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Knots with compressible thin levels

RYAN BLAIR

ALEXANDER ZUPAN

We produce embeddings of knots in thin position that admit compressible thin levels.
We also find the bridge number of tangle sums where each tangle is high distance.

57M25, 57M27; 57M50

1 Introduction

Thin position has contributed to many advances in the study of knots and 3–manifolds.
Gabai defined thin position for knots in S3 and employed the notion in his proof of
Property R [5]. Subsequently, thin position was utilized in the solution to the knot
complement problem (see Gordon and Luecke [7]), the recognition problem for S3

(see Rubinstein [12] and Thompson [14]) and the leveling of unknotting tunnels (see
Goda, Scharlemann and Thompson [6]).

The usefulness of thin position for knots in S3 is grounded in its connections to
the topology of the knot exterior. In particular, Thompson showed that a knot in
thin position that is not in bridge position contains an essential planar surface in its
exterior [15]. Wu strengthened this result to show that every thinnest thin level of a knot
in thin position is essential in the knot exterior [18]. Additional results have furthered
our understanding of essential surfaces and thin position; see Heath and Kobayashi [8]
and Tomova [16]. These results motivate the following natural question.

Question 1 Given a knot in thin position, are all thin levels essential in the knot
exterior?

This question was originally considered by Thompson during her work on the recog-
nition problem for S3 . In the context of that problem as well as many others, the
possibility of a knot or graph in thin position admitting a compressible thin level presents
a significant technical challenge. It has long been believed that these challenges are
endemic and that there exist knots in thin position that admit a compressible thin level.
In fact, candidate examples are well known in the community; see Figure 3. However,
demonstrating that one of these candidate embeddings is in thin position has proved
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to be a difficult problem. In this paper, we use recent advancements in the study of
the distance of bridge surfaces (see the first author, Tomova and Yoshizawa [4] and
Johnson and Tomova [10]) to prove the following:

Theorem 1.1 There are infinitely many knots K that admit a thin position with a
compressible thin level.

Our main result supports the emerging theme that the fundamental properties of thin
position are quite subtle. Unlike the closely related invariant of bridge number, width
(an integer invariant derived from thin position) is not additive with respect to connected
sum; see the first author and Tomova [3]. Additionally, thin position of a knot may not
minimize bridge number [3]. Finally, there exist embeddings of the unknot that cannot
be isotoped to the standard unknot through embeddings of nonincreasing width; see
the second author [19].

Our work also reinforces the notion that knots and 3–manifolds composed of sufficiently
complicated pieces have predictable topology; the proof of Theorem 1.1 demonstrates
that the obvious embeddings of the candidate knots K coincide with their thin positions.
In terms of 3–manifolds, this concept is apparent in work of Kobayashi and Qiu [11],
which demonstrates that if sufficiently complicated compact 3–manifolds are glued
together along a common boundary component, then the Heegaard genus of the resulting
3–manifold is as expected.

In the setting of knots in S3 , the natural analogue of 3–manifold amalgamation is
the gluing together of two collections of arcs each contained in a 3–ball, an operation
known as tangle summation. In general, it is difficult to predict the bridge number of a
tangle sum; for instance, the tangle sum of two nontrivial tangles can give rise to the
unknot. In [1], the first author studies the degeneration of bridge number for tangle
sums of 2–strand tangles, and in [2], he gives a lower bound for the bridge number of
a tangle sum with some mild restrictions on the tangles being glued together. However,
as with 3–manifolds, if we restrict our tangles by requiring that they have sufficiently
complicated bridge surfaces, the picture becomes much clearer.

Using the techniques mentioned above, we prove the complete analogue of the main
theorem in [11] for the bridge number of knots in S3 (see Section 3 for relevant
definitions):

Theorem 1.2 Suppose that .B1; �1/ and .B2; �2/ are n–strand tangles with n > 1,
and let K be a knot in S3 that is the tangle sum of .B1; �1/ and .B2; �2/. In addition,
let †i be a ˇi –bridge sphere for .Bi ; �i/, where ˇi > n. If d.†i/ > 2.ˇ1Cˇ2� n/

for i D 1; 2, then
b.K/D ˇ1Cˇ2� n:
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Our paper is structured as follows. In Section 2, we introduce the notions of width and
bridge number and we present relevant background. In Section 3, we define distance
of a bridge surface and give results connecting distance to the existence of essential
surfaces and alternate bridge surfaces. In Section 4, we prove Theorem 1.2. In Section 5,
we give an embedding of a knot with a compressible thin level, while in Sections 6, 7
and 8 we show that this embedding is a thin position for the knot. Our proof relies on
recent advances in the study of high distance bridge surfaces [10] and the construction
of our examples is inspired by the examples of strict subadditivity of width presented
in [3].

2 Preliminaries

A knot K is an isotopy class of embedded simple closed curves in the 3–sphere.
For the remainder of the paper, we fix a Morse function hW S3 ! R such that h

has exactly two critical points, one of index zero and one of index three. Given an
embedded simple closed curve k in S3 , we may perturb k (if necessary) so that hjk
is Morse. Let c0; : : : ; cn denote the critical values of hjk and choose regular values
r1; : : : ; rn satisfying ci�1 < ri < ci . We say that h�1.ri/ is a level sphere having
width w.h�1.ri//D jk\h�1.ri/j. The width w.k/ and bridge number b.k/ of k are
defined to be

w.k/D
X

w.h�1.ri// and b.k/D
nC1

2
;

respectively. To obtain invariants of the knot K , we minimize these two quantities over
all possible embeddings of K . In other words, the width w.K/ and bridge number
b.K/ of K are defined by

w.K/D min
k�K

fw.k/g and b.K/D min
k�K

fb.k/g:

We say that k is a thin position of K if w.k/D w.K/. More generally, we say k is
a bridge position if all maxima of hjk occur above all minima of hjk , and a bridge
position k is a minimal bridge position if b.k/D b.K/. Equivalently, we could define
these concepts by fixing an embedding k of K and considering isotopy classes of
Morse functions h on K .

Let k and r1; : : : ; rn be as above. In [13], Scharlemann and Schultens present an
alternate formula for calculating width using level spheres which intersect k maximally
or minimally. For 1< i < n, we call h�1.ri/ a thick level if ci�1 is a minimum and ci

is a maximum, or a thin level if ci�1 is a maximum and ci is a minimum. It is a
straightforward exercise to see that if k has m thick levels, then it has m�1 thin levels.
We let a1; : : : ; am (resp. b1; : : : ; bm�1/ denote the widths of the thick levels (resp.
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thin levels), where both sets of numbers are naturally ordered by the height function h.
Hence, each k gives rise to a tuple of even integers .a1; b1; a2; : : : ; bm�1; am/ which
we call the thin-thick tuple corresponding to k . By [13],

(1) w.k/D
1

2

�X
a2

i �

X
b2

i

�
:

In particular, if we select one of the ai , we have

(2) w.k/� 1
2
a2

i :

As demonstrated by Thompson [15] and Wu [18], thin position is related to essential
surfaces embedded in the exterior E.K/D S3 n �.K/ of K , where �. � / denotes an
open regular neighborhood. A compact surface S with nonempty boundary properly
embedded in E.K/ is said to be meridional if each curve of @S bounds a meridian disk
of the solid torus �.K/. As such, meridional surfaces are in one-to-one correspondence
with closed surfaces embedded in S3 and intersecting K transversely. We often
blur the distinction between such surfaces; however, for a closed surface S in S3

intersecting K transversely, we will use SK to denote S \E.K/ where appropriate.
In an abuse of terminology, we also occasionally refer to SK as a punctured surface
despite the fact that it is compact. When we say that two closed surfaces S and T

in S3 which intersect K transversely are isotopic, we will mean that the surfaces are
isotopic relative to K (equivalently, SK is isotopic to TK in E.K/) unless otherwise
specified.

Suppose now that S is a properly embedded meridional or closed surface in E.K/. A
compressing disk D for S is an embedded disk such that S \D D @D and @D is an
essential curve in S . If there is an compressing disk for S , we say S is compressible;
otherwise, S is incompressible. If S is isotopic into @E.K/, we say S is @–parallel,
and in the case that S is incompressible and not @–parallel, we call S essential.

There are two other classes of disks we will use, and to define these we consider S as
an embedded surface in S3 intersecting K transversely. A bridge disk is an embedded
disk � such that @� is the endpoint union of arcs ˛ and ˇ , where �\S D ˛ and
ˇ �K . A cut disk C is an embedded disk such that C \S D @C , @C is essential
in SK , and C \K is a single point in the interior of C . If there is a compressing or cut
disk (a c–disk) for S , we say S is c–compressible; otherwise S is c–incompressible.
If S is c–incompressible and not @–parallel, S is c–essential.

If a surface S is c–compressible, then we may surger S along a c–disk D to get a new
surface S 0 . We say that S 0 is obtained by c–compressing S . We note that this process
has an inverse operation. If D is a compressing disk, we may recover S from S 0 by
performing surgery on S 0 along an arc ˛ such that ˛\S 0 D @˛ ; that is, viewing �.˛/
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as ˛��, where � is a small disk, we glue the annulus ˛� @� to S 0 n �.@˛/. If D

is a compressing disk, we recover S using an arc ˛ disjoint from K ; when D is a
cut disk, we recover S using an arc ˛ contained in K . In either case, we say that S

results from tubing S 0 .

The relationship between thin position of a knot K and essential meridional surfaces
is made precise with the following theorem:

Theorem 2.1 [18] Suppose k is a thin position of K which has a thin level. Then,
any thinnest thin level h�1.ri/ is an essential meridional surface in E.K/.

A knot K in S3 is prime if its exterior contains no essential meridional annulus. The
above result has been strengthened by Tomova, and we will employ the following
extension:

Theorem 2.2 [16] Suppose K is a prime knot in thin position and P is a thin sphere
of minimal width. If P 0 is another thin sphere satisfying w.P 0/D w.P /C 2, then P 0

is incompressible.

We note, however, that the preceding theorems do not imply that thin spheres are
c–incompressible. In the case of a c–compressible thin sphere, we will be able to use
a theorem of Blair and Tomova.

Theorem 2.3 [3] Let K be a prime knot in thin position and suppose P is a c–
compressible thin sphere, with a c–disk D . Then there is a thin sphere P 0 adjacent
to P in the direction of D such that either D\P 0 ¤∅ or w.P 0/ < w.P /.

3 Bridge surfaces and distance

In this section, we will define bridge surfaces for knots and tangles and discuss important
relationships between bridge surfaces, essential surfaces, and distances between disk
sets in the curve complex.

A punctured 3–sphere is the complement of a disjoint embedded collection of open
3–balls in S3 . We construct our knots by gluing together arcs embedded in punctured
3–spheres, called tangles. A tangle .B; �/ consists of a 3–manifold B homeomorphic
to a punctured 3–sphere containing a properly embedded 1–manifold � which has no
closed components. In the special case that B is a 3–ball and nDj� j, we call .B; �/ an
n–strand tangle. Every embedded 2–sphere † in a punctured 3–sphere B separates B

into two punctured 3–balls B1 and B2 . If Bi has n� 2 boundary components, then
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there is a collection of n� 2 properly embedded arcs �i , called the spine of Bi , such
that Bi n�.�i/ is homeomorphic to †�I . If Bi has one boundary component, then �i

is a single point in the interior of Bi .

Given .B; �/ such that .B; �/ is a tangle or B D S3 and � is a knot, we say an
embedded 2–sphere † in B is a bridge sphere if † is transverse to � and if �\Bi can
be simultaneously properly isotoped into a position so that it is the union of I –fibers of
Bi n �.�i/, i D 1; 2 (such arc components of � \Bi are called vertical) and arcs with
both endpoints on † that admit mutually disjoint bridge disks (such arc components
of � \Bi are called @–parallel). Letting �i D � \Bi , we say that .Bi ; �i/ is a trivial
tangle and we express the decomposition of .B; �/ by † as a bridge splitting,

.B; �/D .B1; �1/[† .B2; �2/:

Here we make several other definitions concerning tangles. A tangle .B; �/ is irre-
ducible if every 2–sphere embedded in B n �.�/ bounds a ball, and .B; �/ is prime if
every meridional annulus in B n �.�/ is boundary parallel.

Given an embedding of a knot in S3 that is Morse with respect to the height function h,
every thick level † is a bridge sphere for the portion of the knot that lies between the
thin level immediately below † and the thin level immediately above †. If .B; �/ is a
knot in S3 or a tangle in a 3–ball, we say a bridge sphere † is an n–bridge sphere
if .Bi ; �i/, .i D 1; 2/ is an n–strand trivial tangle. It is a simple exercise to verify
that if k is an embedding of a knot K with one thick level h�1.r/, then h�1.r/ is an
n–bridge sphere, where n D w.h�1.r//=2. As above, if S is an embedded surface
in B transverse to � , we will use S� to denote S n �.�/� B n �.�/ when we wish to
refer to a surface in the exterior of � in B .

We will utilize “sufficiently complicated” bridge surfaces, where complication is mea-
sured via distances between disk sets in the curve complex. For a compact surface S ,
the (1–skeleton of the) curve complex C.S/ is a graph whose vertices are isotopy
classes of essential simple closed curves. Two vertices are connected by an edge if their
corresponding curves may be realized disjointly. The vertex set of the curve complex
C.S/ has a natural metric constructed by assigning each edge length one and defining
the distance between two vertices to be the length of the shortest path between them.

Given a bridge sphere † splitting .B; �/ into .B1; �1/[† .B2; �2/, we define the disk
set Di � C.†� / to be those curves in †� which bound compressing disks in Bi n�.�i/,
and the distance d.†/ of the splitting to be

d.†/Dminfd.c1; c2/ W ci 2 Dig:
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The utility of this definition is made clear by the following two theorems of Johnson
and Tomova (the first is a version of Theorem 4.4 from [10] and the second is implicit
in the proof of Theorem 4.2):

Theorem 3.1 [10] Suppose .N;K/ is a tangle or N D S3 and K is a knot, and let
.M;T / be a tangle inside of .N;K/ such that K is transverse to @M and .@M /K is
incompressible in .N nM / n �.K/, and T DK\M . In addition, let † be a bridge
sphere for .M;T / and let †0 be a bridge sphere for .N;K/. Then one of the following
holds:

� After isotopy and surgery of †0
K
\M along c–disks in M , we obtain a com-

pressed surface †00
K

such that †00
K
\M is parallel to †K .

� d.†/� 2��.†0
K
/.

� �.†K /� �3.

Theorem 3.2 [10] Suppose .N;K/ is a tangle or N D S3 and K is a knot, and let
.M;T / be a tangle inside of .N;K/ such that K is transverse to @M and .@M /K
is incompressible in .N nM / n �.K/, and T D K \M . Let † be a bridge sphere
for .M;T / and F be a surface properly embedded in N such that F is meridional,
incompressible and separating. Additionally, suppose F \ .@M /K is essential in
.@M /K . Then one of the following holds:

� d.†/� 2��.FK /.

� �.†K /� �3.

� Each component of F \ .M n �.T // is boundary parallel in M n �.T /.

As an immediate application of Theorem 3.2, we prove the next two lemmas for use
later in the paper.

Lemma 3.1 Suppose .B; �/ is a tangle containing a bridge sphere †. Then one of
the following holds:

� d.†/� 2.

� �.†� /� �3.

� .B; �/ is prime.

Proof Suppose the second two conclusions do not hold, so that .B; �/ contains an
essential meridional annulus A. By Theorem 3.2, d.†/� 2��.A/� 2.
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Lemma 3.2 Suppose K is a prime knot in S3 , and .S3;K/ contains a tangle .B; �/
with bridge sphere †. Suppose F is a closed, separating surface in S3 intersecting K

transversely such that FK is incompressible in E.K/. Additionally, suppose that
.@B/K is incompressible in the knot complement. Then one of the following holds:
� d.†/� 2��.FK /.
� �.†K /� �3.
� After surgery along cut disks and an isotopy of F , we have F \B D∅; if, in

addition, F is isotopic into B , then FK is parallel to a component of .@B/K .

Proof Since .@B/K and FK are incompressible meridional surfaces and E.K/ is
irreducible, we can assume after isotopy that .@B/K \FK is a collection of curves that
do not bound disks in either surface. Further, since E.K/ is prime, we may remove
curves of the intersection of .@B/K \FK which are boundary parallel in .@B/K by
either surgery along cut disks or isotopy of FK , after which we may assume that
.@B/K \FK consists of curves essential in .@B/K .

By Theorem 3.2, if the first two conclusions do not hold, then each component Ri of
F \ .B n�.�// is parallel to a subsurface R0i of S D @.B n�.�//. Let fR0ig denote the
collection of all such subsurfaces, and isotope F so that the total number of components
of intersections of surfaces R0i 2 fR

0
ig with @�.�/ is minimal up to surgery along cut

disks and isotopy of FK . Now, pick an index i so that the corresponding R0i is
innermost in S . If there is an arc t 2 � such that @�.t/�R0i , then a meridian curve 
 0

of �.t/ lifts to a curve 
 �Ri . In B , the curve 
 bounds a disk C which intersects �
in exactly one point, so that either C is a cut disk, or we could remove the intersection
of R0i and @�.t/ via an isotopy. In either case, we reduce the number of intersections
of fR0ig with @�.�/.

We conclude that up to surgery along cut disks and isotopy of FK , R0i \ �.�/D∅ for
all R0i , so every component Ri of the c–compressed F intersected with B n �.�/ is
parallel into @B� . Thus, we may push all such Ri outside of B . If, in addition, F

is isotopic into B , then fR0ig contains exactly one region R0i , and R0i can be chosen
so that @R0i avoids both int.@.�.�/// and int..@B/K /. Thus, R0i is a component of
.@B/K , as desired.

Lastly, using results of Blair, Tomova and Yoshizawa [4], it is shown in [3] that high
distance tangles exist:

Theorem 3.3 Given positive integers b;D; n with n < b and b � 3, there exists an
n–strand tangle .B; �/ with a bridge sphere † such that j� \†j D 2b and d.†/�D .

We remark that the existence of high distance tangles also follows from Johnson and
Moriah [9], discussed in Section 5.
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4 Tangle sum and bridge number

In this section, we show if two n–strand tangles .B; �/ and .B0; � 0/ are glued together
to form a knot K in S3 and both of the tangles have a bridge sphere of sufficiently
high distance, then we may determine the bridge number of the resulting knot. In
this case, we say K is the tangle sum of .B; �/ and .B0; � 0/. First, we make several
definitions about the intersections of various c–disks for a bridge sphere for K .

Suppose † is a bridge sphere for a knot K . If there are c–disks D and D0 on opposite
sides of † such that D\D0D∅, we say that K is c–weakly reducible. Otherwise, K

is c–strongly irreducible.

Lemma 4.1 Suppose k is an embedding of K such that k has one thick level, a
bridge sphere †. If † is c–weakly reducible, then we may exhibit an embedding k 0

of K such that b.k 0/D b.k/ and w.k 0/ < w.k/.

Proof Suppose .S3;K/D .B1; �1/[† .B2; �2/, and let D1 and D2 be c–disks in B1

and B2 , respectively, such that D1 \D2 D ∅. Since † is a 2–sphere, there exist
disks C1 and C2 in † (these disks necessarily intersect K ) such that @Ci D @Di and
C1\C2 D∅. Since Di is a c–disk, we may choose an arc ti 2 �i such that @ti � Ci .
Let �i be a bridge disk for ti that intersects Di minimally. By a standard cut-and-paste
argument, �i \Di D ∅; hence �i \† � Ci . It follows that �1 \�2 D ∅, and
there is an isotopy of k supported in �.�1/[ �.�2/ which moves a minimum above
a maximum, yielding k 0 such that b.k 0/D b.k/ and w.k 0/D w.k/� 4.

Now we connect the distance of tangles to c–weak reducibility. To do this, we need
the following lemma due to the second author.

Lemma 4.2 (Zupan [20]) Suppose † is a c–strongly irreducible bridge sphere for a
knot K in S3 , where .S3;K/D .B1; �1/[† .B2; �/. If c is an essential curve in †K

such that c bounds a disk D embedded in E.K/, where a collar of c in D is disjoint
from †K , then c bounds a compressing disk for †K in Bi n �.�i/ for i D 1 or 2.

Next, we synthesize Lemma 4.2 and Theorem 3.1 into a single result.

Lemma 4.3 Suppose K is a prime knot in S3 , .S3;K/ contains a 3–ball M with K

transverse to @M and .@M /K is incompressible in E.K/. Let T D K \M , † be
a bridge sphere for .M;T / and †0 be a bridge sphere for .S3;K/. Then one of the
following holds:
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� After isotopy, †0\ @M D∅.

� †0 is c–weakly reducible.

� d.†/� 2��.†0
K
/.

� �.†K /� �3.

Proof By Theorem 3.1, if the third and fourth conclusions do not hold, then after
isotopy, there exists a collection fDig of c–compressing disks of †0

K
\M in M such

that compressing along fDig yields a compressed surface †00
K

such that †00
K
\M

is parallel to †K , and we may choose fDig so that the collection f@Dig is pairwise
disjoint. Let f
ig denote the collection of curves in †0

K
such that 
i D @Di . If

any 
i is inessential in †0
K

, pick an innermost such 
i . The curve 
i bounds a
disk or cut disk D0 contained in †0

K
and since 
i is essential in †0

K
\M , we have

D0\ @M ¤∅. In this case, since K is prime and E.K/ is irreducible, compressing
along Di and discarding a trivial 2–sphere or @–parallel annulus yields the same
surface as isotoping D0 onto Di , and this isotopy yields a new surface †�

K
which

intersects @M fewer times.

If every curve in f
ig is inessential in †0
K

, we can repeat the above process to show that
after isotopy, †0

K
D†00

K
, and as such †0

K
may be made disjoint from @M . Otherwise,

some 
i is essential in †0
K

. Let Dj be the first c–disk in the sequence of surgeries
along c–disks such that 
j is essential in †0

K
. Hence 
j bounds a c–disk for †0 .

As †00 is a bridge sphere for .M;T /, we can find compressing disks C and C 0 for †00
K

which are contained in the boundary of regular neighborhoods of bridge disks � and �0

on opposite sides of †00 such that � and �0 meet in a point p contained in K . Let c

and c0 be the boundary curves of C and C 0 in †00
K

. Since 
j bounds a c–compressing
disk taking †0

K
to †00

K
and c and c0 are contained in †00

K
, both c and c0 are disjoint

from 
j .

To form a contradiction, we assume that †0 is c–strongly irreducible. We may re-
cover †0

K
by tubing †00

K
to a collection of meridional surfaces some number of times.

These tubes may be chosen to be disjoint from c and c0 ; hence, we may view c and c0

as essential curves in †0
K

that bound disks meeting the hypothesis of Lemma 4.2.
Since we have assumed that †0 is strongly irreducible, then, by Lemma 4.2, both c

and c0 bound compressing disks E and E0 for †0
K

. If E and E0 are on opposite sides
of †0

K
, then Dj and one of E and E0 are c–disks for †0

K
embedded on opposite

sides of †0
K

, a contradiction to our assumption. Hence, we can assume that E and E0

are embedded on the same side of †0 .

By construction, c bounds a twice-punctured disk F � †00
K

and c0 bounds a twice-
punctured disk F 0 �†00

K
, where F \F 0 is a collection of unpunctured disks in †00

K
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together with a single disk component F 00 containing the single puncture p named
above. Let ˛ and ˛0 denote the arcs in c and c0 which cobound F 00 .

After the tubing operations, ˛[˛0 bounds a punctured disk G00 in †0
K

which is the
intersection of punctured disks G and G0 bounded by c and c0 in †0

K
. Moreover,

by construction every puncture contained in G \G0 is contained in G00 since we can
assume that all components of F \F 0 other than F 00 are disjoint from the tubes in the
tubing operations. It is possible that in †0

K
, G00 contains more than a single puncture;

however, jK \G00j � jK \ F 00j .mod 2/, since the tubing operation preserves this
parity. On each side of †0 , there is a natural pairing of †0\K given by the collection
of trivial arcs (each puncture is connected to exactly one other puncture). However,
since c bounds a compressing disk for †0

K
, all punctures of G must be paired with

punctures in G , and since c0 bounds a compressing disk, all punctures of G0 must be
paired with punctures in G0 . It follows that there is a pairing on the punctures in G00 , a
contradiction to the fact that G00 meets K in an odd number of points. Thus, †0 must
be c–weakly reducible.

We will need a result regarding c–essential surfaces in trivial tangles.

Lemma 4.4 Suppose B is S2 � I or a 3–ball, .B; �/ is a trivial tangle, and S is a
properly embedded essential surface in B n �.�/. Then S \ @B ¤∅.

Proof If B is a 3–ball, then the lemma follows from Tomova [17, Lemma 2.9].
To form a contradiction, suppose that S is a properly embedded essential surface in
B n �.�/ such that S \ @B D∅ and B D S2 � I . Let f�ig be a collection of bridge
disks for the boundary parallel arcs of � .

By irreducibility of B n �.�/, we can assume that there are no closed curves of
intersection between S and

S
i �i . Since S \ @B D ∅, any arc of S \

S
i �i has

both boundary components in K . Let S 0 be the component of S that meets some �j

in an outermost arc ˇ in �j . The arc ˇ together with a subarc of K cobound a disk
in �j that is disjoint from S in its interior. The boundary of a regular neighborhood of
this disk contains a compressing disk for S , unless S 0 is a boundary parallel annulus.
In each case, we contradict the fact that S is essential. Hence, we can assume that S

is disjoint from
S

i �i .

Since S is disjoint from
S

i �i , S is a properly embedded essential surface in Bn�.� 0/

where � 0 is the vertical arc in � . By [17, Lemma 2.10], S is inessential, which is a
contradiction.
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To prove the first main theorem, we need to slightly adapt the notion of width. For an
embedding k of a knot K , define the bridge-width bw.k/ to be bw.k/D .b.k/; w.k//,
and let the bridge-width bw.K/ of K be defined as

bw.K/D min
k�K

fbw.k/g;

where this minimum is taken using the dictionary ordering. Any k satisfying bw.k/D

bw.K/ is called a bridge-thin position, and it is clear from the definition that in this
case b.k/D b.K/. We note that the following theorem is implicit in the arguments of
Wu in [18]:

Theorem 4.1 [18] Suppose k is a bridge-thin position of K which has a thin level.
Then any thinnest thin level h�1.ri/ is an essential meridional surface in E.K/.

Proof In [18], Wu shows that if a thinnest thin level of an embedding k of K is
compressible, then we may exhibit an embedding k 0 of K such that b.k 0/� b.k/ and
w.k 0/ < w.k/. The desired statement easily follows.

Finally, we may prove the main theorem from this section.

Proof of Theorem 1.2 First, we claim that K is prime. If not, there is an essential
meridional annulus A contained in E.K/. Let S D @B1 D @B2 and choose A so that
jA\SK j is minimal. If SK is c–compressible, then by Theorem 3.2, with the c–disk
playing the role of the essential surface F , d.†1/� 2 or d.†2/� 2, a contradiction
(note that when we apply Theorem 3.2 M DN D B1 or M DN D B2 ). Hence, we
can assume that SK is c–essential.

If A\SK ¤ ∅, then a curve 
 � A\SK which is essential in SK gives rise to a
cut disk for SK , so 
 must be boundary parallel in SK . Choose such a 
 which is
outermost, so that 
 bounds a once-punctured disk D which avoids A. However, now
we may surger A along D to get a new essential annulus A0 which intersects SK

fewer times. It follows that A\SK D∅, so A� B1 or A� B2 , which contradicts
Lemma 3.1; hence K is prime.

Observe that there is an embedding k 0 of K with two thick levels parallel to †1

and †2 and one thin level parallel to S D @B1 D @B2 , where k 0 has bridge number
ˇ1Cˇ2� n. Suppose F is any c–essential surface in E.K/. By Lemma 3.2 applied
to .B1; �1/, either ��.FK / > 2.ˇ1 C ˇ2 � n/ � 2 or F \ B1 D ∅ after isotopy.
In the second case, we may apply Lemma 3.2 to .B2; �2/ to conclude that again
��.FK / > 2.ˇ1Cˇ2� n/� 2, or else FK is isotopic to SK .
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Let k be a bridge-thin position of K . We note that if k has a thick level of width at
least 2.ˇ1Cˇ2� n/, then k has at least ˇ1Cˇ2� n critical points and the theorem
holds. If k is a bridge position with bridge sphere †, then by Lemma 4.3 either
†\S D∅, † is c–weakly reducible, or ��.†/ > 2.ˇCˇ0� n/� 2. However, the
first case contradicts Lemma 4.4, and the second case implies that k is not bridge-thin by
Lemma 4.1. In the third case, k has a thick level of width greater than 2.ˇ1Cˇ2�n/.

Suppose now that k has a thin level. By Theorem 4.1, a thinnest thin level R of k

is essential. Suppose that R is c–compressible. Let fDig
m
iD1

be a maximal sequence
of cut disks taking R to a c–incompressible surface R0 . Since the properties of
being incompressible and nonboundary parallel are preserved under surgery along cut
disks, all components of R0 are c–essential. By c–compressing R along the m� 1

cut disks fDig
m�1
iD1

, we get a surface of some number of components, one of which,
call it R00 , contains @Dm . Let R� be the result of c–compressing R00 along Dm .
Since all essential curves in planar surfaces are separating, R� is a c–essential, planar,
meridional surface of two components.

Since the components of R� are c–essential, either ��.RK / � ��.R
�
K
/ > 2.ˇ1C

ˇ2�n/�2, or each component of R�
K

is isotopic to SK . In the first case, k has a thick
level of width greater than 2.ˇ1Cˇ2�n/. In the second case, since R� is obtained by
c–compressing R00 , then R00 is obtained by tubing one component of R� to the other
component of R� along a subarc of K . However, tubing together parallel surfaces
results in a compressible surface. This contradicts the incompressibility of R00 . Thus,
we conclude that R must be c–essential and as such ��.RK / > 2.ˇ1Cˇ2� n/� 2

(completing the proof), or RK is parallel to SK .

If RK is parallel to SK , then S is a level thin sphere with respect to k , and we may
construct a new embedding k� from k by pushing all maxima above all minima in
both B1 and B2 . Note that b.k�/ D b.k/, and k� has exactly two thick spheres
†0

1
�B1 and †0

2
�B2 . By Theorem 3.1, either †0i is isotopic to †i or ��..†i/

0
K
/ >

��..†i/K /. In the second case, b.k/ > b.k 0/, a contradiction. It follows that †0i is
isotopic to †i for each i 2 f1; 2g and b.k/D b.k 0/, as desired.

5 A high distance tangle

In this section we use a result of Johnson and Moriah to construct a tangle with a
high-distance bridge sphere that stays high distance even after many crossing changes.
Their construction uses plat presentations of knots.

Let Bn denote the n–strand braid group. Given ˛ 2 B2k we can visualize ˛ as a
regular projection of 2k arcs in the plane such that each arc has one endpoint on
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the line y D 0, has the other endpoint on the line y D 1, is contained in the region
between y D 0 and y D 1 and increases monotonically in y . By connecting each pair
of consecutive endpoints of ˛ on the line y D 1 by an arc and similarly connecting
pairs of consecutive endpoints on the line y D 0, we form the projection of a knot y̨ .
Such a presentation of a knot is known as a 2k –plat.

There is a natural bridge sphere associated to a 2k –plat. We can view the knot as being
embedded in a neighborhood of its projection in the xy –plane in R3 . Let hW R3!R
be projection onto the y–axis. After taking the one point compactification of each
xz–plane intersecting the knot and gluing in 3–balls above and below, h extends to a
Morse function on S3 , and the 2–sphere h�1.1

2
/ is a bridge sphere for the 2k –plat.

We call this the induced bridge sphere.
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Figure 1: The 2k –plats studied by Johnson and Moriah
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In [9], Johnson and Moriah study 2k –plats of the form depicted in Figure 1. Recall
that B2 is isomorphic to the integers, hence, the labels of ai;j in Figure 1 dictate
which element of B2 lies inside the corresponding braid box. A knot with a 2k –plat
presentation of the form depicted in Figure 1 will be called a highly twisted plat. Let n

be the number of rows associated to a highly twisted plat. Let dxe be the ceiling
function, which is equal to the smallest integer greater than or equal to x . Johnson and
Moriah showed the following:

Theorem 5.1 [9] If K � S3 is a highly twisted 2k –plat with k � 3 and jai;j j � 3

for all i; j , then d.†/D dn=.2.k � 2//e, where † is the induced bridge sphere.
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Figure 2: The tangle .B3; �3/

We form the tangle .B3; �3/ depicted in Figure 2 in the following way. Let L be a
highly twisted 10–plat. Considering the plat in R3 for the moment, let 
1 and 
2
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be two arcs which are contained in the xy–plane at height y D 1, such that 
1 has
endpoints in the second and third maxima of L and 
2 has endpoints in the fourth
and fifth maxima of L. Then B3 D S3 n .�.
1/ [ �.
2// and �3 D L \B3 . The
induced bridge sphere † for L persists as a bridge sphere for .B3; �3/. Recall that
the distance of † as a bridge sphere for L is the distance in C.†L/ between two disk
sets D1 and D2 . After drilling out 
1 and 
2 the distance of † as a bridge sphere for
.B3; �3/ is the distance between disk sets D0

1
and D0

2
where D0

1
�D1 and D0

2
DD2 .

Hence, the distance of † as a bridge surface of .B3; �3/ is greater than or equal to the
distance of † as a bridge surface for L. The following result immediately follows
from Theorem 5.1.

Corollary 5.1 Let † be the induced bridge sphere for .B3; �3/ and suppose jai;j j � 3

for all i; j . Then d.†/� n=6.

6 A knot with a compressible thin level

We construct a knot K in S3 with a compressible thin level from .B3; �3/ in the
following way. Let S1 and S2 be the two 2–spheres that make up @B3 . Let .B1; �1/

and .B2; �2/ be two 2–strand tangles with 3–bridge spheres †1 and †2 . Glue B1

to B3 by identifying @B1 with S1 and glue B2 to the result by identifying @B2

with S2 , so that the result is a knot K in S3 . Additionally, choose �1 and �2 such that
d.†1/ > 12 and d.†2/ > 12. Similarly, choose �3 such that jai;j j � 3 for all i; j and
n> 72. By Corollary 5.1, these restrictions imply that d.†3/ > 12 where †3 is the
induced bridge sphere for .B3; �3/. Later in the paper we will need to put additional
restrictions on the values of the ai;j ’s.

In the remainder of this section, we will establish several topological properties of
E.K/ which will allow us to find thin position of K in Sections 7 and 8. From this
point forward, we will suppress the notation .S1/K and .S2/K and consider S1 and S2

to be 4–punctured spheres.

Lemma 6.1 The 4–punctured spheres S1 and S2 are c–essential in E.K/.

Proof Suppose by way of contradiction that Si is c–compressible for i D 1 or 2, and
choose a c–disk D such that jD\ .S1[S2/j is minimal. If int.D/\ .S1[S2/¤∅,
let 
 be a curve of intersection which is innermost in D , so that 
 bounds a c–disk
D0 � D which avoids S1 [ S2 . If 
 is essential in Si , then jD0 \ .S1 [ S2/j <

jD\.S1[S2/j, a contradiction. If 
 is inessential in Si , then either we can remove 

with an isotopy of D , which contradicts the minimality of jD \ .S1 [S2/j, or 
 is
boundary parallel in Si and surgery of D along 
 yields an essential annulus A�Bi ,
which contradicts Lemma 3.1.
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Thus, suppose that int.D/\ .S1[S2/¤∅. Then D is an essential surface in .Bi ; �i/

and @D is essential in Si , so by Theorem 3.2, we have d.†i/� 2, a contradiction.

Lemma 6.2 The knot K is prime.

Proof As in the proof of Theorem 1.2, we suppose by way of contradiction that E.K/

contains an essential meridional annulus A, chosen to intersect S1 and S2 minimally.
First, suppose A\.S1[S2/¤∅. Any curve of intersection 
 which is essential in Si

gives rise to a cut disk, so we may assume that such curves are boundary parallel in Si .
Choosing such a 
 which is outermost in Si yields a once-punctured disk D which
avoids A, and performing surgery on A along D yields a new essential annulus A0

such that jA0\ .S1[S2/j< jA\ .S1[S2/j, a contradiction.

On the other hand, if A\ .S1 [ S2/ D ∅, then A � Bi for i D 1, 2, or 3, which
contradicts Lemma 3.1.

Lemma 6.3 Suppose that F is a c–essential planar meridional surface in E.K/. Then
either FK is isotopic to S1 or S2 , or ��.FK / > 10.

Proof By Lemma 6.2, K is prime, so by Lemma 3.2, we have that either ��.FK />10

or after isotopy F \Bi D∅ for i D 1; 2. Hence, F is a c–essential planar meridional
surface embedded in the interior of B3 . By Lemma 3.2 applied to B3 , ��.FK / > 10

or FK is isotopic to S1 or S2 .

Lemma 6.4 Suppose that F is an essential meridional 6–punctured sphere in E.K/.
Then F is isotopic to S1 tubed to S2 along an arc of �3 .

Proof By Lemma 6.3, such an F must be c–compressible. Since K is prime, c–
compressing F yields two 4–punctured spheres F1 and F2 . As incompressibility is
preserved surgery along cut disks and K is prime, both F1 and F2 are c–essential.
Hence, F may be constructed by tubing F1 to F2 along an arc in K . If F1 is isotopic
to F2 , then F is compressible, and so F1 and F2 are nonisotopic. By Lemma 6.3
(possibly after relabeling), F1 is isotopic to S1 and F2 is isotopic to S2 , as desired.

7 Thin position of K

First, we will describe our candidate k 0 for thin position of K , and then we will
eliminate all other possibilities via an exhaustive argument, proving that k 0 is width
minimizing. The position k 0 is depicted in Figure 3. By construction k 0 has exactly
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three maxima and exactly one minimum in each of B1 and B2 , with all of the maxima
above the minimum in each of these 3–balls. Similarly, k 0 has exactly one maximum
and exactly five minima in B3 , with the maximum above all of the minima. Thus, k 0

has three thick spheres, †1 , †3 and a third which we will call †0
2

. Note that †0
2

intersects B2 in a surface which is isotopic to †2 after a single surgery along a
compressing disk. The two thin spheres of k 0 are S1 and an 8–punctured sphere
we will denote by S3 . Note that after a single surgery along a compressing disk, S3

is isotopic to S1 [ S2 . The thin-thick tuple for k 0 is .10; 8; 10; 4; 6/, which gives
w.k 0/D 78 by (1).

Figure 3: This embedding is k 0 , the candidate thin position of K .

Let k denote any other embedding of K . We will use a case-by-case analysis to show
w.k/� 78.

Case 1 The embedding k is a bridge position.

Proof Suppose that k is a bridge position with bridge sphere †. By Lemma 4.3,
either † can be made disjoint from S1 via an isotopy transverse to K , † is c–weakly
reducible, or ��.†K / > 10. In the first case, S1 is an essential surface for one of the
trivial tangles bounded by †, a contradiction to Lemma 4.4. In the second case, k is
not thin by Lemma 4.1. Finally, if ��.†K /> 10, then w.†/� 14 and thus w.k/� 98

by inequality (2).
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It follows that k must have a thin level.

Case 2 The embedding k has exactly one thin level.

Proof Let S be the unique thin level for k . By Theorem 2.3, we can assume that S

is c–essential. By Lemma 6.3, either SK is isotopic to S1 or S2 , or ��.SK / > 10.
In the latter case, k has a thick level with at least 16 punctures, and using inequality (2)
we get w.k/� 128. Hence, we can assume that SK is isotopic to S1 or S2 .

Without loss of generality, suppose that SK is isotopic to S1 and that B1 is above S1 .
Let †0

1
denote the thick level above S1 . We could easily show that †0

1
D †1 , but

for this case we need only that w.†0
1
/� 6, which follows immediately from the fact

that K meets B1 in a nontrivial tangle. Let † denote the thick level below S1 . It
follows that † is a bridge sphere for .S3 n �.B1/;K n �.�1//, and so by Theorem 3.1,
we have that ��.†K / � d.†3/� 2 > 10 or else † is isotopic to †3 after surgery
along some number of c–disks of †\B3 . In the first case, w.†/� 14 and w.k/� 98.
In the second case, if no surgery is necessary, then † is isotopic to †3 . In this case, S2

is an essential surface embedded in the trivial tangle cobounded by † and S1 ; this
contradicts Lemma 4.4. If it is necessary to c–compress † to produce a surface isotopic
to †3 , then w.†/ > w.†3/D 10, so w.†/� 12, and by (1),

w.k/� 1
2
.62
C 122

� 42/D 82:

Case 3 The embedding k has two or more thin levels, and one has width at least 8.

Proof If S is a thin level of k and w.S/D 8, then k has two thick levels adjacent
to S with width at least 10. Since K is prime, any other thin level must have width at
least 4 and any thick level not adjacent to S must have width at least 6. Hence,

w.k/� 1
2
.62
C 102

C 102
� 42
� 82/D 78:

Case 4 The embedding k has exactly two thin levels, both of width 4.

Proof As in Case 2, we may assume one of the thin levels is isotopic to S1 . If S

is the other thin level with width 4, then S is a thinnest thin level since K is prime.
By Theorem 2.1, S is essential and, since K is prime, must also be c–essential. By
Lemma 6.3, S must be isotopic to S1 or S2 , or k is not thin. But if S is isotopic
to S1 , then by the isotopy extension theorem we may replace the embedded arcs of k

between S1 and S with vertical arcs, reducing w.k/. Thus, S is isotopic to S2 . Let †
denote the thick level between S1 and S2 , and note that the region between S1 and S2

is B3 .
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By Theorem 3.1, either ��.†K /� d.†3/�2> 10, or after isotopy, † c–compresses
to a surface isotopic to †3 . In the first case w.†/ � 14, and in the second case, we
note that † separates S1 and S2 , while †3 does not, so we must c–compress † at
least once before it is isotopic to †3 , implying that w.†/ > w.†3/D 10. In either
case, w.†/� 12, and by (1),

w.k/� 1
2
.62
C 122

C 62
� 42
� 42/D 92:

Case 5 The embedding k has three or more thin levels.

Proof Note that since K is prime, all thin levels of k have width at least 4 or k is
not thin. If at least one thin level of k has width at least 8, then

w.k/� 1
2
.62
C 62

C 102
C 102

� 42
� 42
� 82/D 88:

Hence, we can assume that all thin levels for k have width 4 or 6.

First, consider the case when k has at least two thin levels of width 6. Call these
thin levels S and S 0 . By Theorems 2.1 and 2.2, S and S 0 are incompressible, which
implies that both S and S 0 are constructed by tubing S1 to S2 along some arc of �3 ,
by Lemma 6.4. Since S and S 0 are disjoint, they are constructed by tubing S1 to S2

along a common arc of �3 . Hence, S is isotopic to S 0 . By the isotopy extension
theorem we may replace the embedded arcs of k between S and S 0 with vertical arcs,
reducing w.k/.

Next, consider the remaining cases when k has two or more thin levels of width 4. Call
two such thin levels S and S 0 . As argued in Case 4, each of S and S 0 are isotopic
to S1 or S2 . Without loss of generality, suppose S is isotopic to S1 . If S 0 is isotopic
to S1 , then by the isotopy extension theorem we may replace the embedded arcs of k

between S and S 0 with vertical arcs, reducing w.k/. Thus, S 0 is isotopic to S2 .
Let S 00 be a third thin level of k . Since 4 � w.S 00/ � 6, and S 00 cannot be isotopic
to S1 or S2 , then w.S 00/D 6. By Theorem 2.2, S 0 is incompressible, which implies
that S 00 may be constructed by tubing S1 to S2 by Lemma 6.4.

However, any three level spheres cut S3 into four components (two components that
are homeomorphic to B3 and two components that are homeomorphic to S2 � I ),
where any component is adjacent to one or two other components. On the other hand,
S3 n �.S1[S2[S 00/ has four components, one of which (the component containing
the tube) is adjacent to all three other components, a contradiction.

In summary, assuming k is thin, we have ruled out Cases 1, 2 and 5; hence we can
assume that k has exactly two thin levels. We have also ruled out Cases 3 and 4, so
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we can assume that one thin level has width 4 and the other has width 6. As previously
argued, any thin level of width 4 must be isotopic to S1 or S2 . Without loss of
generality, we will assume that S1 is a thin level. This one remaining case (the case in
which k has two thin levels, one isotopic to S1 and the other having width 6) is more
complicated than the others, and we examine it in the next section.

8 The final remaining case

To complete the proof of the main theorem, we suppose that k has two thin levels,
one of which is S1 , and the other of which we denote by S� . By Theorem 2.2, S� is
incompressible, which implies that S� may be constructed by tubing S1 to S2 along
an arc of �3 , by Lemma 6.4.

By Corollary 5.1, if .B3; �3/ is altered in a way that increases jaij j for any i and j ,
then the distance bound on †3 is preserved and all of the properties of K and k

that were established in Sections 6 and 7 are preserved. Denote the strands of �3

by t1 , t2 , t3 and t4 . To motivate our choices of aij , we need a clear picture of the
surface S� .

Suppose for the moment that S� is S1 tubed to S2 along t1 , the leftmost arc in
Figure 4. Let B� denote that ball bounded by S� which is disjoint from S1 [ S2 ,
and let �� D k \B� . Then .B�; ��/ is a 3–strand tangle. Now, we may construct an
isotopy of S� which drags S1 from one endpoint of t1 to the other. An appropriate
analogy is to picture a cord being pulled back into a vacuum cleaner, where in this
setting S2 takes the place of the vacuum cleaner. As such, each of the three arcs of
.B�; ��/ could be constructed by taking one of t2 , t3 or t4 and attaching its endpoint
to t1 in S1 ; see Figure 4. We wish to show that, under certain assumptions on the
parameters aij , each of these arcs is knotted in B� .

Figure 4: On the left, we have a portion of the knot K , shown with S1

and S2 . In the middle, we have a tube connecting S1 to S2 along a , which
yields S� . On the right, we have an alternate picture of S� created by
dragging S1 along a until it meets S2 .

We determine the parameters aij in the following way: a1;1 , a1;3 , a2;3 , a2;4 , a3;2 , a3;3

and a3;4 are odd positive integers greater than or equal to 3, a1;2 , a1;4 , a2;1 , a2;2 , a2;5
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and a3;1 are even integers with absolute value greater than 3. Moreover, we require a2;1

and a2;2 to be negative and a3;1 to be positive. If i is even and greater than 3, then ai;j

is a negative even integer less than -3 for all j . If i is odd and greater than 4, then ai;j

is a positive even integer greater than or equal to 3 for all j . These restrictions are
depicted in Figure 5. In that figure, a label of E indicates that ai;j is even and a label
of O indicates ai;j is odd. Similarly, the superscripts in the figure indicate the sign
of ai;j . The absence of a superscript indicates that choosing a sign is unnecessary for
our construction.

S1 S2

t1
t2 t3 t4

OC E OC E

E� E� OC OC E

EC OC OC OC

E� E� E� E� E�

EC EC EC EC

E� E� E� E� E�

EC EC EC EC

Figure 5: Restrictions on the ai;j for the tangle in B3

Note that there are unique arcs s1
12

and s2
12

connecting the endpoints of t1 and t2
in S1 and S2 when we ignore the endpoints of the strands of �3 that are not t1 or t2 .
Let K12 denote the knot t1 [ s1

12
[ t2 [ s2

12
. We can similarly define the knots Kij
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where i < j . Using Figure 5, we can easily obtain diagrams for each of these knots.
These diagrams are depicted in Figure 6. Note that each of these diagrams is reduced
and alternating. Hence, each of the knots K12 , K13 , K14 , K23 , K24 and K34 is
nontrivial.

OC OC OC OC

E� E� E� E� E� OC

EC OC EC

EC E� E� E� E� E�

EC EC EC

K23 and K34

K24

K12 K13 and K14

Figure 6: Diagrams for each of the knots K12 , K13 , K14 , K23 , K24 and K34

Case 6 The embedding k has two thin levels, one of width 4 and the other of width 6.

Proof As above, we may assume without loss of generality that one of the thin levels
is S1 and the other, S� , is the result of tubing S1 to S2 along some strand ti of �3 .
Note that S� bounds two 3–balls in S3 ; let B� denote the one which is disjoint from
B1 [B2 . Suppose without loss of generality that S1 is above S� with respect to
the height function h. Hence, k has a thick level †� below S� , which implies that
†� � B� .

Let ��Dk\B� , and consider the 3–strand tangle .B�; ��/, noting that †� is a bridge
surface for .B�; ��/. We will show that each arc t of �� intersects †� at least four
times. If not, then .B�; t/ is a trivial 1–strand tangle. However, we may view t as the
union of ti and tj with the unique arc s2

ij connecting @ti to @tj in S2 . If jt \†�j D 2,
then (ignoring the other strands of �� ) t is isotopic into S� , and it follows that one of
the knots K12 , K13 , K14 , K23 , K24 or K34 is the unknot, a contradiction.

Algebraic & Geometric Topology, Volume 15 (2015)
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We conclude that w.†�/� 12. Since k has two other thick levels of widths at least 6
and 8, we have

w.k/� 1
2
.62
C 82

C 122
� 42
� 62/D 96:

In summary, we have the following:

Proof of Theorem 1.1 Let k 0 be the embedding of K depicted in Figure 3. Noting
that S3 is a compressible thin level of k 0 , we need only show that w.K/ D 78, so
that k 0 is thin. Let k be a thin position of K . By Cases 1, 2 and 5, we can assume
that k has exactly two thin levels. By Cases 3 and 4, we can assume that one thin level
has width 4 and the other has width at least 6. If we assume that the thin levels have
width exactly 4 and 6, then w.k/� 96 by Case 6, so k is not thin. It follows that the
three thick levels of k have widths at least 6, 10, and 10; hence

w.k/� 1
2
.62
C 102

C 102
� 42
� 82/D 78:
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