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Strong Heegaard diagrams and strong L–spaces

JOSHUA EVAN GREENE

ADAM SIMON LEVINE

We study a class of 3–manifolds called strong L–spaces, which by definition admit a
certain type of Heegaard diagram that is particularly simple from the perspective of
Heegaard Floer homology. We provide evidence for the possibility that every strong
L–space is the branched double cover of an alternating link in the three-sphere. For
example, we establish this fact for a strong L–space admitting a strong Heegaard
diagram of genus 2 via an explicit classification. We also show that there exist finitely
many strong L–spaces with bounded order of first homology; for instance, through
order eight, they are connected sums of lens spaces. The methods are topological and
graph-theoretic. We discuss many related results and questions.

57M27, 57R58

1 Introduction

The purpose of this paper is to study a family of 3–manifolds called strong L–spaces.
These manifolds are defined by a combinatorial condition on Heegaard diagrams, and
they arise naturally in the context of Heegaard Floer homology.

In its simplest form, the Heegaard Floer homology of a closed, oriented 3–manifold Y

is a finitely generated abelian group �HF.Y /, defined as follows. We present Y by
means of a Heegaard diagram H , consisting of a closed, oriented surface S of genus g

and two disjoint unions ˛ D ˛1[ � � � [˛g and ˇ D ˇ1[ � � � [ˇg of embedded circles
in S , each of which spans a g–dimensional subspace of H1.S IZ/ and which intersect
each other transversally. To such a diagram, we associate a chain complex �CF.H /,
which is freely generated by the set S.H / of unordered g–tuples of points in S with
one point on each ˛ circle and one point on each ˇ circle. By adapting the machinery of
Lagrangian Floer homology, Ozsváth and Szabó [34] define a differential @ on �CF.H /

that also depends on some additional choices of analytic data. They prove that the
homology H�. �CF.H /; @/ depends only on the 3–manifold Y and not on the specific
choice of Heegaard diagram or analytic data. This homology group is denoted �HF.Y /.

Define the determinant det.Y / of a 3–manifold Y to be the order of H1.Y IZ/ if
this group is finite (ie when Y is a rational homology sphere) and 0 otherwise. With
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respect to a natural Z=2–grading, Ozsváth and Szabó [33, Proposition 5.1] showed that
the Euler characteristic of �CF.Y / is equal to det.Y /. As a result, for any Heegaard
diagram H presenting Y , we have

(1) jS.H /j D rank �CF.H /� rank �HF.Y /� det.Y /:

If det.Y /¤ 0 and �HF.Y / is free abelian of rank det.Y /, then Y is called an L–space.
In view of (1), such manifolds can be seen as having the simplest possible Heegaard
Floer homology.1 Examples of L–spaces include S3 , lens spaces (whence the name),
all manifolds with finite fundamental group (Ozsváth and Szabó [35]), and branched
double covers of nonsplit alternating (or, more generally, quasi-alternating) knots and
links in S3 (Ozsváth and Szabó [36]). The classification of L–spaces is one of the major
outstanding questions in Heegaard Floer theory. For instance, it is conjectured that a
rational homology sphere Y is an L–space if and only if �1.Y / is not left-orderable.
This conjecture is known to hold (at least mod torsion) for many classes of manifolds,
including all geometric, non-hyperbolic manifolds; see Boyer, Gordon and Watson [3].2

The minimum size of S.H /, ranging over all Heegaard diagrams H for a rational
homology sphere Y , may be viewed as a measure of the topological complexity of Y .
This quantity is called the simultaneous trajectory number of Y and is denoted M.Y /;
see Ozsváth and Szabó [33, Section 1.2]. Both det.Y / and rank. �HF.Y // provide lower
bounds on M.Y / by (1). The second author and Lewallen introduced the following
definition:

Definition 1.1 [21] A closed, oriented 3–manifold Y is called a strong L–space if
M.Y /D det.Y /. A Heegaard diagram H for Y for which jS.H /j D det.Y / is called
a strong Heegaard diagram.

By (1), a strong L–space is an L–space. In view of the conjecture mentioned above,
the second author and Lewallen [21] proved that the fundamental group of a strong
L–space is not left-orderable. As a simple direct consequence, a strong L–space cannot
admit an R–covered taut foliation. In fact, Ozsváth and Szabó [31] established the
much deeper result that an L–space does not admit any coorientable taut foliation; see
also Kazez and Roberts [19].

1Some authors define Y to be an L–space under the weaker condition that rank �HF.Y / D det.Y / ,
which can be easier to verify. We refer to such a Y as an L–space mod torsion. In fact, there is no known
example of a rational homology sphere Y for which �HF.Y / contains torsion; the two definitions may be
equivalent.

2Subsequent to the submission of this paper, Hanselman, Rasmussen, Rasmussen, and Watson [14; 15;
40] proved that the conjecture holds for all graph manifolds.
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Our motivating problem is to describe the homeomorphism types of strong L–spaces
and strong Heegaard diagrams. As we shall see, the condition of being a strong L–
space is quite restrictive, more so than being an L–space. For instance, the only strong
L–space with determinant 1 is S3 , so the Poincaré homology sphere is an L–space but
not a strong L–space [33; 21].

The standard genus-1 Heegaard diagram for a lens space L.p; q/ (consisting of a
single ˛ curve and a single ˇ curve on a torus, intersecting p times) is clearly a strong
diagram, so lens spaces are strong L–spaces. A broader source of examples derives
from work of the first author [11, Corollary 3.5], who showed that the double cover
of S3 branched along a nonsplit alternating link is a strong L–space. Note that these
spaces subsume lens spaces, which are branched double covers of two-bridge links,
although the strong diagrams for these spaces in [11] do not have genus 1. Although we
can generate many families of strong Heegaard diagrams, we were unable to produce
any new examples of strong L–spaces besides the ones just mentioned. Indeed, our
main results support an affirmative answer to the following question:

Question 1.2 Is every strong L–space the branched double cover of an alternating
link in S3 ?

As a first approach to Question 1.2, recall that the determinant of a link L � S3

is the absolute value of its (single-variable) Alexander polynomial evaluated at �1:
det.L/ D j�L.�1/j. Let †.L/ denote the double cover of S3 branched over L.
Then det.L/D det.†.L//, in part justifying our terminology. A classical theorem of
Bankwitz [1] and Crowell [7] asserts that there exist finitely many alternating links of
bounded determinant. Therefore, an affirmative answer to Question 1.2 would imply
the same about strong L–spaces. We deduce this fact directly as a corollary of the
following result, which we prove using topological and graph-theoretic methods:

Theorem 1.3 There exist finitely many rational homology spheres with bounded
simultaneous trajectory number.

Corollary 1.4 There exist finitely many strong L–spaces with bounded determinant.

By contrast, there exist infinitely many irreducible L–spaces with the same determinant.
Reducible examples are easy to exhibit, since Heegaard Floer homology satisfies a
Künneth principle for connected sums. Thus, for example, the connected sum of any
L–space with arbitrarily many copies of the Poincaré sphere is an L–space with the
same determinant. For irreducible examples, the Seifert fibered spaces of type .2; 2; n/
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Figure 1: Diagram of the link L.a1; a2; a3; a4/ , with a1 , a2 , a3 , a4 2Q[f1=0g

all have determinant 4 and finite fundamental group, so they are L–spaces. (It is
unknown whether there exist infinitely many irreducible L–spaces with determinant
less than 4.) Additionally, the first author and Watson [12] gave an infinite family of
hyperbolic manifolds with determinant 25 that are L–spaces mod torsion.

Using similar techniques to those in the proof of Theorem 1.3, we prove:

Theorem 1.5 If Y is a strong L–space with det.Y / � 8, then Y is the branched
double cover of an alternating link. Specifically, Y is a connected sum of lens spaces.

In another direction towards Question 1.2, we describe all strong L–spaces that
admit strong Heegaard diagrams of genus 2. For a1; a2; a3; a4 2 Q [ f1=0g, let
L.a1; a2; a3; a4/ denote the link presented by the diagram in Figure 1, where the
four balls are filled in with the rational tangles specified by a1 , a2 , a3 and a4 (see
Section 5.2). Note that the diagram is alternating if and only if all ai have the same sign,
where 0=1 and 1=0 are considered to have both signs. Setting a1Da2Da3Da4D˙1

results in the minimal diagram D of the figure-eight knot, so the diagram can be
regarded as substituting arbitrary rational tangles for the crossings in D . The branched
double cover †.L.a1; a2; a3; a4// is either

(1) a connected sum of one or two genus-1 manifolds;

(2) a small Seifert fibered space; or

(3) a graph manifold whose JSJ decomposition consists of two Seifert fibered spaces
over D2 with two exceptional fibers.

Theorem 1.6 Let Y be a strong L–space that admits a strong Heegaard diagram of
genus 2. Then Y Š †.L.a1; a2; a3; a4// for some a1; : : : ; a4 2 Q [ f1=0g of the
same sign. In particular, Y is the branched double cover of an alternating link in S3 .

Usui [43; 44] has obtained similar results.
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A key ingredient for proving Theorems 1.3 and 1.6 is Proposition 3.1, which implies
that every strong L–space admits a Heegaard diagram H that is both strong and 1–
extendible. In such a diagram, the signs with which the ˛ and ˇ curves may intersect
are highly constrained: all points of intersection between any two curves have the
same sign, and the associated intersection matrix is a Pólya matrix (see Section 2).
Theorems 1.3 and 1.5 then follow from topological and graph-theoretic arguments, and
their proofs appear in Section 4. To prove Theorem 1.6, we show in Section 5 that every
strong, 1–extendible Heegaard diagram of genus 2 has a standard form, which coincides
precisely with a particular class of Heegaard diagrams for †.L.a1; a2; a3; a4// for
a1; : : : ; a4 of the same sign.

In Section 6, we prove some results concerning Floer simple knots in strong L–spaces
that admit genus-2 strong diagrams. The existence of such knots has applications to
Dehn surgery and minimal genus problems. In Section 7, we discuss the connections
between strong L–spaces and other notions pertaining to Heegaard splittings. We close
in Section 8 with several questions motivated by the present work.
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Nathan Dunfield for enjoyable, stimulating discussions.

Greene was supported by NSF grant DMS-1207812 and an Alfred P Sloan Research
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2 Preliminaries

For an oriented, properly embedded curve ˛ in a surface (possibly with boundary),
let �˛ denote the same curve with the opposite orientation, and, for any integer n,
let n˛ denote a multicurve obtained by taking jnj parallel copies of sgn.n/˛ . For
oriented multicurves ˛ and ˇ that meet transversally, let ˛C ˇ denote an oriented
multicurve obtained from ˛ [ ˇ by forming the oriented resolution at every point
of ˛ \ ˇ . Note that n˛ and ˛ C ˇ specify unique multicurves up to isotopy. For
oriented multicurves ˛ and ˇ in an oriented surface S that meet transversally, write
˛ �ˇ for their algebraic intersection number and j˛\ˇj for their geometric intersection
number. The multicurves ˛ and ˇ intersect coherently if all intersection points have
the same sign, ie if j˛ �ˇj D j˛\ˇj.

A Heegaard diagram H consists of a surface S , a basepoint z , two collections of
attaching curves ˛ D ˛1 [ � � � [ ˛g and ˇ D ˇ1 [ � � � [ ˇg specifying a pair of
handlebodies, and a choice o of orientation on S and each ˛ and ˇ curve:

.S; z; ˛; ˇ; o/:
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Henceforth, we generally suppress reference to the basepoint z and orientation o, and
simply refer to the diagram as .S; ˛; ˇ/.

Let Symg.S/ denote the gth symmetric power of S , the quotient of S�g by the
action of the symmetric group on g letters. It is a 2g–dimensional manifold. Let T˛
(resp. Tˇ ) be the image in Symg.S/ of ˛1 � � � � �˛g (resp. Tˇ ); this is an embedded
g–dimensional torus. The tori T˛ and Tˇ intersect transversally in a finite number of
points; let S.H /D T˛ \Tˇ . A point of S.H / is a tuple xD .x1; : : : ;xg/, where
xi 2 ˛i \ˇ�x.i/ , for some permutation �x . Elements of S.H / are generators of the
group �CF.H / discussed above.

For each x 2 ˛i \ ǰ , let �.x/ 2 f˙1g denote the local sign of intersection of ˛i

with ǰ at x . For xD .x1; : : : ;xg/ 2S.H /, the local sign of intersection of T˛ and
Tˇ is given by

�.x/D sign.�x/

gY
iD1

�.xi/;

where sign.�x/ 2 f˙1g is the signature of the permutation �x . Note that changing the
orientation of S or a single ˛ or ˇ curve negates �.x/ for all x 2S.H /.

The intersection matrix M.H / is the g�g matrix of integers whose .i; j / entry is

mi;j D ˛i � ǰ D

X
x2˛i\ ǰ

�.x/:

Since M.H / is a presentation matrix for H1.Y /, we have det.Y / D jdet.M.H //j,
which explains our choice of terminology. The permutation expansion of the determinant
gives

det.M.H //D
X
�

sign.�/m1;�.1/ � � �mg;�.g/

D

X
�

sign.�/
X

f.x1;:::;xg/j
xi2˛i\ˇ�.i/g

gY
iD1

�.xi/

D

X
x2S.H /

�.x/:

In particular, we see that
jS.H /j � det.Y /;

as noted in Section 1. The following two lemmas are immediate:

Lemma 2.1 H is a strong Heegaard diagram if and only if all generators in S.H /

have the same sign.
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Lemma 2.2 If H is a strong Heegaard diagram, and some generator in S.H / includes
a point of ˛i \ ǰ , then ˛i and ǰ intersect coherently.

We call a Heegaard diagram H coherent if all pairs of ˛ and ˇ curves intersect
coherently. As we shall see, the fact that (many of) the curves in a strong Heegaard
diagram intersect coherently will be vital to our classification results. However, a strong
diagram need not be coherent. For instance, if H is a genus-2 Heegaard diagram
in which the intersections ˛1 \ ˇ1 and ˛2 \ ˇ2 are coherent and nonempty, while
˛1 \ ˇ2 D ∅, then H is strong irrespective of the signs of points in ˛2 \ ˇ1 , since
these points are not included in elements of S.H /. Such a diagram can be obtained
by taking the connected sum of two standard Heegaard diagrams for lens spaces and
isotoping the ˛ curve of one summand so that it intersects the ˇ curve of the other
summand. However, Proposition 3.1 below will enable us to restrict our attention to
coherent Heegaard diagrams.

Given a Heegaard diagram H , the intersection graph G.H / is the bipartite graph with
vertex set AtB , where AD fa1; : : : ; agg and B D fb1; : : : ; bgg, and for which the
set of edges joining ai and bj is fex j x 2 ˛i \ ǰ g. Note that S.H / is in natural
one-to-one correspondence with the set of perfect matchings of G.H /. The degree of
a vertex v in a graph G is the number of edges in G with an endpoint at v . Write
ı.G/ for the minimum vertex degree in G , and write ı.H /D ı.G.H //. A graph G

is k –extendible if any k –tuple of disjoint edges extends to a perfect matching of G . A
Heegaard diagram H is k –extendible if its intersection graph G.H / is. In particular,
H is 1–extendible if every point x 2 ˛\ˇ is contained in a generator x 2S.H /. As
an immediate consequence of the previous two lemmas, we have:

Lemma 2.3 A strong, 1–extendible Heegaard diagram is coherent.

For a strong diagram H , the combinatorics of M.H / and G.H / are expressed by the
closely related concepts of Pólya matrices and Pfaffian orientations, respectively. A
Pólya matrix is a g�g square matrix M D .mi;j / for which all nonzero terms in the
expansion

det.M /D
X
�

sign.�/m1;�.1/ � � �mg;�.g/

come with the same sign. Equivalently, if we write jM j for the matrix .jmi;j j/ and

per.N /D
X
�

n1;�.1/ � � � ng;�.g/

for the permanent of a g�g square matrix N D .ni;j /, then M is a Pólya matrix if

jdet.M /j D per.jM j/:
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We refer to Vazirani and Yannakakis [45] for the definition of a Pfaffian orientation.

Proposition 2.4 The following are equivalent conditions on a coherent Heegaard
diagram H :

(1) H is strong;

(2) M.H / is a Pólya matrix; and

(3) G.H / has a Pfaffian orientation.

Proof The equivalence of (1) and (2) is the effective content of Lemma 2.1. The
equivalence of (2) and (3) follows from [45].

The sign pattern of the entries of a Pólya matrix is highly constrained. This fact
plays a key role in the proof that the fundamental group of a strong L–space is not
left-orderable [21]. Pólya matrices obey a deep structure theorem due independently to
McCuaig [25] and Robertson, Seymour and Thomas [41]. We apply a result of their
work in Section 7.3.

3 Extendibility

The purpose of this section is to show that every rational homology sphere admits
a 1–extendible Heegaard diagram attaining its simultaneous trajectory number. In
particular, every strong L–space admits a 1–extendible, strong Heegaard diagram. This
result is very useful in the subsequent sections. The technical statement is as follows:

Proposition 3.1 Let H be a doubly pointed Heegaard diagram for a rational homology
sphere. Then there exists a sequence of handleslides and isotopies in the complement
of the basepoints that transforms H into a 1–extendible Heegaard diagram H 0 such
that jS.H /j D jS.H 0/j. In particular, if H is strong, then so is H 0 .

Corollary 3.2 A rational homology sphere Y admits a 1–extendible Heegaard dia-
gram H for which jS.H /j DM.Y /.

To prove Proposition 3.1, we begin by establishing a simple criterion to recognize that a
given Heegaard diagram can be converted into a reducible one by a sequence of isotopies
and handleslides. In order to state it in a sharp form, we require a little notation and
background concerning Heegaard diagrams and presentations of the fundamental group.

Given any free group F z D hz1; : : : ; zgi and a value 1� k � g , we obtain groups

F z
�k D hz1; : : : ; zki; F z

k D hzki and F z
�k D hzk ; : : : ; zgi;

Algebraic & Geometric Topology, Volume 16 (2016)
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and projections from F z to each. For any word w 2 F z , let

w�k D w<kC1; wk and w�k D w>k�1

denote the respective images of w under these projections; each of them is a subword
of w . In a similar spirit, for a collection of curves 
1; : : : ; 
g , we define


�k D 
<kC1 D 
1[ � � � [ 
k and 
>k D 
kC1[ � � � [ 
g:

Let H D .S; ˛; ˇ/ denote a Heegaard diagram that presents a 3–manifold Y . Form the
free group Fx D hx1; : : : ;xgi. Choose a point pi 2 ˛i disjoint from ˇ and traverse a
full loop around ˛i starting at pi . For each intersection point between ˛i and ǰ with
sign � , record the term x�j . The product of these terms, in order from left to right, yields
a word wˇ.˛i/2Fx . Observe that a different choice of pi will result in the same word
up to cyclic equivalence. As a result, we regard wˇ.˛i/ and its subwords up to cyclic
equivalence. The group �1.Y / admits the presentation Fx=hwˇ.˛1/; : : : ; wˇ.˛g/i.
In an analogous manner, we define the free group Fy D hy1; : : : ;ygi, associate a
cyclic word w˛. ǰ / in y1; : : : ;yg to each curve ǰ , and obtain the presentation
Fy=hw˛.ˇ1/; : : : ; w˛.ˇg/i for �1.Y /.

Lemma 3.3 Suppose that H D .S; ˛; ˇ; z1; z2/ is a doubly pointed genus-g Heegaard
diagram for a rational homology sphere Y and, for some 0< k < g ,

˛�k \ˇ>k D∅:

Then it is possible to perform handleslides and isotopies in the complement of z1 and
z2 to produce a Heegaard diagram H 0 D .S; ˛0; ˇ0; z1; z2/ such that

� jS.H /j D jS.H 0/j,

� wˇ0.˛0i/D wˇ.˛i/�k and w˛0.ˇ0j /D w˛. ǰ /�k for all i; j � k , and

� wˇ0.˛0i/D wˇ.˛i/>k and w˛0.ˇ0j /D w˛. ǰ />k for all i; j > k .

In particular, ˛0
�k
\ˇ0

>k
D ˛0

>k
\ˇ�k D∅, while there is an identification ˛0i \ˇ

0
j D

˛i \ ǰ preserving local signs of intersection when i , j � k or i , j > k . Thus, H 0 is
reducible with summands H1 D .S�k ; ˛

0
�k
; ˇ0
�k
/ and H2 D .S>k ; ˛

0
>k
; ˇ0
>k
/. If H

is strong, then so are H1 and H2 .

Remark 3.4 Some restriction on Y or H is necessary in order to guarantee the
conclusion of Lemma 3.3. For example, take Y D S1 �S2 (so b1.Y / > 0), consider
its standard genus-1 Heegaard diagram with no intersection points, and stabilize the
diagram once. Label the curves in the resulting diagram so that ˛1 \ ˇ2 D ∅. The
conclusion of Lemma 3.3 in this case (with k D 1) would produce a genus-2 Heegaard
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˛1

˛2
˛3

ˇ4
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S�3

S>3

z1

z2




Figure 2: A cut-open Heegaard diagram as in the proof of Lemma 3.3, with
k D 3 and g D 5

diagram in which each pair of curves is disjoint, but such a diagram must present
#2.S1 �S2/¤ Y , a contradiction.

Proof of Lemma 3.3 Recall that

H1.Y IZ/ŠH1.S IZ/=hŒ˛1�; : : : ; Œ˛g�; Œˇ1�; : : : ; Œˇg�i:

Since Y is a rational homology sphere, the classes Œ˛1�; : : : ; Œ˛g�, Œˇ1�; : : : ; Œˇg� are
linearly independent in H1.S IZ/. In particular, ˛1; : : : ; ˛k , ˇkC1; : : : ; ˇg are g

disjoint curves representing linearly independent classes in H1.S IZ/. It follows that
S X .˛�k [ ˇ>k/ is a 2g–punctured sphere. As a result, there exists an unoriented
curve 
 �S , unique up to isotopy, with a regular neighborhood N.
 / that separates S

into subsurfaces S�k and S>k such that fz1g[˛�k � S�k and fz2g[ˇ>k � S>k .
See Figure 2.

The space N.
 /[ S>k X ˇ>k is a 2.g�k/–punctured disk, and N.
 /\ S�k is a
collar neighborhood of its boundary. We radially isotope ˇ�k \ .N.
 /[S>k/ away
from z2 and into N.
 /\S�k , permitting arcs to pass over punctures in the process.
Passing an arc over a puncture corresponds to a handleslide in S , so we may interpret
this process as a sequence of isotopies and handleslides of ˇ�k over ˇ>k in S which
is the identity outside of N.
 /[S>k X fz2g. The resulting collection of curves ˇ0

�k

supported in S�k has the property that w˛.ˇ0j /�k D w˛. ǰ /�k for all j � k , since
˛�k\ˇ>k D∅ and the handleslides do not change the intersections of ˇ�k with ˛�k .
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Similarly, we isotope and handleslide the curves ˛>k over ˛�k in N.
 /[S�k Xfz1g

to get curves ˛0
>k

supported in S>k and such that wˇ0.˛0i/>k D wˇ0.˛i/>k for all i .
Lastly, we define ˛0i D ˛i for i D 1; : : : ; k and ˇ0j D ǰ for j D kC 1; : : : ;g .

The preceding remarks and the fact that ˇ0
�k
\˛0

>k
D∅ yield the stated conclusions

about w.˛0i/ and w.ˇ0j /. Capping off S�k and S>k along 
 results in the surfaces
S�k and S>k required by the lemma. Finally, note that there exists a natural bijection
between S.H / and S.H 0/, since a generator in S.H / cannot use any element of
˛>k \ˇ�k . In particular, if H is strong, then so is H 0 .

Proof of Proposition 3.1 We proceed by induction on g.H /. For g.H / D 1 the
assertion is trivial, so we proceed to the induction step. By a theorem of Hetyei, a
bipartite graph G with bipartition .A;B/ is 1–extendible if and only if for every subset
T � A, the set of neighbors of T in B has cardinality at least maxfjBj; jAj C 1g

[17; 23, Theorem 4.1.1]. Since G.H / contains a perfect matching, it is 0–extendible.
Assume that it is not 1–extendible. Then there exists some proper, nonempty subset
T �A such that T has exactly jT j neighbors in B . In other words, there exist some
k ˛ circles that are disjoint from some g � k ˇ circles, where 1 � k < g . Thus,
Lemma 3.3 implies that there exists a sequence of handleslides and isotopies which
transform H into a reducible diagram H 0 , and which is strong provided that H is.
By induction on the genera of the summands of H 0 , the statement of the proposition
follows.

A simple induction using Lemma 3.3 establishes the following corollary:

Corollary 3.5 If a strong diagram has an upper triangular intersection matrix, then it
presents a connected sum of lens spaces.

4 Finiteness results

In this section, we prove Theorem 1.3, which asserts that there exist finitely many ratio-
nal homology spheres with bounded simultaneous trajectory number, and Theorem 1.5,
which classifies the strong L–spaces with determinant up to 8.

Lemma 4.1 Let H be a Heegaard diagram for a rational homology sphere. Suppose
that H contains an attaching curve that has m � 1 intersection points with another
attaching curve and at most one other intersection point. Then there exists a sequence
of isotopies and handleslides converting H into a 1–extendible Heegaard diagram
H1#H2 with g.H1/D 1, jS.H1/j Dm and jS.H /j D jS.H1#H2/j. If H is strong,
then so are H1 and H2 .
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Proof Without loss of generality, assume that ˛1 has m � 1 intersection points
with ˇ1 . If ˛1 meets only ˇ1 , then the result follows directly from Lemma 3.3 and
induction on the genus, as in the proof of Proposition 3.1. Suppose instead that ˛1

meets another curve ˇ2 . Label the intersection points along ˛1 consecutively by
p1; : : : ;pm 2 ˇ1 and q 2 ˇ2 . Perform m consecutive handleslides of ˇ1 over ˇ2 ,
guided along the oriented segment of ˛1 from pi to q for i Dm; : : : ; 1 in turn. Let
ˇ0

1
denote the resulting curve and H 0 the resulting Heegaard diagram. Observe that

˛1 has a single intersection point in H 0 . Applying Lemma 3.3 and induction on the
genus to H 0 establishes the existence of handleslides and isotopies converting H 0

into a 1–extendible Heegaard diagram of the required form with the property that
jS.H 0/j D jS.H1 # H2/j.

It remains to establish that jS.H 0/j D jS.H /j. To do so, we exhibit a bijection
between the perfect matchings in G.H 0/ and G.H /. Let G0 � G.H / denote the
subgraph obtained by removing the m edges between a1 and b1 . Observe that G.H 0/

is constructed from G0 by inserting m parallel edges between ai and b1 for each edge
between ai and b2 in G.H /. Thus, G0 is a common subgraph of G.H / and G.H 0/.
In particular, we obtain a trivial bijection between the perfect matchings of G.H / and
G.H 0/ contained in this common subgraph. Consider another perfect matching in
G.H /. Then it uses the k th edge between a1 and b1 for some 1� k �m. It also has
an edge e from ai to b2 for some i > 1. We construct a perfect matching in G.H 0/

by removing these two edges, putting in the edge from a1 to b2 , and putting in the
k th new edge from ai to b1 that corresponds to e . It is clear that this construction
sets up a bijection between the perfect matchings in G.H / and G.H 0/ not contained
in G0 , and so completes the required bijection between perfect matchings in G.H /

and G.H 0/.

For the remainder of this section, let H0 denote the standard genus-1 Heegaard diagram
of RP3 . Recall that the minimum vertex degree of a graph G is denoted ı.G/, and
ı.H /D ı.G.H // for a Heegaard diagram H .

Lemma 4.2 Let H be a Heegaard diagram for a rational homology sphere Y . Then
there exists a sequence of isotopies, handleslides, and destabilizations converting H

into a 1–extendible Heegaard diagram H 0D .#nH0/#H 00 such that jS.H /jD jS.H 0/j

and ı.H 00/� 3. If H is strong, then so are H 0 and H 00 .

Proof We proceed by induction on the genus g of H . The result is true if g D 0, so
suppose that g > 0 and the result holds for Heegaard diagrams of genus less than g .
By Proposition 3.1, we may assume that H is 1–extendible. If ı.H / � 3, then the
desired result follows at once. Otherwise, ı.H /� 2. Apply Lemma 4.1 to an attaching
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curve in H that contains at most two intersection points. In the composite Heegaard
diagram H1 # H2 guaranteed by Lemma 4.1, H1 is the standard genus-1 diagram for
S3 or RP3 . Destabilize H1 in the former case, and apply the induction hypothesis to
H2 to complete the induction step.

Lemma 4.3 There exist finitely many 1–extendible bipartite graphs G with ı.G/� 3

and a bounded number of perfect matchings.

Proof Fix a natural number d and suppose that G is a 1–extendible bipartite graph
that contains d or fewer perfect matchings. Let n denote the number of vertices and
m the number of edges of G . Then [23, Theorem 7.6.2] establishes that

(2) d �m� nC 2:

In addition, m� 3
2
n, since ı.G/� 3. Applying (2), we obtain

n� 2.d � 2/ and m� d C n� 2� 3.d � 2/:

Since both of m and n are bounded in terms of d , G is one of finitely many graphs.

Lemma 4.4 For any graph G , there exist finitely many Heegaard diagrams H with
G.H /DG .

Proof We may assume that G has a bipartition V .G/DAtB with jAj D jBj D g .
Label the edges of G by e1; : : : ; ek . Let ˛1; : : : ; ˛g , ˇ1; : : : ; ˇg be oriented copies
of S1 , and let N.˛i/ (resp. N.ˇi/) be the total space of a trivial I –bundle over ˛i

(resp. bi ). Up to homeomorphism, there are finitely many ways to choose points
x1; : : : ;xk , y1; : : : ;yk , where if ek is an edge connecting aik

and bjk
then xk 2 ˛ik

and yk 2 ǰk
. Given such a choice and a choice of .�1; : : : ; �k/ 2 f˙1gk , form a

possibly disconnected, oriented surface-with-boundary N by plumbing together the
annuli N.˛i/ and N. ǰ / so that xk and yk are identified and ˛ik

and ǰk
meet with

sign �k at that point. There are finitely many ways to glue surfaces-with-boundary
to N along their common boundaries to obtain a closed, oriented surface S of genus g .
Thus, up to homeomorphism, there are finitely many tuples .S; ˛; ˇ/, where S is
a closed, oriented surface of genus g and ˛ and ˇ are g–tuples of curves in S

whose intersection graph is given by G , and in particular finitely many such Heegaard
diagrams.

Proof of Theorem 1.3 Fix a natural number d and suppose that Y is a rational
homology sphere with M.Y /� d . By Lemma 4.2, Y has a 1–extendible Heegaard
diagram H D .#nH0/#H 0 with M.Y /D jS.H /j D 2njS.H 0/j and ı.H 0/� 3. Thus,
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n � log2 d and G.H 0/ contains at most d perfect matchings. By Lemma 4.3, there
exist finitely many possibilities for G.H 0/, so by Lemma 4.4, there exist finitely many
possibilities in turn for H 0 . Therefore, there exist finitely many possibilities for H and
hence for Y , as required.

We now turn to the proof of Theorem 1.5, which asserts that every strong L–space
with determinant � 8 is the branched double cover of an alternating link in S3 . In the
proof, we apply an estimate on the number of perfect matchings in a cubic bipartite
graph due to Voorhoeve [48]. A graph is cubic if every vertex has degree 3. The proof
of [23, Theorem 8.1.7] establishes the following version of Voorhoeve’s result:

Lemma 4.5 Define hW ZC! ZC recursively by h.1/D 2 and h.g/D
˙

4
3
h.g� 1/

�
,

and define f W ZC! ZC by f .g/ D
˙

3
2
h.g/

�
. Then a cubic bipartite graph on 2g

vertices contains at least f .g/ perfect matchings. In particular, a cubic bipartite graph
with 8 or more vertices contains at least f .4/D 9 perfect matchings.

Proof of Theorem 1.5 Choose a 1–extendible, strong Heegaard diagram H of min-
imum genus g presenting Y . If g D 1, then Y is the branched double cover of an
alternating two-bridge link. If gD 2, then the result follows from Theorem 1.6 (proven
in Section 5 and independent of this result). If there exists a sequence of isotopies
and handleslides converting H into a connected sum of strong Heegaard diagrams
H1 # H2 , then, by induction on g , Hi presents †.Li/ for some nonsplit alternating
link Li , and then Y Š†.L1 # L2/ exhibits Y in the stated form.

Thus, unless the desired conclusion holds, we may assume henceforth that g � 3 and
that the hypothesis of Lemma 4.1 does not hold; in particular, every vertex of G.H /

has degree at least 3, and no vertex of degree 3 is incident with parallel edges (two
edges with the same pair of endpoints). We seek a contradiction to these conditions
under the assumption that det.Y /� 8.

First, suppose that g D 3. Since M.H / is a Pólya matrix, it contains at least one
zero entry, as noted in Section 2. Since the condition of Lemma 4.1 does not hold,
no row or column of M.H / contains more than one zero, and if a row or column
contains a zero, then its nonzero entries are at least two in absolute value. It follows
that up to permuting its rows and columns, M.H / dominates one of the following
three matrices, in the sense that the absolute values of its entries bound from above
those of the corresponding matrix:0@0 2 2

2 0 2

2 2 0

1A ;
0@1 2 2

2 0 2

2 2 0

1A ;
0@1 1 2

1 1 2

2 2 0

1A :
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If a Pólya matrix P dominates a nonnegative matrix N , then jdet.P /j D per.jP j/�
per.N /. It follows that

jS.H /j D jdet.M.H //j �minf16; 20; 16g D 16;

a contradiction.

Next, suppose that gD 4. We argue that G.H / contains a cubic subgraph on 8 vertices,
which by Lemma 4.5 is a contradiction. Inequality (2) implies that G.H / contains at
most 14 edges, and by hypothesis it contains at least 12 edges. If it has 12 edges, then
G.H / is the desired subgraph. If it has 13 edges, then there exists a unique vertex of
degree 4 in each of A and B . Since no vertex of degree 3 is incident with parallel
edges, it follows that there exists an edge e between the vertices of degree 4, and then
G.H /X e is the desired subgraph. If it has 14 edges, then the degree sequences of
vertices in A and in B belong to f.3; 3; 3; 5/; .3; 3; 4; 4/g. Again, since no vertex of
degree 3 is incident with parallel edges, every vertex of degree 4 or more is incident
with another such vertex; furthermore, if there are two vertices of degree 5, then there
are parallel edges between them. In any case, we can locate edges e and f such that
G.H /X fe; f g is the desired subgraph.

Lastly, suppose that g � 5. G.H / cannot contain a cubic subgraph on 2g vertices
by Lemma 4.5, because then it would contain more than 8 perfect matchings, a
contradiction. Thus, G.H / contains at least 3g C 1 edges. Since jS.H /j � 8,
inequality (2) implies that g � 5. Consequently, g D 5, there are vertices a 2A and
b 2B of degree four, and all other vertices have degree three and are not incident with
parallel edges. If there exists an edge e D .a; b/, then G.H /X e is a cubic subgraph
on 10 vertices, a contradiction. Therefore, a and b are nonadjacent and G.H / has
no parallel edges. Thus, G.H /X fa; bg is a 2–regular bipartite graph. It is easy to
see in this case that any two-edge matching that uses vertices a and b extends to a
perfect matching of G.H /. However, there are 16 such two-edge matchings, whereas
G.H / has at most 8 perfect matchings, a contradiction. This concludes the proof that
Y Š†.L/ for some alternating link L� S3 .

Finally, the determinant of an alternating link is greater than or equal to its crossing
number, with equality only for .2; n/–torus links [7]. It follows that L has at most
seven crossings or is the .2; 8/–torus link.

The knot tables indicate that all prime, alternating links through seven crossings with
determinant � 8 are two-bridge links. Therefore, L is a connected sum of two-bridge
links, and †.L/ is a connected sum of lens spaces.
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5 Strong diagrams of genus 2

The purpose of this section is to prove Theorem 1.6, describing all strong L–spaces
admitting strong Heegaard diagrams of genus 2.

5.1 Coherent multicurves in an annulus

We begin with some technical but elementary statements concerning curves in an
annulus that will enable us to recognize certain standard configurations within a strong
Heegaard diagram.

Construction 5.1 Fix orientations on the circle S1 and the interval I . Let ADS1�I

denote the annulus, equipped with the product orientation. For integers p1 , q1 , p2

and q2 , let 
.p1; q1;p2; q2/ denote the pair of oriented multicurves .
p1;q1
; 
p2;q2

/

obtained as follows: choose distinct s1 ¤ s2 2 S1 and t1 < t2 2 I , and set


pi ;qi
D pi.S

1
� ftig/C qi.fsig � I/;

where we do not allow the parallel copies of ˙S1 � ft1g (resp. ˙fs1g � I ) to overlap
or interleave with the parallel copies of ˙S1 � ft2g (resp. ˙fs2g � I ), and we require

p1;q1

and 
p2;q2
to meet transversally. (See Figure 3.)

In Construction 5.1, we have


p1;q1
� 
p2;q2

D p1q2� q1p2 and j
p1;q1
\ 
p2;q2

j D jp1q2jC jq1p2j:


�2;3


3;2


2;3


3;2

Figure 3: The configurations 
.�2; 3; 3; 2/ and 
.2; 3; 3; 2/ in S1�I . Note
that the former is in minimal position while the latter is not.
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In particular, the pair .
p1;q1
; 
p2;q2

/ is in minimal position except when p1q2 and
q1p2 are either both positive or both negative.

The ambient isotopy class (fixing a point on each component of @A) of each multicurve

pi ;qi

depends only on .pi ; qi/, but the full configuration 
.p1; q1;p2; q2/ depends a
priori on more than just the isotopy classes of the individual multicurves. However, the
following lemma says that when the pair .
p1;q1

; 
p2;q2
/ is in minimal position, the

configuration is uniquely characterized up to homeomorphism.

Lemma 5.2 Let r1; : : : ; rk , s1; : : : ; sl be points in S1 , ordered cyclically according
to the standard orientation of S1 . Suppose that we are given properly embedded,
oriented multicurves ˛ D ˛1 [ � � � [ ˛k and ˇ D ˇ1 [ � � � [ ˇl in A satisfying the
following properties:

� For some fixed Œa� 2 Z=k , for each i 2 f1; : : : ; kg, ˛i is a path from .ri ; 0/ to
.riCa; 1/ (indices modulo k ), and any two paths ˛i and ˛i0 are disjoint.

� For some fixed Œb� 2 Z= l , for each j 2 f1; : : : ; lg, ǰ is a path from .sj ; 0/ to
.sjCb; 1/ (indices modulo l ), and any two paths ǰ and ǰ 0 are disjoint.

� The multicurves ˛ and ˇ intersect transversally and coherently.

Then for some integers a and b restricting to the given classes Œa� and Œb� and satisfying
jal � bkj D j˛\ˇj, there is a homeomorphism of A taking .˛; ˇ/ to 
.a; k; b; l/.

Proof For concreteness, assume that the intersection points in ˛i\ ǰ all have positive
sign; the other case is analogous.

Let a be the representative of Œa� in f0; : : : ; k�1g. We may identify A with the quotient
of the rectangle R D Œ0; k�� Œ0; 1� by the relation .0;y/ � .k;y/ for all y 2 Œ0; 1�,
such that ˛i is the image of fig � Œ0; 1�; denote the projection map � W R! A. For
i D 1; : : : ; k , note that �.i; 0/D .ri ; 0/, while �.i; 1/D .riCa; 1/ (indices modulo k ).
Therefore, ˇ is the image of a collection of oriented arcs ž �R with endpoints on

.Œ0; 1�� f0g/[ .Œk � a; k � aC 1�� f1g/[ .f0; kg � Œ0; 1�/:

For i D 1; : : : ; k , let Ri denote the square Œi�1; i �� Œ0; 1�. Since ˛ meets ˇ positively,
any segment of ž\Ri (with its inherited orientation) must enter Ri through fig� Œ0; 1�
(or through Œ0; 1��f0g if iD1) and exit through fi�1g�Œ0; 1� (or through Œa�1; a��f1g

if i D a). After an ambient isotopy of Ri , we may arrange that ž\Ri is a union of
line segments of negative slope. Next, after an ambient isotopy of R that leaves the
first coordinate fixed and reparametrizes the second coordinate respecting �, we may
arrange that ž is union of oriented line segments of negative slope beginning on

.Œ0; 1�� f0g/[ .fkg � Œ0; 1�/
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and ending on
.Œk � a; k � aC 1�� f1g/[ .f0g � Œ0; 1�/:

Let mD j ž\ .f0g � Œ0; 1�/j D j ž\ .fkg � Œ0; 1�/j. Let c be the number of segments
of ž that begin on fkg � Œ0; 1� and end on Œk � a; k � aC 1� � f1g. After another
ambient isotopy of R that leaves the first coordinate fixed and reparametrizes the
second coordinate respecting �, we may arrange that ž is a union of line segments of
negative slope as above, with the additional properties that

� m� c segments end on f0g �
�
0; 1

2

�
, and c segments end on f0g �

�
1
2
; 1
�
;

� m�c segments begin on fkg�
�
0; 1

2

�
, and c segments end on fkg�

�
1
2
; 1
�
; and

� ž\
�
Œ0; k��

˚
1
2

	�
consists of l points, all in the interior of R1 .

We may now reparametrize R=� by the transformation

f .x;y/D

�
.x;y/ if y � 1

2
;

.xC 2ay � a;y/ if y � 1
2
:

After this reparametrization, ˇ \
�
Œ0; k��

�
1
2
; 1
��
=� can be arranged to be vertical,

while ˇ\
�
Œ0; k��

�
1
2
; 1
��
=� winds with positive slope. From here, it is not hard to

identify .˛; ˇ/ with 
.a; k; c �m; l/.

Construction 5.3 Returning to the notation in Construction 5.1, suppose that

gcd.p1; q1/D gcd.p2; q2/D 1:

Decompose S1 as a union of two arcs e1[e2 so that @
pi ;qi
� ei�f0; 1g. Let R1 and

R2 be 1–handles (ie copies of I � I ), and let N be the oriented surface obtained by
attaching R1 and R2 to A along e1�f0; 1g and e2�f0; 1g, respectively. For i D 1, 2,
by attaching qi parallel cores of Ri to 
pi ;qi

, we obtain a closed curve �pi=qi
. We

may canonically orient these curves by requiring q1 , q2 � 0 and taking the induced
orientation.

5.2 Conventions for rational tangles

We briefly review some basic facts and conventions about rational tangles and their
branched double covers; for further information, see Gordon [9, Section 4] and
Cromwell [6, Chapter 8].

Consider the sphere S2 D @B3 , and fix an equatorial S1 � S2 . Let

QD fNE;NW;SW;SEg
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be a set of four points on this S1 , ordered cyclically. By a slight abuse of notation,
we shall denote by � either the (unoriented) arc of S1 joining SW and NW or the
arc joining SE and NE, and denote by � either the arc joining NW and NE or the
arc joining SW and SE. For p=q 2Q[f1=0g, let R.p=q/ denote the p=q rational
tangle in B3 , with endpoints on Q; our convention is that the components of R.1=0/

(resp. R.0=1/) are pushoffs of the two choices of � (resp. �). Note that R.p=q/ can
be represented with an alternating diagram such that the first crossing encountered
when entering from SW or NE is an undercrossing, and the first crossing encountered
when entering from NW or SE is an overcrossing, precisely when p=q � 0.

The branched double cover †.S2;Q/ is a torus, and †.B3;R.p=q// is a solid torus.
Let z� (resp. z�) be the preimage of � (resp. �), which up to isotopy does not depend
on the choice above. We orient z� and z� such that z� � z� D �1 when †.S2;Q/ is
oriented as the boundary of †.B3;R.p=q//. As explained in [9, Section 4], for any
p=q 2Q[f1=0g, the curve pz�C qz� bounds a compressing disk in †.B3;R.p=q//.

5.3 A construction of genus-2 Heegaard diagrams

As before, for a1 , a2 , a3 , a4 2Q[f1=0g, let L.a1; a2; a3; a4/ denote the link given
by the diagram in Figure 1, where the four balls are filled in with rational tangles
following the conventions described above. If a1 , a2 , a3 and a4 have the same sign,
then the diagram obtained in this manner (using alternating diagrams for the rational
tangles) is alternating. We now describe a construction of a Heegaard diagram for
†.L.a1; a2; a3; a4//.

Construction 5.4 For aiDpi=qi 2Q[f1=0g, for i D 1; : : : ; 4, let H.a1; a2; a3; a4/

denote the Heegaard diagram shown in Figure 4. Formally, we take two copies
of the configuration from Construction 5.3, denoted by .N; ��q1=p1

; �q2=p2
/ and

.N 0; �p3=q3
; ��p4=q4

/, and form the union S D .N [ N 0/=�, where R1 � N is
identified with R2 � N 0 and R2 � N is identified with R1 � N 0 , each via a 90ı

rotation of I � I ; we define

˛1 D ��q1=p1
�N; ˇ1 D �q2=p2

�N;

˛2 D �p3=q3
�N 0; ˇ2 D ��p4=q4

�N 0:

Observe that

M.H.a1; a2; a3; a4//D

�
�p1q2� q1p2 �q1p4

�q2p3 p3q4C q3p4

�
;

so
det M.a1; a2; a3; a4/D�p1q2q3p4� q1p2q3p4� q1q2p3p4;
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˛1

˛2ˇ1

ˇ2

p1

q1

p2

q2 p3

q3

p4

q4

Figure 4: Template for the Heegaard diagram H.a1; a2; a3; a4/ , with
ai D pi=qi 2Q[f1=0g for i D 1; : : : ; 4

while

jS.H.a1; a2; a3; a4//j D jp1q2q3p4jC jq1p2q3p4jC jq1q2p3p4j:

It is easy to see that H.a1; a2; a3; a4/ is strong if and only if a1 , a2 , a3 and a4 all
have the same sign. Additionally, note that when a1 D 1=0 and a3 D 0=1 or when
a2 D 1=0 and a4 D 0=1, H.a1; a2; a3; a4/ is a connected sum of genus-1 strong
diagrams.

Proposition 5.5 For a1 , a2 , a3 , a4 2 Q [ f1=0g, H.a1; a2; a3; a4/ presents the
manifold †.L.a1; a2; a3; a4//.

Proof Figure 5 depicts the link L D L.a1; a2; a3; a4/ along with some additional
decoration that we will use in order to produce a Heegaard decomposition of †.L/. We
will then show that H.a1; a2; a3; a4/ presents this decomposition. The red curve C

in the projection plane is the cross-section of a sphere P that meets L in six points
x1; : : : ;x6 . The regions cut out by C in the projection plane are the cross-sections of the
balls cut out by P in S3 . The two additional arcs in blue and yellow are cross-sections
of equatorial disks D1 and D2 for these balls. The space S3X.P [D1[D2/ consists
of four open balls, whose closures we denote by A1; : : : ;A4 ; note that .Ai ;Ai \L/

is the rational tangle .B3;R.ai//. Orient P as the boundary of A1[A3 . The double
cover Vi D†.Ai ;Ai \L/ is then a solid torus, and †.L/D V1[ � � � [V4 .
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a1 a2

a3

a4x1

x2
x3

x4

x5

x6

C

Figure 5: Decomposing .S3;L.a1; a2; a3; a4//

Since A1\A3DD1 , A2\A4DD2 , and D1 and D2 each meet L in a single point, it
follows that U1D†.A1[A3; .A1[A3/\L/ and U2D†.A2[A4; .A2[A4/\L/

are each genus-2 handlebodies. Specifically, U1 D V1 \V3 and U2 D V2 \V4 , where
\ denotes the boundary connected sum. Thus, U1 [S U2 is a genus-2 Heegaard
decomposition of †.L/, where S D @U1 D�@U2 D†.P;P \L/.

For i D 1; : : : ; 6, let Ci denote the arc of C that runs clockwise from xi to xiC1 in
Figure 5 (subscripts mod 6). Let Ni � P denote a small regular neighborhood of
Ci and N D N1 [ � � � [N6 . Let zxi , 
i and 
 denote the respective preimages of
xi , Ci and C in S � †.L/ for i D 1; : : : ; 6. Then zNi D †.Ni ; fxi ;xiC1g/ is an
annulus with core 
i , and the union zN D†.N; fx1; : : : ;x6g/ is a cyclic plumbing of
these annuli. We may orient the curves 
i so that 
i � 
iC1 D 1 for i D 1; : : : ; 6. Now
S D†.P; fx1; : : : ;x6g/ results from gluing A to the double cover of P XN , which
consists of four disks; it follows that 
 � S appears as shown in Figure 6.

Define
�1 D C1; �2 D C1; �3 D C3; �4 D C5;

�1 D C6; �2 D C2; �3 D C4; �4 D C4;

and observe that �i and �i are framing arcs for the rational tangle .Ai ;L \ Ai/,
as described above. Let z�i , z�i � S \ @Vi denote the preimages of these curves
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Figure 6: The surface S D†.P; fx1; : : : ;x6g/ along with the branch points
zx1; : : : ; zx6 , the 1–complex 
 in red, and the curves 
 0

1
and 
 0

4
in green. The

curve 
i consists of the pair of arcs of 
 with endpoints zxi and zxiC1 . The
curves 
 0

1
and 
 0

4
are parallel copies of 
1 and 
4 , respectively.

(i D 1; : : : ; 4), oriented as follows:

z�1 D 
1; z�2 D 
1; z�3 D 
3; z�4 D�
5;

z�1 D 
6; z�2 D 
2; z�3 D�
4; z�4 D 
4:

With respect to the orientation of S as @U1 , z�i �
z�i D .�1/i , i D 1; : : : ; 4. Since

the orientation of S agrees with the boundary orientation of @Vi exactly when i D 1

or 3, we see that z�i �
z�i D�1 with respect to the boundary orientation of Vi for all

i D 1; : : : ; 4. Thus, it follows that a curve of type pi z�i C qi
z�i bounds a compressing

disk for Vi .

Let 
 0
1

and 
 0
4

be parallel copies of 
1 and 
4 , as shown in Figure 6, and define

˛1 D p1

0
1C q1
6; ˇ1 D p2
1C q2
2;

˛2 D p3
3� q3
4; ˇ2 D�p4
5C q4

0
4:

Then ˛1 and ˛2 are disjoint compressing disks for U1 , and ˇ1 and ˇ2 are disjoint
compressing disks for U2 , so .S; ˛1[˛2; ˇ1[ˇ2/ presents †.L/. By construction,

.S; ˛1[˛2; ˇ1[ˇ2/DH.a1; a2; a3; a4/;

as required.
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5.4 Strong, 1–extendible Heegaard diagrams of genus 2

We will now show that any strong L–space admitting a genus-2 strong Heegaard
diagram can be represented by a Heegaard diagram of the form in Construction 5.4.
The main technical result of this section is:

Proposition 5.6 Suppose H is a 1–extendible, irreducible, strong Heegaard diagram
of genus 2 such that j˛i \ ǰ j � 2 for each i and j . Then there exist simple closed
curves ı1 and ı2 on S such that:
� Each ıi divides S into a union S D Ti [Ui of two genus-1 surfaces.
� ı1 separates ˛1 from ˛2 , and ı2 separates ˇ1 from ˇ2 .
� jı1\ ı2j D 4.
� T1\T2 and U1\U2 are quadrilaterals whose boundaries each consist of two

arcs of ı1 and two arcs of ı2 , and the intersection of either of these regions with
any ˛ or ˇ circle consists of arcs that connect opposite sides of the quadrilateral.

� T1\U2 and U1\T2 are annuli whose boundary components each consist of
an arc of ı1 and an arc of ı2 , and the intersection of either of these regions with
any ˛ or ˇ circle consists of arcs that connect opposite boundary components.

Before proving Proposition 5.6, we show how it implies Theorem 1.6.

Proof of Theorem 1.6 Let Y be a strong L–space with a genus-2 strong Heegaard
diagram H . By Proposition 3.1, we may assume that H is 1–extendible. If H is
reducible, then Y is a connected sum of lens spaces. Furthermore, if any ˛ circle
meets a ˇ circle in a single point, then we may destabilize to obtain a genus-1 diagram,
so Y is a lens space. Thus, we may assume that j˛i \ ǰ j � 2 for each i and j .

Form the decompositions S D T1[U1 D T2[U2 as in Proposition 5.6, and assume
that the curves are labeled such that ˛1 � T1 , ˛2 � U1 , ˇ1 � U2 and ˇ2 � T2 . The
intersection of ˛1 [ ˇ1 with the annulus A1 D T1 \U2 satisfies the hypotheses of
Lemma 5.2, so this intersection can be identified with a standard configuration of the
form .A;
.p; q; r; s//, as described in Construction 5.1, for some integers p , q , r

and s . By attaching the quadrilaterals T1\T2 and U1\U2 , we see that T1[U2 is a
linear plumbing of three annuli, denoted N , and we can then identify .T1[U2; ˛1; ˇ1/

with the configuration .N; �p=q; �r=s/ from Construction 5.1. In a similar manner,
.T2[U1; ˛2; ˇ2/ can be identified with .N 0; �p0=q0 ; �r 0=s0/, where N 0 is homeomor-
phic to N . This identifies H with the description of H.�q=p; s=r;p0=q0;�r 0=s0/ as
given in Construction 5.4, so Y Š†.L.�q=p; s=r;p0=q0;�r 0=s0//. Moreover, since
H is a strong diagram, we deduce that �q=p , s=r , p0=q0 and �r 0=s0 all have the
same sign, and therefore L.�q=p; s=r;p0=q0;�r 0=s0/ is an alternating link.
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Proof of Proposition 5.6 To begin, assume that the curves are labeled so that j˛1\ˇ1j

is minimal among the four pairs of curves. Choose orientations so that ˛1 intersects
both ˇ1 and ˇ2 positively, and ˛2 intersects ˇ1 positively and ˇ2 negatively. Let
v D j˛1\ˇ1j.

Let R1; : : : ;Rn denote the regions of S �˛1�ˇ1 . Let e denote the Euler measure
(see eg [37, Lemma 6.2]). Then �2D e.S/D

P
e.Ri/. Since all intersection points in

˛1\ˇ1 have the same sign, as we traverse a boundary component of any Ri , the arcs
of ˛1 (resp. ˇ1 ) must alternate in orientation. In particular, the number of arcs in each
boundary component of each Ri is a multiple of 4. It follows that e.Ri/� 0 for all i .
Thus, each Ri may be a disk with 4, 8, or 12 sides (eD 0, �1, �2, respectively); an
annulus with two 4–sided boundary components (e D�2); or a genus-1 surface with
one 4–sided boundary component (e D�2). Consequently, fR1; : : : ;Rng consists of
a number of 4–sided disks (which we will refer to as rectangles), along with either

(1) two 8–sided disks;

(2) a 12–sided disk;

(3) an annulus; or

(4) a once-punctured torus.

Let N denote a regular neighborhood of ˛1 [ˇ1 ; note that �.N /D �v . Note that
�2 D �.S/ D �.N /C

Pn
iD1 �.Ri/, so

Pn
iD1 �.Ri/ D v � 2. Thus, the number of

rectangles equals v� 4 in case (1), v� 3 in case (2), v� 2 in case (3) and v� 1 in
case (4). We may assume that the nonrectangular region(s) are labeled R1 (and R2 , in
case (1)).

If Ri is a rectangle, then any segment of ˛2 or ˇ2 that meets Ri must enter and exit
Ri on opposite sides. Furthermore, Ri cannot meet both ˛2 and ˇ2 , since otherwise
there would be a rectangle whose four sides are arcs of ˛1 , ˇ1 , ˛2 and ˇ2 , which is
prohibited in a strong diagram. Thus, all of the points in ˛2\ˇ2 (which is a nonempty
intersection) must lie in the nonrectangular region(s) of S �˛1�ˇ2 . We consider the
four cases enumerated above.

Case (1) (two octagons) Without loss of generality, suppose that ˛2 and ˇ2 intersect
inside the octagonal region R1 . Label the edges of R1 consecutively by e0; : : : ; e7 ,
so that e0 , e2 , e4 and e6 are arcs of ˛1 and e1 , e3 , e5 and e7 are arcs of ˇ1 . Let
a and b be the components of ˛2\Ri and ˇ2\R1 , respectively, containing some
point of ˛2 \ˇ2 , and assume that b intersects e0 . Since all points of ˛2 \ˇ0 have
the same sign, the other endpoint of b must be on either e2 or e6 . However, then a

must intersect either e1 or e7 , respectively, and we obtain a rectangle whose four sides
are arcs of ˛1 , ˇ1 , ˛2 and ˇ2 , which is prohibited. Thus, case (1) cannot occur.
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Case (2) (one dodecagon) Suppose that ˛2 and ˇ2 intersect inside the dodecagon R1 .
Label the edges of R1 clockwise by e0; : : : ; e11 , so that odd indices correspond to
arcs of ˛1 and even indices correspond to arcs of ˛2 . We consider these indices as
elements of Z=12.

The edges ei inherit orientations from the orientations on ˛1 and ˇ1 . Since ˛1 and
ˇ1 intersect positively, we may assume that e0 , e3 , e4 , e7 , e8 and e11 are oriented
clockwise (ie opposite to the boundary orientation on @R1 ), and the remaining edges
are oriented counterclockwise. By our orientation conventions, segments of ˛2 may
enter R1 through e3 , e7 and e11 and exit through e1 , e5 and e9 ; segments of ˇ2 may
enter through e2 , e6 and e10 and exit through e0 , e4 and e8 .

Lemma 5.7 For i 2 Z=12, if 
i is an arc that begins in R1 , exits through ei , and
proceeds, passing through rectangular regions of S �˛1�ˇ1 without turning left or
right, until it reenters R1 through some ej , then j D i C 6. (That is, 
i reenters R1

through the edge directly opposite the one through which it exited.)

Proof For notational simplicity, we consider the case where i D 0; the others proceed
similarly.

Because the arc 
i runs parallel to ˇ1 (up to isotopy), it intersects ˛1 positively when
it reenters R1 through ej . This implies that j D 2, 6 or 10.

Let ˇ0
1

and ˇ00
1

be parallel copies of ˇ1 that run just to the left and right of ˇ1 ,
respectively. Note that ˇ0

1
\R1 consists of arcs e0

1
, e0

5
and e0

9
that run parallel to

e1 , e5 and e9 , respectively, where e0
k

runs from a point in the interior of ekC1 to a
point in the interior of ek�1 . Up to isotopy, we may take 
0 to be a segment of ˇ0

1

that begins on e0
1

and ends on e0
1

, e0
5

or e0
9

, depending on whether j D 2, 6 or 10,
respectively. If j D 2, then 
0 [ e0

1
is an embedded circle that runs parallel to ˇ1

on the left, meaning that it is actually equal to all of ˇ0
1

, a contradiction. A similar
argument using ˇ00

1
excludes the j D 10 case. Thus, we conclude that j D 6.

For i 2 Z=12, let pi D j
i \ .˛1[ˇ1/j, so that 
i passes through pi � 1 rectangular
regions. Clearly, pi DpiC6 . Since every rectangle meets a unique 
i with i 2 f0; 2; 4g

and a unique 
j with j 2 f1; 3; 5g, we have

(3) p0Cp2Cp4 D p1Cp3Cp5 D v:

Let a0 and b0 be the components of ˛2\Ri and ˇ2\R1 , respectively, containing
some point of ˛2\ˇ2 . Up to relabeling, we may assume that b0 exits R1 through e0 .
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Lemma 5.8 If a and b are any components of ˛2 \Ri and ˇ2 \R1 , respectively,
that intersect in R1 , then a enters R1 through e3 and exits through e9 , and b enters
through e6 and exits through e0 .

Proof Suppose b enters R1 through ei , where i 2 f2; 6; 10g. Then a cannot inter-
sect ei˙1 , since that would produce a prohibited rectangle. Therefore, b must exit
R1 through eiC6 , or else a would be forced to intersect ei˙1 . Symmetrically, a must
enter R1 through rj , where j 2 f3; 7; 11g, and exit through rjC6 . It follows that
j D i C 3. Furthermore, if a0 and b0 are another pair of components that intersect,
then a0 and b0 must enter and exit through the same sides as a and b , respectively,
since otherwise a and a0 (resp. b and b0 ) would intersect, violating the embeddedness
of ˛2 (resp. ˇ2 ). Since we know that b0 exits through e0 , we conclude that the same
is true for any b .

It follows from the previous two lemmas that for some nonnegative integers x , y , z ,
x0 , y0 and z0 , with y , y0 � 1, we have:

� ˛2\R1 consists of x arcs from e3 to e5 , x arcs from e11 to e9 , y arcs from
e3 to e9 , z arcs from e3 to e1 , and z arcs from e7 to e9 .

� ˇ2\R1 consists of x0 arcs from e6 to e8 , x0 arcs from e2 to e0 , y0 arcs from
e6 to e0 , z0 arcs from e6 to e4 , and z0 arcs from e10 to e0 .

Therefore, we have

j˛2\ˇ1j D zp1C .xCyC z/p3Cxp5;

j˛1\ˇ2j D .x
0
Cy0C z0/p0Cx0p2C z0p4;

j˛2\ˇ2j D yy0:

We make the following three observations:

(1) At least one of x or z is zero, since otherwise every rectangular region of
S X .˛1 [ ˛2/ would meet ˛2 , and therefore ˇ2 would be constrained to lie
in R1 , a contradiction. Similarly, at least one of x0 or z0 is zero.

(2) At least one of x or z0 is zero, since otherwise the arcs of ˛2 from e3 to e5

would intersect the arcs of ˇ2 from e6 to e4 , violating Lemma 5.8. Similarly,
at least one of x0 or z is zero.

(3) If x D z D 0, then ˛2 consists entirely of y parallel copies of a circle that runs
from e6 to e0 in R1 and then from e0 back to e6 outside of R1 . Since ˛2 is a
single circle, we then have y D 1. By the minimality of j˛1\ˇ1j,

p3 D j˛2\ˇ1j � j˛1\ˇ1j D p1Cp3Cp5;
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a contradiction. Thus, x and z are not both zero. Similarly, x0 and z0 are not
both zero.

Without loss of generality, let us assume that x D 0, z ¤ 0, x0 D 0 and z0 ¤ 0; the
opposite case is handled symmetrically. We can choose a pair of embedded octagons
D1 , D2 �R1 such that

� D1 contains ˛2\R1 and has edges on e1 , e3 , e7 and e9 ;

� D2 contains ˇ2\R1 and has edges on e0 , e4 , e6 and e10 ;

� D1\D2 is a quadrilateral that contains ˛2\ˇ2 .

(See Figure 7.) We now define T1 (resp. T2 ) to be the union of D1 (resp. D2 )
with strips that are tubular neighborhoods of 
1 and 
3 (resp. 
0 and 
4 ); this is
a genus-1 surface with one boundary component that contains ˛2 (resp. ˇ2 ) in its
interior but avoids ˛1 (resp. ˇ1 ). The strips attached to D1 cannot intersect the
strips attached to D2 , since they contain segments of ˛2 and ˇ2 , respectively; thus,

˛1

ˇ1

˛2

ˇ2

e0

e2

e4

e6

e8

e10

e1

e3

e5

e7

e9

e11

Figure 7: A dodecagon region of S X .˛1[ˇ1/ . The octagons D1 and D2

found in case (2) of the proof of Proposition 5.6 are shown in pink and light
blue, respectively, overlapping in the gray region.
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T1\T2 DD1\D2 , as required. Defining U1 D S XT1 and U2 D S XT2 , it is easy
to see that T1 \U2 and T2 \U1 are annuli and that U1 \U2 is a quadrilateral, as
required.

Case (3) (one annulus) Label the edges of R1 by e0; : : : ; e7 , where:

� e0 , e2 , e4 and e6 are segments of ˛1 , and e1 , e3 , e5 and e7 are segments
of ˇ1 .

� The edges on one boundary component of R1 are e0 , e1 , e2 and e3 , ordered
according to the boundary orientation. The edges on the other component are
e4 , e5 , e6 and e7 , ordered likewise.

� The orientations on e2 , e3 , e4 and e5 agree with the boundary orientation, while
the orientations on e0 , e1 , e6 and e7 disagree with the boundary orientation.

An argument just like Lemma 5.7 shows:

Lemma 5.9 For i 2 Z=8, if 
i is an arc that begins in R1 , exits through ei , and
proceeds, passing through rectangular regions of S �˛1�ˇ1 without turning left or
right, until it reenters R1 through some ej , then j D i C 4.

According to our orientation conventions, segments of ˛2 may enter R1 through e1

or e7 and exit through e3 or e5 , and segments of ˇ2 may enter through e2 or e4 and
exit through e0 and e6 .

Lemma 5.10 Every component of ˛2 \R1 enters R1 through the same edge (say
ei , where i 2 f1; 7g) and exits through eiC4 . Likewise, every component of ˇ2\R1

enters R1 through the same edge (say ej , where j 2 f2; 4g) and exits through ejC4 .

Proof If there is some component a of ˛2\R1 that intersects ei , and some component
a0 (possibly the same as a) that intersects ei˙2 , then by Lemma 5.9, ˛2 meets every
rectangular region of S�˛1�ˇ1 , which implies that ˛2 does not meet any rectangular
region. However, this implies that ˇ2 \ ˛1 D ∅, a contradiction. An analogous
argument applies for ˇ2 .

Assume for concreteness that segments of ˛2 enter R1 through e1 and exit through e5 ,
and segments of ˇ2 enter R1 through e4 and exit through e0 . (The other cases are
handled symmetrically.) Lemma 5.10 together implies that the multicurves ˛2\R1

and �ˇ2\R1 satisfy the hypotheses of Lemma 5.2; therefore, .R1;R1\ .˛2[ˇ2//

may be identified with the standard configuration given in Construction 5.1. As shown
in Figure 8, there are embedded annuli N1 , N2 �R1 such that
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˛1

ˇ1

˛2

ˇ2

e0

e2

e4

e6

e1

e3

e5

e7

Figure 8: An annulus region of S X .˛1[ˇ1/ . The annuli N1 and N2 found
in case (3) of the proof of Proposition 5.6 are shown in pink and light blue,
respectively, overlapping in the gray region.

� N1 contains ˛2\R1 , and @N1\ @R1 consists of proper subarcs of e1 and e5 ;

� N2 contains ˇ2\R1 , and @N2\ @R1 consists of proper subarcs of e0 and e4 ;

� N1\N2 is an annulus, and j@N1\ @N2j D 4.

Let T1 (resp. U2 ) be the union of N1 (resp. N2 ) with a 1–handle that follows 
1

(resp. 
0 ); this is then a genus-1 surface with one boundary component that contains ˛2

(resp. ˇ2 ) in its interior but avoids ˛1 (resp. ˇ1 ). Moreover, T1 \U2 is an annulus
whose boundary components each consist of an arc of ı1D @T1 and an arc of ı2D @U2 .
If we define U1 D S XT1 and T2 D S XU2 , it is easy to verify that the remaining
intersections are as required.

Case (4) (one punctured torus) Label the edges of R1 by e0 , e1 , e2 and e3 , so
that e0 and e2 are segments of ˛1 , and e1 and e3 are segments of ˇ1 . In this case, a
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path 
i that exits R1 through ei will proceed through all v � 1 rectangular regions
before reentering through eiC2 (indices modulo 4). Thus, we see that ˛2 and ˇ2

cannot both exit R1 , or else they would be forced to intersect in a rectangular region
of S �˛1�˛2 . Hence, either ˛1\ˇ2D∅ or ˛2\ˇ1D∅, violating our assumption
that j˛i \ ǰ j � 2. Thus, case (4) does not arise.

This concludes the proof of Proposition 5.6.

Corollary 5.11 The minimum genus of a strong Heegaard diagram for a strong L–
space can exceed its Heegaard genus.

This corollary is proven by either of the following examples:

Example 5.12 Let L denote the Borromean rings, which is a prime, three-component,
alternating link of bridge number 3. Therefore, Y D †.L/ is an irreducible strong
L–space of Heegaard genus 2. Suppose Y can represented by a strong Heegaard
diagram H of genus 2, which may be assumed to be 1–extendible by Proposition 3.1.
Since Y is irreducible, M.H / does not contain a 0 entry. Since M.H / is a 2� 2

presentation matrix for H1.Y IZ/Š Z=4˚Z=4, every entry in M.H / is a nonzero
multiple of 4. However, since M.H / is a Pólya matrix, we must then have

jdet.M.H //j � 4 � 4C 4 � 4> 16;

a contradiction. Thus, any strong Heegaard diagram for Y has genus greater than 2.

More generally, it is straightforward to find prime, alternating 3–bridge diagrams
without nontrivial Conway circles. By the solution of the Tait flyping conjecture in
this case [26; 42; 10], no such link is isotopic to a link of the form L.a1; a2; a3; a4/

with all ai the same sign. Therefore, its branched double cover is a strong L–space of
Heegaard genus 2, but it does not possess a strong Heegaard diagram of genus 2.

Example 5.13 Using the program SnapPy, Nathan Dunfield has identified 316 strong
L–spaces among the 11;031 small hyperbolic manifolds in the Hodgson–Weeks census.
Most of these manifolds have Heegaard genus 2, and all have Heegaard genus at most 3.
Theorem 1.6 implies that these manifolds cannot admit strong diagrams of genus 2. In
fact, Dunfield was only able to find strong Heegaard diagrams of genus 4 through 7 for
any of these manifolds. Moreover, all of Dunfield’s examples can be realized as Dehn
fillings of the minimally twisted 5–chain link, so they are branched double covers of
links obtained from filling rational tangles into the pentacle graph, and all of these links
are in fact alternating. (See [8; 24].)

Corollary 5.11 motivates the following questions:
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Question 5.14 Can the difference between the Heegaard genus of a strong L–space Y

and the minimal genus of a strong Heegaard diagram for Y be arbitrarily large?

Question 5.15 Is every strong L–space admitting a strong Heegaard diagram of
genus 3 a Seifert fibered space or graph manifold?

6 Floer simple knots

Given a Heegaard diagram H D .S; ˛; ˇ/ for a 3–manifold Y , a pair of basepoints
w z 2 S X .˛[ˇ/ determines an oriented knot K � Y , as explained in [32]. Briefly,
we let 
˛ (resp. 
ˇ ) be an arc from w to z in the complement of the ˛ (resp. ˇ )
circles, pushed into the ˛ (resp. ˇ ) handlebody, and we set KD 
˛[�
ˇ . The pair of
basepoints induce a filtration on the complex �CF.H / whose associated graded complex
is denoted bCFK.H /, and the homology of bCFK.H / is an invariant called the knot
Floer homology of K , denoted bHFK.Y;K/ [32; 38].

A knot K in an L–space Y is called Floer simple if bHFK.Y;K/ Š �HF.Y /. The
classification of Floer simple knots is of great interest, in part because any Floer
simple knot minimizes rational genus in its homology class [28]. In particular, the only
nullhomologous knot in Y that is Floer simple is the unknot. Note that there exist
homology classes in certain L–spaces that do not contain any Floer simple knot [22,
Proposition 7.4].

Strong Heegaard diagrams provide a natural source of Floer simple knots. Given a
strong Heegaard diagram H for a strong L–space Y , a knot K is called simple with
respect to H if it can be represented by a pair of basepoints in H ; it follows that K

is Floer simple. Each homology class in a lens space contains a unique simple knot
(with respect to the genus-1 strong Heegaard diagram). One formulation of the famous
Berge conjecture asserts that any knot in a lens space with an integer-slope surgery to
S3 must be a simple knot [2]. This would follow from the conjecture that every Floer
simple knot in a lens space is simple [16; 39].

Thus, topological considerations motivate the investigation of the existence and unique-
ness of simple knots in strong L–spaces, as in the following proposition:

Proposition 6.1 If Y is presented by a strong diagram H of genus 2, then every
homology class in H1.Y IZ/ is represented by a simple knot with respect to H .

Proposition 6.1 follows at once from the following theorem:
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Theorem 6.2 Given a genus-2 Heegaard diagram H D .S; ˛; ˇ/ of a rational homol-
ogy sphere Y and any homology class x 2H1.Y IZ/, there exists a pair of basepoints
z1 , z2 2 S such that the doubly pointed Heegaard diagram .S; ˛; ˇ; z1; z2/ represents
a knot K � Y with ŒK�D x .

Theorem 6.2 does not generalize to diagrams of higher genus. As an example, take a
genus-3 Heegaard diagram H for Y D #3L.p; q/ by forming the connected sum of
three genus-1 strong Heegaard diagrams for its individual summands. Then H contains
3p� 2 regions, so the knots in Y represented by pairs of basepoints in H represent at
most .3p� 2/2 homology classes, whereas H1.Y IZ/ has order p3 .

Proof of Theorem 6.2 First we recall how to determine the homology class rep-
resented by a knot K � Y presented by a doubly pointed Heegaard diagram H D

.S; ˛; ˇ; z1; z2/. The i th column of the intersection matrix M.H 0/ is the vector of
intersection numbers

vi D .˛1 �ˇi ; : : : ; ˛g �ˇi/ 2 Zg;

and we have an isomorphism

H1.Y IZ/Š coker.M.H 0//Š Zg=hv1; : : : ; vgi:

Choose an arc 
 �SXˇ transverse to the ˛ curves that begins at z1 and ends at z2 , and
form the vector v.
 /D .˛1 � 
; : : : ; ˛g � 
 / 2Zg . Then, under the above isomorphism,
the class ŒK� maps to the image of v in Zg=hv1; : : : ; vgi.

Now we return to the case at hand. Choose a region of H whose boundary contains
arcs of both ˇ1 and ˇ2 , and place a basepoint z0 in it. For i D 1, 2, traverse a parallel
copy of ˇ0i of ˇi based at z0 and place a basepoint on ˇ0i in each region it enters. To
each subarc 
 � ˇ0i that starts at z0 and ends at one of these basepoints, associate
the vector v.
 /D .˛1 � 
; ˛2 � 
 /. The collection of these vectors gives a sequence Si

beginning with .0; 0/ and ending with vi D .˛1 � ˇi ; ˛2 � ˇi/, in which each pair of
consecutive terms differs by .˙1; 0/ or .0;˙1/.

We claim that S1�S2D fs1� s2 j si 2 Sig contains a vector in each equivalence class
of Z2=hv1; v2i. Assuming this, choose x 2 Z2=hv1; v2i Š H1.Y IZ/ and represent
�x by s1 � s2 2 S1 �S2 . Choose 
i � ˇ

0
i with v.
i/D si and write @vi D zi � z0

for i D 1, 2. Then the concatenation of �
1 and 
2 is an arc 
 � S X ˇ from z1

to z2 with v.
 /D�s1C s2 . It follows that the knot represented by the doubly pointed
Heegaard diagram .S; ˛; ˇ; z1; z2/ represents the class x . Since x was arbitrary, the
theorem follows from the asserted claim.

Now we establish the claim. Let �i �R2 denote the rectilinear curve from .0; 0/ to
vi that interpolates the sequence Si . Regard �i as the image of a map Fi W I !R2 .
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It follows that Fi is homotopic rel endpoints to the linear map from .0; 0/ to vi , and
it descends to a based map fi W S

1! R2=hv1; v2i. Since Y is a rational homology
sphere, it follows that v1 and v2 are linearly independent, R2=hv1; v2i Š T 2 and
fŒf1�; Œf2�g is a basis for H1.T

2/. It follows that the map f W S1 �S1! T 2 given
by f .x;y/ D f1.x/� f2.y/ induces an isomorphism on H1 . In particular, f has
degree one, so it surjects. On the other hand, the image of f is the image of the set
�1 ��2 D f
1 � 
2 j 
i 2 �ig in R2=hv1; v2i. We conclude that �1 ��2 contains a
vector in each equivalence class of R2=hv1; v2i and hence each class of Z2=hv1; v2i.

To complete the argument, we show that S1�S2D .�1��2/\Z2 . Thus, suppose that

1� 
2 2 Z2 with 
i 2 �i . Then 
i lies on the unit segment (vertical or horizontal)
between two consecutive points in Si . If 
1 lies on a horizontal segment, then its
y–coordinate is integral. Since 
1� 
2 2 Z2, 
2 has an integral y–coordinate, so it
lies on a horizontal segment, too. In this case, we take si 2 Si to be the left endpoint
of the horizontal segment containing 
i , and s1 � s2 D 
1 � 
2 . Similarly, if the

i both lie on vertical segments, then the top endpoints furnish points si 2 Si such
that s1 � s2 D 
1 � 
2 . In summary, we recover the claim asserting that S1 � S2

contains a vector in each equivalence class of Z2=hv1; v2i, and the theorem follows as
described.

Remark 6.3 With more effort, it appears possible to show that homologous simple
knots with respect to a given genus-2 strong Heegaard diagram are in fact isotopic. This
is trivially the case with genus-1 strong diagrams. We do not know whether there exist
two strong Heegaard diagrams H1 and H2 for a space, and knots K1 and K2 that are
simple with respect to H1 and H2 , respectively, such that ŒK1�D ŒK2� but K1 ¤K2 .

Proposition 6.1 has an interesting application concerning nonorientable surfaces in
4–manifolds. If Y is a rational homology sphere with H2.Y IZ=2/¤ 0, then any class
x 2H2.Y IZ=2/ can be represented by an closed, embedded, nonorientable surface
of some genus. The minimal genus of such a surface is a measure of the topological
complexity of Y , first studied by Bredon and Wood [4]. It is natural to ask whether
the genus can be lowered by adding a dimension, ie whether the minimal genus of a
surface in Y representing x is the same as the minimal genus of a surface in Y � I

representing the corresponding homology class. For the strong L–spaces considered in
Section 5, the answer to this question is negative:

Corollary 6.4 Let Y be a strong L–space admitting a strong Heegaard diagram
of genus 2, and let W be any smooth homology cobordism from Y to itself (eg
W D Y � I ). For any nonzero homology class x 2H2.W IZ=2/, the minimal genus
of a smoothly embedded, closed, connected, nonorientable surface in W representing
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x is the same as the minimal genus of such a surface in Y itself representing the
corresponding element xx 2H2.Y IZ=2/. Furthermore, this minimal genus is equal to

(4) max
s2Spinc.Y /

2
�
d.Y; s/� d

�
Y; sCPD.ˇ.xx//

��
;

where ˇW H2.Y IZ=2/!H1.Y IZ/ is the Bockstein homomorphism.

Here Spinc.Y / is the set of spinc structures on Y and d.Y; s/ denotes the correction
term of the spinc structure s, a rational number derived from the Heegaard Floer
homology of Y [30]. When Y is an L–space, d.Y; s/ equals the absolute rational
grading of the summand �HF.Y; s/� �HF.Y /. Additionally, the correction terms of a
strong L–space can be readily computed (up to an overall shift) from a strong Heegaard
diagram H using a formula of Lee and Lipshitz [20] for the grading difference between
two generators of �CF.H /. This information is enough to determine the quantity (4).

Proof of Corollary 6.4 Work of Ni and Wu [28] and of Ruberman, Strle and the
second author [22] shows that (4) is a lower bound on the minimal genus in both Y

and W (for any rational homology sphere Y ), and that both of these bounds are sharp
when Y is an L–space and ˇ.xx/ is represented by a Floer simple knot.

Question 6.5 If Y is a strong L–space, is every homology class of order 2 represented
by a simple knot with respect to some strong Heegaard diagram for Y ?

An affirmative answer would imply that the conclusion of Corollary 6.4 applies to every
strong L–space.

7 Waves, antiwaves, and weak reducibility

7.1 Waves

A wave in a Heegaard diagram H is an arc 
 that is properly embedded in a region R

of H and whose endpoints lie on the interiors of distinct arcs of @R and on the same
˛ or ˇ curve, such that the local signs of intersection at the two endpoints of 
 are
opposite. Waves were introduced by Volodin, Kuznetsov and Fomenko [47], who used
them to formulate an algorithm that they conjectured would detect whether or not a
given Heegaard diagram presents S3 . Their key observation was the following:

Lemma 7.1 [47, Theorem 4.3.1] Suppose that 
 is a wave in a Heegaard diagram
H D .S; ˛; ˇ/ with endpoints on the curve ˛i . Let a1 and a2 denote the two arcs into
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˛i

˛i

˛1
i ˛2

i




˛i

˛i

˛1
i ˛2

i




Figure 9: A wave (left) and an antiwave (right), along with the curves ˛1
i

and ˛2
i , perturbed to be transverse to ˛i . For the wave, the three curves ˛i ,

˛1
i and ˛2

i are pairwise disjoint and cobound a pair of pants; for the antiwave,
each pair of curves meets in a point.

which @
 splits ˛i , and set ˛1
i D a1 [ 
 and ˛2

i D a2 [ 
 .3 Then it is possible to
replace ˛i with exactly one of ˛1

i and ˛2
i to obtain a Heegaard diagram H 0D .S; ˛0; ˇ/

which presents the same manifold as H . An analogous statement holds with the roles
of ˛ and ˇ exchanged.

Given an arbitrary Heegaard diagram H, iterating the wave move described in Lemma 7.1
yields a Heegaard diagram for Y containing no waves. Volodin, Kuznetsov, and
Fomenko conjectured that the only waveless diagram for S3 in any given genus g is
the standard one. This conjecture was subsequently shown to be true for Heegaard
diagrams of genus 2 [18] but false for diagrams of higher genus [27; 29; 46].

Proposition 7.2 A 1–extendible, strong Heegaard diagram H for a strong L–space Y

does not contain a wave.

Proof Without loss of generality, suppose to the contrary that H contains a wave 

with endpoints on the curve ˛i . Consider the curves ˛1

i and ˛2
i defined in Lemma 7.1.

Observe that ˛i \ ˇ is the disjoint union of the nonempty sets ˛1
i \ ˇ and ˛2

i \ ˇ .
Since H is 1–extendible, S.H / is a nontrivial disjoint union S1 tS2 , where Sj

consists of the generators that use a point in ˛j
i . Let H 0 denote the Heegaard diagram

3Observe that the curves ˛1
i and ˛2

i can be isotoped slightly to cobound a pair of pants in S with ˛i .
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for Y guaranteed by Lemma 7.1 with, say, ˛0i D ˛
j
i . Note that H 0 is strong, and

S.H 0/DSj . Then

det.Y /D jS.H 0/j D jSj j< jS.H /j D det.Y /;

a contradiction.

7.2 Antiwaves and formal L–spaces

The set S of strong L–spaces constitutes a class of 3–manifolds for which it is easy
to certify the property that they are L–spaces. The set of formal L–spaces constitutes
another such class. This family is well-known to experts but has not previously
appeared in the literature. To define it, recall that a triad is a triple of closed, oriented
3–manifolds that are obtained by Dehn filling a compact manifold with torus boundary
along a triple of curves at pairwise distance (ie geometric intersection number) one.
A simple and useful way to recognize a triad is from a triple of Heegaard diagrams
Hi D .S; ˛0[˛i ; ˇ/ for i D 1, 2, 3, where ˛1 , ˛2 and ˛3 are three curves on S at
pairwise distance one. If Yi denotes the manifold presented by Hi , then .Y1;Y2;Y3/

forms a triad. In general, if .Y1;Y2;Y3/ denotes a triad of rational homology spheres,
then an elementary calculation in homology shows that they may be permuted so that
det.Y1/C det.Y2/D det.Y3/.

Definition 7.3 The set of formal L–spaces F is the smallest set of manifolds such
that
� S3 2 F ; and
� if .Y1;Y2;Y3/ is a triad with Y1 , Y2 2 F and det.Y1/C det.Y2/ D det.Y3/,

then Y3 2 F .

An elementary application of the surgery triangle in Heegaard Floer homology shows
that every manifold in F is an L–space. Compare Definition 7.3 to the definition of
a quasi-alternating link [36, Section 2]. In particular, the branched double cover of a
quasi-alternating link is a formal L–space. Both S and F are proper subsets of the set
of all L–spaces, as the Poincaré homology sphere is in the complement of both.

Proposition 7.4 There exists a formal L–space that is not a strong L–space; thus,
F 6� S .

Proof The pretzel link L D P .2; 2;�3/ is a nonalternating, quasi-alternating link
with determinant 8. Its branched double cover Y D†.L/ is the small Seifert fibered
space †.2; 2;�3/, and it belongs to F , as remarked above. Since det.Y / D 8 and
Y is not a connected sum of lens spaces, Theorem 1.5 shows that Y is not a strong
L–space. Thus, Y 2 F �S .
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Question 7.5 Is every strong L–space a formal L–space? That is, do we have S �F ?

Note that an affirmative answer to Question 1.2 would imply an affirmative answer to
Question 7.5. To approach Question 7.5, we introduce the notion of an antiwave in a
Heegaard diagram H . This is an arc 
 that is properly embedded in a region R of H

and whose endpoints lie on the interiors of distinct arcs of @R and on the same ˛ or ˇ
curve, such that the local signs of intersection at the two endpoints of 
 are the same.
The relevance of antiwaves is given by the following:

Proposition 7.6 If a 1–extendible strong Heegaard diagram H for a strong L–space Y

contains an antiwave, then Y fits into a triad with strong L–spaces Y1 and Y2 with
det.Y /D det.Y1/C det.Y2/.

Thus, one might try to answer Question 7.5 by showing that every strong L–space
admits a strong, 1–extendible Heegaard diagram that contains an antiwave.

Proof of Proposition 7.6 Without loss of generality, assume that H contains an
antiwave 
 with endpoints on ˛i . As in the case of a wave, let a1 and a2 denote
the two arcs of ˛i X @
 , and let ˛j

i D aj [ 
 for j D 1, 2, with orientation induced
from that of ˛i . We may perturb ˛1

i and ˛2
i so that they meet ˛i and each other

transversally, with each pair of curves meeting in a single point. Just as in the proof
of Proposition 7.2, there is a natural identification of ˛i \ˇ with the disjoint union
.˛1

i \ˇ/t .˛
2
i \ˇ/, leading to a nontrivial decomposition S.H /DS1 tS2 .

For j D 1, 2, let Hj D .S; ˛
j ; ˇ/ be the diagram obtained by replacing ˛i with the

perturbed copy of ˛j
i . Note that S.Hj / is identified with Sj , preserving all signs of

intersection. We must verify that Hj is a Heegaard diagram, ie that the curves in ˛j

are linearly independent in H1.S IZ/. Since all points in S.H / have the same sign,
the intersection matrix M.Hj / has

jdet.M.Hj //j D jS.Hj /j D jSj j ¤ 0:

Therefore, the curves in ˛j must be linearly independent, as required. Let Yj be the 3–
manifold presented by Hj ; then Yj is a strong L–space. By construction, .Y1;Y2;Y /

forms a triad. Moreover,

det.Y /D jS.H /j D jS1jC jS2j D jS.H1/jC jS.H2/j D det.Y1/C det.Y2/;

as required.
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7.3 Weak reducibility

A Heegaard splitting is called weakly reducible if there exist disjoint compressing disks
in the two handlebodies into which the Heegaard surface decomposes the 3–manifold.
This notion was introduced by Casson and Gordon, who showed that given a weakly
reducible Heegaard splitting of a manifold, either the splitting is reducible or else the
manifold contains an incompressible surface of positive genus [5, Theorem 3]. The
following result is elementary.

Proposition 7.7 A strong Heegaard diagram of genus g � 3 describes a weakly
reducible Heegaard splitting.

Proof Given a strong Heegaard diagram, convert it into a 1–extendible strong Hee-
gaard diagram H for the same Heegaard splitting by Proposition 3.1. Then M DM.H /

is a Pólya matrix and H is coherent. The proposition then follows from the assertion
that a g�g Pólya matrix M contains a zero entry for g � 3, which we now establish.
Let

N D

0@b o t

c u d

r a g

1A
denote the top-left 3� 3 minor of M and m the product of its remaining diagonal
entries. Since M is a Pólya matrix, either m D 0 or else all nonzero terms in the
expansion

det.N /D bugC cat C rod � bad � cog� rut

have the same sign, since each of these terms’ products with m contributes with the
same sign to det.M /. It follows that 0� dogcar tbum� 0, so M has at least one 0

entry.

In fact, for a strong Heegaard diagram of genus greater than 3, [41, Corollary 7.8]
immediately implies a much stronger result:

Proposition 7.8 A strong, 1–extendible Heegaard diagram contains an ˛ curve that
meets at most three ˇ curves, and vice versa.

It is possible that Propositions 7.7 and 7.8 could be useful towards the classification of
strong, 1–extendible Heegaard diagrams of higher genus.
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8 Questions for future research

We conclude with a compilation of questions that may interest other researchers, particu-
larly those with expertise in the theory of Heegaard splittings. (See also Questions 5.14,
5.15, 6.5 and 7.5, above.)

Question 8.1 What can be said about the set of strong Heegaard diagrams for a given
strong L–space? Is there a finite collection of moves on strong diagrams that can
interpolate between any two given strong diagrams for the same strong L–space, and
if so, can we arrange that the genus change monotonically in such sequences? As a
specific example, the branched double cover of a two-bridge link is a lens space, and
one can try to relate the large-genus strong diagram produced by the first author [11]
to the standard genus-1 diagram.

Question 8.2 More generally, is there a finite collection of moves on Heegaard dia-
grams that can interpolate between any two given diagrams for the same 3–manifold
such that jS.H /j remains bounded in some way? Such a collection might yield an
algorithm that can detect whether a given Heegaard diagram presents a strong L–space.
Past efforts to study 3–manifolds algorithmically via Heegaard diagrams (eg [47]) have
focused on genus and the total number of intersection points in ˛\ˇ as the measures
of complexity that should be bounded. We wonder if jS.H /j might be more useful
for this purpose.

Question 8.3 Is the simultaneous trajectory number multiplicative under connected
sum? A theorem of Haken implies that any Heegaard diagram for a reducible manifold
can be transformed into a reducible diagram using isotopies and handleslides [13]. Can
this be accomplished without increasing the number of generators? As a derivative
of that question, are all summands of a strong L–space themselves strong L–spaces?
The Künneth formula for Heegaard Floer homology implies that the summands of a
reducible L–space are themselves L–spaces.

Question 8.4 Is there an elementary proof that a strong L–space does not admit a
coorientable taut foliation? Compare the discussion following Definition 1.1.

Question 8.5 If H is a Heegaard diagram for a rational homology sphere and the
differential vanishes on �CF.H /, does it follow that H is a strong Heegaard diagram?
Note that if the differential vanishes for some choice of analytic data, then it must vanish
for all such choices. However, the fact that it vanishes may rely on some nontrivial
analysis of moduli spaces. A related question is whether a Heegaard diagram in which
there are no nonnegative domains of Whitney disks must be strong. This assumption is
stronger but purely combinatorial.
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351–368 http://msp.org/msp_org/media/files/G.Hetyei-Rectangular_
configurations_that_can_be_covered_by_2x1_rectangles.pdf

Algebraic & Geometric Topology, Volume 16 (2016)

http://dx.doi.org/10.1007/BF01455692
http://www.ams.org/mathscinet-getitem?mr=1512619
http://dx.doi.org/10.1007/s00208-012-0852-7
http://dx.doi.org/10.1007/s00208-012-0852-7
http://www.ams.org/mathscinet-getitem?mr=3072799
http://dx.doi.org/10.1007/BF01389793
http://www.ams.org/mathscinet-getitem?mr=0246312
http://dx.doi.org/10.1016/0166-8641(87)90092-7
http://www.ams.org/mathscinet-getitem?mr=918537
http://dx.doi.org/10.1017/CBO9780511809767
http://www.ams.org/mathscinet-getitem?mr=2107964
http://projecteuclid.org/euclid.ijm/1255455002
http://www.ams.org/mathscinet-getitem?mr=0099667
http://dx.doi.org/10.2140/gt.2003.7.399
http://dx.doi.org/10.2140/gt.2003.7.399
http://www.ams.org/mathscinet-getitem?mr=1988291
http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0631.0642.ocr.pdf
http://www.ams.org/mathscinet-getitem?mr=2503492
http://dx.doi.org/10.1007/s00222-012-0421-4
http://www.ams.org/mathscinet-getitem?mr=3049933
http://dx.doi.org/10.1112/jtopol/jtt007
http://dx.doi.org/10.1112/jtopol/jtt007
http://www.ams.org/mathscinet-getitem?mr=3065184
http://dx.doi.org/10.1112/blms/bds096
http://dx.doi.org/10.1112/blms/bds096
http://www.ams.org/mathscinet-getitem?mr=3104988
http://www.ams.org/mathscinet-getitem?mr=0224071
http://arxiv.org/abs/1508.0591
http://arxiv.org/abs/1508.05445
http://dx.doi.org/10.1090/S0002-9947-2010-05117-7
http://dx.doi.org/10.1090/S0002-9947-2010-05117-7
http://www.ams.org/mathscinet-getitem?mr=2728591
http://msp.org/msp_org/media/files/G.Hetyei-Rectangular_configurations_that_can_be_covered_by_2x1_rectangles.pdf
http://msp.org/msp_org/media/files/G.Hetyei-Rectangular_configurations_that_can_be_covered_by_2x1_rectangles.pdf


Strong Heegaard diagrams and strong L–spaces 3207

[18] T Homma, M Ochiai, M-o Takahashi, An algorithm for recognizing S3 in 3–
manifolds with Heegaard splittings of genus two, Osaka J. Math. 17 (1980) 625–648
MR591141

[19] W H Kazez, R Roberts, Approximating C 1;0 foliations, preprint (2014) arXiv:
1404.5919

[20] D A Lee, R Lipshitz, Covering spaces and Q–gradings on Heegaard Floer homology,
J. Symplectic Geom. 6 (2008) 33–59 MR2417439

[21] A S Levine, S Lewallen, Strong L–spaces and left-orderability, Math. Res. Lett. 19
(2012) 1237–1244 MR3091604

[22] A S Levine, D Ruberman, S Strle, Nonorientable surfaces in homology cobordisms,
Geom. Topol. 19 (2015) 439–494 MR3318756

[23] L Lovász, M D Plummer, Matching theory, AMS Chelsea Publishing, Providence, RI
(2009) MR2536865

[24] B Martelli, C Petronio, F Roukema, Exceptional Dehn surgery on the minimally
twisted five-chain link, Comm. Anal. Geom. 22 (2014) 689–735 MR3263935

[25] W McCuaig, Pólya’s permanent problem, Electron. J. Combin. 11 (2004) art. ID 79
MR2114183

[26] W W Menasco, M B Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math.
Soc. 25 (1991) 403–412 MR1098346

[27] O Morikawa, A counterexample to a conjecture of Whitehead, Math. Sem. Notes Kobe
Univ. 8 (1980) 295–298 MR601897

[28] Y Ni, Z Wu, Heegaard Floer correction terms and rational genus bounds, Adv. Math.
267 (2014) 360–380 MR3269182

[29] M Ochiai, A counterexample to a conjecture of Whitehead and Volodin–Kuznetsov–
Fomenko, J. Math. Soc. Japan 31 (1979) 687–691 MR544686

[30] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for
four-manifolds with boundary, Adv. Math. 173 (2003) 179–261 MR1957829

[31] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004)
311–334 MR2023281

[32] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004)
58–116 MR2065507

[33] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and
applications, Ann. of Math. 159 (2004) 1159–1245 MR2113020

[34] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-
manifolds, Ann. of Math. 159 (2004) 1027–1158 MR2113019

[35] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44
(2005) 1281–1300 MR2168576

Algebraic & Geometric Topology, Volume 16 (2016)

http://projecteuclid.org/euclid.ojm/1200773555
http://projecteuclid.org/euclid.ojm/1200773555
http://www.ams.org/mathscinet-getitem?mr=591141
http://arxiv.org/abs/1404.5919
http://arxiv.org/abs/1404.5919
http://dx.doi.org/10.4310/JSG.2008.v6.n1.a3
http://www.ams.org/mathscinet-getitem?mr=2417439
http://dx.doi.org/10.4310/MRL.2012.v19.n6.a5
http://www.ams.org/mathscinet-getitem?mr=3091604
http://dx.doi.org/10.2140/gt.2015.19.439
http://www.ams.org/mathscinet-getitem?mr=3318756
http://dx.doi.org/10.1090/chel/367
http://www.ams.org/mathscinet-getitem?mr=2536865
http://dx.doi.org/10.4310/CAG.2014.v22.n4.a4
http://dx.doi.org/10.4310/CAG.2014.v22.n4.a4
http://www.ams.org/mathscinet-getitem?mr=3263935
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r79.html
http://www.ams.org/mathscinet-getitem?mr=2114183
http://dx.doi.org/10.1090/S0273-0979-1991-16083-0
http://www.ams.org/mathscinet-getitem?mr=1098346
http://www.ams.org/mathscinet-getitem?mr=601897
http://dx.doi.org/10.1016/j.aim.2014.09.006
http://www.ams.org/mathscinet-getitem?mr=3269182
http://dx.doi.org/10.2969/jmsj/03140687
http://dx.doi.org/10.2969/jmsj/03140687
http://www.ams.org/mathscinet-getitem?mr=544686
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://www.ams.org/mathscinet-getitem?mr=1957829
http://dx.doi.org/10.2140/gt.2004.8.311
http://www.ams.org/mathscinet-getitem?mr=2023281
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://www.ams.org/mathscinet-getitem?mr=2065507
http://dx.doi.org/10.4007/annals.2004.159.1159
http://dx.doi.org/10.4007/annals.2004.159.1159
http://www.ams.org/mathscinet-getitem?mr=2113020
http://dx.doi.org/10.4007/annals.2004.159.1027
http://dx.doi.org/10.4007/annals.2004.159.1027
http://www.ams.org/mathscinet-getitem?mr=2113019
http://dx.doi.org/10.1016/j.top.2005.05.001
http://www.ams.org/mathscinet-getitem?mr=2168576


3208 Joshua Evan Greene and Adam Simon Levine

[36] P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers,
Adv. Math. 194 (2005) 1–33 MR2141852

[37] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds,
Adv. Math. 202 (2006) 326–400 MR2222356

[38] J A Rasmussen, Floer homology and knot complements, PhD thesis, Har-
vard University, Cambridge, MA (2003) MR2704683 Available at http://
search.proquest.com/docview/305332635

[39] J Rasmussen, Lens space surgeries and L–space homology spheres, preprint (2007)
arXiv:0710.2531

[40] J Rasmussen, S D Rasmussen, Floer simple manifolds and L–space intervals, preprint
(2015) arXiv:1508.05900

[41] N Robertson, P D Seymour, R Thomas, Permanents, Pfaffian orientations, and even
directed circuits, Ann. of Math. 150 (1999) 929–975 MR1740989

[42] A Schrijver, Tait’s flyping conjecture for well-connected links, J. Combin. Theory Ser.
B 58 (1993) 65–146 MR1214893

[43] T Usui, Heegaard Floer homology, L–spaces, and smoothing order on links, I, preprint
(2012) arXiv:1202.1353

[44] T Usui, Heegaard Floer homology, L–spaces, and smoothing order on links, II, preprint
(2012) arXiv:1202.3333

[45] V V Vazirani, M Yannakakis, Pfaffian orientations, 0–1 permanents, and even cycles
in directed graphs, Discrete Appl. Math. 25 (1989) 179–190 MR1031270

[46] O J Viro, V L Kobel’skiı̆, The Volodin–Kuznecov–Fomenko conjecture on Heegaard
diagrams is false, Uspekhi Mat. Nauk 32 (1977) 175–176 MR0467757 In Russian

[47] I A Volodin, V E Kuznetsov, A T Fomenko, The problem of discriminating algorith-
mically the standard three-dimensional sphere, Uspekhi Mat. Nauk 29 (1974) 71–168
MR405426 In Russian; translated in Russian Math. Surveys 29 (1974) 71–172

[48] M Voorhoeve, A lower bound for the permanents of certain .0; 1/–matrices, Nederl.
Akad. Wetensch. Indag. Math. 41 (1979) 83–86 MR528221

Department of Mathematics, Boston College
Maloney Hall, Fifth Floor, Chestnut Hill, MA 02467, United States

Department of Mathematics, Princeton University
Fine Hall, Washington Road, Princeton, NJ 08544, United States

joshua.greene@bc.edu, asl2@math.princeton.edu

http://www2.bc.edu/joshua-e-greene,
http://www.math.princeton.edu/~asl2

Received: 9 December 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.aim.2004.05.008
http://www.ams.org/mathscinet-getitem?mr=2141852
http://dx.doi.org/10.1016/j.aim.2005.03.014
http://www.ams.org/mathscinet-getitem?mr=2222356
http://www.ams.org/mathscinet-getitem?mr=2704683
http://search.proquest.com/docview/305332635
http://search.proquest.com/docview/305332635
http://arxiv.org/abs/0710.2531
http://arxiv.org/abs/1508.05900
http://dx.doi.org/10.2307/121059
http://dx.doi.org/10.2307/121059
http://www.ams.org/mathscinet-getitem?mr=1740989
http://dx.doi.org/10.1006/jctb.1993.1032
http://www.ams.org/mathscinet-getitem?mr=1214893
http://arxiv.org/abs/1202.1353
http://arxiv.org/abs/1202.3333
http://dx.doi.org/10.1016/0166-218X(89)90053-X
http://dx.doi.org/10.1016/0166-218X(89)90053-X
http://www.ams.org/mathscinet-getitem?mr=1031270
http://mi.mathnet.ru/umn3244
http://mi.mathnet.ru/umn3244
http://www.ams.org/mathscinet-getitem?mr=0467757
http://mi.mathnet.ru/umn4417
http://mi.mathnet.ru/umn4417
http://www.ams.org/mathscinet-getitem?mr=405426
http://dx.doi.org/10.1070/RM1974v029n05ABEH001296
http://www.ams.org/mathscinet-getitem?mr=528221
mailto:joshua.greene@bc.edu
mailto:asl2@math.princeton.edu
http://www2.bc.edu/joshua-e-greene
http://www.math.princeton.edu/~asl2
http://msp.org
http://msp.org

	1. Introduction
	2. Preliminaries
	3. Extendibility
	4. Finiteness results
	5. Strong diagrams of genus 2
	5.1. Coherent multicurves in an annulus
	5.2. Conventions for rational tangles
	5.3. A construction of genus-2 Heegaard diagrams
	5.4. Strong, 1–extendible Heegaard diagrams of genus 2

	6. Floer simple knots
	7. Waves, antiwaves, and weak reducibility
	7.1. Waves
	7.2. Antiwaves and formal L–spaces
	7.3. Weak reducibility

	8. Questions for future research
	References

