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Asymptotic cones of HNN extensions
and amalgamated products

CURTIS KENT

Gromov asked whether an asymptotic cone of a finitely generated group was always
simply connected or had uncountable fundamental group. We prove that Gromov’s
dichotomy holds for asymptotic cones with cut points, as well as HNN extensions
and amalgamated products where the associated subgroups are nicely embedded. We
also show a slightly weaker dichotomy for multiple HNN extensions of free groups.

20F65, 20F69; 57M07

1 Introduction

Gromov was first to notice a connection between the homotopic properties of asymptotic
cones of a finitely generated group and algorithmic properties of the group (Gromov [16,
Section 5.F]). Gromov asked what kind of fundamental groups can asymptotic cones
of finitely generated groups have [16]. In particular, he asked whether the following
dichotomy is true: The fundamental group of an asymptotic cone of a finitely generated
group is always either trivial or of order continuum. One reason for this question was
that asymptotic cones of nilpotent groups are simply connected (Pansu [28]); the same is
true for hyperbolic groups since all cones in that case are R–trees, but asymptotic cones
of many solvable non-nilpotent groups (say, the Baumslag–Solitar group BS.2; 1/ or
Sol) contain Hawaiian earrings, and that seems to be a common property of very many
other groups (Burillo [3], Conner and Kent [7]).

Answering Gromov’s question about possible fundamental groups of asymptotic cones,
Erschler and Osin showed that every countable group is a subgroup of the fundamental
group of an asymptotic cone of a finitely generated group [13]. Druţu and Sapir proved
that, moreover, for every countable group C, there exists an asymptotic cone of a
finitely generated group G whose fundamental group is the free product of uncountably
many copies of C [11]. (Note that for finitely presented groups G, analogues of the
results of Erschler, Osin, Druţu and Sapir, are still unknown.)

It turned out that Gromov’s dichotomy is false: there exists an asymptotic cone of a
finitely generated group whose fundamental group is Z because the cone is homeo-
morphic to the direct product of a tree and a circle (Ol’shanskii, Osin and Sapir [23]).
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Cornulier and Tessera have produced additional counterexamples by showing that
solvable groups can have asymptotic cones with finite fundamental groups [8].

A prairie group is a group where every asymptotic cone of the group is simply connected.
A group is constricted if all of its asymptotic cones have (global) cut-points and wide
if none of its asymptotic cones have cut-points. We show that for constricted groups
Gromov’s dichotomy does hold and that a modified version of Gromov’s dichotomy
holds for groups that are not wide.

Theorem A (Corollary 2.23) Let G be a finitely generated group. If G is constricted,
then the fundamental group of an asymptotic cone of G is either trivial or contains an
uncountably generated free subgroup. If G is not wide, then G has an asymptotic cone
that is simply connected or contains an uncountably generated free subgroup.

If an asymptotic cone of a group contains a cut-point, then it is tree-graded with respect
to subsets called pieces that are maximal subsets not containing cut-points. For a
definition of tree-graded, see [11]. The naive way to try prove the above theorem is to
say that if the fundamental group is non-trivial then some piece contains an essential
loop. However, the one-point wedge of two contractible spaces can have uncountable
fundamental group (see the remark following Proposition 3.9). Hence, it is possible
that all pieces have trivial fundamental group while the asymptotic cone itself has
non-trivial fundamental group.

Instead, we show that any ultralimit of compact subsets of an asymptotic cone embeds
into the cone (see Proposition 2.19). A slightly stronger version of this statement is
proved, assuming the continuum hypothesis, in Osin and Sapir [27]. It is also related
to work of Sisto in [32]. Proposition 2.19 provides a way to prove that every maximal
transversal tree in the asymptotic cone of a noncyclic group is a universal R–tree. (A
tree T �X is transversal in X if the connected components of T nftg are contained in
distinct connected components of Xnftg for every t 2 T .) This implies the existence
of an uncountable set of points such that any two are separated by a cut-point. We then
use homogeneity together with this uncountable set of points to prove that any essential
loop has uncountably many translates such that any two are separated by a cut-point.
These translates serve as generators for a subgroup of the fundamental group that is an
uncountable product of cyclic groups.

In the process, we also obtained the following result which is interesting in its own
right.

Proposition B (Proposition 2.12) Let X be a homogeneous geodesic metric space.
Every asymptotic cone of X is one-ended if and only if X is wide if and only if no
asymptotic cone of X has a local cut-point.
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By extending these methods to unbounded sets that separate, we were able to show
that Gromov’s dichotomy holds for HNN extensions and amalgamated products with
nicely embedded associated subgroups.

Theorem C (Theorem 3.16) Suppose that G is an HNN extension or amalgamated
product where the associated subgroups are proper, quasi-isometrically embedded,
prairie groups. Then every asymptotic cone of G is either simply connected or has
uncountable fundamental group.

Another weaker version of Gromov’s dichotomy holds for multiple HNN extensions of
free groups:

Theorem D (Theorem 4.16) If G is a multiple HNN extension of a free group, then
every asymptotic cone of G is simply connected or G has an asymptotic cone with
uncountable fundamental group.

Multiple HNN extensions of free groups can have unusual asymptotic properties. Using
multiple HNN extensions, Sapir, Birget and Rips were able to construct a finitely
presented group with undecidable word problem and cubic Dehn function. They also
constructed examples of groups with Dehn function equivalent to n˛ for any ˛ � 4

that is computable in time less than 22C m

for some constant C > 0 [31]. Ol’shanskii
and Sapir constructed a multiple HNN extension of a free group that has �1 –non-
equivalent asymptotic cones [26] and another that has all cones with uncountable
fundamental group and n2 log.n/ Dehn function [24] (see [7] for a proof that the cones
have uncountable �1 ). As noted earlier, Burillo in [3] showed that Baumslag–Solitar
groups can have �1 –embedded Hawaiian earring groups.

When Gromov’s dichotomy was formulated, examples of groups with several non-
homeomorphic (or moreover �1 –non-equivalent) asymptotic cones were not known.
Now we know that a finitely generated group can have uncountably many pairwise
�1 –non-equivalent asymptotic cones [11] (or much more pairwise non-homeomorphic
cones, if the continuum hypothesis is assumed false (Kramer, Shelah, Tent and Thomas
[19])), so our weaker version of the dichotomy seems natural.

1.1 Definitions

Let G D hSi be a group and u; v be two words in the alphabet S. We write u� v

when u and v coincide letter by letter and uDG v if u and v are equal in G. We will
denote the Cayley graph of G with respect to the generating set S by �.G;S/. We
will use the standard convention of considering G to be the set of vertices of the Cayley
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graph, which acts on �.G;S/ by isometries. The Cayley complex of G depends on a
set of generators and a set of relations but will be denoted �2.G;S/ when the relators
are understood. We will use Lab to represent the function from the set of edge paths in
a labeled oriented CW–complex to the set of words in the alphabet obtained by reading
the label of a path.

We will use � to denote the canonical map taking a van Kampen diagram into the Cayley
complex that restricts to a label-preserving map on the 1–skeleton of the diagram.
Explicitly, let � be a van Kampen diagram with a distinguished vertex o, and go a
vertex of �.G;S/. For v a vertex of �, let �.v/D g0wv where wv is the label of
any path in � from o to v . Whenever � is a simply connected diagram, this map is
independent of the choice of wv and extends to a map on all of � as follows. For e

an edge of � labeled by s with initial vertex v , let �.e/D .�.v/; s/ where .�.v/; s/
is the edge in �.G;S/ with initial vertex �.v/ and labeled by s . For � a 2–cell of
�, we may choose a vertex v on @� such that Lab .�/ � r˙1 with this choice of
base point. Then �.�/DD�.v/;r˙1 where D�.v/;r˙1 is the 2–cell in �2.G;S/ with
boundary, read from �.v/, labeled by r˙1 . The map � is unique up to our choice of
g0 and o.

Definition 1.1 Suppose that ˇ is a simple closed curve contained in the interior of
a planar disc D . Then Dnˇ has exactly two components. The component of Dnˇ

whose closure contains @D will be called the unbounded component of Dnˇ . The
other component will be called the bounded component. A point v 2D is interior (or
exterior) to ˇ if it is contained in the bounded (or unbounded) component of Dnˇ .

Definition 1.2 (Asymptotic cones) Let ! be an ultrafilter on N and cn be a se-
quence of positive real numbers. The sequence cn is bounded !–almost surely or
!–bounded, if there exists a number M such that !.fn j cn < M g/ D 1. If cn is
!–bounded, then there exists a unique number, which we will denote by lim! cn , such
that !.fn j jcn� lim! cnj< �g/D 1 for every � > 0.

If cn is not !–bounded, then !.fn j cn >M g/D 1 for every M . We will say that cn

diverges !–almost surely or is !–divergent and let lim! cn D1.

Let .Xn; distn/ be a sequence of metric spaces and ! an ultrafilter on N . Consider a
sequence of points e D .en/ such that en 2Xn called an observation sequence.

Given two elements x D .xn/;y D .yn/ 2
Q

Xn , set dist.x;y/D lim! distn.xn;yn/.
We can then define an equivalence relation � on

Q
Xn by x � y if and only if

dist.x;y/D 0.
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The ultralimit of Xn relative to the observation sequence e is:

lim !
e Xn D

n
x D .xn/ 2

Y
Xn

ˇ̌̌
dist.x; e/ <1

o ı
�

Now consider an !–divergent sequence of numbers d D .dn/ called a scaling sequence
and a metric space .X; dist/.

The asymptotic cone of X with respect to e , d and ! is

Con!
�
X; e; d

�
D lim!e

�
X; dist =dn

�
;

where dist =dn is the metric on X scaled by 1
dn

.

Con!
�
X; e; d

�
is a complete metric space. If X is geodesic, then Con!

�
X; e; d

�
is also geodesic. If X is a homogeneous metric space, then the isometry type of
Con!.X; e; d/ is independent of e and will frequently be denoted by Con!

�
X; d

�
.

Suppose that fXng is a sequence of subsets of a metric space .X; dist/. At times it
will be convenient to talk about the subset of Con!.X; e; d/ with representatives inQ

Xn . When it is clear from the text, we will denote this subset by lim! Xn instead
of the more precise lim!e .Xn; dist =dn/. When used in this context, we will not require
that en be an element of Xn .

2 Wide groups and ends of asymptotic cones

The following lemma is obvious.

Lemma 2.1 Let ! be an ultrafilter on N and d D .dn/ a scaling sequence. Suppose
that f
ng is a sequence of loops parametrized by arc length in a geodesic metric space
.X; dist/ such that j
nj DO.dn/. Then 
 .t/D .
n.t// is a continuous map of S1 into
Con!.X; e; d/.

The converse also holds.

Proposition 2.2 Let X be a geodesic metric space. For every path 
 2Con!.X; e; d/,
there exist paths 
n in X such that 
 .t/D .
n.t//.

Recall that there exist geodesics in a cone that are not limits of geodesics. However,
here we do not put any restraints on the paths 
n (the proof shows that 
n can be
chosen to be a 2mn –gon, where mn is an !–divergent sequence).
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Proof Suppose that 
 W Œ0; 1�! Con!.X; e; d/ is a path and let � be a modulus of
continuity for 
 (see Definition 3.6).

For each diadic rational r in Œ0; 1�, fix a representative .an.r// for 
 .r/. Let

Ai D

n
0;

1

2i
; : : : ;

2i�1

2i
; 1
o
;

Ci D

�
n
ˇ̌̌ ˇ̌̌̌

dist
�

 .r/; 
 .s/

�
�

dist.an.r/; an.s//

dn

ˇ̌̌̌
�

1

i
for s; r 2Ai

�
:

Then Ci is !–large, since jAi j is finite and .an.r// is a representative of 
 .r/. Also,
Ci � Ci�1 � � � � � C1 is nested.

Let Dn D fi j n 2 Ci and i � ng and mn Dmax Dn , if Dn is non-empty and mn D 1

otherwise.

Claim 1 lim! mn D1

Proof of Claim 1 Suppose that mn was bounded by L on some !–large set C. Fix
n0 2 C \ f2L; 2LC 1; 2LC 2; : : : g \ C2L (the intersection is non-empty since all
three are !–large). Then n0 2 C2L and 2L� n0 . This implies that 2L 2Dn0

. Hence
mn0
� 2L, which contradicts our assumption that mn was bounded by L on C since

n0 2 C.

By the above argument, !.fn j mn � Lg/D 0. Hence !.fn j mn > Lg/D 1. Since
this holds for every L, the claim is proved.

Define 
nW Œ0; 1�!X by


n.r/D an.r/; for r 2Amn
;

and extend 
n geodesically.

We can then define 
 0.t/D .
n.t//.

Let Bk Dfn jmn > kg, which is !–large by the Claim 1. Fix t0 in the diadic rationals
and n0 such that t0 2An0

. Then for all n2Bn0
, t0 2Amn

. This implies that 
n.t0/D

an.t0/ for n 2 Bn0
. Since Bn0

is !–large, 
 0.t0/ D .
n.t0// D .an.t0// D 
 .t0/.
Hence 
 0.t/D 
 .t/ on the diadic rationales.

Notice by our choice of mn , we have n 2 Cmn
if mn ¤ 1. Thus for n 2 B1 and

r; s 2Amn
, we have

dist
�

 .r/; 
 .s/

�
�

1

mn
�

dist
�

n.r/; 
n.s/

�
dn

� dist
�

 .r/; 
 .s/

�
C

1

mn
:
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Fix x;y 2 Œ0; 1�. Choose r1
x ; r

2
x ; r

1
y ; r

2
y 2Amn

such that x 2 Œr1
x ; r

2
x �, y 2 Œr1

y ; r
2
y � and

d.r1
x ; r

2
x/D d.r1

y ; r
2
y /D

1

2mn
:

Then for n 2 B1 , 
njŒr1
x ;r

2
x �

, 
njŒr1
y ;r

2
y �

are geodesics of length at most

dn

h
�
� 1

2mn

�
C

1

mn

i
:

Thus
dist

�

n.x/; 
n.r

1
x/
�
; dist

�

n.r

1
y /; 
n.y/

�
� dn

h
�
�

1

2mn

�
C

1

mn

i
:

Then combining this with the triangle inequality, we obtain

dist
�

n.x/; 
n.y/

�
� dist

�

n.x/; 
n.r

1
x/
�
C dist

�

n.r

1
x/; 
n.r

1
y /
�
C dist

�

n.r

1
y /; 
n.y/

�
� dn

h
�
�

1

2mn

�
C

1

mn

i
C dn

h
�
�
dist.r1

x ; r
1
y /
�
C

1

mn

i
C dn

h
�
�

1

2mn

�
C

1

mn

i
D 2dn�

�
1

2mn

�
C

3dn

mn
C dn�

�
dist.x;y/C 2

2mn

�
Then

dist
�

 0.x/; 
 0.y/

�
� lim

n

! dist
�

n.x/; 
n.y/

�
dn

� lim
n

!2�
�

1

2mn

�
C

3

mn
C �

�
d.x;y/C

2

2mn

�
D �

�
d.x;y/

�
;

which implies that 
 0 is continuous. (Note that we used that fact that � was a continuous
modulus of continuity.) Hence 
 .t/D 
 0.t/ for all t .

Proposition 2.3 Let X be a simply connected geodesic metric space that has a linear
isodiametric function. Suppose that hW D! Con!.X; e; d/ is a continuous map of the
unit disc. Then there exist continuous maps hnW D!X such that 
 .t/D .
n.t//.

The proof is very similar to that of Proposition 2.2. However, we present it here to
illustrate how to modify the proof of Proposition 2.2 for discs of higher dimension.

Proof For simplicity of notation, we will assume D D Œ0; 1�2 . Fix M such that every
loop of length at most n bounds a disc of diameter at most M n.

Suppose that hW Œ0; 1�2! Con!.X; e; d/ is a continuous map and let � be a modulus
of continuity for h.
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For each diadic rational pair Er D .r; s/, fix a representative .an.Er// of h.Er/. Let

Ai D

n
Er D .r; s/

ˇ̌̌
r; s 2

n
0;

1

2i
; : : : ;

2i�1

2i
; 1
oo
:

We can consider Ai as the vertices of a cellular decomposition of D into squares with
side length 1

2i and denote the j –skeleton of this decomposition by A
.j/
i for j D 1; 2.

Ci D

�
n
ˇ̌̌ ˇ̌̌̌

dist
�
h.Er/; h.Es/

�
�

dist
�
an.Er/; an.Es/

�
dn

ˇ̌̌̌
�

1

i
for Er ; Es 2Ai

�
:

Then Ci is !–large, since jAi j is finite and .an.Er// is a representative of h.Er/. Also,
Ci � Ci�1 � � � � � C1 is nested.

Let Dn D fi j n 2 Ci and i � ng and mn Dmax Dn , if Dn is non-empty and mn D 1

otherwise.

Claim 2 lim! mn D1

Proof of Claim 2 The proof is identical to that of Claim 1 from the previous proposi-
tion.

Define hnW A
.1/
mn
!X by

hn.Er/D an.Er/; for Er 2Amn
;

and extend fn geodesically to all of A
.1/
mn

. Let e be a 2–cell of Amn
. Then jhn.@e/j

is at most 4 diam.hn.@e// and we can extend hn to D by mapping each 2–cell e of
Amn

to a disc of diameter at most 4M diam.hn.@e//.

We can now define h0W D! Con!.X; e; d/ by h0.Et/D .hn.Et// for all Et 2D .

Let Bk D fn j mn > kg, which is !–large by the claim. Fix a diadic rational pair
Er0 D .r0; s0/ and n0 such that Er0 2 An0

. Then for all n 2 Bn0
, Er0 2 Amn

. This
implies that hn.Er0/D an.Er0/ for n 2Bn0

. Since Bn0
is !–large, h0.Er0/D .hn.Er0//D

.an.Er0//D h.Er0/. Hence h0.Er/D h.Er/ for any diadic pair Er D .r; s/.

Notice by our choice of mn , we have n 2 Cmn
if mn ¤ 1. Thus for n 2 B1 and

Er ; Es 2Amn
, we have

(1) dist
�
h.Er/; h.Es/

�
�

1

mn
�

dist
�
hn.Er/; hn.Es/

�
dn

� dist
�
h.Er/; h.Es/

�
C

1

mn
:

Fix Ex1; Ex2 2 D . Choose 2–cells e1; e2 of Amn
such that Exi 2 ei for i D 1; 2. Also,

choose a vertex Eri of ei for i D 1; 2.
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Then for n 2 B1 , diam.hn.ei//� 4M diam.hn.@ei//. Since hn.@ei/ is a geodesic 4–
gon, diam.hn.@ei// is at most twice the maximum distance between adjacent vertices.
This with Equation (1) implies that

diam.hn.ei//� dnM 8
h
�
�

1

2mn

�
C

1

mn

i
:

Thus for i D 1; 2 we have

dist
�
hn.Exi/; hn.Eri/

�
� dnM 8

h
�
�

1

2mn

�
C

1

mn

i
:

Then combining this with the triangle inequality, we obtain:

dist
�
hn.Ex1/; hn.Ex2/

�
� dist

�
hn.Ex1/; hn.Er1/

�
C dist

�
hn.Er1/; hn.Er2/

�
C dist

�
hn.Er2/; hn.Ex2/

�
� dnM 8

h
�
� 1

2mn

�
C

1

mn

i
C dn

h
�
�
dist.Er1; Er2/

�
C

1

mn

i
C dnM 8

h
�
� 1

2mn

�
C

1

mn

i
D 16dnM �

� 1

2mn

�
C

dn.16M C 1/

mn
C dn�

�
dist.Ex1; Ex2/C

2

2mn

�
Then

dist
�
h0.Ex1/; h

0.Ex2/
�
� lim

n

! dist
�
hn.x1/; hn.Ex2/

�
dn

� lim
n

!16M �
�

1

2mn

�
C
.16M C 1/

mn
C �

�
dist.Ex1; Ex2/C

2

2mn

�
D �

�
d.Ex1; Ex2/

�
which implies that h0 is continuous. (Note that we used that fact that � was a continuous
modulus of continuity.) Hence h.Ex/D h0.Ex/ for all Ex 2D .

Throughout this paper, we will assume that metric balls are open. When � is a path in
a metric space, we will use j� j to denote its arc length. Then j � j maps the set of paths
into the extended real line and is finite for rectifiable paths and C1 for non-rectifiable
paths. We will assume that rectifiable paths are parametrized proportional to arc length.
We will use Ns.B/ to represent the s–neighborhood of B .

Lemma 2.4 Let X be a homogeneous geodesic metric space. The non-empty compo-
nents Con!.X; e; d/nf.xn/g are unbounded for all .xn/ 2 Con!.X; e; d/.

Proof The lemma is trivial if X is bounded.

Claim Every asymptotic cone of an unbounded homogeneous geodesic metric space
contains a bi-infinite geodesic.
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Proof of claim Since X is unbounded and geodesic, there exists a geodesic

nW Œ�ndn; ndn�!X every n. By homogeneity, we may assume that 
n.0/D en . We
can extend 
n to all of R by 
n.t/D 
n.ndn/ for t � ndn and 
n.t/D 
n.�ndn/ for
t � �ndn . Define 
 W R! Con!.X; e; d/ by 
 .t/D .
n.tdn//. Then

dist
�

 .s/; 
 .t/

�
D lim!

distn
�

n.sdn/; 
n.sdn/

�
dn

D lim!
jsdn� tdnj

dn
D js� t j;

which completes the proof.

Since Con!.X; e; d/ is also homogeneous, it contains a bi-infinite geodesic through ev-
ery point. Suppose that A is a non-empty connected component of Con!.X; e; d/nfxg
for some x 2 Con!.X; e; d/. Let a 2 A. Then there exists a bi-infinite geodesic
˛W R ! Con!.X; e; d/ such ˛.0/ D a. Only one of ˛..�1; 0�/, ˛.Œ0;1// can
intersect x . Hence A must contain an unbounded ray.

This lemma also follows from Druţu, Mozes and Sapir [10, Lemma 3.12].

Lemma 2.5 Let Bn be a sequence of uniformly bounded subsets of a geodesic metric
space X and �W N ! R be a sublinear function. If XnNk.dn/.Bn/ has more than
one unbounded connected component, then, for en 2Bn , Con!.X; e; d/n lim!e Bn has
more than one unbounded connected component.

Proof Let fUn;1; : : : ;Un;in
g be the set of unbounded connected components of

XnNk.dn/.Bn/. Let BD lim!e Bn , ZD lim!e Un;sn
and Y D lim!e Un;tn

, where sn; tn
are distinct elements of f1; : : : ; ing !–almost surely. Since Bn is uniformly bounded
and Un;i is unbounded, both Y nB and ZnB are nonempty and hence unbounded.

Suppose that x 2 Z \ Y . Then x D .zn/ D .yn/, where zn 2 Un;sn
and yn 2

Un;tn
. Since Un;sn

and Un;tn
are in distinct connected components of XnNk.dn/.Bn/,

every path originating in Un;sn
and terminating in Un;tn

passes through Nk.dn/.Bn/.
By considering a geodesic from zn to yn , we can find b0n 2 Nk.dn/.Bn/ such that
dist.zn; b

0
n/C dist.b0n;yn/ D dist.zn;yn/, which implies that x D .b0n/. Also, there

exists bn 2 Bn such that dist.bn; b
0
n/� �.dn/. Hence x D .b0n/D .bn/.

Thus Z\Y �B and the components of ZnB;Y nB are distinct unbounded components
of Con!.X; e; d/nB .

At times it will be convenient to consider separating sets which are unbounded.
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Lemma 2.6 Let .Bn; en/ be a sequence of pointed subsets of a geodesic metric
space X, ! an ultrafilter and d D .dn/ an !–divergent sequence. Suppose that
a D .an/; b D .bn/ 2 Con!.X; e; d/ are points such that there exists a sublinear
function �W N ! R such that an; bn are in distinct components of XnN�.dn/.Bn/

!–almost surely.

Then lim!e Bn separates Con!.X; e; d/ into at least two connected components and a,
b are in distinct components of Con!.X; e; d/n lim!e Bn .

The proof is the same as for bounded sets; the only difference is that we are not able to
conclude that the components are unbounded since we cannot apply Lemma 2.4.

Definition 2.7 Let X be a connected, locally connected topological space. A point
x 2 X is a local cut-point if there exists an open connected neighborhood U of x

such that U nfxg has at least two connected components. A point x 2X is a global
cut-point if Xnfxg has at least two connected components. X is wide if none of its
asymptotic cones has a global cut-point. X is unconstricted if one of its asymptotic
cones has no global cut-points. X is constricted if all of its asymptotic cones have
global cut-points.

Let B1 � B2 � � � � be an ascending sequence of bounded sets in a metric space X

such that every set of bounded diameter is eventually contained in Bn for some n.
This implies that [nBn DX.

Two descending sequences U1 � U2 � � � � and V1 � V2 � � � � of subsets of X are
equivalent if for every n there exist integers m; k such that Vm � Un and Uk � Vn .

An end of X is a descending sequence U1 � U2 � � � � where Ui is an unbounded
component of XnBi . It can be shown that up to the given equivalence on descending
sequences of subsets of X the set of ends of X does not depend on fBng.

A metric space X is one-ended if XnB has a unique unbounded connected component
for every bounded subset B of X.

We will use the following definition and lemma from [10].

Definition 2.8 Let X be a geodesic metric space, and let 0 < ı < 1 and 
 � 0.
Let a; b; c 2X with dist.c; fa; bg/D r > 0, where dist.c; fa; bg/ is the minimum of
dist.c; a/ and dist.c; b/. Define div
 .a; b; cI ı/ as the infimum of the lengths of paths
a; b that avoid the ball B.c; ır�
 / (note that by definition a ball of non-positive radius
is empty). If no such path exists, take div
 .a; b; cI ı/D1.
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Lemma 2.9 [10, Lemma 3.14] Let X be a geodesic metric space. Let ! be any
ultrafilter and d D .dn/ be an !–divergent sequence. Let a D .an/; b D .bn/; c D

.cn/ 2 Con!.X; e; d/. Let r D dist.c; fa; bg/. The following conditions are equivalent
for any 0� ı < 1.

(i) The closed ball B.c; ı/ in Con!.X; e; d/ separates a from b .

(ii) For every ı0 > ı and every (some) 
 � 0,

lim!
div
 .an; bn; cnI

ı0

r
/

dn
D1:

The following proposition is immediate, as it holds for all homogeneous geodesic
metric spaces; see Geoghegan [14].

Proposition 2.10 An asymptotic cone of a finitely generated group can have 0, 1, 2

or uncountable many ends.

Lemma 2.11 Let X be a homogenous geodesic metric space. If Con!.X; e; d/ has a
local cut-point, then there exists a cone of X with a global cut-point.

Proof Suppose that Con!.X; e; d/ has a local cut-point. By homogeneity, zx D .xn/

is a local cut-point. Suppose that U is an open connected neighborhood of zx such that
U nfzxg has two components.

Claim There exists an � > 0 such that zx separates every ball about zx with radius at
most � .

Let B� be the ball in Con!.X; e; d/ about zx of radius � .

Fix � > 0 such that B� is a subset of U . Let u; v be elements of U that are in
different components of U nfzxg. Any path in U from u to v passes through zx . (Since
Con!.X; e; d/ is locally path connected and U is open and connected, U is path
connected.) Hence, we can find a path f W Œ0; 1�! U such that f �1.zx/ D f1

2
g and

f .0/; f .1/ are in different components of U nfzxg. This implies that the inclusion map
from B�0nfzxg to U nfzxg is not contained in a single component for any �0 � � . Thus
B�0nfzxg is also not connected for any �0 � � , which completes the proof of the claim.

We can now consider the cones X!
k
D Con!.X; .en/; .dn=k//. It is easy to see that zx

is a cut-point of the ball of radius k� in Xk . Hence, lim! Xk has a global cut point
and by [11, Corollary 3.24] lim! Xk is again an asymptotic cone of X.
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Proposition 2.12 Let X be a homogeneous geodesic metric space. Every asymptotic
cone of X is one-ended if and only if X is wide if and only if no asymptotic cone of
X has a local cut-point.

Proof That X is wide if and only if no asymptotic cone of X has a local cut-point
follows immediately from the previous lemma. Thus we need only prove that every
asymptotic cone of X is one-ended if and only if X is wide.

The “only if” direction of this equivalence is trivial. We must show that if no asymptotic
cone of X has a cut-point, then every asymptotic cone of X is one-ended. Suppose
that no asymptotic cone of X has a cut-point but Con!.X; e; d/ is not one-ended for
some choice of !; e; d . Hence, there exists a bounded subset zB of Con!.X; e; d/
such that Con!.X; e; d/n zB has at least two unbounded components. By homogeneity,
we may assume that zx D .xn/ 2 zB .

By Lemma 2.5,

zY D Con!.Con!.X; e; d/; .zx/; .n// n lim! B

has more than one connected component. Since zB is bounded, lim! zB is a point in zY
that separates. Thus it is a cut-point of zY . zY is again an asymptotic cone of X [11,
Corollary 3.24]. This contradicts the hypothesis that no cone of X has a cut-point.

In [10, Theorem 1.4], Druţu, Mozes and Sapir show that certain semisimple Lie
groups (namely those specified in the theorem below) are wide. Hence, we can apply
Proposition 2.12 to obtain the following result.

Theorem 2.13 Let � be an irreducible lattice in a semisimple Lie group of R–rank at
least 2. Suppose that � is either of Q–rank 1 or is of the form SLn.OS/ where n� 3,
S is a finite set of valuations of a number field K including all infinite valuations,
and OS is the corresponding ring of S–integers. Then every asymptotic cone of � is
one-ended.

Proposition 2.12 together with [11, Corollary 6.13] gives us the following.

Theorem 2.14 Let G be a finitely generated non-virtually cyclic group satisfying a
law. Then all asymptotic cones of G are one-ended.

The following proposition is well known. We present it here only for comparison with
Proposition 2.16.

Algebraic & Geometric Topology, Volume 14 (2014)



564 Curtis Kent

Proposition 2.15 Let G be a finitely generated group. The following are equivalent:

(a) G is finite.

(b) G has an asymptotic cone that is a point.

(c) G has an asymptotic cone with 0 ends.

Proof If G is an infinite finitely generated group, then �.G;S/ contains a bi-infinite
geodesic for every finite generating set S. Thus Con!.G; d/ contains a bi-infinite
geodesic for every infinite group G. If G is finite then �.G;S/ is bounded for every
generating set S and Con!.G; d/ is a point for every pair .!; d/. Thus (a) and (b) are
equivalent. Clearly, (b) implies (c). If Con!.G; d/ has 0 ends for some pair .!; d/,
then it does not contain a bi-infinite geodesic. Hence (c) implies (a).

Proposition 2.16 Let G be a finitely generated group. The following are equivalent:

(a) G is infinite and virtually cyclic.

(b) G has an asymptotic cone which is a line.

(c) G has an asymptotic cone with exactly 2 ends.

Proof If G is infinite and virtually cyclic, then Con!.G; d/ is a line for every pair
.!; d/. Thus (a) implies (b). The implication .b/) .a/ is [11, Corollary 6.2]; also, it
also follows from Point [30], since a line has finite Minkowski dimension.

Thus we need only show that if Con!.G; d/ has exactly two ends for some pair .!; d/,
then G has an asymptotic cone which is a line.

Suppose that Con!.G; d/nB�.x0/ has exactly two unbounded components for some
� > 0 and x0 2 Con!.G; d/. For each i , let Ui and Vi be the two unbounded
components of Con!.G; d/nBi�.x0/. We may assume that we have chosen Ui ;Vi

such that Ui � UiC1 and Vi � ViC1 for all i . Fix xi 2 Ui and x�i 2 Vi such that
dist.x0;x˙i/D i� for all i 2N .

Define a path ˛W R!Con!.G; d/ by ˛.i/Dxi , for i 2Z, and for every i 2Z extend
˛ to Œi; i C 1� by sending the interval to a geodesic joining its endpoints.

Claim 3 ˛ is a quasi-geodesic with constants depending only on � , and Con!.G; d/
is contained in the 2�–neighborhood of the image of ˛ .

Notice that Claim 3 implies that G has an asymptotic cone that is a line since any
asymptotic cone of Con!.G; d/ is a line and an asymptotic cone of G.

Let ˛�i D ˛..�1; i � 4�/, ˛Ci D ˛.Œi C 4;1// and Yi D Con!.G; d/nB�.xi/ for all
i . By homogeneity, Yi has exactly two unbounded connected components.
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Subclaim 3.1 For all i; j 2 Z, dist.xi ;xj /� jj � i j�� 2� and hence ˛˙i � Yi .

Proof of Subclaim 3.1 If i; j have the same sign then by applying the triangle
inequality to a geodesic triangle with vertices x0;xi ;xj , we obtain dist.xi ;xj / �

jj � i j� .

Suppose that i � 0� j . By construction, every geodesic from xi to xj passes within
� of x0 . Fix a geodesic from xi to xj and let x0

0
be a point on the geodesic such that

dist.x0;x
0
0
/� � . Then �i�D dist.xi ;x0/� dist.xi ;x

0
0
/C� and j�D dist.x0;xj /�

dist.x0
0
;xj /C � , which gives us that .j � i/� � dist.xi ;x

0
0
/C dist.x0

0
;xj /C 2� D

dist.xi ;xj /C 2� . Thus dist.xi ;xj / � jj � i j�� 2� . If j 2 .1; i � 4�[ Œi C 4;1/,
then dist.xi ;xj / � 2� . Since every point on ˛˙i is within � of some xj for j 2

.1; i � 4�[ Œi C 4;1/, ˛˙i � Yi .

Subclaim 3.2 ˛Ci ; ˛
�
i are contained in distinct unbounded components of Yi for all i .

Proof of Subclaim 3.2 We will show the subclaim for i � 0. The other case is similar.
Let U;V be the two disjoint unbounded components of Yi . By way of contradiction,
we will assume that ˛˙i are both contained in U . Choose zg2

Q
G such that zg �x0Dxi .

For each j � 1, let ˇ�j D ˛..�1;�2j � 4�/, ˇCj D ˛.Œ2j C 4;1//. Since zg acts by
isometries on Con!.G; d/, we obtain that Yi D zg � Y0 and zg � ˇ˙j are in distinct
unbounded components of Yi for any j � 1.

Fix j � i . Since ˛�i ; ˛
C
i are contained in the same connected component of Yi and

zg �ˇ�j ; zg �ˇ
C
j are contained in distinct connected components of Yi , one of zg �ˇ˙j is

contained in V . Suppose that zg �ˇCj � V . (Again the other case is similar.) Notice that
ˇ˙j � ˛

˙
i which implies that ˇ�j [ˇ

C
j � U .

By Subclaim 3.1, dist.xi ; zg�ˇ
˙
j /� .2jC4/��2� , which implies that dist.x0; zg�ˇ

˙
j /�

.j C 2/� . Thus
zg �ˇ˙j � Con!.G; d/nB.jC1/�.x0/:

Again by Subclaim 3.1, we have that ˇ˙j � Con!.G; d/nB.jC1/�.x0/. Since B�.x0/

and B�.xi/ are contained in B.jC1/�.x0/, each of the three unbounded sets ˇ˙j ; zg �ˇ
C
j

must be contained in a distinct connected component of Con!.G; d/nB.jC1/�.x0/.
Since this holds for any j � i , Con!.G; d/ must have at least 3 ends, which contradicts
our assumption that Con!.G; d/ has exactly 2 ends.

Proof of Claim 3 If i; j 2 Z have different signs, then dist.xi ;xj /� dist.xi ;x0/C

dist.xj ;x0/D ji j�Cjj j�D ji � j j� .
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For 4� i � j�4, any geodesic from x0 to xj is passes within � of xi by Subclaim 3.2.
Hence, we may find a point x0i on a geodesic from x0 to xj such that dist.xi ;x

0
i/� � .

Then i� � dist.x0;x
0
i/C � and dist.xi ;xj / � dist.x0i ;xj /C � , which implies that

dist.xi ;xj /� .j � i/�C 2�D jj � i j�C 2� . Similarly, we can obtain the inequality
dist.xi ;xj /� jj � i j�C 2� for j C 4� i ��4. It follows that ˛ is a quasi-geodesic.

Suppose that there exists x 2 Con!.G; d/ such that dist.x; im.˛// � 2� . By homo-
geneity, Con!.G; d/nB�.x/ has two unbounded components, one of which contains
im.˛/. As in the proof of Subclaim 3.2, this would imply that Con!.G; d/ would have
at least three ends.

Thus any asymptotic cone of Con!.G; d/ is a line and also an asymptotic cone of G,
which completes the proof of the proposition.

Lemma 2.17 Suppose that X is an unbounded homogeneous geodesic metric space
and T is a vertex homogeneous three valence tree with fixed edge length � . If
Con!.X; e; d/ has more than two ends and a global cut-point, then there exists an
isometry f W T ! Con!.X; e; d/ such that the components of T nfvg map to distinct
components of Con!.X; e; d/nff .v/g for every vertex v of T .

Proof Fix � > 0. Let T be a vertex homogeneous 3–valence tree with fixed edge
length � . We will now build an isometry f W T ! Con!.X; e; d/ such that the three
components of T nfvg map into distinct components of Con!.X; e; d/nff .v/g for
every vertex v of T . Fix a vertex v0 of T .

Let Ti be a sequence of connected subtrees of T such that v0 D T1 , Ti � TiC1 ,S
i Ti D T and TiC1 has exactly one vertex not contained in Ti . This implies that

TiC1 can be obtained from Ti be adding exactly one edge and one vertex.

Let f .v0/ D x0 for some x0 2 Con!.X; e; d/. By induction, assume that we have
defined f on Ti such that f jTi

is an isometry and f maps the components of Tinfvg

to distinct components of Con!.X; e; d/nff .v/g for each vertex v of Ti . Let e be the
edge of T that is added to Ti to obtain TiC1 . Then e has exactly one vertex e� in Ti

and one vertex eC in TiC1nTi . Notice that Ti has valence 1 or 2 at e� . This implies
that Tinfe

�g and hence f .Tinfe
�g/ has at most 2 components. Let C be a component

of Con!.X; e; d/nff .e�/g that is disjoint from f .Tinfe
�g/. Since all components

are unbounded, we may choose a point x 2 C such that dist.x; f .e�// D � . Let
f .eC/D x and f .e/ be a geodesic from f .e�/ to f .eC/. It is immediate that the
components of TiC1nfvg map to distinct components of Con!.X; e; d/nff .v/g for
all vertices v in TiC1 . It only remains to show that f restricted to TiC1 is still an
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isometry. This follows trivially from the fact that if x;y are in distinct components of
Con!.X; e; d/nfzg, then dist.x;y/D dist.x; z/C dist.z;y/.

This defines a map f W T ! Con!.X; e; d/. Since any two points lie in some Ti ,
f is an isometry. We must show that the separation condition is preserved in the
limit. Suppose that v is a vertex of T and Ti contains the 2�–neighborhood of
v . By construction, f takes the components of Tinfvg into distinct components of
Con!.X; e; d/nff .v/g. Notice that each component of T nfvg intersects a component
of Tinfvg nontrivially, which implies that the separation condition still holds.

Corollary 2.18 In addition, f can be chosen such that f .t/D .fn.t// for all t 2 T

where fnW T !X takes edges of T to geodesics in X.

Proof We will show how to modify the proof of Lemma 2.17. Using the notation
from above, we will inductively define f; fn simultaneously. Suppose that f; fn are
defined as desired on Ti . When choosing x 2 C we will also fix a representative .xn/

of x . Let fn.e
C/ D xn , which implies that f .eC/ D .fn.e

C// D x . Let fn map
e to any geodesic from fn.e

�/ to fn.e
C/, which implies that f .e/ D .fn.e// is a

geodesic from f .e�/ to f .eC/. The rest of the proof remains unchanged.

Proposition 2.19 Suppose that X is an unbounded homogeneous geodesic metric
space and Ci is a sequence of finite point sets from Con!.X; e; d/. Then lim!e Ci em-
beds isometrically into Con!.X; e; d/. In addition, if Ci is nested, then the canonical
copy of Ci in lim!e Ci is mapped to Ci .

This proposition was previously shown under the continuum hypothesis by Osin and
Sapir and for groups by Sisto [32].

Proof Let �i W Ci!Con!.X; e; d/ be the inclusion induced map. Fix a representative
for each element of C D

S
i Ci . We can now define a double indexed sequence of

maps �inW Ci!X by letting �in.c/ be the nth coordinate of our chosen representative
for c 2 C. Thus, if the Ci are nested and c 2 Ci , then �jn.c/D �in.c/ for all j � i .
Hence, c D .�

ki
n .c// for any sequence ki . This will imply that the map defined below

takes the canonical copy of Ci in lim! Ci to Ci . Let

Ai D

�
n
ˇ̌̌ ˇ̌̌̌

dist.c; c0/�
dist

�
�
j
n.c/; �

j
n.c
0/
�

dn

ˇ̌̌̌
�

1

i
for all c; c0 2 Cj where j � i

�
:

Since j
S

j�i Cj j is finite and �j is an isometry for every j , Ai is !–large. Let
mnDmaxfi jn2Ai and i �ng if this set is non-empty and mnD1 otherwise. Suppose
that mn was bounded by L on some !–large set A. Then A2L\A�f1; : : : ; 2L�1g,

Algebraic & Geometric Topology, Volume 14 (2014)



568 Curtis Kent

which is a contradiction since !.A2L/D!.A/D 1 and !.f1; : : : ; 2L�1g/D 0. Thus
lim! mn D1.

Define z�W lim!e Ci! Con!.X; e; d/ by z�..cn//D .�
mn
n .cn//.

Claim z� is a well-defined isometric embedding of lim!e Cn into Con!.X; e; d/.

Fix c; c0 2 lim! Cn . We may choose representatives cn; c
0
n 2 Cn such that c D .cn/

and c D .c0n/. By construction,

dist.cn; c
0
n/�

1

mn
�

dist
�
�
mn
n .cn/; �

mn
n .c0n/

�
dn

� dist.cn; c
0
n/C

1

mn

for all n such that mn ¤ 1. Since mn is !–divergent, this set is !–large and

dist.c; c0/D lim !
h
dist.cn; c

0
n/�

1

mn

i
� lim !

�
dist

�
�
mn
n .cn/; �

mn
n .c0n/

�
dn

�
� lim !

h
dist.cn; c

0
n/C

1

mn

i
D dist.c; c0/:

Thus z� is independent of the chosen representative and is an isometry.

We can now use Lemma 2.17 to prove that R–trees can also be transversally embedded
into cones with cut-points.

Lemma 2.20 Suppose that X is an unbounded homogeneous geodesic metric space
and T is a universal R–tree with continuum branching at every point. If Con!.X; e; d/
has more than two ends and a global cut-point, then there exists an isometry f W T !
Con!.X; e; d/ such that the components of T nfvg map to distinct components of
Con!.X; e; d/nff .v/g for every v in T .

Proof Let Ti be a three valence tree with edge length 1=2i such that Ti � TiC1

for all i 2 N and t0 a fixed vertex in T1 . We will assume that Ti is endowed with
the edge metric. We will use Œv; w� to denote the geodesic from v to w in Ti and
.v; w/D Œv; w�nfv;wg. If v;w 2 Ti \Tj , then Œv; w� is independent of whether the
geodesic is taken in Ti or in Tj .

By Lemma 2.17, there exist isometries fi W Ti ! Con!.X; e; d/, which satisfy the
separation condition of Lemma 2.17. By homogeneity, we may assume fi.t0/D fj .t0/

for all i; j . By Corollary 2.18, there exists a sequence of maps f i
n W Ti!X such that

fi.t/D .f
i

n .t// for all t 2 Ti . We will also require that f i
n .t0/D f

j
n .t0/ for all i; j .

Let Vi be the vertices of the ball of radius i about t0 in Ti . Then jfi.Vi/j is a finite set
and Proposition 2.19 implies lim!e fi.Vi/ embeds isometrically. While lim!e fi.Vi/ is
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a universal R–tree, we must still guarantee that the embedding preserves the separation
property. To do this we will show how to modify the proof of Proposition 2.19 so as to
guarantee that the embedding preserves the desired separation property. Let

Ai D

�
n
ˇ̌̌ ˇ̌̌̌

dist.v; w/�
dist

�
f

j
n .v/; f

j
n .w/

�
dn

ˇ̌̌̌
�

1

i
for all v;w 2 Vj where j � i

�
:

For r D dist.f j
n .v0/; ff

j
n .v1/; f

j
n .v2/g/ and v0; v1; v2 2 Tj such that v0 separates

v1 from v2 in Tj , let

�i
n.j ; v0; v1; v2/D div1

�
f j

n .v1/; f
j

n .v2/; f
j

n .v0/I
1
ir

�
:

Let

Bi D fn j �
i
n.j ; v0; v1; v2/ > idn for any j � i; v0; v1; v2 2 Vj and v0 2 .v1; v2/g:

As before Ai is !–large for each i .

Claim Bi is an !–large set.

For each j and each triple v0; v1; v2 2 Vj such that v0 2 .v1; v2/, we have that

lim!
div1

�
f

j
n .v1/; f

j
n .v2/; f

j
n .v0/I

1
2ir

�
dn

D1

by Lemma 2.9 where r D dist.fj .v0/; ffj .v1/; fj .v2/g/. Thus

div1

�
f

j
n .v1/; f

j
n .v2/; f

j
n .v0/I

1
irn

�
dn

> i

on an !–large set where rn D dist.f j
n .v0/; ff

j
n .v1/; f

j
n .v2/g/. Since Vj is finite, Bi

is the finite intersection of !–large sets, which completes the proof of the claim.

Let mn D maxfi j n 2 Bi \Ai and i � ng if the intersection is non-empty for some
i � n, and mn D 1 otherwise.

Define zt D .t0/ and zf W lim!
zt

Ti! Con!.X; e; d/ by zf .t/D .f mn
n .t//.

Notice that lim!
zt

Ti D lim!
zt

Vi and zf ..to// D fi.t0/ for all i . As in the proof of
Proposition 2.19, lim! mn D 1 and zf is a well-defined isometric embedding of
lim! Ti into Con!.X; e; d/.

All that remains is to show that zf satisfies the desired separation condition. Suppose
that v0; v1; v2 are points on lim!

zt
Ti such that v1; v2 are in different components
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of lim!
zt

Tinfv0g. Then there exist representatives .v0
n/; .v

1
n/; .v

2
n/ of v1; v2; v3 re-

spectively such that v1
n; v

2
n are in distinct components of Tnnfv

0
ng !–almost surely.

Thus
div1

�
f

j
n .v

1
n/; f

j
n .v

1
n/; f

j
n .v

0
n/I

1
mnrn

�
dn

>mn

on an !–large set where rnDdist.f j
n .v0/; ff

j
n .v1/; f

j
n .v2/g/ and j �mn . Lemma 2.9

implies that zf .v1/; zf .v2/ are in distinct components of Con!.X; e; d/nf zf .v0/g. This
completes the proof.

Proposition 2.21 Let G be a finitely generated group. If Con!.G; d/ has a global
cut-point, then Con!.G; d/ is simply connected or has uncountable fundamental group.

Proof We may assume that G is not virtually cyclic, since the theorem is trivial in
that case. Then G has an asymptotic cone Con!.G; d/ with a global cut-point and
more than two ends. By Lemma 2.20, Con!.G; d/ contains an isometrically embedded
universal R–tree T such that the components of T nfvg map to distinct components
of Con!.G; d/nff .v/g where f is the isometric embedding of T into Con!.G; d/.

Suppose 
 W S1! Con!.G; d/ is an essential loop and fix x0 2 f .T /, which we may
assume is a base point of 
 . Let �D 2 diam.
 / and S Dfx 2 f .T / j dist.x;x0/D �g.
Then S has cardinality continuum and dist.x;y/ D 2� for all x;y 2 S. For x 2 S,
choose gx 2

Q
G such that gx � x0 D x . Let S
 D fgx � 
 j x 2 Sg, which is an

uncountable set of essential loops in Con!.G; d/.

Claim No two loops from S
 are homotopic.

Suppose that gx � 
 is homotopic gy � 
 . Then there exists a continuous map hW A!

Con!.G; d/ of a planar annulus that takes one boundary component to gx � 
 and the
other to gy �
 . Since dist.gx �
;x0/ > 0, gx �
 and gy �
 are in distinct components
of Con!.G; d/nfx0g. Thus h�1.fx0g/ separates the two boundary components of
the annulus A. Then there exists a single component C of h�1.fx0g/ that separates
the boundary components of A. This is a consequence of the Phragmén–Brouwer
properties (see Hurewicz and Wallman [18]). We can then modify h by mapping the
component of the plane bounded by C to x0 . This is a null homotopy of gx � 
 that
contradicts our choice of 
 and completes the proof of the claim and theorem.

Corollary 2.22 Let G be a finitely generated group. If Con!.G; d/ has a global
cut-point, then Con!.G; d/ is simply connected or its fundamental group contains an
uncountably generated free subgroup.

Algebraic & Geometric Topology, Volume 14 (2014)



Asymptotic cones of HNN extensions and amalgamated products 571

Proof Suppose that we have constructed f W T ! Con!.G; d/, 
 , S D fx 2 f .T / j

dist.x;x0/D �g and S
 D fgx � 
 j x 2 Sg as in the proof of Proposition 2.21. Let
px W Œ0; 1�! f .T / be the unique geodesic in f .T / from x0 to x 2 S.

Then S 0
 D fx D px � gx � 
 � px j x 2 Sg is a set of loops based at x0 (where
px.t/D px.1� t/).

Claim S 0
 generates a free product of cyclic groups.

Suppose that xn1
1
� � � ��xnk

k
is a null-homotopic loop in Con!.G; d/ where xi ¤ xiC1 ,

x1 ¤ xk and xni
i is an essential loop. Then there exists hW D! Con!.G; d/ a map

from the unit disc in the plane such that h.@D/ is a parametrization of the curve xn1
1
�

� � ��xnk
k

. Let C be the closure of the connected component of h�1.Con!.G; d/nfx0g/

containing the subpath p of @D2 that maps to xn1
1

. By construction, @D \C D p

and h.@Cnfpg/ D x0 . Define h0W D ! Con!.G; d/ by h0.y/ D h.y/ for y 2 C

and h0.y/D x0 for y 62 C. Then h0 is continuous and xn1
1

is null-homotopic, which
contradicts our choice of xn1

1
. This completes the proof of the claim.

While the subgroup generated by S 0
 may not by a free group (
 might have finite
order in the fundamental group), it is the free product of cyclic groups. Thus it is easy
to find an uncountably generated free subgroup.

Corollary 2.23 Let G be a finitely generated group. If G is constricted, then every
asymptotic cone of G is simply connected or has uncountable fundamental group. If G

is not wide, then G has an asymptotic cone that is simply connected or has uncountable
fundamental group.

3 Groups with quasi-isometrically embedded subgroups

Definition 3.1 A group is a prairie group if all of its asymptotic cones are simply
connected.

Lemma 3.2 The following groups are prairie groups:
(1) Nilpotent groups
(2) Hyperbolic groups
(3) Groups with quadratic Dehn functions:

(a) SLn.Z/ for n� 5

(b) Thompson’s group F

(c) Mapping class groups
(d) CAT.0/ groups
(e) Automatic groups
(f) Baumslag–Solitar groups BSpp , and many, many others
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Proof In [28], Pansu shows that nilpotent groups have a unique asymptotic cone that
is homeomorphic to Rn for some n. Gromov showed that non-elementary hyperbolic
groups have cones that are isometric to a universal R–tree with uncountable branching
at every point. Papasoglu in [29] showed that if a group has a quadratic Dehn function
then all of its asymptotic cones are simply connected.

Young showed that SLn.Z/ for n� 5 has a quadratic Dehn function [33]. Guba showed
that Thompson’s group F h as a quadratic Dehn function [17]. Mosher showed that
the mapping class groups are automatic [20]. It is shown in [2] that CAT.0/ groups
have quadratic Dehn functions and in [12] that automatic groups have quadratic Dehn
functions.

It is a straightforward exercise using van Kampen diagrams to show that BSpp has a
quadratic Dehn function.

Remark 3.3 In [7], the author and Greg Conner note that such groups are uniformly
locally simply connected; specifically, every loop of length r bounds a disc of diameter
at most Kr , where K only depends on the group. However, the discs are not necessarily
Lipschitz.

Lemma 3.4 There exists a finitely presented prairie group such that all of its asymp-
totic cones have uncountable Lipschitz fundamental group.

Proof The discrete Heisenberg group hx;y; z j z D Œx;y�; Œx; z� D Œy; z� D 1i is a
nilpotent group and hence a prairie group. In fact, every asymptotic cone is homeomor-
phic to R3 . However, it is shown in DeJarnette, Hajlasz, Lukyanenko and Tyson [9,
Theorem 4.10] that the Lipschitz fundamental group of the real Heisenberg group is
not countable generated.

The key to Proposition 2.21 was that the homotopy between the two loops passed
through a cut-point so we could “cut” the homotopy off to build a null homotopy for
one of the loops. We will show that the same idea holds if the separating set is a highly
connected set instead of a point. To do this we will require the following well-known
covering lemma for open sets in the plane. We provide a proof for completeness and to
fix notation.

Lemma 3.5 Every bounded open set U of R2 is the union of a null sequence of diadic
squares with disjoint interiors. In addition, the squares can be chosen such that if Ai is
the union of squares with side length at least 1=2i , then U nAi �Np

2=2i�1.@U /.
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Proof Let Qi be a sequence of partitions of the plane with the Euclidean metric
into closed square discs with side length 1=2i such that Qi refines Qi�1 . Qi can be
chosen to be the set of squares with verticesn�

j

2i
;

k

2i

�
;
�

jC1

2i
;

k

2i

�
;
�

jC1

2i
;

kC1

2i

�
;
�

j

2i
;

kC1

2i

� ˇ̌̌
j ; k 2 Z

o
:

Let D0 be the maximal subset of Q0 such that A0 � U where A0 D
S

s2D0
s . Then

U nA0 �Np
2=2�1.@U /.

We will inductively define Di and Ai as follows. Let Di be the maximal subset of
Qi such that

S
s2Di

s � U nAi�1 where U nAi�1 is the closure of U nAi�1 . Let
Ai D .

S
s2Di

s/ [ Ai�1 . We immediately have U nAi � Np2=2i�1.@U /. ThenS1
iD1 Ai D U .

Definition 3.6 Let �W RC!RC[f1g be a continuous function that vanishes at 0.
Then � is a modulus of continuity for gW .X; distX /! .Y; distY / if distY .g.x/;g.y//�
�.distX .x;y// for all x;y 2X.

Let .X; dist/ be a path connected metric space and �W RC ! RC [ f1g be an in-
creasing function. We will say that � is a modulus of path-connectivity for .X; dist/
if for every pair of points x;y 2 X there exists a path ˛ from x to y such that
diam.˛/� �.dist.x;y//. If X is geodesic than the identity function is a modulus of
path-connectivity for .X; dist/.

Remark 3.7 Let gW .X; distX /! .Y; distY / be a continuous function on a compact
metric space X. Then �.r/D supfdistY .g.x/;g.y//

ˇ̌
distX .x;y/� rg is a modulus

of continuity that is finite for every r . If � 0 is another modulus of continuity for g ,
then � 0.r/� �.r/.

Let .X; dist/ be a path connected space. Then there exists a modulus of path-connectiv-
ity for X that vanishes at 0 if and only if X is uniformly locally path connected.

Lemma 3.8 Suppose that X is a metric space containing a closed, simply connected,
uniformly locally path connected and uniformly locally simply connected subset E .
If hW A!X is a continuous map from a planar annulus such that h�1.E/ separates
the boundary components of A, then h takes the boundary components of A to null-
homotopic loops in X.
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Proof Let AD f.x;y/ 2R2 j
1
4
� x2Cy2 � 1g and D be the unit disc in the plane.

It is enough to show that the outer boundary of A maps to a null-homotopic loop.
Since h�1.E/ separates the boundary components of A, a component C of h�1.E/

separates the boundaries components of A. This follows from the Phragmén–Brouwer
properties; see[18]. Let U be the component of DnC that contains the circle of radius
1
2

. Thus @U �A and h.@U /�E . Let � be a modulus of continuity for h.

We can decompose U as a null sequence of diadic squares with disjoint interiors, as in
Lemma 3.5. As before, let Ai be the union of squares with side length at least 1=2i

that are contained in U , and Di the set of squares in Ai of side length 1=2i . ThenS1
iD1 Di induces a cellular structure on U . We will use U .i/ to denote the i –skeleton

of this cellular structure on U . Note this implies that a side of a square in Di is not
necessarily an edge but is an edge path.

We will now define a continuous map gW D!X such that gjDnU D h. If the boundary
of U is a loop, then this is obvious. However, the boundary does not have to be a loop.
It can be very complicated (consider the Warsaw circle).

Let �W U ! @U be a closest point projection map (which in general will be discon-
tinuous), ie, any map such that dist.x; �.x// � dist.x; z/ for all z0 2 @U . For every
x 2 U .0/ , let g.x/D h.�.x//.

Claim If x 2U .0/nAi and y 2@U , then dist.g.x/;g.y//� �.dist.x;y/C
p

2=2i�1/.

If x 2 U .0/nAi and y 2 @U , then dist.x; �.x// �
p

2=2i�1 . Thus dist.�.x/;y/ �
dist.x;y/C

p
2=2i�1 and the claim follows.

We now wish to extend g continuously to DnU [U .1/ . Let �W RC!RC[f1g be
a modulus of path-connectivity of X that vanishes at 0. Then there exists an � > 0

such that �.t/ <1 for all t < �. Suppose that e is an edge of U .1/ with vertices
x;y such that dist.g.x/;g.y// < �. Then there exists a path ˛x;y in X from g.x/

to g.y/ such that diam.˛x;y/� �.dist.g.x/;g.y//. We may extend g by sending e

to ˛x;y . Repeating this for all sufficiently short edges of U .1/ and sending the other
edges to any path between their end points, we can extend g to DnU [U .1/ .

Claim gW DnU [U .1/!X is continuous.

Suppose that xn is a sequence of points in U .1/ such that xn! x0 . If x0 62 @U , then
xn is eventually contained in Ai for some i and g.xn/! g.x0/ by the pasting lemma
for continuous functions (see Munkres [21]).

If x0 2 @U , then we can choose x0n such that xn;x
0
n are contained in a single edge of

D.1/ and x0n 2 U .0/ . Also, we may assume that xn is contained in a sufficiently short

Algebraic & Geometric Topology, Volume 14 (2014)



Asymptotic cones of HNN extensions and amalgamated products 575

edge (so as to assume the length condition holds on the edge). Since xn converges
to @U , for every i there exists an Ni such that xn 2 U .1/nAi for all n > Ni . Then
dist.xn;x

0
n/�1=2i for all n>Ni . Thus dist.g.xn/;g.x

0
n//��.�.1=2

i// for all n>Ni .
Also, the fact that dist.xn;x

0
n/� 1=2i for all n>Ni implies that x0n converges to x0 .

Then
dist.g.x0/;g.xn//� dist.g.x0/;g.x

0
n//C dist.g.x0n/;g.xn//

� �
�
dist.x0;x

0
n/C
p

2=2i�1
�
C �

�
�.1=2i/

�
for all n�Ni . Thus g

ˇ̌
DnU[U .1/ is continuous, which completes the second claim.

Let �iDmaxs2Di
fdiam.g.@s//g, which is necessarily finite for all i . Since gjDnU[U .1/

is continuous, �i converges to 0. Since E is simply connected and uniformly locally
simply connected, there exists ıi such that for every s 2Di , g.@s/ bounds a disc with
diameter at most ıi where ıi! 0 as i !1.

Fix i > 0 and s 2Di . Then we can extend g to all of s by extending gj@s to a disc
with diameter at most ıi .

By doing this process for all s 2
S

i�0 Di , we can extend g to all of D . Repeating
the argument from the second claim and using the fact that ıi ! 0, we can see that
this extension is continuous.

An interesting related proposition is the following van Kampen type result for funda-
mental groups.

Proposition 3.9 Suppose that X D U [V is a connected metric space and U \V is
non-empty, closed, simply connected, uniformly locally path connected and uniformly
locally simply connected. Then for x0 2 U \ V , �1.V;x0/ ��1.U;x0/ canonically
embeds into �1.X;x0/.

The homomorphism will not necessarily be a surjection. In fact,

�1.X;x0/n
�
�1.V;x0/��1.U;x0/

�
will often be uncountable if both U and V are not locally simply connected at x0 .

The Griffiths space is the wedge of two contractible spaces, which has uncountable
fundamental group (Griffiths [15]). The point is that free products only allow for finite
products of loops but if the loops are getting small, the fundamental group allows for
infinite products. For a rigorous definition of infinite products and further information
on this type of phenomenon, see Cannon and Conner [4; 5].

Algebraic & Geometric Topology, Volume 14 (2014)



576 Curtis Kent

Proof of Proposition 3.9 Suppose that fi W .I; 0; 1/! .V;x0;x0/ and gj W .I; 0; 1/!

.U;x0;x0/ are essential loops such that the loop f1�g1�� � ��fn�gn is null-homotopic
in X. Let hW D!X be a null homotopy and C a component of h�1.V / containing
the portion of @D that maps to f1 . Since U \ V is path connected and locally
path connected, we can define a map h0W C [ @D ! V such that h0jC D h and
h0.@DnC /� U \V . Then, as in Lemma 3.8, h0 can be extended to a null homotopy
of f1 , which contradicts the assumption that f1 was an essential loop.

We will use Ol’shanskii’s definitions from [22] for a 0–refinement of a van Kampen
diagram, 0–edges and 0–cells, a cancellable pair in a van Kampen diagram, a copy of
a cell under 0–refining, and reduced diagrams. Our definitions of M–bands, medians,
and boundary paths of M–bands will follow those of Ol’shanskii [25].

Definition 3.10 (M–bands) Let M �S[f1g where 1 is the empty word is S[S�1

and � be a van Kampen diagram over hS jRi. An M–edge is an edge in � or �.G;S/
labeled by an element of M . An M–band T is a sequence of cells �1; : : : ; �n in a
van Kampen diagram over hS jRi such that

(i) every two consecutive cells �i and �iC1 in this sequence have a common
M–edge ei and

(ii) every cell �i , i D 1; : : : ; n has exactly two M–edges, ei�1 and ei .

Consider lines l.�i ; ei/ and l.�i ; ei�1/ connecting a point inside the cell �i with
midpoints of the M–edges of �i . The broken line formed by the lines l.�1; e/; : : : ;

l.�i ; ei/; l.�i ; ei�1/; : : : ; l.�n; en/ is called the median of the band T and will be
denoted by m.T /. It connects the midpoints of each M–edge and lies inside the union
of �i . We say that an M–band is an M–annulus if �1 and �n share an M–edge. If
T is an M–annulus, then the edges e1 and en coincide and m.T / is a simple closed
curve. An M–band T will be reduced if no two consecutive cells are inverse images
of each other.

Each cell �i of an M–band T can be viewed as an oriented 4–gon with edges
ei�1;pi ; ei ; qi where ei�1; ei are M–edges of �i ; pi begins at the initial vertex
of ei�1 and ends at the initial vertex of ei , and qi begins at the terminal vertex of ei�1

and ends at the terminal vertex of ei . Then p1p2 � � �pn and q1q2 � � � qn are edge paths
in � which we will refer to as the combinatorial boundary paths of T and denote by
topc.T /, botc.T / respectively. However, the combinatorial boundary paths can have
backtracking in the diagram. The (topological) boundary paths of T are subpaths of
topc.T / and botc.T / obtained by removing all maximal subpaths consisting entirely
of backtracking and will be denoted by top.T / and bot.T / respectively. While a
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topological boundary path has no backtracking, its label is not necessarily freely reduced.
It is also possible that one of top.T / and bot.T / is empty.

Let T be a M–annulus in a circular diagram �. T is a minimal M–annulus if
there are no M–annuli contained in the bounded component of R2nm.T / where � is
considered as a subset of R2 . T is said to be a maximal M–annulus in � if it is not
contained in the bounded component of R2nm.T 0/ for any other M–annulus T 0 in
�. For a more complete description of M–bands and their boundaries, see [25].

Definition 3.11 Let Ge be an HNN extension of a group hA j R0i with finitely
generated associated subgroups. Then Ge has a presentationD

A; t
ˇ̌̌
R0[

kS
iD1

fut
i D vig

E
;

where fu1; : : : ;ukg; fv1; : : : ; vkg are generating sets for the associated subgroups
He D huii;Ke D hvii.

Let Ga be an amalgamated product of groups hA1 jR1i and hA2 jR2i along �W H1!

H2 where Hi is a finitely generated subgroup of hAi jRii. Then Ga has a presentationD
A1;A2

ˇ̌̌
R1;R2[

kS
iD1

fui D �.ui/g
E
;

where fu1; : : : ;ukg is a generating set for the associated subgroup H1 .

We will fix the groups Ge and Ga and their presentations for the remainder of Section 3.

Definition 3.12 Let H be a subgroup of a group G generated by S and Z;Z0 be
subsets of �.G;S/. We will say that Z;Z0 are H–separated if there exists g 2 G

such that Z;Z0 are contained in distinct components of �.G;S/ngH where gH is
the set of vertices of �.G;S/ labeled by elements from the coset gH .

Lemma 3.13 Let H be a subgroup of a group G generated by S. The property of
being H–separated is invariant under the left action of G on �.G;S/.

Lemma 3.14 Suppose that He or Ke is a proper subgroup of hA jR0i. Let 
 be a
loop in �.Ge;Se/ and N > diam.
 /. Then there exist elements fg1; : : : ;gN g in Ge

such that

(i) gi � 
;gj � 
 are H–separated for H 2 fHe;Keg, and

(ii) jgig
�1
j j � 2N and jgi j � 4N for all i ¤ j .
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Proof Without loss of generality, we will assume Ke is a proper subgroup. Let

 and N be as in the statement of the lemma. Choose a 2 hA j R0inKe and let
gi � tN .ta/i t�N. Notice that gi has no pinches for any i 2 Z, and gig

�1
j D gi�j .

For i ¤ j , jgig
�1
j j is at least 2N since tN .ta/i�j t�N has no pinches. Being Ke –

separated is invariant under the action of Ge on �.Ge;Se/; hence, it is enough to show
that 
 and gi � 
 are Ke –separated.

Let x be the vertex of �.G;S/ with label gi and x0 the vertex with label 1.

Since tN .ta/i t�N has no pinches, gi and 1 are contained in distinct components of
�.Ge;Se/nT

NC1Ke where 1 is the identity element of Ge . Additionally, dist.gi ;

T NC1Ke/�N and dist.1;T NC1Ke/�N . Then N > diam.
 / implies that 
 , gi �


are in distinct components of �.Ge;Se/nT
NC1Ke .

An analogous proof gives us the following result for Ga where gj D aN
1
.a1a2/

j a�N
1

for ai 2AinHi .

Lemma 3.15 Suppose that Hi is a proper subgroup of Gi for i D 1; 2. Let 
 be a
loop in �.Ga;Sa/ and N > diam.
 /. Then there exist elements fg1; : : : ;gN g in Ga

such that

(i) gi � 
;gj � 
 are H1 –separated and

(ii) jgig
�1
j j � 2N and jgi j � 4N for all i ¤ j .

Theorem 3.16 Suppose that G is an HNN extension or amalgamated product where
the associated subgroups are proper, quasi-isometrically embedded, prairie groups.
Then every asymptotic cone of G is either simply connected or has uncountable
fundamental group.

Proof Let G 2 fGe;Gag and S be the corresponding generating set for G. Suppose
that Con!.G; d/ is not simply connected. Then there exists 
 an essential loop
in Con!.G; d/ and we may choose loops 
n in �.G;S/ such that .
n.t// D 
 .t/.
Let cn D 2 diam.
n/. Let Sn be the set of elements of G given by Lemma 3.14 or
Lemma 3.15. For every two distinct elements gn; hn of Sn , gn � 
n and hn � 
n are
H–separated for some quasi-isometrically embedded prairie subgroup H of G.

Let g D .gn/; hD .hn/ 2
Q!

Sn .

Claim g � 
 , h � 
 are well-defined loops in Con!.G; d/ and g � 
 is not homotopic
to h � 
 if g; h are distinct elements of

Q!
Sn .
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The first assertion follows from the fact that gn grows big O of the scaling sequence.

Suppose that g � 
 is homotopic to h � 
 for distinct h;g . Then !–almost surely gn ¤

hn and there exists kn such that gn � 
n and hn � 
n are in distinct components of
�.G;S/nknH .

Thus g �
 , h �
 are in distinct components of Con!.G; d/n lim! knH by Lemma 2.6.
Since H is quasi-isometrically embedded, lim! knH is bi-Lipschitz to Con!.H; d/,
which is simply connected, uniformly locally simply connected and geodesic.

Thus lim! knH is simply connected, uniformly locally simply connected, and uni-
formly locally path connected. Hence, Lemma 3.8 implies that g � 
 and h � 
 are
null-homotopic, which contradicts our choice of 
 .

This completes the proof of the claim. The theorem follows since
Q!

Sn is uncountable.

Corollary 3.17 If G is has more than one end, then every asymptotic cone of G is
either simply connected or has uncountable fundamental group.

Proof If G has more than one end, then it has a graph of groups decomposition
with finite edge groups and hence is an HNN extension or an amalgamated product
with finite associated subgroups, and finite subgroups are always quasi-isometrically
embedded prairie groups.

This corollary was also shown in [11] since groups with more than one end are relatively
hyperbolic.

The following lemma is due to Burillo.

Lemma 3.18 [3] If X is quasi-isometric to a metric space with a log metric then
every asymptotic cone of X is totally disconnected.

Corollary 3.19 Suppose that G is an HNN extension or amalgamated product where
the associated subgroups are exponentially distorted. Then every asymptotic cone of G

is either simply connected or has uncountable fundamental group.

Proof We will proceed as in the proof of Theorem 3.16. We only need to show how
to circumvent the use of Lemma 3.8.

We can construct Sn as before and let g D .gn/; hD .hn/ for gn; hn 2 Sn .
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If gn ¤ hn !–almost surely, then there exists X D lim! knH such that g � 
 , h � 


are in distinct components of Con!.G; d/nX. Since H is exponentially distorted, it is
totally disconnected by Lemma 3.18.

Suppose that hW A! Con!.G; d/ is a homotopy from g �
 to h �
 . Then there exists
a component C of h�1.X / that separates the boundary components of A. Since X is
totally disconnected, h.C / must be a point. Hence h can be modified to a map on the
disc by sending the component of the disc bounded by C to h.C /. Thus g �
 must be
null-homotopic, which contradicts our choice of 
 .

Corollary 3.20 Let G D ha; t j .ap/t D aqi be the Baumslag–Solitar group, where
jpj ¤ jqj. For every .!; d/, Con!.G; d/ has the following properties.

(i) Con!.G; d/ is not semilocally simply connected.

(ii) �1.Con!.G; d/;x0/ is not simple.

(iii) Every decomposition of �1.Con!.G; d/;x0/ into a free product of subgroups
has a factor that is a not free and uncountable.

(iv) �1.Con!.G; d/;x0/ contains an uncountable free subgroup.

Proof Let G D ha; t j .ap/t D aqi be the Baumslag–Solitar group, where jpj ¤ jqj.
Properties (i)–(iii) are proved in [7, Corollary 3.2]. So we need only prove (iv). The
proof is an adaptation of the proof of Corollary 2.22.

Since Con!.G; d/ is not semilocally simply connected, it is not simply connected.
Thus it contains an essential loop 
 . Theorem 3.16 shows how to find an uncountable set
of essential loops, all of which are in distinct components of Con!.G; d/n lim!e gnha

qi

for some choice of gn 2G.

Using this uncountable set of loops, we can find S 0
 as in Corollary 2.22. We will now
use the notation from Corollary 2.22 and show how to modify the proof.

Suppose that xn1
1
� � � ��xnk

k
is a null-homotopic loop in Con!.G; d/ where xi ¤ xiC1 ,

x1¤xk and xni
i is an essential loop. Then there exists hW D!Con!.G; d/ a map from

the unit disc in the plane such that h.@D/ is a parametrization of the curve xn1
1
�� � ��xnk

k
.

Let C be the closure of the connected component of Dnh�1flim!e gnha
qig containing

the subpath p of @D that maps to xn1
1

.

Recall that haqi is exponential distorted in G. Thus lim!e gnha
qi is totally disconnected

by Lemma 3.18.

Since C is the closure of a component of Dnh�1.flim!e gnha
qig/, @Cnfpg is con-

nected and maps into lim!e gnha
qi. Hence h.@Cnfpg/ is a point b .
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Define h0W D! Con!.G; d/ by h0.y/ D h.y/ for y 2 C and h0.y/ D b for y 62 C.
Then h0 is continuous and xn1

1
is null-homotopic, which contradicts our choice of xn1

1
.

Again, the subgroup generated by S 0
 may not by a free group but it is the free product
of cyclic groups. Thus it is easy to find an uncountably generated free subgroup. This
completes the proof of the corollary.

3.1 Partitions of van Kampen diagrams

The following definitions of partitions are due to Papasoglu in [29].

Partitions of the unit disc in the plane Let D be the unit disk in R2 or the planar
annulus f.x;y/ j x2Cy2 2 Œ1

4
; 1�g. A partition P of D is a finite collection of closed

discs D1; : : : ;Dk in the plane with pairwise disjoint interiors such that D D
S

i Di ,
@D D @.D1 [ � � � [Dk/ and Di \Dj D @Di \ @Dj when i ¤ j . A point p on
@D1[� � �[@Dk is called a vertex of the partition if for every open set U containing p ,
U \ .@D1[ � � �[ @Dk/ is not homeomorphic to an interval. An edge of a partition is a
pair of adjacent vertices of a disc in the partition. A piece of a partition is the set of
the vertices of a disc in the partition. A partition is then a cellular decomposition of
the underline space of P where each vertex has degree at least 3, so we will use the
standard notation, P .i/ , to denote the i th skeleton of a partition.

Geodesic n–gons in a metric space X An n–gon in X is a map from the set of
vertices of the standard regular n–gon in the plane into X, ie, an ordered set of n

points in X. If X is a geodesic metric space, we can extend the n–gon to edges by
mapping the edge between adjacent vertices of the standard regular n–gon in the plane
to a geodesics segment joining the corresponding vertices of the n–gon in X. We will
say that such an extension is a geodesic n–gon in X.

Partitions of loops in a geodesic metric space X Let D be the unit disc in the plane
and 
 W @D! X be a continuous map. A partition of 
 is a map … from the set of
vertices of a partition P of D to X such that

…
ˇ̌
@P\P .0/D 


ˇ̌
@P\P .0/ :

The vertices, edges, and pieces of … are the images of vertices, edges, and pieces of P,
respectively. We will write ….@Di/ for the pieces of …, where the Di are the 2–cells
of the partition P .

Remark 3.21 Suppose that …W P .0/ ! X is a partition of a loop 
 in a geodesic
metric space. We can extend … to P .1/ by mapping every edge contained in @P .2/ to
the corresponding subpath of 
 and every edge not contained in @P .2/ to a geodesic
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segment joining its endpoints. Then the length of a piece is the arc length of the loop
….@Di/. We will write j….@Di/j for the length of the piece ….@Di/. We define the
mesh of … by

mesh.…/D max
1�i�k

fj….@Di/jg:

At times it will be convenient to ignore some pieces of a partition. If Z is a subset of
the pieces of P , then the relative mesh of … is

rmeshZ .…/D max
Di2Z

fj….@Di/jg:

When X is a Cayley graph of a group, we will also assume that the partition takes
vertices of P to vertices in the Cayley graph. A partition … is called a ı–partition if
mesh…< ı . A loop of length k in a geodesic metric space is partitionable if it has a
k
2

–partition.

Let P .
; ı/ be the minimal number of pieces in a ı–partition of 
 if a ı–partition
exist and infinity otherwise.

If P is a partition of the unit disc in the plane, then P .1/ can be considered as a planar
graph where every vertex has degree at least 3. Then one can use the fact that the Euler
characteristic of a planar graph is 1 to obtain the following.

Lemma 3.22 Let …W P .1/! �.G;S/ be a partition of a loop in the Cayley graph of
G. If … has F pieces, then … has at most 3F edges and at most 2F vertices.

A straightforward inductive argument gives us the following lemma.

Lemma 3.23 Suppose that T is a finite simplicial tree with at most j vertices of
degree 1. Then T has at most j � 1 vertices with degree greater than 2.

Our goal for the remainder of Section 3.1 and Section 4 is to define partitions of van
Kampen diagrams and show how to use the standard techniques for reducing van
Kampen diagrams to build nice partitions of loops in the Cayley graph.

Definition 3.24 Suppose that hA; t jRi is an HNN extension with stable letter t . Let
w be a word in the alphabet S [S�1 . We will use jwjF to denote the freely reduced
word length of w , jwjG to denote the minimal word length of w in hA; t j Ri and
jwjt to denote the number of t–letters in w .

A word w is a t–shortest word if jwjt � jw0jt for all w0 DG w and

(2) jwjG D jwjt C
X
jvi jG ;

Algebraic & Geometric Topology, Volume 14 (2014)



Asymptotic cones of HNN extensions and amalgamated products 583

where vi ranges over maximal a–subwords of w . To avoid trivialities, we will also
require that every a–subword of a t–shortest word be freely reduced.

We will say that w is an almost t–shortest word if jwjt � jw0jt for all w0 DG w .

A path 
 in the Cayley graph of G is a t–shortest path (or an almost t–shortest path)
if Lab .
 / is a t–shortest word (or an almost t–shortest word).

The equality in (2) implies that if we replace each maximal a–subword of a t–shortest
path with a geodesic, then the whole path is geodesic. This gives us the following result.

Lemma 3.25 Every edge in �.G;S/ labeled by a t–letter on a t–shortest path from
g to h is also an edge of a geodesic from g to h.

Definition 3.26 Let P be a partition of the unit disc D2 or the unit annulus in the
plane and � a van Kampen diagram over hS jRi. A continuous map ‰W P .2/!�

is a partition of � if it satisfies the following conditions.
(i) ‰.P .0//��.0/ .

(ii) ‰ takes edges of P to edge paths in �.1/ .
(iii) For each closed 2–cell D of P , ‰.D/ is a reduced subdiagram of �.

If we consider � as a metric space with the edge metric, then ‰jP .0/ is a partition of
the loop @� under our previous definition.

As before, the edges, vertices and pieces of ‰ are the images under ‰ of edges, vertices
and pieces of P in �, respectively.

Define the mesh of ‰ by mesh.‰/Dmesh.� ı ‰/ where � is the canonical map into
the Cayley complex.

‰ is an h–partition of � if ‰ is partition of � and a homeomorphism. If ‰ is a
h–partition of � and � ı‰ takes edges of P to geodesic paths (t–shortest paths), then
we will say ‰ is a geodesic partition (t–shortest partition) of �.

This gives the underling space of � 2–cell structures, the cell structure inherited as a
van Kampen diagram and the cell structure inherited from the partition. When there
is a chance of confusion, we will specify if we are considering a vertex/edge in the
underlying space as a ‰–vertex/‰–edge or a �–vertex/�–edge.

The following lemma follows trivially by considering each of the three types of 0–
refinements.

Lemma 3.27 Suppose that ‰W P .2/ ! � is a partition (or a geodesic partition)
and �0 is a 0–refinement of �. Then there exists a partition (or geodesic partition)
‰W P .2/!�0 , which preserves the number of pieces, edges and vertices, the mesh of
the partition, and the labels of edges (after removing any possible 1’s).
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4 HNN extensions with free associated subgroups

Let G be a multiple HNN extension of a free group F with free associated subgroups.
Then G has a presentation

hA[ftig j fu
ti

i;s D vi;sg; for i D 1; : : : ; k and s D 1; : : : ; jii;

where Ui D hui;1; : : : ;ui;ji
i;Vi D hvi;1; : : : ; vi;ji

i are free subgroups with free gener-
ating sets fui;j g, fvi;j g respectively and ti are stable letters. We will use hS jRi to
denote this presentation for G which we will fix throughout Section 4. Let

K Dmaxfjui;1jF ; : : : ; jui;ji
jF ; jvi;1jF ; : : : ; jvi;ji

jF g:

We will also fix the constant K throughout this section. To simplify notation, we will
frequently refer to ti –bands in diagrams over hS jRi as just t–bands when the specific
i is inconsequential.

Lemma 4.1 Let T be a t–band in a van Kampen diagram �. Then � can be modified
while preserving the numbers of cells and the boundary label of � such that the labels
of top.T / and bot.T / are freely reduced words.

Proof If Lab .bot.T // D w1uu�1w2 , then we may cut � along the subpath of
bot.T / labeled by uu�1 and re-identify them as in Figure 1. This is the so called
diamond move (see Collins and Huebschmann [6]). A similar process can be performed
for top.T /.

q1

w1

w2

q1

w1

w2 w2

w1

q1

Figure 1: Modifying � to insure that the label of the boundary of a t–band
is freely reduced. Edges in gray are labeled by u or u�1 respectively.

Lemma 4.2 Suppose that T is a reduced t–band in a van Kampen diagram � over
hS j Ri endowed with the edge metric. Then there exists an L such that top.T /
is in the L–neighborhood of bot.T / where L is a constant depending only on the
associated subgroups.
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Proof The lemma is trivial if you are considering topc.T / and botc.T / in place of
top.T / and bot.T /. So we will prove the lemma by finding a bound on the diameter
of the backtracking that was removed to obtain top.T /.

Recall that fui;1; : : : ;ui;ji
g; fvi;1; : : : ; vi;ji

g are free generating sets for the associated
subgroups where ui;k ; vi;k are words in the alphabet A. For the purposes of this lemma,
let U be the disjoint union of hui;1; : : : ;ui;ji

i and hvi;1; : : : ; vi;ji
i and if g 2 U , let

jgjs denote the length in the associated subgroup. Let

L0 Dmaxfjgjs j g 2 U; jgjG � 2Kg:

Fix T a reduced t–band in � and v a vertex on top.T /. Then there exists a vertex v0

on botc.T / such that dist.v; v0/ �KC 1. Suppose that p is a maximal subpath of
botc.T / that contains the vertex v0 and has freely trivial label in F.A/. We will assume
(without loss of generality) that botc.T / is labeled by words from fui;1; : : : ;ui;ji

g.
Then for some j ,

Lab .p/D w1u
�1

j ;s1
� � �u

�r

j ;sr
w2;

where w1 is a terminal segment of u
�0

j ;s0
, w2 is an initial segment of u

�rC1

j ;srC1
, and

�i D ˙1. Let g D u
�0

j ;s0
� � �u

�rC1

j ;srC1
. By construction jgjG is at most 2K and in U .

Thus jgjs �L0 . This implies that v0 is at most L0K from a vertex of bot.T /.

Thus v is at most LDL0KCKC 1 from a vertex of bot.T /, which completes the
lemma.

The following lemma is a correction of a lemma by Ol’shanskii and Sapir in [24].

Lemma 4.3 There exists a constant L such that every diagram over hS jRi that has
no t–annuli and where all t–bands are reduced has diameter no greater than 3Lj@�j=2.

Proof Let L be the constant from Lemma 4.2.

Let s be the number of t–bands in � and nD j@�j. Then s � n=2. There exists a
t–band T such that (without loss of generality) topc.T / is contained in @� (see [24,
Lemma 2.1]). Then � is obtained by gluing T and a diagram �1 with s� 1 t–bands
that satisfy the same hypothesis. Every vertex on a bot.T / can be connected to the
boundary of � by a path of length at most L. By induction on s , we can deduce that
every vertex inside � can be connected to the boundary of � by a path of length at
most Ls �Ln=2. Hence the diameter of � is at most 3Ln=2.
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Lemma 4.4 Let � be a van Kampen diagram with no t–annuli, every t–band reduced,
and 
 W Œ0; 1�!� be a parametrization of @�. Suppose that 0D t0 < t1 < � � �< tk <

tkC1 D 1 is a partition of the unit interval and I a subset of f0; : : : ; kg such that 

restricted to Œti ; tiC1� is a t–shortest path for i 2 I . Then �.�/ has diameter no greater
than

5L

2

�X
i 62I

ˇ̌

 jŒti ;tiC1�

ˇ̌
C

X
i2I

dist
�
� ı 
 .ti/; � ı 
 .tiC1/

��
;

where L is the constant for Lemma 4.2 and � is the canonical map into the Cayley
graph.

Proof Let C D
P

i 62I j
 jŒti ;tiC1�j C
P

i2I dist.� ı 
 .ti/; � ı 
 .tiC1//. By the same
argument as in Lemma 4.3, every vertex of � can be connected to a vertex on @� by
a path of length at most Ls where s is the number of t–bands in �.

For i 2 I , let wi D Lab .
 jŒti ;tiC1�/ and zwi be a geodesic word obtained by re-
placing each maximal a–subpath of wi by a geodesic word. For i 62 I , let wi D

Lab .
 jŒti ;tiC1�/ D zwi . Then C D j zw0 zw1 � � � zwk j. Fix �i a reduced van Kampen
diagram with @�i D pi zpi where Lab .pi/D wi and Lab . zpi/D zw

�1
i . Let si be the

number of t–bands in �i . Since no t–band of �i can start and stop on pi , s; si �C=2.
By repeating the arguments from Lemma 4.3, we can see that any point in �i is at
most Lsi from a point on zpi . Hence, if x;y are two points on @�, then

dist
�
�.x/; �.y/

�
�Lsi CLsj C

C

2
�

LC

2
C

LC

2
C

C

2
:

If x;y are two points in �,

dist
�
�.x/; �.y/

�
� 2.Ls/C

�
Lsi CLsj C

C

2

�
:

Therefore
�.�/�LC C

�
LC C

C

2

�
�

5LC

2
:

Remark 4.5 Let …W P .0/! �.G;S/ be a partition of a loop 
 in �.G;S/. We can
extend … to P .1/ as in Remark 3.21, but instead of mapping the interior edges of P

to geodesics, we will map the interior edges to t–shortest paths in �.G;S/. We can
label the edges of P .1/ with the labels of their images. Then we can fill each piece
with a reduced circular van Kampen diagram. This produces a van Kampen diagram
with boundary label equal to the Lab .
 / and … induces a canonical homeomorphism
from P .2/ onto this van Kampen diagram. Thus every partition … of 
 induces a
t–shortest partition ‰ of a diagram such that …D � ı ‰ . Then by Lemma 4.4, each
subdiagram corresponding to a piece has diameter at most 5Ln=2.
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4.1 Removing t–bands from partitions

Definition 4.6 Suppose ‰W P .2/ ! � is a t–shortest partition of a van Kampen
diagram �. A t–band T crosses a ‰–edge e if e contains a t–edge from T . If T is a
t–annulus which crosses a ‰–edge e , we will call the endpoints of the corresponding
t–edge the crossing vertices of T .

Lemma 4.7 If ‰ is a t–shortest partition of � and T is a t–band in �, then T
crosses each ‰–edge at most once.

T

�

e

t–edges

Figure 2: A ‰–edge that crosses T twice cannot be t–shortest.

Proof If T crossed a ‰–edge e twice, then e would contain two t–edges and the
subword of e beginning and ending with these t–edges would be equal to a subword
of topc.T / or botc.T / (see Figure 2). Thus e was not t–shortest. (Note we are using
the fact the diagrams are planar.)

Corollary 4.8 Let ‰W P .2/!� be a t–shortest partition of � and T be a t–annulus
in �. Then the bounded component of P .2/n‰�1.m.T // contains a vertex of P .

Corollary 4.9 Let ‰W P .2/!� be a t–shortest partition of �. Then � can have at
most V maximal T–annuli, where V is the number of vertices of the partition ‰ .

Lemma 4.10 Let ‰W P .2/ ! � be an h–partition of � with F pieces, where �
is an annular diagram where the boundary components have labels that are trivial in
G. Suppose that T is a t–annulus in � such that T crosses each edge at most once
and if v is a crossing vertex of a ‰–edge with vertices e�; eC , then dist.e�; eC/ �
dist.e�; v/C dist.v; eC/. Let B DmaxD2P fdiam.� ı ‰.D//g.
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Then there exists a partition z‰W zP .2/!�0 , where �0 is obtained by removing T such
that:

(i) z‰ has no more than 9F2C 4F pieces, and

(ii) mesh .z‰/�maxf3.BC 2K/;mesh .‰/g,

where K is the max of the word length of the generators of the associated subgroups.

Proof Let ‰W P .2/!� be a partition of � as in the statement of the lemma and let
A be the underline space of P . Let �A be the subdiagram of � obtained by removing
all cells interior to topc.T /.

Let V D fv1; v2; : : : ; vkg be the set of crossing vertices of T that are contained
in topc.T / where the ordering is obtained by traversing topc.T / in the clockwise
direction. Let qi be a subpath of topc.T / between vi and viC1 without backtracking
(where the indices are taken modulo k ) that intersects V only at vi ; viC1 and m.qi/ the
corresponding subpath of m.T /. Since T crosses each vertex at most once, k � 3F.

By construction, m.qi/ is contained inside of ‰.D/ for some piece D of P . Thus qi

is in the K–neighborhood of ‰.D/ and diam.� ı ‰.qi//� BC 2K .

Claim 4 There exists a refinement P 0 of P and a partition ‰0W P 0 .2/ ! � with
‰0.x/D‰.x/ for all x 2 P .1/ such that:

(i) The number of pieces of P 0 is less than 4F .

(ii) mesh .‰0/�mesh .‰/.

(iii) There is a simple closed curve ˇT in P 0 .1/ such that
(a) ‰.ˇT /� topc.T /.
(b) ˇT has at most 3F edges.
(c) If ‰0.x/ is interior to m.T /, then x is interior to ˇT .

Proof of Claim 4 Let wi D‰
�1.vi/ and W D fwig. For each pair i , there exists a

unique cell Di of P such that ‰�1.m.qi//�Di . Let ei be an arc in Di from wi to
wiC1 such that ei \P .1/ D fwi ; wiC1g. In addition, we may assume that the arcs ei

have disjoint interiors. Then ˇT D e1 � e2 � � � � � ek is a simple closed curve.

Let P 0 .0/ D P .0/[W . The edges of P 0 are the closure of the connected subsets of
P .1/[ˇT nP

0 .0/ . This gives ˇT a cellular structure. Each vertex of ˇT corresponds
to a crossing vertex of @oT . Since ˇT has at most 3F vertices and each edge cuts a
piece of P into two pieces, P 0 has at most 4F pieces.
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Di

wiC1

ˇT

wi

T

‰.Di/

viC1vi

P 0 .1/
�

‰
ei qi

Figure 3: Constructing P 0

We can define ‰0jP .1/ D ‰ and map ei to qi . By Lemma 4.1, we may also assume
that ‰0.ei/ has freely reduced label. We can extend ‰0 to the 2–cells of P 0 in the
natural way. Then ‰0W P 0 .2/!� is a partition of � that satisfies the first and third
conditions of the claim.

The geodesic condition on crossing vertices guarantees that the mesh does not increase
as we add the vertices vi and the edges ei .

Claim 4 gives us that ‰.ˇT / bounds a subdiagram of � with freely trivial boundary
label and ˇT bounds a subcomplex of P 0 .1/ . There exists a simplicial tree LT labeled
by a–letters and a map ‡ W ˇT ! LT such that � ı ‰0jˇT D �

0 ı ‡ , where � 0 is a
label-preserving map from LT into �.G;S/. LT is constructed by choosing a free
reduction of Lab .‰0.ˇT //.

We can replace the subdiagram in � bounded by ‰.ˇT / with LT . This creates a
pairing of �–edges in �. What we want to be able to do is mirror this identification
of edges on ˇT . The problem is that this identification can pair proper segments of
edges in ˇT . To correct this we will need to add new vertices to P 0 to insure that
this identification respects ‰0–edges. In general, this will cause the mesh to increase
since edges of ˇT do not map to geodesics. So we will subdivide pieces to get a useful
bound on our new mesh. This is where the bound B on the diameter of each piece
comes into play.

We will say that a subpath of ˇT is an LT –segment if all vertices of the edge path
except possibly the initial and terminal vertices have degree 2 in ‡.ˇT /.

Claim 5 There exists a refinement P 00 of P 0 and a partition ‰00W P 00 .2/! � with
‰00.x/D‰0.x/ for all x 2 P 00 .2/ D P 0 .2/ such that:
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(i) The number of pieces of ‰00 is no more than 9F2C 4F .

(ii) ˇT is subdivided into at most 9F2 edges and each edge is an LT –segment.

(iii) rmeshZ .‰00/�maxf3.BCK/;mesh .‰/g, where Z is the set of pieces of P 00

that are not interior to ˇT .

�.@oT /D � ı‰00.ˇT /D � 0 ı‡.ˇT /

ei
1 ei

2

ei
3

‡.ei
1/

‡.ei
2/

‡.ei
3/

P
00 .1/
1

‡

pi

po

LT

Figure 4: P
00 .1/
1 and LT

Proof of Claim 5 ‡ must map each ei injectively into LT , since Lab .‰0.ei// is
freely reduced. Thus a vertex of LT with degree 1 must be the image of a vertex of
ei for some i and ‡.ˇT / has at most 3F vertices of degree 1. Then Lemma 3.23
implies that it has at most 3F vertices of degree greater than 2. For each i , we can
add new vertices to ei that are the unique ‡–preimage of vertices of LT with degree
greater than 2 or the unique ‡–preimage of a point of ‡.W / (see Figure 4). Doing
this subdivides ei into at most 3F edges, which we will label by ei

j with their ordering
induced by ei . This divides ˇT into at most 9F2 edges.

Let P 00
1

be the cellular decomposition obtained by adding fej
i g to P 0 . Notice that P 00

1

is not a partition of A since it has vertices of degree 2.

In P 0 there existed exactly two pieces that share ei as a common edge: pi , which is
contained in the bounded component of R2nˇT , and po , which is contained in the
unbounded component (see Figure 4).

We will now subdivide the piece po to obtain pieces with bounded mesh (see Figure 5).
Let f i

j be an arc in po from the initial vertex of ei
1

to the terminal vertex of ei
j for all

j > 1. We also will require that the new edges have disjoint interiors contained in po .
This subdivides po into at most 3F C 1 pieces, ie, we add 3F pieces to our count.
Repeating this process for each i gives us a partition P 00 of A.
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P 00 .1/
zP .1/

Figure 5: Constructing zP

We must now explain how to map these edges into �. Each new edge connects points
with image on the ‰.ˇT /. Thus we can send each edge to the reduced subpath of
‰.ˇT / connecting the images of their vertices and map the 2–cells in the natural way.
Let ‰00W P 00 .2/!� be this new partition.

The distance between ei
j and ei

j 0 is at most BC2K for all j and j 0 . This implies that
the requirement on the mesh is then satisfied.

We can replace the subdiagram of � bounded by ‰0.ˇT / with LT , creating a new
van Kampen diagram �0 . This also induces a paring of edges on ˇT such that after
removing the disc bounded by ˇT and identifying edges of ˇT according to this pairing,
we obtain a new partition zP of the quotient space A0 . If m.T / separates the boundary
components of A, then A0 is a planar disc. If m.T / does not separate the boundary
components of A, then A0 is an annulus. Then ‰00 induces a map z‰W zP .2/!�0 with
the desired properties; see Figure 5.

Definition 4.11 Recall that G has a presentation

hA[ftig j fu
ti

i;s D vi;sg; for i D 1; : : : ; k and s D 1; : : : ; jii;

where Ui D hui;1; : : : ;ui;ji
i;Vi D hvi;1; : : : ; vi;ji

i are free subgroups with free gener-
ating sets fui;j g, fvi;j g respectively and ti are stable letters.

Let Xi be the midpoints of the set of edges f.g; ti/ j g 2 Uig in �.G;S/.

By Britton’s Lemma, gXi separates �.G;S/ for every g 2 G. Let x1;x2 be two
points in Xi such that x2DG x1ui;j . Then in �2.G;S/ we can find an arc joining x1

to x2 that intersects �.G;S/ only at x1 and x2 . Let Ti be the subset of �2.G;S/

obtained by connecting all such points of Xi by arcs that intersect �.G;S/ only at
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their endpoints. Since Ui is free, Ti is a tree. Then Ti separates �2.G;S/ and will be
called the median tree for Xi . Notice that Xi , Ti are not cellular subset of �.G;S/
or �2.G;S/, even thought they do have a natural cellular structure.

Let Z;Z0 be subsets of �.G;S/. We will say that Z;Z0 are t–separated if there
exists g 2G and i such that Z;Z0 are in distinct components of �.G;S/ngXi . This
is equivalent to saying that as subsets of �2.G;S/; Z;Z0 are in distinct components
of �2.G;S/ngTi .

Remark 4.12 Notice that t–separated does not imply Ui –separated or Vi –separated.
Let Z the set of vertices of �.G;S/ that have a label without pinches which begins
with the letter t1 . Let Z0 be the remainder of the vertices of �.G;S/. Then Z;Z0 are
in distinct components of �.G;S/nX1 . Since Z [Z0 contains all the vertices of G,
they cannot be Ui –separated or Vi separated for any i . The point is that Xi separates
by removing midpoints of edges and gVi or gUi separates by removing vertices.

Lemma 4.13 Suppose Ui is proper, Vi is proper, or the number of stable letter in S

is greater than 1. Let 
 be a loop in �.G;S/ and N > diam.
 /. Then there exist
elements fg1; : : : ;gN g in G such that gi �
;gj �
 are t–separated and jgig

�1
j j � 2N

for all i ¤ j , and jgi j � 4N .

Proof If Ui or Vi is proper, then fgj g can be constructed as in Lemma 3.14. If S

has at least two stable letters, then let gi D tN
1

t i
2
t�N
1

. In any of the three cases, the
proof of Lemma 3.14 also shows that the loops fgj � 
 g are pairwise t–separated.

Lemma 4.14 Suppose that � W �.2/ ! �2.G;S/ is the canonical label-preserving
cellular map from a van Kampen diagram � over hS jRi to the Cayley complex. Then
��1.gTi/ is a set of medians of ti –bands in �.

Proof The only cells in �2.G;S/ intersecting gTi are those corresponding to relations
of the form ut

i;j D vi;j . The preimage of each edge of gTi is a median of such a cell
in �.

Lemma 4.15 Suppose that �A is an annular diagram such that the components of
�.@�A/ are t–separated. Then there exists a t–annulus in �A that separates the
boundary components of �A .

Proof Since the components of �.@�A/ are t–separated, there exist g 2 G and i

such that they are in distinct components of �2.G;S/ngTi . Then ��1.gTi/ separates
the components of @�A and the result follows from Lemma 4.14.
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Theorem 4.16 Let G be a multiple HNN of a free group with free associated sub-
groups. Then either all asymptotic cones of G are simply connected or G has an
asymptotic cone with uncountable fundamental group.

Proof If G has only one stable letter and both associated subgroups are not proper, then
G has a quadratic Dehn function (see Bridson and Groves [1]) and every asymptotic
cone of G is simply connected.

If there exists an asymptotic cone of G that is not simply connected, then there exists a
sequence of loops 
n in �.G;S/ such that P .
n; j
nj=2/� n for all n. Let dnD j
nj.
Then dn diverges !–almost surely and 
 .t/ D .
n.t// is a loop that has no finite
partition in Con!.G; d/.

Using Lemma 4.13, we can choose a set Sn D fgn;1; : : : ;gn;kn
g of elements of G

such that

(a) if i ¤ j , then gn;i � 
n and gn;j � 
n are t–separated and

(b) for all i , 2 diam.
 /dn � jgn;i j � 4 diam.
 /dn .

Claim Let g D .gn/, h D .hn/ be distinct elements in
Q!

Sn . Then g � 
 is a
well-defined loop Con!.G; d/ and g � 
 is not homotopic to h � 
 .

The first assertion follows from the fact that gn grows big O of the scaling sequence.

Suppose that g �
 is homotopic to h�
 . Then we have a homotopy hW A!Con!.G; d/
between the two loops where A is a planar annulus. Let P be a partition of A, where
each piece is a triangle such that diam.h.D// � 1=.84L/ for each piece D of P .
Then we can chose partitions …nW P

.0/ ! �.G;S/ such that .…n.x// D h.x/ for
all x 2 P .0/ . As in Remark 4.5, …n induces a t–shortest partition ‰nW P

.2/! �0n
where �0n is an annular van Kampen diagram where both boundary paths are labeled
by Lab .
n/. Then

mesh .‰n/�
j
nj

60L
C o.j
nj/ <

j
nj

30L

!–almost surely. Lemma 4.4 implies that the diam.� ı‰.D//� 5L mesh .‰/< j
nj=6

!–almost surely.

Since g ¤ h, gn ¤ hn !–almost surely and the loops gn � 
n and hn � 
n are t–
separated !–almost surely. Lemma 4.15 implies that there exists a t–annulus in �n that
separates the two boundary components of �n !–almost surely. Lemma 4.10 implies
we can remove this t–annulus to obtain a partition z‰n of a circular diagram �0n with
Lab .@�0n/ D Lab .
n/ !–almost surely. Notice that mesh .z‰n/ < 3..j
nj=6/CK/

and has at most 9F2C4F , where F is the number of pieces of P . This then contradicts
our choice of 
n .
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