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Gromov width and uniruling for
orientable Lagrangian surfaces

FRANÇOIS CHARETTE

We prove a conjecture of Barraud and Cornea for orientable Lagrangian surfaces.
As a corollary, we obtain that displaceable Lagrangian 2–tori have finite Gromov
width. In order to do so, we adapt the pearl complex of Biran and Cornea to the
nonmonotone situation based on index restrictions for holomorphic disks.

53DXX; 53D12

1 Introduction

The present paper is a continuation of results of the author [9], where it was shown
that closed monotone (see Section 2.1 for the precise definition) Lagrangians in tame
symplectic manifolds satisfy a general form of uniruling by holomorphic curves. Here
we remove the monotonicity condition in the case of orientable surfaces. Recent
examples given by Rizell [22] show that this restriction is not of a technical nature; the
results simply do not hold in higher dimensions without other constraints, or even for
nonorientable surfaces. In this note we focus our attention mostly on the connection
between displacement energy and Gromov width.

Recall that the relative Gromov width of a Lagrangian L is

wG.L/ WD sup
B.M;L;r/

�r2;

where B.M;L; r/ is the set of all symplectic embeddings of B2n.r/, the ball of
radius r in Cn , such that B2n.r/\Rn is mapped to L.

The displacement energy of a Lagrangian is the minimal energy required by a Hamil-
tonian isotopy to displace it, E.L/ WD inffE.�/ j � 2 Ham.M; !/; �.L/\LD ∅g,
where E.�/ is the energy of a Hamiltonian isotopy; we set E.L/D1 in case it is
not displaceable.

If L is a closed, displaceable and orientable Lagrangian surface, an easy argument
shows that it is diffeomorphic to a torus. Our main result is the following:
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Theorem A Let L be a Lagrangian 2–torus in a tame symplectic manifold. Then
wG.L/� 2E.L/.

The proof is based on Theorem 3.1, a uniruling result which in turns proves a conjecture
of Barraud and Cornea [3] for orientable surfaces.

There are other nonmonotone situations where the Gromov width of a displaceable
Lagrangian is known to be finite. Recent results of Borman and McLean [8] show that
if L is orientable and admits a metric of nonpositive sectional curvature in a Liouville
manifold, then its Gromov width is bounded above by four times its displacement energy.

Uniruling for monotone Lagrangians is established via a mixture of the pearl complex
from Biran and Cornea [5; 6; 7] and Lagrangian Floer theory of Floer [11], Oh [20;
21] and Fukaya, Oh, Ohta and Ono [13; 14]. We show how these constructions can be
adapted to our case, with an appropriate choice of Novikov ring. The key argument is an
elementary index computation of pseudoholomorphic disks given in Lemma 2.2, which
itself relies on a technical result of Lazzarini [16]. There is no need to invoke the cluster
complex of Cornea and Lalonde [10] or the general Lagrangian Floer theory of [13]; both
these theories are much more complicated algebraically and even more so analytically.

We summarize in the next proposition the algebraic structures that we define for
orientable surfaces by adapting the techniques of Biran and Cornea, without any
monotonicity assumptions. The Novikov ring ƒ is defined in Section 2.2.2.

Proposition 1.1 Given a closed orientable Lagrangian surface L� .M; !/, there is a
second-category subset Jreg � J! of regular compatible almost complex structures for
which the following algebraic structures are defined and depend only on the connected
component ŒJ � 2 �0.Jreg/:

� The Lagrangian quantum homology ring QH.L; ŒJ �Iƒ/ of L, endowed with the
quantum product.

� The Lagrangian Floer homology HF.L;H; fJtgIƒ/ of L, where J WD fJtg is
a generic path of regular almost complex structures and H is a Hamiltonian. It
is a left QH.L; ŒJ0�Iƒ/–module and a right QH.L; ŒJ1�Iƒ/–module.

� The QH.L; ŒJ0�/–module isomorphism PSSW QH.L; ŒJ0�/! HF.L;H;J /.

Details of the construction are given mostly for the Lagrangian quantum homology
in Section 2.2, as this should emphasize the main ideas; the other structures are only
quickly sketched in Section 2.3. The module property of the PSS isomorphism is
adapted from [9] and was first proved by Leclercq [17] when there is no bubbling.
Finally, a uniruling theorem is given in Section 3, from which we deduce Theorem A.
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Remark 1.2 Assume that M is closed, and denote by ˇC
2
.M / the dimension of the

positive definite part of the intersection form on H2.M /. If L is a closed orientable
Lagrangian surface of genus g at least 2, then ˇC

2
.M / � 2. Indeed, !2 > 0, and

ŒL�2 D ��.L/ D 2g � 2 > 0. Also, ŒL� is linearly independent from ! , so that
ˇC

2
.M /� 2.

Much is known about symplectic 4–manifolds and the value of ˇC
2
.M /; see, for

example, Baldridge [2], Gompf and Stipsicz [15] and McDuff and Salamon [18].

Acknowledgements I would like to thank Octav Cornea for encouraging me to write
this article, for many useful explanations and comments on early drafts. I thank Paul
Biran for bringing Remark 1.2 to my attention. The author was supported by an ETH
Zürich fellowship.

2 Algebraic structures and the proof of Proposition 1.1

2.1 Preliminaries

Throughout the paper, .M; !/ is a tame symplectic four-dimensional manifold. The
set of all !–compatible almost complex structures is denoted by J! , the induced
Riemannian metric is g.v1; v2/ WD !.v1;Jv2/, and the associated first Chern class is
written as c1.M / or c1 .

The Hamiltonian vector field XHt
of a compactly supported H W S1 �M ! R is

uniquely defined by !.XHt
; � /D�dHt . � /. Its time-one flow  H

1
defines a Hamil-

tonian isotopy, and the set of all these isotopies is the group Ham.M; !/. The energy
of  2 Ham is defined as

E. /D inf
H j H

1
D 

Z
S1

�
max
M

Ht �min
M

Ht

�
dt:

Let L be a closed Lagrangian surface in M . Then there are two morphisms

!W H2.M;L/!R; �W H2.M;L/! Z

given by the symplectic area and the Maslov index. Recall that this index is defined
for every uW .†; @†/ ! .M;L/, where † is a surface with boundary, and that it
depends only on the homology class of u. Finally, we say that L is monotone if two
conditions hold:

(1) There exists � > 0 such that ! D ��.
(2) The positive generator of the image of �, denoted by NL , is greater than or

equal than two.

In this paper, no monotonicity conditions are imposed on Lagrangians.
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2.2 Lagrangian quantum homology

2.2.1 Index restriction for J–holomorphic disks and spheres; counting disks of
Maslov class two Recall that a disk uW .D2;S1/! .M;L/ is somewhere injective
if there exists z 2D2 such that

u�1.u.z//D z; du.z/¤ 0;

and that u is simple if the set of injective points is dense.

The space of simple J–holomorphic disks in a class A 2 H2.M;L/ is denoted by
M�.AIJ /. For an A–regular J , ie one for which the linearization Du of the @J

operator at u is onto, this space is a manifold of dimension

(1) dimM�.AIJ /D nC�.A/D 2C�.A/:

We denote by Jreg.A/� J! the second-category subset of A–regular almost complex
structures and define Jreg WD

T
A Jreg.A/. Since H2.M;L/ is countable, Jreg is also

of second category.

It is well known that J–holomorphic spheres which are not simple are multiply covered.
For nonsimple disks, the same holds when the dimension of the Lagrangian is at least 3
and J is generic, by a theorem of Lazzarini [16]. However, in dimension two the
situation is quite different:

Theorem 2.1 [16, Theorem A] Let uW .D2;S1/ ! .M;L/ be a nonconstant J–
holomorphic disk. Then there exists a finite family fvig of simple J–holomorphic disks
vi W .D

2;S1/! .M;L/ and positive integers fmig such that, in H2.M;L/, we have
Œu�D

P
i mi Œvi � and

S
i vi.D

2/D u.D2/.

Here Œu� denotes the image of the positive generator of ZŠH2.D
2;S1/ by u� .

The following elementary lemma is the key to the construction of all the algebraic
structures considered in Proposition 1.1.

Lemma 2.2 Let L be an orientable Lagrangian surface, J 2 Jreg a regular almost
complex structure and uW .D2;S1/ ! .M;L/ a nonconstant J–holomorphic disk.
Then �.u/� 2. If u is a nonconstant sphere, then c1.u/� 1. In both cases u is simple
if equality holds.

Proof First, given any orientable Lagrangian, regardless of dimension, the Maslov
index of any disk u with boundary on L is even, since the loop .ujS1/�TL 2 L.R2n/

lifts to the double cover Lor.R2n/ of oriented Lagrangian subspaces.
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Using the notation of Theorem 2.1, we have �.u/D
P

i mi�.vi/, where all the vi are
nonconstant simple J–holomorphic disks. Thus, biholomorphisms of the disk, denoted
by G WD PSL.2;R/D Aut.D2/Š S1�D2 , act freely on M�.Œvi �IJ /, and (1) shows
that

0� dimM�.Œvi �IJ /=G D 2C�.vi/� 3D �.vi/� 1 () 2� �.vi/:

Hence, we get that �.u/D
P

i mi�.vi/� 2.

As for the last part, u can be written as uD v ı dk , where vW S2!M is simple and
dk W S

2! S2 is a degree k � 1 holomorphic covering map. Then

0� dimM�.Œv�IJ /=PSL.2;C/D 4C 2c1.v/� 6;

and c1.u/D kc1.v/� k .

Fix J 2Jreg and A 2H2.M;L/ such that �.A/D 2. Then there is an evaluation map

evWM�.AIJ /�S1=G!L;

Œu; � � 7! u.�/:

The action of g 2 G is given by g � .u; �/D .u ıg;g�1.�//. The index computations
above and Gromov compactness for disks (see Frauenfelder [12]) yield that M�.AIJ /�
S1=G is a closed 2–dimensional manifold, hence ev has a well-defined mod 2 degree,
giving the algebraic count of J –disks representing A and going through a generic
point of L, denoted by d.A;J /. However, this invariant might depend on the choice of
J . Indeed, fix a path J WD fJtg, Jt 2 J! , connecting J0 and J1 . Then for a generic
choice of such path (see McDuff and Salamon [19, Definition 3.1.6]), the space

W�.A;J / WD f.t;u/ j t 2 Œ0; 1�; u 2M�.A;Jt /g

provides a cobordism between M�.A;J0/ and M�.A;J1/. The next lemma is ele-
mentary, but it is worth mentioning since it is the possible source of noninvariance for
the Lagrangian quantum homology of orientable surfaces; see Section 2.2.2.

Lemma 2.3 Fix a generic path J . If it is in a connected component of Jreg , called a
chamber, then W�.A;J / is compact, hence d.A;J0/Dd.A;J1/. Otherwise, it admits
a compactification which must include nonconstant Maslov zero Jt –holomorphic disks
for every Jt 62 Jreg .

Proof By Gromov compactness, sequences in W�.A;J / converge to stable maps
.T;

P
Ak WD A/, where T is a tree made up of Jt –holomorphic bubbles for some

fixed t ; each bubble is either a sphere or a disk uk representing a class Ak . Moreover,
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their Maslov indices satisfy
P
�.uk/D�.A/. We use the convention that, for spheres,

the Maslov index is twice the Chern class.

Assume first that J � Jreg . Then Lemma 2.2 implies that there is only one curve in T

and the bubble tree is made of a single simple curve, hence it is already an element of
W�.A;J /, which is thus compact. Since degree is invariant under compact cobordisms,
we get that d.A;J0/D d.A;J1/.

Assume now that J is not entirely contained in Jreg . Then, by definition of regularity
for the path J , we have dim coker Duk

D 1, since we assume Jt 62 Jreg .

If uk is a sphere, then, since it is not constant, PSL.2;C/ acts on it and dim ker Duk
�6.

Thus

dim ker Duk
�dim coker Duk

D ind Duk
D 2nC2c1.uk/D 4C2c1.uk/� 6�1D 5;

so 2c1.uk/D �.uk/� 2.

If uk is a nonconstant disk bubble, then dim ker Duk
� 3 and dim coker Duk

D 1,
hence

ind Duk
D nC�.uk/D 2C�.uk/� 3� 1D 2 () �.uk/� 0:

Finally, since the total Maslov class of the tree is �.A/D 2, the bubbles have index at
most two, and this concludes the proof.

Remark Examples of Maslov zero nonregular J–holomorphic disks in Lagrangian
tori can be found in Auroux [1].

2.2.2 The pearl complex In this section we adapt the construction of the pearl
complex, following the presentation of Biran and Cornea [5] closely. Lemma 2.2 and
our choice of Novikov ring guarantee that their original arguments are still valid.

Let J 2 Jreg and f W L! R be a Morse–Smale function with respect to a generic
Riemannian metric � , and denote by �t the negative gradient flow of .f; �/. The
universal Novikov field is

ƒuniv
WD

�X
k

akT �k

ˇ̌̌
ak 2 Z2; �k 2R; lim

k!1
�k D1

�
:

We set ƒ WDƒuniv Œq; q�1� and grade it with jqj D �1.

The pearl complex of f is the ƒ–module

C.f;J; �/ WD span
ƒ

hCritf i:

Algebraic & Geometric Topology, Volume 15 (2015)
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The differential counts pearly trajectories, which we now describe. Given x;y 2Critf
and A 2 H2.M;L/, the space of pearls from x to y in the class A is denoted by
P.x;y;AIf;J; �/ and consists of families .u1; : : : ;uk/=.

Lk
iD1 G�1;1/ such that:

� ui W .D
2;S1/! .M;L/ are nonconstant J–holomorphic disks.

� u1.�1/ 2W u.x/.
� There exist 0< ti <1 such that �ti

.ui.1//D uiC1.�1/, for i D 1; : : : ; k � 1.
� uk.1/ 2W s.y/.
�
P

i Œui �DA.
� G�1;1 is the subgroup of elements of Aut.D2/ fixing ˙1 and the direct sum of

these groups act on the family .u1; : : : ;uk/.

Whenever AD 0, a pearl means a negative gradient flow line from x to y , modulo
the R–action.

Denote by P�;d .x;y;AIf;J; �/ the subspace of pearls for which all the disks are
simple and absolutely distinct. A standard transversality argument shows that either
P�;d .x;y;AIf;J; �/ is empty or is a manifold of dimension jxj � jyjC�.A/� 1.

In [7, Section 3] Biran and Cornea prove the following crucial result for monotone
Lagrangians, needed to show that pearls can be used to define a differential, which
itself relies on Theorem 2.1 of Lazzarini.

Proposition 2.4 [7] Let L be a monotone Lagrangian and f; � be as defined above.
Then there exists a second-category subset Jreg�J! such that, for every A2H2.M;L/

and every x;y 2 Critf with jxj � jyjC�.A/� 1� 1, we have:

(1) P�;d .x;y;AIf;J; �/D P.x;y;AIf;J; �/, ie all pearls are automatically sim-
ple and absolutely distinct.

(2) If jxj�jyjC�.A/�1D 0, then P.x;y;AIf;J; �/ is a compact 0–dimensional
manifold, and hence consists of a finite number of points.

First, note that Lazzarini’s result holds for Lagrangians which are not monotone. Also,
a careful inspection of Biran and Cornea’s proof shows that, as long as the Maslov
index of J–holomorphic disks is at least two, then Proposition 2.4 is true, without the
monotonicity assumption. By Lemma 2.2, this condition is automatically satisfied for
closed orientable surfaces. Hence we can define the pearl differential

@W C�.f;J; �/! C��1.f;J; �/;

x 7!
X

y

� X
A2H2.M;L/

jxj�jyjC�.A/�1D0

#2P.x;y;AIf;J; �/T !.A/q�.A/
�

y:
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The coefficient of each y is a well-defined element of the ring ƒ by standard arguments.

Remark 2.5 The arguments in this paper work also for Lagrangians whose minimal
Maslov number is at least two when restricted to J–holomorphic disks, which include
the class of monotone Lagrangians and, a fortiori, orientable surfaces. It is, however,
not clear to the author how to verify this condition in general.

In order to show that @2D0, one uses Lemma 2.2 to rule out side bubbling and conclude
that a one-dimensional family of pearls can be compactified using only broken flow
lines. We denote the resulting Lagrangian quantum homology by QH.L;J Iƒ/ or
QH.L;J /.

The quantum product can also be defined and makes Lagrangian quantum homology a
ring with unity, as well as a left module over itself:

ıW QHp.L;J Iƒ/˝QHq.L;J Iƒ/! QHpCq�2.L;J Iƒ/:

Comparison morphisms

 W C.f1;J1; �1/! C.f2;J2; �2/

are defined via Morse homotopies and regular paths of almost complex structures. As
was pointed out in Lemma 2.3, it is necessary to restrict to a regular path in a connected
component of Jreg to avoid nonregular bubbling of Maslov zero disks. In this case we
directly get:

Proposition 2.6 For ŒJ1� D ŒJ2� 2 �0.Jreg/, the comparison morphisms are chain
maps which induce isomorphisms in homology and are compatible with the quantum
product.

2.3 Lagrangian Floer homology and QH.L; ŒJ �/–module structure

Fix a Hamiltonian H W S1 �M ! R such that .�H
1
/�1.L/ intersects L transver-

sally, and denote by O.H / the finite set of contractible time-1 periodic orbits of the
Hamiltonian flow �H

t .

For each half-disk u contracting such an orbit 
 , recall that there is a Maslov index
�.u; 
 / such that �.u; 
 /C dim L=2 2 Z; see Robbin and Salamon [23]. There is
an equivalence relation on tuples .
;u/ defined by .
1;u/ � .
2; v/ if and only if

1 D 
2 and �.
1;u/D �.
2; v/. For each 
 , fix a class Q
 WD Œu
 ; 
 � and grade it by
j Q
 j D 1��. Q
 /.

Denote by J I WD C1.Œ0; 1�;J!/ the smooth paths of compatible almost complex
structures. Given J WD fJtg 2 J I and 
�; 
C 2O.H /, the set of Floer strips from Q
�

Algebraic & Geometric Topology, Volume 15 (2015)
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to Q
C in a homology class A 2H2.M;L/ is the set M. Q
�; Q
C;AIJ ;H / consisting
of maps uW R� Œ0; 1�!M satisfying these conditions:

� u.R; i/ 2L, i D 0; 1.
� @suCJt .u/.@tu�XHt

.u//D 0.
� lim

s!˙1
u.s; t/D 
˙.t/.

� u
�#u#�u
C DA.

There exists a second-category subset of regular paths J I
reg � J I for which the sets

of Floer strips are manifolds of dimension j Q
�j � j Q
Cj C�.A/. Recall that R acts
freely on the space of nonconstant strips, hence the quotient space is also a manifold,
of dimension smaller by one.

We further restrict J I
reg to paths which are included in a chamber of Jreg and pick such

a path J . The Floer complex is the graded ƒ–module defined by

CF.LIH;J / WD span
ƒ

h Q
 j 
 2O.H /i;

and the differential is given on generators by

@W CF�.LIH;J /! CF��1.LIH;J /;

Q
� 7!
X

C;A

j Q
�j�j Q
CjC�.A/D1

#2.M. Q
�; Q
C;AIJ ;H /=R/T !.A/q�.A/ Q
C:

This sum is well-defined by our choice of J and by Gromov compactness. Moreover,
@2 D 0 follows by standard arguments; one basically mimics the proofs by Oh [20;
21]. Of course, we also need that, for every 
 2 O.H / and A 2 R, the algebraic
numbers of Ji –holomorphic disks of Maslov class two and total area at most A going
through 
 .i/ are equal, for i D 0; 1. This holds by our choice of J � Jreg .

As with the pearl complex, if one restricts to a fixed connected component of Jreg ,
then the Floer homology is canonically independent of all choices.

The module structure is defined as in Charette [9]:

?W Cp.f;J0/˝ƒ CFq.L;H;J /! CFpCq�2.L;H;J /;

x˝ Q
� 7!
X

Q
C;A2H2.M;L/

#2M.x; Q
�; Q
C;A/T
!.A/q�.A/ Q
C;

where M.x; Q
�; Q
C;A/ is the space of pearls leaving x and entering a Floer strip u

(at the point u.0; 0/) connecting Q
� to Q
C . The homology class is

AD
X

i

Œvi �C Œu
�#u#�u
C �;
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where the vi are the disks appearing in the pearl from x to u. This gives HF.L;J / a
structure of left QH.L; ŒJ0�/–module.

2.3.1 The PSS isomorphism We quickly recall here the remaining structures men-
tioned in Proposition 1.1; see [5; 9] for more details and proofs.

The PSS–morphism
C�.f;J /! CF�.L;H;J /

is defined by counting pearls leaving from a critical point where the last disk in the pearl
is a half-disk u satisfying the PSS–equation and converging to an orbit Q
C . We count
these pearls in each homology class AD

P
vi C Œu#�u
C �. The PSS–equation is

@suCJ.s; t;u.s; t//.@tu�ˇ.s/XHt
.u//D 0;

where ˇW R! Œ0; 1� is a monotone surjective function which is constant close to ˙1.
An easy computation yields the following energy estimate, which is needed to prove
Theorem 3.1:

E.u/ WD

Z
!.@su;J.s; t;u/@su/ ds dt � !.u/�

Z
Ht .
C.t// dt C

Z
max
M

Ht dt:

This is a chain map, by arguments similar to the ones considered in the previous
sections, as long as J.s; t/ � Jreg for every .s; t/ and the family J.s; t/ is generic
with J.�1; 0/D J . It is standard to show that such choices are always possible.

There is a similar PSS�1 –morphism defined using pearls starting from an orbit Q
� and
going into a critical point using a half-disk u satisfying the PSS�1 –equation

@suCJ.s; t;u.s; t//.@tu�ˇ.�s/XHt
.u//D 0:

We count each homology class AD
P

i Œvi �C Œu
�#u�. The energy of such half-disks
verifies

E.u/� !.u/C

Z
Ht .
�.t// dt �

Z
min
M

Ht dt:

Recall that a chain homotopy satisfying dpearl � dpearlD id�PSS�1
ıPSS is defined

by using pearls for which one of the disks u solves the equation

@suCJ.s; t;u.s; t//.@tuC˛R.s/XHt
/D 0:

Here R 2 .0;1/ depends on u, ˛RW R! Œ0; 1� is smooth and, when R� 1, we set

˛R.s/D

�
1 if s 2 Œ�R;R�;

0 if jsj �RC 1:
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We require j˛0
R
j � 1 and set ˛R D R˛1 when R � 1. The energy bound for such

disks is given by

(2) E.u/� !.u/C

Z �
max
M

Ht �min
M

Ht

�
dt:

Finally, there is a chain homotopy

�W .C.f;J /˝ƒ C.g;J //�! CF��1.L;H;J /

satisfying
PSS.x ıy/D x ?PSS.y/C .@�� �@/.x˝y/;

thus the PSS is a QH.L/–module isomorphism.

3 A uniruling result and the proof of Theorem A

All the structures defined in Section 2 as well as the energy estimates given there yield
a proof of the following uniruling result, which can be found in [9]; the modifications
needed using the Novikov ring ƒ are direct.

Theorem 3.1 Let L be an orientable Lagrangian surface and H a nonconstant
Hamiltonian. Then, for every J0 2 Jreg , J � Jreg starting at J0 and every x0 2

Ln.�H
1
/�1.L/, there exists a nonconstant map u that is either a Floer J –strip corre-

sponding to H , a Jt –holomorphic sphere or a J0 –holomorphic disk with boundary
on L, such that x02=.u/ and 0<E.u/�

R
.max Ht�min Ht /. If L and .�H

1
/�1.L/

intersect transversally, then �.u/� 2.

Proof of Theorem A Let L be a closed, orientable and displaceable Lagrangian
surface, E.L/ its displacement energy, and H a Hamiltonian displacing L chosen
such that Z �

max
M

Ht �min
M

Ht

�
dt DE.L/C �:

Given a symplectic embedding eW .B4.r/;R2/! .M;L/, the previous theorem shows
that a nonconstant J–holomorphic sphere (the constant path J D J is generic since
there are no strips) or J–holomorphic disk with boundary on L, of symplectic area at
most E.L/C � goes through e.0/, where e�J D J0 ; here J0 denotes the standard
complex structure on C2 . Standard arguments (see eg Barraud and Cornea [4, Proof
of Corollary 3.10]) then yield �r2=2�E.L/C � for every � .
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