let z 2 S1 and choose 'i so

that 'i.fzg � I/ D D
 \Ai . Then D
 nD0
 is a square with sides 
 , @D0
 n ˛ and
the two components of ˛\N.
 /. Given an orientation of K and orienting I from 0

to 1, the annulus Ai runs along K if the arcs 
 and '.fzg � I/ with the orientations
induced by I are parallel in the square.
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1 2 3 4 5 6

I D .1; 3; 5/ I D .2; 4; 5/

1 2 3 4 5 6

Figure 3: Diagram of Definition 3.6

The point of Definition 3.4 is just to have a unique way of identifying the annuli by
one of the endpoints, as follows:

Definition 3.5 If Ai is an annulus that runs along K with 'i

�
S1�f0g

�
\S D @N.xi/

and 'i

�
S1 � f1g

�
\S D @N.xj /, then Ai is said to have its left foot at xi and right

foot at xj . The difference j � i mod 2n is the length of the annulus.

We take the convention that the annulus Ai has left foot at xi , and r.i/ denotes the
index of the right foot of the annulus.

Definition 3.6 Let K be an n–bridge knot and S a bridge sphere with S \K D

fx1; : : : ;x2ng labeled as above. Let † be a tubed Heegaard surface with

†D

�
S n

2n[
iD1

N.xi/

�
[

� n[
iD1

Ai

�
;

such that each Ai runs along K . Let I0 D f˛ig
n
iD1

be the set of indices from 1 to 2n

that are left feet of the annuli. The set I0 is the index of the tubed Heegaard surface †
for the fixed orientation of K and labeling of S \K . See Figure 3.

Since every tubed Heegaard surface has an index, this definition gives the upper bound
of
�
2n
n

�
on the number of tubed Heegaard surfaces of K . Now we show that every

choice of n numbers is the index of some tubed Heegaard surface:

Lemma 3.7 Let I0 be any n-element subset of f1; 2; : : : ; 2ng. This I0 can be realized
as the index of a tubed Heegaard surface.
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Proof The desired surface is constructed by attaching the annuli to S n
S

i N.xi/ in
order of increasing length, which is equivalent to performing meridional stabilizations
in the correct order. Define J0 D∅. For each 1� k � n, let

Jk D

�
� 2 I0 n

�k�1[
`D0

J`

� ˇ̌̌
�C .2k � 1/ .mod 2n/ 62 Ik�1

�
and

Ik D Ik�1[
˚
�C .2k � 1/ .mod 2n/ j � 2 Jk

	
:

For each � 2 Jk , attach an annulus with left foot at x� and right foot at x�C2k�1 ,
where the indices are all computed mod 2n.

Thus, at each k , we have that Ik is the set I0 together with the indices of points which
are right feet of annuli that have already been attached, that is, indices which are no
longer available for attaching annuli, and Jk is the set of indices of left feet of annuli
of length 2k �1. By attaching the annuli shortest first, we guarantee that all the annuli
can be made pairwise disjoint, since longer ones simply pass between the shorter annuli
and the knot. After gluing the annuli of length 2n�1 with left feet in Jn , the resulting
tubed Heegaard surface has index I0 by construction. Thus every such set is the index
of some tubed Heegaard surface, proving the lemma.

Lemma 3.7 together with the uniqueness of the n–bridge sphere given by Theorem 3.1
imply the following corollary:

Corollary 3.8 If K is an n–bridge knot with bridge distance at least 2n, there are at
most

�
2n
n

�
distinct minimal Heegaard splittings of XK .

4 Common stabilizations of same-side
tubed Heegaard splittings

The set of all tubed Heegaard surfaces for K can be divided into two families, depending
on which side of the initial bridge sphere is adjacent to K in the final splitting. In this
section, we prove that if two tubed Heegaard surfaces lie on the same side of K , they
become equivalent after just one stabilization.

Definition 4.1 Let † be a surface in S3 , and A an annulus properly embedded in
S3 n†. Let †0 be obtained from † by cutting † along @A and gluing in two copies
of A. We say that †0 is obtained from † by an annulus compression along the
compressing annulus A. See Figure 4.
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ˇA

xi

xj

xr.i/

� †

Figure 4: Diagram of proof of Lemma 4.3

Definition 4.2 Let A be a compressing annulus for a tubed Heegaard surface such
that @A consists of essential loops contained in two annuli of †, namely 
i �Ai and

j � Aj . Let  W S1 � I ! A ,! S3 be the homeomorphism with image A, with
 .S1�f0g/D 
i and  .S1�f1g/D 
j . With the orientation on I from 0 to 1, if the
induced orientation on  .fzg�I/ for some z 2S1 is parallel to the fixed orientation of
K , then A runs along K and is denoted as Œij �. Furthermore, to allow for the case iDj

without ambiguity, we require that Œij � have 
iD@N.xr.i// and 
jD@N.xj /. Note that
the compressing annulus Œij � is therefore different from the compressing annulus Œj i �.

It is easy to construct the annulus Œij � for any distinct i and j by taking a neighborhood
of K which is small enough to be disjoint from †, and taking Œij � to be an annular
subset of the boundary of this neighborhood, running from xi to xj , together with a
collar at each end to connect this subset annulus to †.

Lemma 4.3 If † is a tubed Heegaard surface for K and A a compressing annulus
Œij � with i ¤ j , then an annulus compression along A is equivalent to a single
stabilization and destabilization of †. If the index of † is I0 , then after such an
annulus compression the index of the resulting tubed Heegaard surface is �.I0/, where
� 2 S2n is the 2–cycle .r.i/ j /.

Proof Let  be as in Definition 4.2, and let ˇ D  .fzg � I/ be a spanning arc in A
connecting 
i and 
j . Let N.ˇ/ be a small enough neighborhood of ˇ in S3 such
that N.ˇ/\† is just two disks Di and Dj in † which are neighborhoods of @ˇ .
Since A runs along K , we have that ˇ is parallel into †, and therefore there is a
disk � properly embedded in S3 n .†[A/ which is cobounded by ˇ and a copy of ˇ
which has been pushed into †. The disk � intersects a meridian disk of N.ˇ/ in
exactly one point, so †0 D .†�Di �Dj /[ @N.ˇ/ is a stabilization of †.

Consider D D A nN.ˇ/. Its boundary @D consists of 
i nN.ˇ/, 
j nN.ˇ/, and
two spanning arcs on N.ˇ/. Since both Ai and Aj are the results of meridional
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stabilization, they both have the disks D0
 which are subsets of bridge disks of K as in
the proof of Lemma 3.2, and since i ¤ j , each of these disks only intersects D in one
point. Therefore, compressing along D is a destabilization of †0 , and the end result is
identical to performing an annulus compression along A.

The annulus compression Œij � has the effect of connecting the left foot of Ai to the
right foot of Aj , and the right foot of Ai is now the left foot of an annulus that ends
at the left foot of Aj . Therefore, the index of the new tubed Heegaard surface is I0

with r.i/ instead of j . See Figure 4.

Observe that if i D j , the surface after compressing along Œij � is disconnected, with
one boundary-parallel component. For this reason, we will always assume that i ¤ j

unless stated otherwise.

Definition 4.4 Given a bridge sphere for K , label one side C and the other �. Let †
be a tubed Heegaard surface derived from this bridge sphere. If K is adjacent to the
minus (�) side of the portion of the bridge sphere outside the N.xi/, we say K is
below †. Otherwise, K is above †.

It is also possible to think of “above” and “below” in terms of Morse functions: let
K � S3 , and let f W S3! Œ�1; 1� be a Morse function on S3 such that f �1.t/ is a
2–sphere for t 2 .�1; 1/, f jK is also Morse with image

�
�

1
2
; 1

2

�
, and S D f �1.0/

is a bridge sphere for K . Let † be a tubed Heegaard surface for K from S such that
f j† has image

�
�

3
4
; 3

4

�
. If f �1.�1/ is a point in the handlebody containing K , we

say that K is below †. If, on the contrary, f �1.1/ is contained in the handlebody
containing K , then K is above †.

There are two obvious tubed Heegaard surfaces for any knot in bridge position: those
with indices .1; 3; : : : ; 2n� 1/ and .2; 4; : : : ; 2n/. We take the convention that in the
first, K is below †, and in the second, K is above †. Thus these will be referred to
as †b and †a respectively.

If there is a genus-g tubed Heegaard surface † with index I such that i; j 2 I ,
compressing along the annulus Œij � yields another splitting †0 with index I 0 . Con-
sidering the annulus compression as a stabilization followed by a destabilization as
in the proof of Lemma 4.3, call the intermediate genus-.gC1/ surface †C

1
. Another

annulus compression along Œi 0j 0� with i 0; j 0 2 I 0 results in another surface †00 and is
equivalent to another stabilization-destabilization pair with intermediate genus-.gC1/

surface †C
2

. However, stabilizations are unique, so †C
1

is, in fact, equivalent as a
Heegaard surface to †C

2
; thus, after a sequence of handle slides, there is a single

destabilization of †C
1

which results in the surface †00 directly. Therefore, extending
this argument inductively, we have proved the following:
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Lemma 4.5 Any two genus-g tubed Heegaard surfaces related by a sequence of i ¤ j

annulus compressions have a common stabilization of genus gC 1.

We also observe the following:

Lemma 4.6 Two tubed Heegaard surfaces have K on the same side if and only if they
are related by a sequence of annulus compressions of the Œij � type.

Proof First, we show that an annulus compression does not change on which side of
the surface the knot lies. Pick a point on K , and consider a path 
 transverse to †
from this point to f �1.�1/, where f is the fixed Morse function defined above. Let
� D j
 \†j. We see that � D 0 mod 2 if and only if K is below †. Let †0 be the
result of performing the annulus compression along Œij � on †, and let �0 D j
 \†0j.
If j
 \ Œij �j Dm, then �0 D �C 2m, and so K is on the same side of †0 as of †.

Conversely, suppose without loss of generality that †1 and †2 are two tubed Heegaard
surfaces with K above both. Both surfaces are constructed from the bridge sphere S

and 
1; : : : ; 
2n consecutive bridge arcs of K with respect to S . We let pi (resp. qi )
be the number of annuli running along 
i in †1 (resp. †2 ). Since K is above both †1

and †2 , we have pi � qi D 0 mod 2 for all i . Also note that piC1 D pi ˙ 1, and
similarly for qi , so �D .piC1� qiC1/� .pi � qi/ is either 0 or ˙2. Therefore, we
can construct a collection of compressing annuli that will transform one surface into
the other: if � D 0, then the number of compressing annuli over 
i is equal to the
number passing over 
iC1 , and so no compressing annulus has a foot at @N.
i\
iC1/.
Otherwise, a compressing annulus has either a left or right foot at @N.
i \ 
iC1/ for
�D�2 or 2, respectively. This gives a way to construct a sequence of compressing
annuli which takes †1 to †2 .

Thus we have proved the main result of this section:

Lemma 4.7 Given two minimal-genus tubed Heegaard surfaces for XK where K is
an n–bridge knot with bridge distance at least 2n, if K either lies above or lies below
both surfaces, then they become equivalent after one stabilization.

5 Sweep-outs and the graphic

In this section, we recall the machinery developed in [4] and used in [7] to construct
Heegaard splittings with large stable genus, and modify it for application in this
situation.
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A .g; n/–bridge surface S in .S3;K/, with n > 0, splits the 3–sphere into two
handlebodies H˙ , each containing a boundary-parallel collection �˙ of n properly
embedded arcs. If we restrict S to XK , it splits XK into two handlebodies with
neighborhoods of the n arcs removed (we note that this is homeomorphic to a genus-
.gCn/ handlebody). To begin generalizing this machinery to punctured handlebodies,
we define a spine for HCn�.�C/ (similarly for H�n�.��/) to be a graph embedded in
HC n �.�C/ which contains the spine of HC , together with an edge along a meridian
circle on the boundary of each arc of bridge, and a vertical edge from a vertex of the
spine of HC to each of the meridian circles. Note that a regular neighborhood of the
spine on either side of S in XK has boundary which is equivalent to S � �.K/, and
that H˙ n �.�˙/ deformation retracts onto its spine. In the case that g D 0 and H˙

are 3–balls, the spine of HC should be chosen to be a single vertex. We will call this
the central vertex.

Let @�W be some collection of closed positive-genus surfaces. The compression
body W is formed by attaching at least enough 1–handles to @�W � I so that the
result is connected. Then a spine of W is a deformation retract of W , best constructed
by taking the collection @�W � f1

2
g together with arcs that are cores of the attached

1–handles. If W is a handlebody, then @�W D ∅ and the spine is just a graph of
which W is a regular neighborhood. For a Heegaard splitting .†;W1;W2/ of some
manifold M , where either Wi could be a compression body, † is equivalent to the
positive boundary @CWi of a regular neighborhood in XK of either the spine of W1

or that of W2 , and @M D @�W1[ @�W2 .

A splitting surface in XK is either a bridge surface for .S3;K/ restricted to XK , or
a Heegaard surface for XK . A sweep-out for XK is a map f W S3 n �.K/! Œ�1; 1�

such that f �1.t/ is equivalent to some splitting surface † for each t 2 .�1; 1/, and
f �1.˙1/ is the two spines to either side of †. We say that f is a sweep-out given by †.

Let f be a sweep-out of XK given by a tubed Heegaard surface †, and g a sweep-
out of XK given by the bridge sphere S . Given the map f � gW XK ! Œ�1; 1�2 D

Œ�1; 1�� Œ�1; 1�, the graphic of f �g is the set of points .s; t/� Œ�1; 1�2 for which
f �1.s/D †s is not transverse to g�1.t/D St . For a generic f � g , the graphic �
is a 2– and 4–valent graph subset of Œ�1; 1�2 , except in one situation noted below,
with a finite number of points along any vertical or horizontal line fsg � Œ�1; 1� or
Œ�1; 1�� ftg, and no two vertices sharing an s or t coordinate. See [4] for details. We
note that at some subset of the four corners of the square, the spine corresponding to †
is not transverse to the spine corresponding to S on the boundary of XK ; the edges of
the spine corresponding to S which are meridian circles lie on @�Wi . Generically, the
closure of these points does not intersect the interior of the square, so their existence
will not affect our arguments; we thus ignore these points.
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Figure 5: [4, Figure 2] Red and blue regions are where St is mostly above
and below †s , respectively. Clockwise from top left: spanning positively,
spanning negatively, spanning with both signs, splitting

Let ‚�s D f
�1.Œ�1; s�/ and ‚Cs D f

�1.Œs; 1�/. We say that St is mostly above †s

if each component of St \‚
�
s is contained in a disk subset of St or in an annulus

of St which has one boundary component in @XK . Similarly, St is mostly below †s

if each component of St \‚
C
s is contained in a disk subset of St or in an annulus

of St which has one boundary component in @XK . If there exist t0; t1 and s such
that St0

is mostly below †s and St1
is mostly above †s , we say that † spans S . If

t0 < t1 , then † spans S positively, and if t1 < t0 , then † spans S negatively. Note
that it is possible for † to span S both positively and negatively.

If there is some value of s so that fsg� Œ�1; 1� contains no vertices of � and no points
where St is either mostly above or mostly below †s for all values t 2 Œ�1; 1�, then we
say that † splits S . Note that in this case, for this value of t , every St \†s contains
at least one loop that neither bounds a disk in St nor is parallel to @St . A curve with
these properties is called essential in St . See Figure 5.

If an essential curve on † bounds an embedded disk D in XK n†, this disk is a
compressing disk for †. If the curve bounds an once-punctured disk whose other
boundary component is a meridian of @XK , this once-punctured disk is a cut disk.
A compression of a connected surface † along the compressing disk D is a surface
equivalent to the set of boundary components of N.†[D/ which are not isotopic to †.
A cut compression of a connected surface † along the cut disk D is the set of boundary
components of N.†[D/ which meet N.D/. A c–compression along a c–disk is
either a compression along a compressing disk or a cut compression along a cut disk.
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The following lemma is a version of [7, Theorem 3.1] and follows the same line of
proof. We write it out in full to show how it adapts to the current situation.

Lemma 5.1 Let † and S be two splitting surfaces for XK . Suppose † spans S

both positively and negatively. Then there is a sequence of compressions and cut
compressions of † after which there are two components of the compressed surface
which are parallel to S .

Proof Let t�; t0; tC and s be the values such that St� and StC are mostly below †s ,
and St0

is mostly above †s . Every curve of St� \†s is inessential in St� . First, we
claim that if for some t , an innermost curve 
 2 St \†s is also inessential in †s ,
then 
 can be removed by isotopy of the surfaces.

Case 1 If 
 is contained in a disk subset of St , then by the Jordan curve theorem, 

must itself bound a disk in St . If 
 also bounds a disk in †s , then since XK is
irreducible, the two disks cobound a ball across which †s can be isotoped. Note that
in this case, 
 cannot bound an annulus in †s , since this annulus together with the
disk would form a sphere in S3 punctured exactly once by K , but since S3 contains
no copies of S1 �S2 , this is a contradiction.

Case 2 If 
 is contained in an annulus subset of St , it bounds either a disk or an
annulus in St . If it bounds a disk, we revert to case 1. If it bounds an annulus, by the
same argument as in case 1 we note that 
 must also bound an annulus in †s . If we
replace N.K/ (ie perform a trivial Dehn filling), 
 bounds two disks in S3 , so the
curve of intersection in XK can be removed by sliding the two boundary components
of the annuli in @XK past each other.

After removing all curves of intersection which are inessential in both surfaces, we
consider a curve 
 2St�\†s which is innermost in St� and essential in †s . Therefore
this curve bounds a c–disk for †s , along which we compress †s . We repeat this
process with the compressed surface until there are no more curves of intersection
of St� and the resulting compressed, possibly disconnected surface, which we will
call †0s . Note that now St� lies entirely to one side of †0s .

We repeat the same process with all curves of intersection between †0s and StC , and
we call the resulting compressed surface †00s . Observe that now St� and StC are both
on the same side of †00s as they were both mostly below †s . Finally, we repeat the
process with all curves of intersection between St0

and †00s , resulting in a surface †000s
now disjoint from all three surfaces St� , StC and St0

, with St� and StC to one side
of †000s and St0

on the other side of †000s .

We maximally compress and @–compress †000s in the complement of St� [St0
[St1

,
and call the resulting surface F . This is an incompressible surface properly embedded
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in a manifold homeomorphic to S � Œ0; 2�, a 2n–punctured sphere cross interval. It
separates S � f0g from S � f1g, and separates S � f1g from S � f2g. Therefore, F

has at least two incompressible, @–incompressible components, each inside a copy of
S �I separating S �f0g from S �f1g. It follows from [15, Proposition 3.1] that each
of these two components of F is homeomorphic to S .

Corollary 5.2 Let K be an n–bridge knot. If † is a Heegaard splitting for XK which
spans a splitting sphere S both positively and negatively, then the genus of † is at
least 2n� 1.

Proof By Lemma 5.1, there is a sequence of compressions and cut compressions of †
after which the resulting collection of surfaces contains two copies of S . Since �.†/
is nondecreasing under compressions and cut compressions, we have �.†/� 2�.S/,
which implies that 2� 2g � 4� 4n, yielding g � 2n� 1.

The following lemma is a version of [7, Theorem 4.2]. The proof follows identical
arguments as in [4] and [7], so we only sketch details here and direct the reader there
for details. It is generalized to splitting surfaces in the same way as Lemma 5.1 above.

Lemma 5.3 If S and † are splitting surfaces for XK , �.†/ < 0, and † splits S ,
then d.S/� 2��.†/.

Sketch of Proof. Let s be such that fsg � Œ�1; 1� is disjoint from any vertices of � ,
and St is neither mostly above nor below †s for any t 2 .�1; 1/. For every t , the
intersection †s \St contains at least one curve essential in St . Let g and f be the
sweep-outs given by S and †, respectively. Let Œ˛; ˇ� be the largest interval such that
for no t 2 .˛; ˇ/ is any curve of †s \St both essential in St and bounding a disk or
cut disk in either compression body to either side of †s . (If no such essential interval
exists, d.S/� 1 and we are done).

Consider †0 D†\g�1.Œ˛C �; ˇ� ��/ for a small � > 0. The projection � W †0! S

which factors through inclusion into S � I will send isotopy classes of curves in †0 to
isotopy classes of curves in S , and it will send curves bounding pairs of pants in †0

to disjoint curves in S . Therefore, the induced map ��W †0! C.S/[f0g projects a
pants decomposition of †0 to a path in C.S/, which has length at most ��.†0/. Since
Œ˛; ˇ� was chosen to be as large as possible, one more edge at each end of this path
connects it to curves which bound disks in the handlebodies to either side of †, and
d.S/� 2��.†0/� 2��.†/.

Furthermore, we note that the stabilization of † can be done in such a way as to
preserve the spanning properties of the graphic.
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Lemma 5.4 If † and S are splitting surfaces such that † spans S positively (resp.
negatively), then a stabilization of † also spans S positively (resp. negatively).

Proof Let f and g be sweep-outs respectively given by † and S such that † spans S

positively. Let t1 , t2 and s be the values such that St1
is mostly below †s and St2

is
mostly above †s . Let †0 be a stabilization of †s , and let B be a ball which contains
the canceling pair of handles added to †s and intersects †s in a disk, contained in
g�1..t1; t2//. Let f 0 be a sweep-out of †0 so that f 0�1.s/ nB is setwise equal to
f �1.s/ nB . Since St1

is mostly below †s and disjoint from B , it is also mostly
below †0s , and likewise St2

is mostly above †0s . Therefore, †0 spans S with the same
sign that † does.

Finally, the following lemma is proved by Johnson [5, Lemma 9] for graphics of Morse
functions. We reproduce the proof, modifying it for sweep-outs and introducing some
minor corrections and clarifications.

Lemma 5.5 Let f0 and f1 be two sweep-outs given by equivalent Heegaard sur-
faces † and †0 , and let g be a sweep-out given by the splitting surface S such that
f0 � g and f1 � g are both generic. Then there is a family of sweep-outs fr , for
r 2 Œ0; 1�, such that fr � g is generic for all but finitely many r . At the nongeneric
values, the graphic has at most two valence-two or -four vertices at the same level, or
one valence-six vertex.

The idea of the proof is as follows: We approximate ffr g with a piecewise linear path
in C1.XK ;R/ and consider consecutive vertices of this path, '0 and '1 . Then we
consider the image in Œ�1; 1�3 D f.s0; s1; t/g of points in M where the surfaces given
by '�1

0
.s0/, '�1

1
.s1/ and g�1.t/ are not transverse, a “3D graphic” of sorts. Then we

examine the projection of this image onto a plane in the cube which rotates about the
t –axis from the '0�g plane to the '1�g plane, and classify the types of degeneracies
which can occur. It can probably be proved for splitting surfaces in general with some
attention given to singularities on the boundary, but we only need it for † and †0 as
Heegaard surfaces.

Proof If † and †0 are equivalent, there is an ambient isotopy of M , say �r , which
takes † to †0 and takes the spines of † to the spines of †0 . Let fr D f ı �r be
the sweep-outs given by the surfaces of this one-parameter family. Because Morse
functions are dense in C1.M;R/, each fr can be approximated arbitrarily closely
by a Morse function f 0r in the C1 topology, meaning that for any � > 0, there
exists a 1–parameter family of Morse functions f 0r so that for t 2 Œ�1C �; 1� ��,
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f 0�1
r .t/D f �1

r .t/, so the graphic for f 0r �g is identical to that of fr �g except on an
arbitrarily small neighborhood of f�1; 1g � I . In addition, we approximate g with a
Morse function g0 so that the graphic of f 0r �g0 is different from that of fr �g only
in a small neighborhood of @.Œ�1; 1�2/.

Since the spines of the two splitting surfaces are disjoint except where they lie on @XK ,
the difference between the graphics of f 0r � g0 and fr � g is the sequence of births
and deaths that occur within � of the boundary of the square, none of which share
either s or t coordinates. By pulling these cusps back to the boundary of the square,
we recover the graphic of fr �g .

Now, every f 0r is Morse, so there is an open, convex neighborhood Nr of f 0r in
C1.XK ;R/ such that every ' 2 Nr is isotopic to f 0r . We can cover ff 0r g by such
neighborhoods, and since ff 0r g Š Œ0; 1� is compact, there is a finite cover by such
neighborhoods, so the path ff 0r g can be replaced by a piecewise-linear path with
each line segment contained in one convex neighborhood, and consecutive vertices
'0; : : : ; 'n 2 ff

0
r g. For ˛ 2 Œ0; 1�, let ˇD ˛=.1�˛/ and let �ˇW R2�R1!R1�R1

be the projection of the R2 factor onto a line through the origin which has slope ˇ . The
graphic of the function ..1�˛/'0C˛'1/�g0 is the graphic of �ˇı.'0�'1�g0/W XK!

R1 �R1 .

The maps can all be chosen so that 'i , 'iC1 , g0 , 'i �g0 , 'iC1�g0 and 'i �'iC1 are
all stable, meaning each has an open neighborhood of isotopic Morse functions in the
appropriate vector space. Since a projection is a continuous map, the preimage of each of
these open neighborhoods in C1.XK ;R

3/ under projection is an open neighborhood
of 'i �'iC1 �g0 , and their intersection is also open. Since stable functions between
3–manifolds are dense in the C1 topology, as shown by Mather [9], we can ensure that
'i �'iC1�g0 will be stable. Then, by Mather’s classification of singularities of stable
maps between 3–manifolds [9], the discriminant set of 'i � 'iC1 � g0 is a compact
2–submanifold S �XK , and its image is an immersed 2–manifold with cusps.

Let F D 'i � 'iC1 � g0 . For p 2 S , if F.p/ is not a cusp, then there is a map
TpS ! TF.p/F.S/. If this plane is parallel to the s0 � s1 plane, this means that
the tangency between '�1

i .F.p// and '�1
iC1

.F.p// is preserved under two degrees
of freedom independent of the parameter of g0 , which means p is at a vertex of the
graphic of 'i�'iC1 . As this graphic is generic, there are only finitely many such points.
When TF.p/F.S/ is not parallel to the s0� s1 plane, the intersection of TF.p/F.S/

with the plane t D g0.p/ determines a slope in that plane. For each p 2 S where
F.p/ is not a cusp and TF.p/F.S/ is not parallel to t D g0.p/, let �.p/ be this slope.
Observe that, though the number of noncusp points where the slope is not well-defined
is finite, the intermediate value theorem implies that any connected level curve of
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��1.ˇ/ must contain a nonzero, even number of points p at which TF.p/F.S/ is
parallel to t D g0.p/.

We may perturb F slightly to ensure that � is a Morse function on S away from
the finite number of points and curves (corresponding to the vertices of the graphic
'i �'iC1 and cusps of F.S/). This allows us to locally identify a patch of F.S/ with
the graph of some function 
 W R2!R. If xD 
 .y; z/, and for some fixed zD g0.p/,
dx=dy D �.F�1.x;y; z//, we have that there is some smooth 
 0W R!R so that


 .y; z/D 
 0.z/C

Z .x;y;z/

.x;0;z/

� ıF�1dy:

The discriminant set of �ˇ ıF is the image under F of the closure of the set of points
��1.ˇ/ in S .

Since � is Morse, all but finitely many ˇ are regular values. A preimage of a regular ˇ
value is a 1–dimensional submanifold of S . When ˇ is passing through a regular value,
points in the interior of ��1.ˇ/ map to the interior of an edge of the graphic of �ˇ ıF .
If p 2 ��1.p/ n ��1.p/, then it is either a point at which TF.p/F.S/ is parallel to
t D g.p/, or F.p/ belongs to a cusp of F.S/. In the first case, the intermediate value
theorem implies that such points must come in pairs. If no such points are introduced
or removed at this level set ˇ , then such points get mapped to the interior of an edge
as well. If a pair of such points is introduced or removed, the graphic of �ˇ ıF gains
or loses a pair of cusps connected by an edge in a “dovetail” type move. In the case
that F.p/ is a cusp, p gets sent to a cusp of the graphic of �ˇ ıF . Generically, the
preimage of cusp points of F.S/ is transverse to level sets of � . When ˇ is regular
and ��1.ˇ/ is tangent to an arc of a cusp, a pair of cusps is introduced in the graphic
of �ˇ ıF in either another dovetail move or an eye, which can be pictured as follows:

dovetail

eye

When ˇ passes through a critical value of � , the index of the critical point is either
0, 1 or 2. If it is 0 or 2, then there must be a pair of tangencies to R2 � fg0.p/g

immediately after (resp. before) this value of ˇ , which do not exist before (resp. after)
this value of ˇ . In the graphic of �ˇ ıF these two corresponding cusps cancel each
other out in an “eye,” a process during which two vertices occupy the same level. If the
critical point has index 1, a pair of points pi with tangent planes TF.pi /F.S/ which
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are parallel to g0.p/ cancel and another pair is born, leading to an exchange of the
order of vertices of the graphic during which there are two valence-two vertices at the
same level.

Thus there are only finitely many values of ˇ (and so, of ˛ as well) at which
..1�˛/'i C˛'iC1/�g0 has a critical point which fails to be stable. In between
these critical points, the graphic changes by some homotopy of the image of the
discriminant set, which can be done generically except at a finite number of points
introducing a triple point, self-tangency or double cusp points.

6 Common stabilizations of opposite-sided
tubed Heegaard surfaces

To use the above results, we must understand how tubed Heegaard surfaces span a bridge
sphere S . We begin by showing that, for the knots and surfaces under consideration
here, every graphic must either split or span.

Lemma 6.1 Let f and g be sweep-outs for a Heegaard surface † and a minimal
bridge sphere S , respectively. If the bridge number of K is at least 3, the graphic must
either split or span.

Proof If the graphic neither splits nor spans, then the graphic of f �g must contain
a vertex at the coordinates .s; t/ such that St is mostly above †s�� and mostly
below †sC� for a small � . Then f jStC�

is a Morse function on StC� . If .s; t/ is a
valence-4 vertex, this Morse function has exactly two index-1 critical points, and the
rest are index 0 or 2. Then S admits a decomposition into a collection of disks and
once-punctured disks, which have Euler characteristic at least 0, connected by two
bands of Euler characteristic �1, so �.S/� �2. If .s; t/ is a valence-6 vertex, then
a similar argument shows that �.S/� �3. But if n� 3, we have that �.S/� �4, a
contradiction.

Lemma 6.2 If K lies below (resp. above) †, then there are sweep-outs f for †
and g for S such that † spans S positively (resp. negatively).

Proof First, note that if d.S/ > 2n and † is a genus-n surface, Lemmas 5.1, 5.3
and 6.1 guarantee that † spans S either positively or negatively, but not with both
signs. We take the convention that the sweep-outs are oriented so that @M � f �1.�1/,
and g�1.�1/ is the spine on the minus side of S .
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If K lies below †, then for any value of s 2 .�1; 1/, there is a spine of S on the minus
side of †s which is entirely disjoint from †s , and therefore, there is a value t� close
to �1 and a sweep-out g so that St� � f

�1.Œ�1; s�/, so St� is mostly below (in fact,
entirely below) †s . Fix one such s . Since the graphic must span either positively or
negatively, there must be another tC > t� such that StC is mostly above †s , and so †
spans S positively. One way to construct this pair .s; tC/ explicitly is to take s very
close to �1, so that †s is very close to @M , and then for some tC , it is clear that
StC \f

�1.Œ�1; s�/ is a collection of once-punctured disks in StC .

A symmetric argument shows that if K lies above †, then there are sweep-outs so that
† spans S negatively.

Furthermore, every pair of sweep-outs f and g for † and S define a graphic in which
† spans S with the same sign, independent of the choice of sweep-outs.

Lemma 6.3 Let K be an n–bridge knot with n� 3, d.K/ > 2n, and † a Heegaard
surface for XK . If there are sweep-outs f and f 0 corresponding to † such that f
spans g positively and f 0 spans g negatively, then during any isotopy fr with f0D f

and f1 D f
0 , there is some generic r such that fr must either split g or span g with

both signs.

Proof Since f0 and f1 are given by equivalent surfaces, there is a one-parameter
family of sweep-outs ffr g, and by Lemma 5.5, we know that the graphic fr � g is
generic except at finitely many values of r 2 .0; 1/, where it has two valence-two or
valence-four vertices occupying the same level, or a single valence-6 vertex.

For contradiction, assume that fr neither spans nor splits g with both signs away
from the nongeneric r . Therefore, fr splits g either positively or negatively, but not
both. Then there is some nongeneric r0 such that fr0�� splits g positively and fr0C�

spans g negatively. At this r0 , the regions where S is mostly above and mostly
below † must exchange, so there is a vertex .s; t/ in the graphic of fr0

�g so that St

is, say, mostly above †s�� and mostly below †sC� . The proof of Lemma 6.1 shows
that this cannot happen.

Therefore, for some generic r0 , either fr0
spans g both positively and negatively, or

fr0
splits g .

Corollary 6.4 If † is a tubed Heegaard surface with K below (resp. above) †,
b.K/ � 3 and d.K/ > 2b.K/, then for any sweep-outs f of † and g of S with
@M � f �1.�1/ and g�1.�1/ on the minus side of S , we have that f spans g

positively (resp. negatively).
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Proof If there are two graphics, one in which f spans g positively, and the other
in which f spans g negatively, by Lemma 6.3, there is an isotopy between them
during which the graphic will either split or span with both signs. But g.†/ D n

and n < 2n� 1, so by Corollary 5.2, the graphic cannot span with both signs; also,
n< 1

2
d.S/, so by Lemma 5.3, the graphic cannot split.

Corollary 6.5 Let K be an n–bridge knot with n � 3 and d.K/ > 2n. Let † be a
tubed Heegaard surface such that K lies below †, and †0 a tubed Heegaard surface
such that K lies above †0 . Then a common stabilization of † and †0 has genus at
least min

˚
1
2
d.S/; 2n� 1

	
.

Proof Let f 00
0

be the sweep-out given by †00 as a stabilization of †, so by Lemmas 6.2
and 5.4 f 00

0
spans g positively. Likewise, let f 00

1
be the sweep-out given by †00 as a

stabilization of †0 , so f 00
1

spans g negatively. By Lemma 6.3, at some point during
the isotopy between these, the graphic either spans with both signs or splits. The
conclusion follows.

Theorem 2.1 now directly follows from Corollary 3.8, Lemma 4.5 and Corollary 6.5.

Corollary 6.6 If d.S/� 4n, then g.†00/D 2n� 1.

Proof † corresponds to some system of n� 1 tunnels for K , and †0 corresponds
to another such system. We take a neighborhood of K union all 2n� 2 tunnels; the
boundary of the result is a genus-.2n�1/ Heegaard surface which is a stabilization of
both † and †0 .

7 The tunnel systems

Any Heegaard splitting of a knot complement determines a tunnel system for that knot.
We now show how to construct such a tunnel system for any tubed Heegaard surface,
and we state the generalization of Kobayashi’s classification of unknotting tunnels for
2–bridge knots in [8]. A tubed Heegaard splitting splits the knot complement into one
handlebody and one compression body. By choosing a nonseparating system of n� 1

compression disks for the compression body, the cocores of these 2–handles can be
extended to a tunnel system for K . In this section, we give a canonical way to make
this choice.

Definition 7.1 Let Ai be an annulus of a tubed Heegaard splitting which runs along K

and has left foot at xi . If there is no annulus Aj with left foot at xj running along K

with length ` > .i � j / .mod 2n/, then Ai is adjacent to K .
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In other words, Ai is adjacent to K if no other annulus runs between Ai and K . If
` � .i � j / .mod 2n/, then xj and xr.j/ are separated by xi in the direction of the
orientation of the annulus. Otherwise, any annulus with left foot between i and r.i/

also has its right foot in this range. Let all such annuli be surrounding Ai .

Definition 7.2 Let † be a tubed Heegaard surface. An annulus of † which is adjacent
to K , together with all the annuli which surround this one, is called a chunk of †. The
size of the chunk is the total number of annuli. The annulus which is adjacent to K is
the defining annulus for the chunk.

The splittings †a and †b have n chunks all of size 1, the 3–bridge splitting with
index .1; 2; 3/ has a single chunk of size 3, and the 7–bridge splitting with index
.1; 3; 5; 6; 7; 11; 12/ has four chunks of sizes 1, 1, 3 and 2. We now show how to
associate k � 1 tunnels to each chunk of size k .

Assume without loss of generality that K is below †. Annuli of † which have their
left feet at odd values of i will be said to go up, while those with even-numbered
left-foot indices will be said to go down. Since K is below †, any annulus which is
adjacent to K must go up. Let there be a chunk of size k with defining annulus Ai .
Let 
i be the bridge arc of K between xi and xiC1 . The k � 1 tunnels associated to
this chunk, � i

1
; : : : ; � i

k�1
, will all have @� i

j � 
i�1 .

Let Aj be an annulus of this chunk which goes down. If Aj has length 1, let D be
the bridge disk associated to 
j . Let W1 be the compression body which contains K .
The component of D \W1 which meets S � �.K/ is a nonseparating compression
disk for † contained in W1 . A tunnel for K which is dual to this compression disk
is an arc with endpoints on 
i�1 which intersects this disk in one point and can be
leveled into †. Such an arc is shown in Figure 6.

Figure 6: A tunnel (blue) which is dual to a compression disk (green) which
corresponds to a down-annulus of length 1 when K is below †
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If Aj is a down-annulus with length greater than 1, then we construct a compression
disk for † on the same side as K by banding together the two bridge disks associated
to 
j and 
r.j/�1 with a strip which follows Aj , as shown in Figure 7.

Figure 7: Banding together two bridge disks along a down-annulus of length
3 to make a compression disk for † whose dual is a tunnel

If Ak is an up-annulus which is not the defining annulus Ai , we make use of a
nonseparating compression disk for † whose boundary separates the ends of Ak . We
choose this disk so that @D � S separates the punctures fxr.k/;xr.k/C1; : : : ;xr.i/�1g

from the others. The arc which starts at 
i�1 , pierces this disk once, goes through Ak

and returns to 
i�1 , is parallel into †; see Figure 8.

Figure 8: Constructing a tunnel corresponding to an up-tube in a chunk when
K is below †

In this way, assigning tunnels dual to banded bridge disks for down-tubes and dual to
nonseparating compression disks for up-tubes, every chunk of size k contributes k �1

tunnels, since all annuli but the defining annulus contributes exactly one tunnel. The
remainder of the tunnels connect adjacent chunks: if there is a chunk defined by the
annulus Ai , then there is a tunnel �i with @��i 2 
i�1 and @C�i 2 
r.i/ . However, if
we connect all adjacent chunks together, there will be n tunnels total. One of these is
dual to a compression disk for † in S3 which intersects K in one point, so we simply
choose which chunk to not connect to its neighbor, thereby omitting one redundant
tunnel. So that this choice is consistent for all partitions of f1; : : : ; 2ng into chunks,
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.1; 3; 5/ .1; 3; 4/ .1; 2; 5/ .3; 5; 6/ .1; 2; 4/

.3; 4; 6/ .2; 5; 6/ .1; 5; 6/ .1; 2; 3/ .3; 4; 5/

Figure 9: 10 of the 20 tunnels of a 3–bridge knot, and their indices

we omit the tunnel �i which connects 
i�1 to 
r.i/ where i is the smallest index over
all defining annuli for †.

In constructing these tunnels, several choices were made: the decision to use the
structure of the chunks is a choice of a system of compression disks. Within this choice,
the structure of each chunk as being given by up- and down-tunnels is once again a
choice of compression disks. Since any two complete systems of compression disks
for a given handlebody are related by a sequence of handle slides, the tunnel systems
corresponding to these choices are equivalent after a sequence of edge slides. The
choice of endpoints for the tunnels is also trivial modulo edge slides of the tunnels.
Finally, the choice of which redundant chunk-connector tunnel is to be omitted is
arbitrary, but also corresponds to a choice of system of compressing disks. Thus,
any minimal tunnel system for K is equivalent to a minimal tunnel system for K

constructed in this way, after a sequence of isotopies and edge slides.

Figure 9 shows how we construct the 1
2

�
6
3

�
D 10 two-tunnel tunnel systems of a 3–

bridge knot which correspond to a Heegaard surface which is above K . The horizontal
line represents a bridge sphere, and the braids are omitted for simplicity. The other ten
tunnel systems are symmetric to the given ones, on the other side of the bridge sphere.
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