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A p–local compact group consists of a discrete p–toral group S , together with a
fusion system and a linking system over S which define a classifying space having
very nice homotopy properties. We prove here that if some finite regular cover of a
space Y is the classifying space of a p–local compact group, then so is Y ^p . Together
with earlier results by Dwyer and Wilkerson and by the authors, this implies as a
special case that a finite loop space determines a p–local compact group at each
prime p .

55R35; 20D20, 20E22

The theory of p–local compact groups, developed by the authors in [9], is designed to
give a unified framework in which to study the p–local homotopy theory of classifying
spaces of compact Lie groups and p–compact groups, as well as some other families
of a similar nature. It also includes, and in many aspects generalizes, the earlier theory
of p–local finite groups.

A finite loop space is a pair of spaces .�X;X /, where X is a connected CW complex
and its loop space �X has the homotopy type of a finite CW complex. For example, for
any compact Lie group G , the pair .�BG;BG/ is a finite loop space, where �BG'G .
A p–compact group, as defined by Dwyer and Wilkerson [12], is a p–local analog
of a finite loop space. For each finite loop space .�X;X /, the group of components
of �X is finite, the component of the constant map �0X has the homotopy type of
� zX , where zX is the universal cover of X , and thus .� zX ; zX / is a connected finite
loop space. Hence for each prime p , p–completion in the sense of Bousfield and
Kan [4] yields a p–compact group .� zX^p ; zX

^
p /. Thus zX^p is the classifying space of

a p–local compact group: an algebraic object modelled on compact Lie groups and
p–compact groups [9].

This motivated the following question: Let B be a space with a finite regular covering
E! B , such that E is the classifying space of a p–local compact group. Is B itself
the classifying space of a p–local compact group? Here, by a regular covering space,
we mean one whose group of deck transformations acts transitively on fibres.
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Once we know that a p–complete space X is the classifying space of a p–local
compact group, several properties of X then follow from our earlier work. For
example, X has a homotopy decomposition via classifying spaces of discrete p–
toral subgroups [9, Proposition 4.6], and the homotopy groups of the monoid of self
homotopy equivalences of X can be described in terms of automorphisms of the linking
system associated to X [9, Theorem 7.1]. The rational cohomology of X is described
in terms of the action of its “Weyl group” on the cohomology of its maximal torus
(see the authors [10]), by analogy to the case of compact Lie groups. Also, using this
linking system and results in Junod, the second author and Libman [15, Theorem A],
we can construct certain “unstable Adams operations”: self maps of X characterized
by their action on rational cohomology. It is these properties of the classifying spaces
which provide our main motivation for studying and searching for examples of p–local
compact groups.

Before stating our main theorem, we describe in a little more detail the objects of study.
Let Z=p1 denote the union of all Z=pn under the obvious inclusions. A discrete
p–toral group is a group S containing a normal subgroup of the form .Z=p1/r

(r � 0) with p–power index. A (saturated) fusion system over S is a category whose
objects are the subgroups of S , and whose morphisms are monomorphisms of groups
which are required to satisfy certain axioms. We refer the reader to Section 1 (especially
Definition 1.4 and Corollary 1.8) for details.

Given a saturated fusion system F over S , a centric linking system associated
to F is a category L whose objects are those subgroups of S which are F –centric
(Definition 1.5), and whose morphism sets are, in an appropriate sense, extensions of
the corresponding morphism sets between the same objects in F . This extra structure
allows us to associate a “classifying space” to the fusion system in question. Thus a
p–local compact group is a triple .S;F ;L/, where S is a discrete p–toral group, F
is a saturated fusion system over S , and L is a centric linking system associated to F .
The classifying space of a p–local compact group is the p–completion of the geometric
realization of its linking system.

By [9, Theorem 10.7], the classifying space of each p–compact group is also the
classifying space of a p–local compact group. However, for a compact Lie group G ,
BG^p is always the classifying space of a p–local compact group [9, Theorem 9.10],
while the pair .G^p ;BG^p / is a p–compact group only when �0.G/ is a p–group. Other
examples of groups which give rise to p–local compact groups (but not necessarily
p–compact groups) include semidirect products of p–completed tori by finite groups,
and “torsion linear groups” (subgroups of GLn.K/ all of whose elements have finite
order, where char.K/¤ p ) [9, Theorem 8.10].
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The main theorem in this paper says that if X is the classifying space of a p–local
compact group and � is a finite group, then from any “extension” Y of X by B�

(ie Y ! B� is a fibration with fibre X , or X ! Y is a regular cover with group of
deck transformations � ), we can extract extensions of fusion and linking systems, and
through that show that Y ^p is the classifying space of a p–local compact group.

Theorem A Assume that f W X ! Y is a finite regular covering space, where X is
homotopy equivalent to the classifying space of a p–local compact group. Then Y ^p is
also homotopy equivalent to the classifying space of a p–local compact group.

The proof of Theorem A (restated as Theorem 7.3) goes roughly as follows. Algebraic
extensions of p–local finite groups were described and classified by the third author
in [16], and this construction is generalized here (in Section 5) to the p–local compact
case. In Section 6, we apply the theory of simplicial fibre bundles to construct an
equivalence between the data needed to define an extension of a centric linking system L
by a finite group G , and that needed to define a bundle over BG with fibre the geometric
realization jLj of L. Finally, in Section 7, this equivalence is used to prove that any
finite regular covering, as in the hypotheses of the theorem, can be realized by an
extension of p–local compact groups as constructed in Section 5.

Special cases of Theorem A (those where the group of deck transformations is a p–
group or has order prime to p ) are proven by Castellana, Grodal and the authors in [6].
But the arguments there cannot be applied to extensions by arbitrary finite groups, not
even in the p–local finite case.

Let p be a prime. A space Y is Fp –finite if H�.Y;Fp/ is a finite dimensional Fp –
vector space. In [12], Dwyer and Wilkerson define a p–compact group to be an
Fp –finite loop space �X whose classifying space X (D B.�X /) is p–complete.
In [9], we show that every p–compact group �X gives rise to a p–local compact
group .S;F ;L/ whose classifying space has the homotopy type of X .

Theorem B Let X be any path connected space. Then for each prime p such that �X

is Fp –finite, the space X^p has the homotopy type of the classifying space of a p–local
compact group. In particular, this holds for each prime p if �X has the homotopy
type of a finite complex.

Proof Fix a prime p such that �X is Fp –finite. In particular, H0.�X;Fp/ is finite,
so �1.X / is a finite group, and hence X^p is p–complete by [4, Proposition I.5.2
and Section VII.5]. Note that if �1.X / is not a p–group, then �.X^p / need not be
equivalent to .�X /^p , and need not be Fp –finite.
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Set � D �1.X /, let zX be the universal cover of X and consider the fibration

zX !X ! B�:

Then � zX is a connected component of �X , and hence is also Fp –finite. Applying
fibrewise p–completion, we obtain a fibration

zX^p !
xX ! B�;

where zX^p is p–complete and � zX^p is Fp –finite. Thus zX^p is the classifying space
of a p–compact group. By [9, Theorem 10.7], zX^p is the classifying space of a
p–local compact group. So by Theorem A, xX^p ' X^p is the classifying space of a
p–local compact group.

In particular, if X is a path connected space such that �X has the homotopy type of a
finite CW complex, then this holds for X at all primes.

In the course of this work, we had to generalize several results already known for p–
local finite groups (or fusion systems over finite p–groups) to the p–local compact case.

� If F is a saturated fusion system over a discrete p–toral group S , then for
each Q � S and each K � Aut.Q/ such that Q is “fully K–normalized,”
the normalizer N K

F .Q/ is also a saturated fusion system (Definition 2.1 and
Theorem 2.3).

� If F is a fusion system over a discrete p–toral group which is saturated after
restriction to a certain family of subgroups H , and certain other conditions are
satisfied, then F is saturated (Theorem 4.2).

� A general theorem is shown for constructing extensions of p–local compact
groups by finite groups, analogous to that in [16] (Theorem 5.4).

� We state and prove basic properties of transporter systems over discrete p–toral
groups (Definition A.1) in the Appendix.

The proofs of these results have added considerably to the length of this paper, but we
hope that they will also be useful in other future developments of the theory of p–local
compact groups.

The paper is organized as follows. We start in Section 1 with the basic definitions and
general background on p–local compact groups. Sections 2–5 consist mostly of the
generalizations from the finite case to the p–local compact case just described. The
equivalence between extensions of L by G and bundles over BG with fibre jLj is
shown in Section 6. All of this is then combined in Section 7 to prove Theorem A. We
end the paper with an Appendix where we collect the results we need on transporter
systems over discrete p–toral groups.
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Notation When G and H are groups, H < G always means that H is a proper
subgroup of G . Whenever F W C!D is a functor and c; c0 2 Ob.C/, we write Fc;c0

for the restriction of F to MorC.c; c0/, and write Fc D Fc;c .
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1 Background on fusion and linking systems over discrete p–
toral groups

In this section, we collect the definitions and some basic facts on p–local compact
groups which will be useful throughout the paper. We refer to [9] for more details on
many of the results described here.

Definition 1.1 A discrete p–torus is a group which is isomorphic to .Z=p1/n for
some finite n. A discrete p–toral group is a group P with a normal subgroup P0EP

such that P0 is a discrete p–torus and P=P0 is a finite p–group. The subgroup P0

will be called the identity component of P , and P will be called connected if P DP0 .
Set �0.P / D P=P0 , and set rk.P / D n (the rank of P ) if P0 Š .Z=p1/n . The
order of P is the pair jP j WD .rk.P /; j�0.P /j/, regarded as an element of N2 ordered
lexicographically.

Let Sub.S/ be the set of all subgroups of a (discrete p–toral) group S . For any group G

and any H;K �G , HomG.H;K/� Hom.H;K/ denotes the set of homomorphisms
induced by conjugation in G .

Definition 1.2 A fusion system F over a discrete p–toral group S is a category
with Ob.F/ D Sub.S/, whose morphism sets HomF .P;Q/ satisfy the following
conditions:

(a) HomS .P;Q/� HomF .P;Q/� Inj.P;Q/ for all P;Q 2 Sub.S/.

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

With motivation from group theory, we make the following definition.

Algebraic & Geometric Topology, Volume 14 (2014)
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Definition 1.3 Let F be a fusion system over a discrete p–toral group S . Two
subgroups P;Q 2 Sub.S/ are F –conjugate if they are isomorphic as objects of the
category F . Let PF denote the set of all subgroups of S which are F –conjugate
to P .

We are now ready to recall the definition of saturation of a fusion system.

Definition 1.4 Let F be a fusion system over a discrete p–toral group S .

� A subgroup P � S is fully centralized in F if jCS .P /j � jCS .Q/j for all
Q 2 PF .

� A subgroup P � S is fully normalized in F if jNS .P /j � jNS .Q/j for all
Q 2 PF .

� We say F is a saturated fusion system if the following three conditions hold:

(I) For each P � S which is fully normalized in F , P is fully centralized
in F , OutF .P / is finite and OutS .P / 2 Sylp.OutF .P //.

(II) If P � S and ' 2HomF .P;S/ are such that '.P / is fully centralized, and
if we set

N' D fg 2NS .P / j
'cg 2 AutS .'.P //g;

then there is x' 2 HomF .N' ;S/ such that x'jP D ' .
(III) If P1 � P2 � P3 � � � � is an increasing sequence of subgroups of S , with

P1 D
S1

nD1 Pn , and if ' 2 Hom.P1;S/ is any homomorphism such that
'jPn

2 HomF .Pn;S/ for all n, then ' 2 HomF .P1;S/.

We next define certain classes of subgroups which play an important role in generating
the morphisms in a fusion system.

Definition 1.5 Let F be a fusion system over a discrete p–toral group S . A subgroup
P 2Sub.S/ is F –centric if CS .Q/DZ.Q/ for all Q2PF . A subgroup P 2Sub.S/
is F –radical if OutF .P / WDAutF .P /= Inn.P / is p–reduced, ie contains no nontrivial
normal p–subgroup. Let Fc denote the full subcategory of F whose objects are the
F –centric subgroups of S .

In this paper it will be convenient to also use a different but equivalent definition of
saturation, based on that due to Roberts and Shpectorov [18] in the finite case. We
recall their definitions.
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Definition 1.6 Let F be a fusion system over a p–group S .

� A subgroup P �S is fully automized in F if the index of AutS .P / in AutF .P /
is finite and prime to p .

� A subgroup P � S is receptive in F if it has the following property: for each
Q�S and each ' 2 IsoF .Q;P /, if we set N'Dfg 2NS .Q/ j

'cg 2AutS .P /g,
then there is x' 2 HomF .N' ;S/ such that x'jP D ' .

In this terminology, axioms (I) and (II) in Definition 1.4 say that each fully normalized
subgroup is fully centralized and fully automized, and each fully centralized subgroup
is receptive.

By definition, if P is fully automized in F , then AutF .P / is an extension of a discrete
p–torus by a finite group. Hence it does contain maximal discrete p–toral subgroups,
unique up to conjugation, which we regard as its Sylow p–subgroups. As usual, we
let Sylp.AutF .P // denote the set of its Sylow p–subgroups.

The next lemma describes the relation between these concepts and those already defined.

Lemma 1.7 The following hold for any fusion system F over a discrete p–toral
group S .

(a) Every receptive subgroup of S is fully centralized.

(b) If P � S is fully automized and receptive in F , then it is fully normalized.

(c) If P � S is fully automized and receptive in F , and Q 2 PF , then there is a
morphism ' 2 HomF .NS .Q/;NS .P // such that '.Q/D P .

Proof The proofs are identical to those given in [18] and Aschbacher, Kessar and the
third author [2, Lemma I.2.6] in the finite case. A generalization of these statements
will be proven in Lemma 2.2 below.

The following is an immediate consequence of Lemma 1.7.

Corollary 1.8 A fusion system F over a discrete p–toral group S is saturated if and
only if:

� Each subgroup of S is F –conjugate to one which is fully automized and recep-
tive in F .

� Axiom (III) holds for F : if P1 < P2 < � � � are subgroups of S , P D
S

iD1 Pi ,
and ' 2 Hom.P;S/ is such that 'jPi

2 HomF .Pi ;S/ for each i , then ' 2
HomF .P;S/.
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When G is a finite group and H is a set of subgroups of G , TH.G/ denotes the
H–transporter category for G : Ob.TH.G//DH , and for H;K 2H ,

MorTH.G/.H;K/D fg 2G j gH �Kg:

Definition 1.9 Let F be a fusion system over a discrete p–toral group S . Let H
be a set of subgroups of S which is closed under F –conjugacy and overgroups, and
includes all subgroups which are F –centric and F –radical. An H–linking system
associated to F is a category L with object set H , together with a pair of functors

TH.S/
ı
�!L �

�!F

such that each object is isomorphic (in L) to one which is fully centralized in F , and
such that the following conditions are satisfied.

(A) The functor ı is the identity on objects, and � is the inclusion on objects. For
each P;Q 2 H such that P is fully centralized in F , CS .P / acts freely on
MorL.P;Q/ via ıP and right composition, and �P;Q induces a bijection

MorL.P;Q/=CS .P /
Š
�!HomF .P;Q/:

(B) For each P;Q2H and each g2NS .P;Q/, �P;Q sends ıP;Q.g/2MorL.P;Q/
to cg 2 HomF .P;Q/.

(C) For all  2MorL.P;Q/ and all g 2 P ,  ı ıP .g/D ıQ.�. /.g// ı .

A centric linking system is an Ob.Fc/–linking system, ie a linking system whose
objects are the F –centric subgroups of S .

When P � Q, we set �P;Q D ıP;Q.1/. The morphisms �P;Q are regarded as the
inclusions in L.

Definition 1.10 A linking triple is a triple of the form .S;F ;L/, where S is a discrete
p–toral group, F is a saturated fusion system over S , and L is an H–linking system
for some family H . A p–local compact group is a linking triple where L is a centric
linking system.

Definition 1.11 Let F be a fusion system over a discrete p–toral group S , and let
H � Sub.S/ be a family of subgroups. Then H is closed in Sub.S/ if for each
increasing sequence P1 < P2 < P3 < � � � of subgroups in H ,

S
iD1

Pi is also in H .
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Let H� Sub.S/ be a closed family. Then:

(a) F is H–closed if for each sequence P1 < P2 < � � � in H with P D
S

iD1 Pi ,
and each homomorphism ' 2 Hom.P;S/ such that 'jPi

2 HomF .Pi ;S/ for
each i , ' 2 HomF .P;S/.

(b) F is H–generated if every morphism in F is a composite of restrictions of
morphisms in F between subgroups in H .

(c) F is H–saturated if it is H–closed and if every subgroup of H is F –conjugate
to a subgroup which is fully automized and receptive.

The following two results, both generalizations to discrete p–toral groups of well-
known properties of p–groups, will be useful.

Lemma 1.12 [9, Lemma 1.8] If P <Q are discrete p–toral groups, P <NQ.P /.

Lemma 1.13 Let QE P be discrete p–toral groups, where jP=Qj<1. Then the
group ˚

˛ 2 Aut.P /
ˇ̌
˛jQ D Id; Œ˛;P ��Q

	
is discrete p–toral.

Proof Let A denote this group of automorphisms. For each ˛ 2A and each g 2 P ,
˛.g/ D g�.g/ for some �.g/ 2 Q since Œ˛;P � � Q, cg D c˛.g/ 2 Aut.Q/ since
˛jQ D Id, and hence �.g/ 2Z.Q/. Also, for a 2Q, ˛.ga/D g�.g/aD .ga/�.g/

since ˛.a/ D a and Œa; �.g/� D 1, so �.ga/ D �.g/. Thus ˛ is determined by
the map �W P=Q ! Z.Q/. The resulting injection A ! Map.P=Q;Z.Q// is a
homomorphism, and so A is discrete p–toral since Map.P=Q;Z.Q//ŠZ.Q/jP=Qj

is so.

2 Normalizer fusion subsystems

Let F be a fusion system over a discrete p–toral group S . For each Q� S and each
K � Aut.Q/, define

AutKF .Q/DK\AutF .Q/;

AutKS .Q/DK\AutS .Q/;

N K
S .Q/D fx 2NS .Q/ j cx 2Kg (the K–normalizer of Q in S ).

Algebraic & Geometric Topology, Volume 14 (2014)
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Definition 2.1 Let F be a fusion system over a discrete p–toral group S . Fix a
subgroup Q� S and a group of automorphisms K � Aut.Q/. Then:

� Q is fully K–automized in F if AutKS .Q/ 2 Sylp.AutKF .Q//.
� Q is fully K–normalized in F if for each ' 2 HomF .Q;S/,ˇ̌

N K
S .Q/

ˇ̌
�
ˇ̌
N
'K
S .'.Q//

ˇ̌
;

where 'K D f'˛'�1 j ˛ 2Kg � Aut.'.Q//.
� N K

F .Q/� F is the fusion system over N K
S
.Q/ where for P;R�N K

S
.Q/,

HomN K
F .Q/

.P;R/D
˚
' 2 HomF .P;R/

ˇ̌
there exists x' 2 HomF .PQ;RQ/

with x'jP D ', x'.Q/DQ and x'jQ 2K
	
:

As special cases of the above definition, we set NF .Q/ D N
Aut.Q/
F .Q/ and set

CF .Q/DN
f1g
F .Q/: the normalizer and centralizer fusion systems, respectively, of Q.

The next lemma is a generalization of results in [18] to fusion systems over discrete
p–toral groups.

Lemma 2.2 Let F be a fusion system over a discrete p–toral group S , and let P be
an F –conjugacy class of subgroups of S . Assume either that F is saturated, or (more
generally) that P contains a subgroup which is fully automized and receptive in F .
Then the following hold for each P 2 P and each K � Aut.P /.

(a) The subgroup P is fully centralized if and only if it is receptive.

(b) The subgroup P is fully K–normalized if and only if it is fully K–automized
and receptive. In this case, for each Q 2 P and each ' 2 IsoF .Q;P /, there are
�2AutKF .P / and x' 2HomF .N

K'

S
.Q/ �Q;N K

S
.P / �P / such that x'jQD �ı' .

Proof (a) For fusion systems over finite p–groups, this is shown in [18, Proposi-
tions 3.7 and 4.6] and in [2, Lemma I.2.6(c)]. Those proofs carry over unchanged to
the discrete p–toral case.

(b) Assume that P is fully K–automized and receptive in F . Fix Q 2 P and
' 2 IsoF .Q;P /. Then 'AutK

'

S .Q/ is a discrete p–toral subgroup of AutKF .P /, and
since P is fully K–automized, there is � 2 AutKF .P / such that �'AutK

'

S .Q/ �

AutKS .P /. Note that K' DK�' since � 2K .

Set  D � ı' . Then  AutK
 

S .Q/� AutKS .P /, and since P is receptive, there is a
morphism

x 2 HomF .N
K 

S .Q/ �Q;N K
S .P / �P /

Algebraic & Geometric Topology, Volume 14 (2014)
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which extends  . In particular, jN K'

S
.Q/jD jN K 

S
.Q/j � jN K

S
.P /j. Since Q and '

were arbitrary, this proves that P is fully K–normalized in F .

Now assume P is fully K–normalized. Fix R 2 P and  2 IsoF .P;R/ such that R

is fully automized and receptive in F . Fix T 2 Sylp.Aut
 K
F .R// such that T �

 AutKS .P /. Since R is fully automized, there is ˛2AutF .R/ such that ˛T �AutS .R/.
Set 'D ˛ ı . Then 'AutKS .P /�

˛T �AutS .R/, and since R is receptive, ' extends
to x' 2 HomF .N

K
S
.P / �P;NS .R//, where Im.x'/�N

'K
S
.R/.

Consider the commutative diagram

1 // CS .P / //

��

N K
S
.P / //

x'

��

AutKS .P /

c'
��

// 1

1 // CS .R/ // N
'K
S
.R/ // Aut

'K
S .R/ // 1

where the rows are exact and all vertical maps are monomorphisms. Since P is
fully K–normalized, x'.N K

S
.P // D N

'K
S
.R/, and hence x'.CS .P // D CS .R/ and

'AutKS .P /D Aut
'K
S .R/. Thus P is receptive by (a) (and since R is receptive).

Now, T 2 Sylp.Aut
 K
F .R// by assumption, so ˛T 2 Sylp.Aut

'K
F .R//. Also, ˛T �

AutS .R/, and hence ˛T D Aut
'K
S .R/. Thus AutKS .P / 2 Sylp.AutKF .P //, so P is

fully K–automized, and this finishes the proof of (b).

The main result in this section is that normalizer fusion subsystems over discrete p–toral
groups are saturated. The proof given here is modelled on that of [2, Theorem I.5.5].

Theorem 2.3 Fix a saturated fusion system F over a discrete p–toral group S .
Assume Q� S and K � Aut.Q/ are such that Q is fully K–normalized in F . Then
N K

F .Q/ is a saturated fusion system over N K
S
.Q/.

Proof Set SC DN K
S
.Q/ and FC DN K

F .Q/ for short. For each P � SC , set

KP D f˛ 2 Aut.PQ/ j ˛.P /D P; ˛.Q/DQ; ˛jQ 2Kg:

We need to show the following statements.

(a) Each subgroup of SC is FC–conjugate to a subgroup P such that PQ is fully
KP –normalized in F .

(b) If P � SC and PQ is fully KP –normalized in F , then P is fully automized
in FC .

(c) If P � SC and PQ is fully KP –normalized in F , then P is receptive in FC .

(d) Axiom (III) holds for N K
F .Q/.
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The theorem will then follow immediately from Corollary 1.8.

The proofs of (a), (b), and (c) are identical to the corresponding proofs in [2, Theo-
rem I.5.5] (which is stated for fusion systems over finite p–groups). It remains to
prove (d).

Fix subgroups P1 � P2 � P3 � � � � � SC , and set P D
S1

iD1 Pi . Assume ' 2
Hom.P;SC/ is such that 'i WD 'jPi

2 HomFC.Pi ;SC/ for each i .

For each i , set

Xi D
˚
 2 HomF .PiQ;S/

ˇ̌
 jPi

D 'i ;  .Q/DQ;  jQ 2K
	
¤∅;

and let xXi be the image of Xi in RepF .PiQ;S/ (equivalently, the set of CS .Pi/–conju-
gacy classes of morphisms in Xi ). Since RepF .PiQ;S/ is finite by [9, Lemma 2.5], so
is xXi . There are natural restriction maps xXi!

xXi�1 , and since the sets are finite and
nonempty, the inverse limit is nonempty. Fix an element .Œ i �/

1
iD1

in the inverse limit.
Thus  i 2HomF .PiQ;S/,  i jPi

D 'i ,  i jQ 2K , and cgi�1
ı i jPi�1Q D i�1 for

some gi�1 2 CS .Pi�1/.

Since S is Artinian (cf [9, Proposition 1.2]), there is N such that CS .Pi/D CS .P /

for each i � N . For each i � N , set  0i D cgN
ı cgNC1

ı � � � ı cgi�1
ı  i . Then

 0i jPi�1
D  0

i�1
, and  0i jPi

D 'i . Set  0 D
S1

iD1  
0
i . Then  0 2 HomF .PQ;S/ by

axiom (III) for F ,  0jP D ' ,  0jQ D  N jQ 2K , and so ' 2 HomFC.P;S/.

The following is one easy application of Theorem 2.3.

Lemma 2.4 Let F be a saturated fusion system over a discrete p–toral group S .
Assume QE P � S , where Q is F –centric. Let '; '0 2 HomF .P;S/ be such that
'jQ D '

0jQ . Then there is x 2Z.Q/ such that '0 D ' ı cx .

Proof Since ' ı cg D c'.g/ ı ' for each g 2Q, it suffices to show that '0 D cy ı '

for some y 2Z.'.Q//. Upon replacing P by '0.P /, Q by '.Q/D '0.Q/, and '
by ' ı .'0/�1 , we can assume that '0 D inclSP and 'jQ D IdQ . We must show that
' D cx for some x 2Z.Q/.

Set K D AutP .Q/. Since Q is F –centric, it is fully centralized. Since AutKF .Q/D
AutKS .Q/ D K , Q is fully K–automized, and hence it is fully K–normalized by
Lemma 2.2(a,b). Hence by Theorem 2.3, the normalizer subsystem N K

F .Q/ over
N K

S
.Q/ D P �CS .Q/ D P is saturated. Also, since 'jQ D Id, Aut'.P/.Q/ D

AutP .Q/ D K . Thus '.P / � N K
S
.Q/, and ' 2Mor.N K

F .Q//. Set F0 D N K
F .Q/

for short.
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It thus suffices to prove that F0DFP .P /. Assume otherwise: then by [9, Theorem 3.6],
there is R� P such that Op.AutF0

.R//D 1, and in particular, such that AutF0
.R/

is not a p–group. By definition of F0 , we can assume that R �Q. Hence there is
Id¤ ˛ 2 AutF0

.R/ which has finite order prime to p . Since K is a discrete p–toral
group and ˛jQ 2 K , ˛jQ D IdQ . Hence for g 2 R, g and ˛.g/ have the same
conjugation action on Q, and g�1˛.g/ 2 CR.Q/ �Q. Thus ˛ induces the identity
on R=Q, so by [9, Lemma 1.7(a)], each ˛–orbit in R has p–power order. This
contradicts the assumption that ˛ ¤ Id has order prime to p , so F0 D FP .P /, and
this finishes the proof.

We will need the following application of Lemma 2.4.

Lemma 2.5 Let F be a saturated fusion system over a discrete p–toral group S .
Then for each P � S , the set of S –conjugacy classes of fully normalized subgroups
F –conjugate to P is finite of order prime to p .

Proof Since the conclusion depends only on the F –conjugacy class of P , we can
assume that P is fully normalized.

Let RepF .P;S/fc � RepF .P;S/ be the subset consisting of all classes of homomor-
phisms whose image is fully centralized. Recall, RepF .P;S/ is finite [9, Lemma 2.5].

Step 1 Assume first P is F –centric. We first prove RepF .P;S/fc D RepF .P;S/
has order prime to p in this case.

Recall from [9, Section 3] that there is a functor .P 7! P�/ from F to itself, with
the properties that P� � P for each P � S , .P�/� D P� , and the image F� of the
functor contains finitely many S –conjugacy classes. (We will be studying this functor
in more detail in the next section.)

Let P D P0 < P1 < P2 < � � � < Pm D S be such that Pi D NS .Pi�1/
� for each i .

The sequence is finite since there are only finitely many conjugacy classes in F� (and
since NS .Pi/ > Pi whenever Pi < S by Lemma 1.12). Fix 0� i <m, and consider
the restriction map

ResW RepF .NS .Pi/;S/ �! RepF .Pi ;S/:

This is injective by Lemma 2.4, and OutS .Pi/ŠNS .Pi/=Pi ¤ 1 is a finite p–group
by [9, Proposition 1.5(c)]. Let Q=Pi be the stabilizer subgroup of Œ'� 2 RepF .Pi ;S/

under the action of NS .Pi/=Pi ; then ' extends to an F –morphism on Q by axiom
(II) in Definition 1.4. Thus Im.Res/ is the fixed subset for the NS .Pi/=Pi –action, and
hence jRepF .Pi ;S/j � jRepF .NS .Pi/;S/j .mod p/.
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By [9, Proposition 3.3], each morphism  2 HomF .NS .Pi/;S/ extends to a unique
morphism  � 2 HomF .NS .Pi/

�;S/. Therefore, restriction defines a bijection from
HomF .NS .Pi/

�;S/ to HomF .NS .Pi/;S/, and hence (after dividing out by the con-
jugation action of S ) from RepF .NS .Pi/

�;S/ to RepF .NS .Pi/;S/. In other words,
jRepF .Pi ;S/j � jRepF .PiC1;S/j .mod p/. Thus

jRepF .P;S/j D jRepF .P0;S/j � jRepF .Pm;S/j D jOutF .S/j;

where jOutF .S/j is prime to p by axiom (I) in Definition 1.4.

Step 2 Now assume P < S is not F –centric; we claim that jRepF .P;S/fcj is prime
to p . Set

� D
˚

 2 AutF .PCS .P //

ˇ̌

 jP D IdP

	
and T D AutCS .P/.PCS .P //E �:

Then � Š AutCF .P/.CS .P // and T Š Inn.CS .P // via restriction to CS .P /, so
T 2 Sylp.�/.

Now �=T �OutF .PCS .P // acts on RepF .PCS .P /;S/ by right composition. If ' 2
HomF .PCS .P /;S/ and 
 2� are such that Œ'�D Œ' ı
 � in RepF .PCS .P /;S/, then
there is g 2 S such that ' D cg ı ' ı 
 , so ' D ' ı 
pn

for some n, hence j
 j is a
power of p , and 
 2 T . Thus the �=T –action on RepF .PCS .P /;S/ is free. The
restriction map from RepF .PCS .P /;S/ to RepF .P;S/fc is surjective by axiom (II),
and the inverse image of any Œ � 2 RepF .P;S/fc is one of the �=T –orbits. Thus
jRepF .P;S/fcj D jRepF .PCS .P /;S/j=j�=T j. Since jRepF .PCS .P /;S/j is prime
to p by Step 1, jRepF .P;S/fcj is also prime to p .

Step 3 We are now ready to prove the lemma. Let Pfc be the set of S –conjugacy
classes of subgroups fully centralized in F and F –conjugate to P , and let Pfn � Pfc

be the subset of classes of fully normalized subgroups. Let �W RepF .P;S/fc! Pfc be
the map which sends the class of ' to the class of '.P /.

Let N j jOutF .P /j be the largest divisor prime to p . For each Q 2 PF such that
ŒQ� 2 Pfc , j��1.ŒQ�/j D jAutF .Q/j=jAutS .Q/j. Thus p j j��1.Q/j if Q is not
fully normalized, and j��1.Q/j D N if Q is fully normalized. So j��1.Pfn/j �

jRepF .P;S/fcj .mod p/, hence is prime to p by Steps 1 and 2; and thus jPfnj D

j��1.Pfn/j=N is also prime to p .

3 The “bullet” construction

The bullet construction plays an important role in the theory of p–local compact groups,
and is studied at length in [9, Section 3]. However, in that paper, we always assumed
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that the ambient fusion system is saturated. In this one, we will need some of the
properties of this construction to prove saturation in certain situations, and hence must
know them in a more general setting. We start by recalling the definition.

Definition 3.1 Fix a discrete p–toral group S , set T D S0 , and let W � Aut.T / be
a subgroup which contains AutS .T /. Let m� 0 be such that exp.S=T /D pm .

� For each A� T , set

I.A/D CT .CW .A// WD
˚
t 2 T

ˇ̌
w.t/D t for all w 2 CW .A/

	
�A:

� For each P � S , set P Œm� D hgpm

j g 2 P i, and set P� D P �I.P Œm�/0 .

� Let P;Q � S and ' 2 Inj.P;Q/ be such that 'jP Œm� D wjP Œm� for some
w 2W . Then '�W P�!Q� denotes the unique map of sets, if it exists, such
that '�.gh/D '.g/w.h/ for each g 2 P and h 2 I.P Œm�/0 .

Note that the definition of P� for P � S depends only on S and on the choice of
a subgroup W � Aut.S0/. For any fusion system F over S , we associate to F the
construction (P 7! P� ) with W D AutF .S0/, and set F� D fP� j P � Sg.

We will show later that under certain additional conditions, the map '� is defined and
a homomorphism for each morphism ' .

Lemma 3.2 Let F be a fusion system over a discrete p–toral group S . Then we have
the following.

(a) P �Q� S implies P� �Q� .

(b) P � S implies .P�/� D P� and NS .P /�NS .P
�/.

The following also hold if AutF .S0/ is finite.

(c) The set F� contains finitely many S –conjugacy classes.

(d) Assume P1 � P2 � � � � are subgroups of S , and P D
S

iD1

Pi . Then there is
N > 0 such that Pi

� D P� for each i >N .

Proof By definition, the function P 7! P� depends only on AutF .S0/ (and on S ).
Hence (a), (b) and (c) hold by exactly the same arguments as those used to prove them
in [9, Lemma 3.2]. The only exception is the last statement in (b) (not shown in [9]),
which follows since for g 2 NS .P /, g 2 NS .P

Œm�/, and hence g 2 NS .I.P
Œm�//.

Note that the assumption jAutF .S0/j<1 is needed to prove (c).
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In the situation of (d), we have P1
��P2

�� � � � by (a), and this sequence contains only
finitely many subgroups by (c). Thus there are N > 0 and Q� S such that Pi

� DQ

for each i > N . In particular, P D
S

iD1 Pi �Q, so P� �Q� DQ by (a) and (b).
Since Pi

� �P� for each i by (a) again, this shows that P�DQDPi
� for i >N .

While we do not assume here that fusion systems are saturated, we will, in most cases,
assume the following condition on a fusion system F :

.�/ For each P�S0 and each '2HomF .P;S0/, 'DwjP for some w2AutF .S0/.

By [9, Lemma 2.4(b)], .�/ always holds if F is saturated.

Lemma 3.3 Let F be a fusion system over a discrete p–toral group S such that F
satisfies .�/. Then for each P �S and each ' 2HomF .P

�;S/, '.P�/D'.P /� 2F� .
In particular, F� is invariant under F –conjugacy.

Proof Let m be such that pmD exp.S=S0/, and set W DAutF .S0/. Set QD '.P /.
We must show that '.P�/DQ� .

Set RD P�\S0\'
�1.S0/. Thus R is the largest subgroup of P� such that R and

'.R/ are both contained in S0 . By .�/, there is w 2AutF .S0/ such that 'jR DwjR .
In particular, w.P Œm�/ D QŒm� , so wCW .P

Œm�/w�1 D CW .Q
Œm�/, and w sends

I.P Œm�/DCT .CW .P
Œm�// isomorphically to I.QŒm�/. Also, '.I.P Œm�/0/�S0 since

it is connected, so I.P Œm�/0 � R and '.I.P Œm�/0/D w.I.P
Œm�/0/D I.QŒm�/0 . So

'.P�/DQ� .

Throughout the rest of the section, we need to consider the following condition on a
fusion system F over a discrete p–toral group S :

(��)
For each P � S and each ' 2 HomF .P;S0/, there
exists x' 2 HomF .P �CS .P /0;S0/ such that x'jP D ' .

As will be seen in the next lemma, this is a stronger version of .�/.

Lemma 3.4 Fix a fusion system F over a discrete p–toral group S which satisfies
.��/. Then the following hold.

(a) The fusion system F satisfies condition .�/.

(b) For each P;R � S0 such that P � R � P �I.P /0 , each w 2 W , and each
 2 HomF .R;S/ such that  jP D wjP ,  .R/� S0 and  D wjR .

(c) For each P;Q � S and each ' 2 HomF .P;Q/, '� is defined and '� 2

Hom.P�;Q�/.

(d) Assume P �Q � P� , ' 2 HomF .P;S/, and x' 2 HomF .Q;S/ are such that
' D x'jP . Then x' D '�jQ .
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Proof Set W D AutF .S0/. Let m be such that pm D exp.S=S0/.

(a) For each P � S0 and ' 2 HomF .P;S0/, ' extends to w 2 AutF .S0/ by (��).

(b) Let P �S0 , P �R�P �I.P /0 , w 2W , and  2HomF .R;S/ be as above. Set
P�D .P /Dw.P / and R�D .R/. Then P� �R� are abelian, so each element of
AutR�.S0/�W acts via the identity on P� , and hence via the identity on I.P�/. In
other words, ŒI.P�/;R��D 1. By (��),  �1 2 IsoF .R�;R/ extends to a morphism
� 2 HomF .R��I.P�/0;S0/.

Now, �.P�/ D P , and �jP� D  
�1jP� D w

�1jP� . Also, �jP��I.P�/0 D ujP��I.P�/0
for some u2W by (a), ujP� Dw

�1jP� , and hence ujI.P�/Dw
�1jI.P�/ by definition

of I.�/. Thus �jP��I.P�/0 D w
�1jP��I.P�/0 , and so �.P��I.P�/0/D P �I.P /0 �R.

Since � is injective and �.R�/ D R, this implies that R� � P��I.P�/0 � S0 and
 D .�jR�/

�1 D wjR .

(c) Fix a morphism ' 2 HomF .P;Q/, and let w 2W be such that 'jP Œm� DwjP Œm� .
Set RD P Œm� � .P \ I.P Œm�/0/. Then P Œm� � R � P Œm� � I.P Œm�/0 , and (b) implies
'jR D wjR . Hence '�W P� ! Q� is well defined as a map of sets by the formula
'�.gh/D '.g/w.h/ for all g 2 P and h 2 I.P Œm�/0 .

To prove that '� is a homomorphism, it remains to show, for all g2P and h2I.P Œm�/0 ,
that w.ghg�1/ D '.g/w.h/'.g/�1 . Set u D c�1

'.g/
ı w ı cg 2 W ; we must show

that ujI.P Œm�/0 D wjI.P Œm�/0 . But ujP Œm� D wjP Œm� since 'jP Œm� D wjP Œm� , and so
ujI.P Œm�/ D wjI.P Œm�/ by definition of I.�/.

(d) Fix P;Q � S such that P � Q � P� . Assume ' 2 HomF .P;S/ and x' 2
HomF .Q;S/ are such that ' D x'jP . Set R D P Œm� and Q0 D Q\R�I.R/0 . By
definition, '�jR�I.R/0 D wjR�I.R/0 for any w 2 W such that 'jR D wjR . By (b),
x'jQ0 D wjQ0 D '

�jQ0 . Since

QDQ\P� DQ\ .P � I.R/0/D P � .Q\R � I.R/0/D PQ0

and x'jP D ' , this proves that x' D '�jQ .

Lemma 3.4(c) allows us to extend each ' 2 HomF .P;Q/ to a homomorphism '� 2

Hom.P�;Q�/. In the next lemma, we add some more hypotheses, enough to ensure
that '� 2Mor.F/.

Lemma 3.5 Fix a fusion system F over a discrete p–toral group S . Let H be a
family of subgroups of S invariant under F –conjugacy. Assume the following.

(i) AutF .S0/ is finite.

(ii) F satisfies .��/.
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(iii) For all P 2H and P �Q� P� , Q 2H .

(iv) F is H–generated and H–saturated.

Then the following hold.

(a) For each ' 2Mor.F/, '� 2Mor.F/.
(b) If, in addition, yH � H is also invariant under F –conjugacy, and is such that

P 2 yH implies P� 2H , then F is yH–saturated.

Proof (a) Fix ' 2 HomF .P;Q/; we must show '� 2 HomF .P
�;Q�/. It suffices

to do this when ' is an isomorphism. Since F is H–generated, ' is a composite of
isomorphisms which are restrictions of F –isomorphisms between subgroups in H . So
it suffices to consider the case where ' extends to x' 2 IsoF . xP ; xQ/ for some xP ; xQ2H .
If x'� 2Mor.F/, then '� 2Mor.F/ since it is a restriction of x'� . It thus suffices to
prove (a) when P and Q are in H .

By axiom (III), which holds by hypothesis for all subgroups in H , there is a subgroup
P 0 � P� containing P which is maximal among subgroups of P� satisfying '0 WD
'�jP 0 2 HomF .P

0;Q�/. Assume P 0 < P� , and set Q0 D '0.P 0/.

Since P;Q 2 H , and since P � P 0 � P� and Q � Q0 � Q� , P 0;Q0 2 H by (iii).
Since F is H–saturated, there are R0 � S and  0 2 IsoF .Q0;R0/ such that R0 is
receptive in F . Set R D  0.Q/ and  D  0jQ 2 IsoF .Q;R/. By Lemma 3.4(d),
 0 D  �jQ0 , and  0'0 D . '/�jP 0 . We thus have isomorphisms of triples

.P� � P 0 � P /
.'�;'0;'/

Š
// .Q� �Q0 �Q/

. �; 0; /

Š
// .R� �R0 �R/:

Set P 00 D NP�.P
0/ and Q00 D NQ�.Q

0/. Since P� > P 0 , P 00 > P 0 and Q00 > Q0

by Lemma 1.12. Also, N 0 �Q00 and N 0'0 � P 00 since there are (abstract) homo-
morphisms which extend  0 to Q00 and  0'0 to P 00 . Hence  0 and  0'0 extend
to homomorphisms  00 2 HomF .Q

00;S/ and �00 2 HomF .P
00;S/, and  00 D  �jQ00

and �00 D . '/�jP 00 by Lemma 3.4(d) again. So  00.Q00/D �00.P 00/DNR�.R
0/, and

'�jP 00 D . 
00/�1�00 is a morphism in F , which contradicts the maximality of P 0 . We

now conclude that P 0 D P� , and hence that '� 2 IsoF .P�;Q�/.

(b) We are assuming F is H–saturated, and want to show it is yH–saturated. Fix P

in yHXH . Thus P� 2 H by assumption. Choose R which is F –conjugate to P� ,
and receptive and fully automized. Fix ' 2 IsoF .P�;R/ and set Q D '.P /. By
Lemma 3.4(d), ' D .'jP /� , and so Q� DR.

Set H Df˛ 2AutF .Q�/ j˛.Q/DQg. Since Q�DR is fully automized, AutS .Q�/2
Sylp.AutF .Q�//. Thus H acts by translation on AutF .Q�/=AutS .Q�/, a finite set
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of order prime to p , and there is ˇ 2 AutF .Q�/ such that the coset ˇ�1 AutS .Q�/
is in an H –orbit of order prime to p . In other words, the stabilizer subgroup
ˇ�1 AutS .Q�/ˇ\H has index prime to p in H , and thus lies in Sylp.H /.

By (a) (and the definition of H ), restriction to Q sends ˇHˇ�1 surjectively onto
AutF .ˇ.Q//. Also, AutS .ˇ.Q// is the image of AutS .Q�/ \ ˇHˇ�1 under this
surjection, and hence is a Sylow p–subgroup in AutF .ˇ.Q//. Thus ˇ.Q/ is fully
automized. (Note that ˇ.Q/� DQ� .)

For any R 2 PF D QF and any ' 2 IsoF .R;Q/, N' � N'� : if 'cg'
�1 D ch 2

AutS .Q/, then '�cg'
��1 D ch 2 AutS .Q�/ by Lemma 3.2(d). Hence Q and ˇ.Q/

are both receptive in F since Q� is. Thus the conjugacy class PF contains a subgroup
which is receptive and fully automized.

Assume P1 D
S

iD1 Pi , where fPig is an increasing sequence of subgroups in yH .
Fix ' 2 HomF .P1;S/ such that 'jPi

2 HomF .Pi ;S/ for each i . By Lemma 3.2(d),
for i large enough, Pi

� D P�1 . By Lemma 3.4(d), ' is the restriction of .'jPi
/� ,

which is in F by (a). So ' 2 HomF .P1;S/.

4 Centric and radical subgroups determine saturation

The main result in this section is Theorem 4.2, which gives sufficient conditions for a
fusion system over a discrete p–toral group to be saturated.

We will frequently refer to the conditions .�/ and .��/ of Section 3, which we recall
here:

.�/ For all P � S0 and ' 2 HomF .P;S0/; ' D wjP for some w 2 AutF .S0/:

.��/ For all P � S and ' 2 HomF .P;S0/;

there exists x' 2 HomF .P �CS .P /0;S0/ with x'jP D ':

By Lemma 3.4(a), condition (��) implies .�/.

The following finiteness result will be needed.

Lemma 4.1 Let F be a fusion system over a discrete p–toral group S such that
AutF .S0/ is finite and .�/ holds. Then for each P � S , there are only finitely many
S –conjugacy classes of subgroups of S which are F –conjugate to P .

Proof By .�/, and since jAutF .S0/j<1, PF
0

is finite. By [9, Lemma 1.4(a)], for
each R 2 PF

0
, there are only finitely many NS .R/=R–conjugacy classes of finite

subgroups of NS .R/=R of any given order. (Compare [9, Lemma 2.5].)
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The main result in this section is the following theorem. We refer to Definition 1.11
for the definitions of H–saturated and H–generated fusion systems.

Theorem 4.2 Fix a fusion system F over a discrete p–toral group S such that
AutF .S0/ is finite and condition .��/ holds. Let H be a family of subgroups of S

which satisfies the following:

(i) H is invariant under F –conjugacy.

(ii) H is closed in Sub.S/, and F is H–generated and H–saturated.

(iii) For all P 2H and P �Q� P� , Q 2H .

(iv) If P 2 F� is F –centric and P 62H , then there is Q 2 PF such that

Op.OutF .Q//\OutS .Q/¤ 1:

Then F is saturated.

Theorem 4.2 will be shown by following as closely as possible the proof of Castellana,
Grodal and the authors [5, Theorem 2.2]. The main difference is that since a discrete
p–toral group can have infinitely many subgroups, the induction arguments used in [5]
cannot be used here. But the beginning steps are mostly unchanged: they are based on
the concept of proper P –pairs for an F –conjugacy class P of subgroups of S .

Definition 4.3 Let F be a fusion system over a discrete p–toral group S , and let P
be an F –conjugacy class of subgroups of S .

� A proper P –pair is a pair of subgroups .Q;P / such that P <Q�NS .P / and
P 2 P .

� Two proper P –pairs .Q;P / and .Q0;P 0/ are F –conjugate if there is an iso-
morphism ' 2 IsoF .Q;Q0/ such that '.P /D P 0 . We let .Q;P /F denote the
set of proper P –pairs which are F –conjugate to .Q;P /.

� A proper P –pair .Q;P / is fully normalized if jNNS .P/.Q/j � jNNS .P 0/.Q
0/j

for all .Q0;P 0/ 2 .Q;P /F .

Some basic properties of proper P –pairs are shown in the following lemma.

Lemma 4.4 Fix a fusion system F over a discrete p–toral group S . Assume that
H � Sub.S/ is closed, and invariant under F –conjugacy. Assume also that F is
H–generated and H–saturated. Let P be an F –conjugacy class of subgroups of S ,
maximal among those not in H .
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(a) If .Q;P / is a fully normalized proper P –pair, then Q is receptive in F and

AutNS .P/.Q/ 2 Sylp.AutNF .P/.Q//:

(b) For each proper P –pair .Q;P /, and each .Q0;P 0/ 2 .Q;P /F which is fully
normalized, there is a morphism

' 2 HomF .NNS .P/.Q/;NS .P
0//

such that '.P /D P 0 and '.Q/DQ0 .
(c) Assume that AutF .S0/ is finite, condition .��/ holds, and P 2H , P �Q�P�

imply Q 2H . Then for each P; yP 2 P such that yP is fully normalized in F ,
there is a morphism ' 2 HomF .NS .P /;NS . yP // such that '.P /D yP .

Proof (a) For each proper P –pair .Q;P /, define

KP D f' 2 Aut.Q/ j '.P /D Pg � Aut.Q/:

Notice that

AutKP

S
.Q/D AutS .Q/\KP D AutNS .P/.Q/;

AutKP

F .Q/D AutF .Q/\KP D AutNF .P/.Q/;
(4.1)

N
KP

S
.Q/DNNS .P/.Q/:(4.2)

Assume the pair .Q;P / is fully normalized. Fix Q0 2QF and ˛ 2 IsoF .Q;Q0/, and
set P 0 D ˛.P /. Then .Q0;P 0/ 2 .Q;P /F , and

˛KP DKP 0 WD
˚
' 2 Aut.Q0/

ˇ̌
'.P 0/D P 0

	
:

Hence by (4.2),ˇ̌
N

KP

S
.Q/

ˇ̌
D jNNS .P/.Q/j � jNNS .P 0/.Q

0/j D
ˇ̌
N

KP 0

S
.Q0/

ˇ̌
D
ˇ̌
N
˛KP

S
.Q0/

ˇ̌
;

and so Q is fully KP –normalized in F . By Lemma 2.2(b) (and since Q 2H and F
is H–saturated), Q is receptive and fully KP –automized in F . So by (4.1),

AutNS .P/.Q/ 2 Sylp.AutNF .P/.Q//:

(b) Let .Q;P /, and .Q0;P 0/ 2 .Q;P /F , be proper P –pairs such that .Q0;P 0/ is
fully normalized. Let KP � Aut.Q/ and KP 0 � Aut.Q0/ be as in (a). Since .Q0;P 0/
is fully normalized, Q0 is receptive and fully KP 0 –automized by (a).

Choose some  2 IsoF .Q;Q0/ such that  .P /D P 0 . By Lemma 2.2(b), there are
� 2 AutKP 0

F .Q0/ and ' 2 HomF .N
KP
S

.Q/;N KP 0

S
.Q0// such that 'jQ D � ı . Then

'.P / D �.P 0/ D P 0 , '.Q/ D Q0 , and N KP
S

.Q/ D NNS .P/.Q/ and N KP 0

S
.Q0/ D

NNS .P 0/.Q
0/ by (4.2).
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(c) Fix subgroups P; yP 2 P such that yP is fully normalized in F . We will construct
a morphism in F from NS .P / to NS . yP / which sends P to yP . In particular, yP
will be fully centralized in F , since its centralizer contains an injective image of the
centralizer of any other subgroup in P .

Let yT be the set of all sequences

(4.3) � D
�
P D P0;Q0; '0IP1;Q1; '1I : : : IPk�1;Qk�1; 'k�1IPk D

yP /

such that for all 0� i�k�1, .Qi ;Pi/ is a proper P –pair, 'i 2HomF .Qi ;NS .PiC1//,
and 'i.Pi/D PiC1 . Let T � yT be the subset of those sequences in which each 'i is
maximal, in the sense that it cannot be extended in F to a subgroup of NS .Pi/ which
properly contains Qi . We give yT the partial ordering by inclusion (of sequences of the
same length with the same Pi ); then T is the set of maximal elements in yT . Since F
is H–saturated, axiom (III) ensures that each element of yT is contained in an element
of T .

We first check that T ¤ ∅. Choose any ' 2 IsoF .P; yP /. Since F is H–generated,
there are subgroups Pi <Ri 2H for 0� i �k , and morphisms �i 2HomF .Ri ;RiC1/

for i � k�1, such that P0 D P , Pk D
yP , �i.Pi/D PiC1 , and ' D �k�1jPk�1

ı � � � ı

�1jP1
ı �0jP0

. For each i , let PiC1 D �i.Pi/. Then NRi
.Pi/ > Pi by Lemma 1.12

(and since Ri > Pi ). Set Qi DNRi
.Pi/ and 'i D �i jQi . Then .Qi ;Pi/ is a proper

P –pair, 'i 2HomF .Qi ;NS .PiC1// and .P0;Q0; '0IP1;Q1; '1I : : : IPk/2 yT . Thus
yT ¤∅, and T ¤∅ since each element is contained in a maximal element.

Lemma 3.5(a) applies in this situation by the extra hypotheses which were assumed.
Hence for any � 2 T as in (4.3), 'i extends to '�i 2 HomF .Qi

�;NS .PiC1/
�/ for

each i , and therefore to Qi
�\NS .Pi/. The maximality of 'i implies that

(4.4) Qi DQi
�
\NS .Pi/:

The same argument applied to '�1
i shows that

(4.5) 'i.Qi/D 'i.Qi/
�
\NS .PiC1/:

Let Tr � T be the subset of those � for which there is no 1 � i � k � 1 such that
Qi DNS .Pi/D 'i�1.Qi�1/. Let

T R
�! Tr

be the “reduction” map, which for every 1 � i � k � 1 such that Qi D NS .Pi/ D

'i�1.Qi�1/, removes from the sequence the triple .Pi ;Qi ; 'i/, and replaces 'i�1 by
the composite 'i ı'i�1 . Since T ¤∅, the existence of the reduction map R shows
that Tr ¤∅.
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For each � 2 T , define

I.�/D fi D 0; : : : ; k � 1 jQi <NS .Pi/ and 'i.Qi/ <NS .PiC1/g:

If � 2 T and I.�/¤∅, define

�.�/D min
i2I.�/

fjQi
�
jg � .0;p/:

Since AutF .S0/ is assumed to be finite, F� has finitely many F –conjugacy classes
by Lemma 3.2(c), so there are only a finite number of values that �.�/ can take.

Assume there is a sequence � 2 Tr as in (4.3) such that I.�/ D ∅. For each
0 � i < k , if Qi < NS .Pi/, then 'i.Qi/ D NS .PiC1/ since i 62 I.�/, and hence
QiC1 < NS .PiC1/ if i C 1 � k � 1 since � is reduced. Thus jNS .Pi/j > jQi j D

jNS .PiC1/j > � � � > jNS .Pk/j in this case, which contradicts the assumption that
Pk D

yP is fully normalized. Hence Qi DNS .Pi/ for each i < k , and 'k�1 ı � � � ı'0

lies in HomF .NS .P /;NS . yP // and sends P to yP .

It remains to show that there exists � 2 Tr such that I.�/D∅. To see this, fix � 2 Tr

as in (4.3) such that I.�/¤∅. We will construct y� 2 Tr such that either I.y�/D∅ or
�.y�/ > �.�/. Since �.�/ can only take finitely many values, this will prove our claim.

Fix i 2I.�/, set RiC1D'i.Qi/, and choose a fully normalized proper P –pair .Ui ;Vi/

which is F –conjugate to .Qi ;Pi/ (hence also to .RiC1;PiC1/). By (b), there are
morphisms

 i 2 HomF .NNS .Pi /.Qi/;NS .Vi// and �i 2 HomF .NNS .PiC1/.RiC1/;NS .Vi//

such that  i.Pi/ D �i.PiC1/ D Vi and  i.Qi/ D �i.RiC1/ D Ui . Upon replacing
.Pi ;Qi ; 'i/ by�

Pi ;NNS .Pi /.Qi/;  i IVi ; �i.NNS .PiC1/.RiC1//; �
�1
i

�
;

we get a new sequence �1 2 yT . Upon applying axiom (III) again, we get a sequence
�2 2 T where .Pi ;Qi ; 'i/ has been replaced by�

Pi ; zQi ; z i IVi ; zRiC1; z�
�1
i

�
for some maximal extensions z i of  i and z�i of �i . Also, Qi < NS .Pi/ and
RiC1 <NS .PiC1/ since i 2 I.�/, so

zQi �NNS .Pi /.Qi/ >Qi and zRiC1 �NNS .PiC1/.RiC1/ >RiC1;

and zQi
� >Qi

� and zRiC1
� >RiC1

� by (4.4) and (4.5). In particular, j zQi
�j > �.�/

and j zRiC1
�j> �.�/.
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Upon repeating this procedure for all i 2 I.�/, we obtain a new element � 0 2 T such
that either I.� 0/D∅ or �.� 0/ > �.�/. Set y� DR.� 0/ 2 Tr . Then either I.y�/D∅ or
�.y�/ > �.�/. Since the function � can only take a finite number of possible values, it
follows by induction that there is � 2 Tr such that I.�/D∅.

Very roughly, Lemma 4.4 allows us to reduce the proof of Theorem 4.2 to showing
that the saturation properties hold for certain subgroups that are normal in the fusion
system. This case is handled by the following lemma.

Lemma 4.5 Let F be a fusion system over a discrete p–toral group S such that
AutF .S0/ is finite and condition .�/ holds. Fix a subgroup QE S , set HD fP � S j

P >Qg and assume that:

(i) QE F .

(ii) F is H–generated and H–saturated.

(iii) Either Q is not F –centric, or OutS .Q/\Op.OutF .Q//¤ 1.

Then Q is fully automized and receptive in F .

Proof When � is a group containing a normal discrete p–torus P of finite index, we
let Op.�/ be the inverse image in � of the maximal normal p–subgroup Op.�=P /

under the obvious projection. Equivalently, this is the largest normal discrete p–toral
subgroup of � . Define

yQD fx 2 S j cx 2Op.AutF .Q//g:

Then yQ E S by definition. We claim that yQ is strongly closed in F . Assume
that x 2 yQ is F –conjugate to y 2 S . Since Q is normal in F , there exists  2
HomF .hx;Qi; hy;Qi/ which satisfies  .Q/ D Q and  .x/ D y . In particular,
 ı cx ı 

�1 D cy . It follows that y 2 yQ, since cx 2Op.AutF .Q//.

Note also that Q�CS .Q/E yQ, and yQ=Q �CS .Q/ŠOutS .Q/\Op.OutF .Q//. If Q

is F –centric, then this last group is nontrivial by (iii), and if not, then Q�CS .Q/ >Q

by definition. Thus yQ>Q in either case, and so yQ 2H .

Consider the statement

(4.6) each ' 2 AutF .Q/ extends to some x' 2 AutF . yQ/.

We first prove that (4.6) implies the lemma, and then prove (4.6).

Point (4.6) implies the lemma Since Q is normal in F and yQ is strongly closed, each
of them is the only subgroup in its F –conjugacy class. So Q and yQ are both fully
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centralized and fully normalized in F . Also, yQ is receptive and fully automized in F ,
since F is H–saturated and yQF D f yQg �H .

By (4.6), the restriction map from AutF . yQ/ to AutF .Q/ is surjective, and so we
have AutS .Q/ 2 Sylp.AutF .Q// since AutS . yQ/ 2 Sylp.AutF . yQ//. Thus Q is fully
automized in F .

Next we prove that Q is receptive in F . Fix ' 2 AutF .Q/. As usual, let N' be the
group of all g 2NS .Q/ such that 'cg'

�1 2 AutS .Q/. By (4.6), ' extends to some
 2 AutF . yQ/. Consider the groups of automorphisms

K D f� 2 AutS . yQ/ j �jQ D cx some x 2N'g;

K0 D f� 2 AutF . yQ/ j �jQ D IdQgE AutF . yQ/:

By definition, for all x 2N' , we have . cx 
�1/jQ D �jQ for some � 2 AutS . yQ/.

In other words, as subgroups of Aut. yQ/,

 K � AutS . yQ/ �K0:

Now, we have AutS . yQ/ 2 Sylp.AutS . yQ/K0/ since yQ is fully automized, so there are
! 2 AutS . yQ/ and � 2 K0 such that !�. K/ � AutS . yQ/. Hence � K � AutS . yQ/.
Since yQ is receptive in F , � 2 AutF . yQ/ extends to a morphism x' defined on
N� �N K

S
. yQ/�N' , and x'jQ D  jQ D ' since �jQ D IdQ .

Proof of (4.6) Since F is H–generated, each ' 2 AutF .Q/ is a composite of auto-
morphisms of Q which extend to strictly larger subgroups. So it suffices to show (4.6)
when ' itself extends to some P >Q.

Let X be the set of all subgroups P 2H such that 'D x'jQ for some x' 2HomF .P;S/.
We are assuming that X ¤∅. We claim that

(4.7) P 2 X D)N yQP
.P / 2 X :

Assume this, and fix P1 2X . If j yQP1=P1j<1, then by repeated application of (4.7)
and Lemma 1.12, we get that yQ 2 X . If not, then j yQ=Qj D 1, and yQ0Q=Q is a
nontrivial discrete p–torus. Set

P2 DN yQ0P1
.P1/ and P3 D P2\

yQ0Q:

Then P2 2 X by (4.7), P1 � P2 �
yQ0P1 , and P2 > P1 if P2 �

yQ0 by Lemma 1.12.
So P3 >Q, and hence P3 2 X . Now set P4 DN yQ.P3/, so P4 2 X by (4.7) again,
P4 �

yQ0Q since yQ0Q=Q is abelian, hence Œ yQ W P4� <1, and yQ 2 X by earlier
remarks. Since yQ2X , ' extends to some y' 2HomF . yQ;S/, and y'. yQ/D yQ since yQ
is strongly closed in F . This shows that (4.7) implies (4.6).
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It remains to prove (4.7). Fix P 2 X �H , and let z' 2 IsoF .P;P2/ be an extension
of ' . Choose some P3 2 PF D P2

F which is fully automized and receptive in F .
Notice that P3 >Q, since QE F by (i). Let  2 IsoF .P2;P3/ be any isomorphism.
Upon replacing z' by  ı z' , we can arrange that P2 be fully automized and receptive.

Consider the groups of automorphisms

LD f� 2 AutF .P2/ j �jQ 2Op.AutF .Q//g;

L0 D f� 2 AutF .P2/ j �jQ D IdQg:

Both L and L0 are normal subgroups of AutF .P2/. Also, L=L0 is a discrete p–
toral group, since there is a monomorphism L=L0 ! Op.AutF .P2//. Since P2 is
fully automized, AutS .P2/ 2 Sylp.AutF .P2//, and hence AutLS .P2/ 2 Sylp.L/ and
LD AutLS .P2/L0 .

Thus P2 is fully L–automized in F . By Lemma 2.2(b), there are g 2 N L
S
.P2/ D

N yQ.P2/, �2L0 , and  2HomF .N
L'

S
.P /P;N L

S
.P2/P2/, such that  jPD.cgı�/ı' .

Also, N L'

S
.P /P D N yQP .P /. Upon replacing  by c�1

g ı , we can assume that
g D 1. Then  jQ D 'jQ , and thus N yQP

.P / 2 X .

The following lemma combines Lemmas 4.4 and 4.5.

Lemma 4.6 Let F be a fusion system over a discrete p–toral group S such that
AutF .S0/ is finite and condition .��/ holds. Fix a family H¤Sub.S/, and a subgroup
P � S which is maximal in Sub.S/XH . Assume that:

(i) H is invariant under F –conjugacy.

(ii) H is closed in Sub.S/, and F is H–generated and H–saturated.

(iii) P 2H and P �Q� P� imply Q 2H .

(iv) Either P is not F –centric, or OutS .P /\Op.OutF .P //¤ 1.

Then F is .H[PF /–saturated.

Proof By assumption, all overgroups of subgroups in PF are in H . Since PF

contains only finitely many S –conjugacy classes by Lemma 4.1, there is a subgroup
yQ 2 PF which is fully normalized in F . By Lemma 4.4(c), for each Q 2 PF , there

is �Q 2 HomF .NS .Q/;NS . yQ// such that �Q.Q/D yQ. Let N �H be the family
of all subgroups of NS . yQ/ which strictly contain yQ. We claim that the normalizer
system NF . yQ/ is N –saturated.
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For each Q 2 N , the pair .Q; yQ/ is a proper PF –pair. Let .Q0;P 0/ be a proper
PF –pair which is F –conjugate to .Q; yQ/ and fully normalized in F . Then yQ D
�P 0.P

0/ <Q00 WD �P 0.Q
0/�NS . yQ/, so Q00 2N , and .Q00; yQ/ is a proper PF –pair.

Furthermore, since .Q0;P 0/ is fully normalized, and since �P 0 is a monomorphism,
.Q00; yQ/ is also fully normalized in F . If ˛ 2 IsoF .Q;Q0/ is such that ˛. yQ/D P 0 ,
then .�P 0 jQ0/ı˛ is a morphism in NF . yQ/ which sends .Q; yQ/ onto .Q00; yQ/. Hence
by Lemma 4.4(a), applied with P D PF , the subgroup Q00 is receptive in F (hence
in NF . yQ/), and is fully automized in NF . yQ/. This shows that every Q 2 N is
NF . yQ/–conjugate to some Q00 2 N which is fully automized and receptive in the
normalizer fusion system. Axiom (III) holds for NF . yQ/ with respect to the family N ,
since N is closed under overgroups, N �H , and F is H–saturated. Thus NF . yQ/ is
N –saturated.

Conjugation by .�P /jP 2 IsoF .P; yQ/ sends AutF .P / isomorphically to AutF . yQ/
and AutS .P / into AutS . yQ/. So if P and yQ are not F –centric, then point (iv) implies
that OutS . yQ/\Op.OutF . yQ// ¤ 1. Thus by Lemma 4.5, yQ is receptive and fully
automized in NF . yQ/. Hence yQ is fully automized in F . It is receptive in F since
for each Q 2 PF , there is an F –morphism which sends Q onto yQ and NS .Q/

into NS . yQ/.

Axiom (III) holds for H [ PF since it holds for H and since no subgroup in PF

contains any subgroups in H . Thus F is .H[PF /–saturated.

We are now ready to prove Theorem 4.2. The inductive Lemma 4.6 would suffice to
prove the theorem for fusion systems over finite p–groups. But for fusion systems
over discrete p–toral groups, because our groups have infinite chains of subgroups,
the results of Section 3 are needed to allow an induction proof.

Proof of Theorem 4.2 Let K be the set of all closed families of subgroups K�Sub.S/
such that:
� K �H .
� K is invariant under F –conjugacy.
� P 2K and P �Q� P� implies Q 2K .
� F is K–saturated.

We must show that Sub.S/ 2 K.

Assume otherwise, and choose K0 2K for which K0\F� contains the largest possible
number of F –conjugacy classes. Set K1 D fP � S j P� 2 K0g. Then K1 2 K by
Lemma 3.5(b). If K1 ¤ Sub.S/, then F� 6�K0 ; let P be maximal among subgroups
in 2 F�XK0 . Then P is maximal among subgroups in Sub.S/XK1 , K1 [PF 2 K

by Lemma 4.6, and this contradicts the maximality assumption on K0 .
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5 Extensions of p–local compact groups

The main result in this section is a version of [16, Theorem 9] which describes how to
extend a p–local compact group by a finite group. But before proving this, we need
to show some of the basic properties of linking systems over discrete p–toral groups.
All of the results in this section are generalizations of results in [16] or earlier papers
about linking systems over finite p–groups.

We first look at automorphisms of fusion and linking systems. The definitions are the
same as in the finite case (eg Andersen, the last author and Ventura [1, Definition 1.13]).

Definition 5.1 (a) For any fusion system over a discrete p–toral group S , an
automorphism ˛ of S is fusion preserving if there is an automorphism y̨ of F
which sends an object P to ˛.P / and sends a morphism ' to ˛'˛�1 (after re-
stricting ˛ in the obvious way). Let Aut.S;F/ be the group of fusion preserving
automorphisms of S , and set Out.S;F/D Aut.S;F/=AutF .S/.

(b) For any linking system L over a discrete p–toral group S , an automorphism of
categories

˛W L Š
�!L

is isotypical if for each P 2Ob.L/, ˛.ıP .P //D ı˛.P/.˛.P //. Let AutItyp.L/ be
the group of isotypical automorphisms of L which send inclusions to inclusions.

(c) Each 
 2 AutL.S/ acts on the set Mor.L/ by composing on the left or right
with 
 and its restrictions. More precisely, for any ' 2MorL.P;Q/, set


' D 
 jQ;�.
 /.Q/ ı' 2MorL.P; �.
 /.Q//;(5.1)

'
 D ' ı 
 j�.
/�1.P/;P 2MorL.�.
 /�1.P /;Q/:(5.2)

(d) For each 
 2AutL.S/, let c
 2AutItyp.L/ be the automorphism which sends an
object P to �.
 /.P /, and a morphism ' to 
'
�1 . Set

Outtyp.L/D AutItyp.L/=fc
 j 
 2 AutL.S/g:

The argument that AutItyp.L/ is a group in this situation is exactly the same as that used
in [1, Lemma 1.14] when S is finite.

Proposition 5.2 Let .S;F ;L/ be a linking triple, with structure functors

TOb.L/.S/
ı
�!L �

�!F :
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Fix ˛ 2AutItyp.L/. Let ˇ 2Aut.S/ be the restriction of ˛ to S under the identification
S Š ıS .S/; thus ˛.ıS .g//D ıS .ˇ.g// for all g 2 S . Then ˇ 2 Aut.S;F/. Further-
more, � ı˛ D y̌ ı� , where y̌ 2 Aut.F/ is the automorphism which sends P to ˇ.P /
and ' to ˇ'ˇ�1 .

Proof Clearly, ˛.S/DS , and hence ˛ sends ıS .S/ to itself. Thus ˇ is well-defined.

For each P 2 Ob.L/ and g 2 P , since ˛ sends inclusions to inclusions, it sends

P
�P;S

//

ıP .g/
��

S

ıS .g/
��

P
�P;S

// S

to

˛.P /
�˛.P/;S

//

˛.ıP .g//

��

S

ıS .ˇ.g//

��

˛.P /
�˛.P/;S

// S:

The first square commutes by axiom (C) in Definition 1.9, so the second also commutes.
Since restrictions in L are uniquely defined by Proposition A.4(d), this shows that
˛.ıP .g//D ıS .ˇ.g//j˛.P/ D ı˛.P/.ˇ.g//. Hence

ı˛.P/.ˇ.P //D ˛.ıP .P //D ı˛.P/.˛.P //;

where the second equality holds since ˛ is isotypical. Thus ˛.P /D ˇ.P / since ı˛.P/
is injective.

Fix P;Q 2 Ob.L/ and  2 MorL.P;Q/, and set ' D �. / 2 HomF .P;Q/. For
each g 2 P , ˛ sends

P
 
//

ıP .g/

��

Q

ıQ.'.g//

��

P
 
// Q

to

ˇ.P /
˛. /

//

ıˇ.P/.ˇ.g//

��

ˇ.Q/

ıˇ.Q/.ˇ.'.g///

��

ˇ.P /
˛. /

// ˇ.Q/:

The first square commutes by axiom (C), so the second also commutes. By (C)
again, ıˇ.Q/.ˇ.'.g/// can be replaced by ıˇ.Q/.�.˛. //.ˇ.g///, leaving the second
square commutative. Since ıˇ.Q/ is a monomorphism, and since morphisms in L
are epimorphisms by Proposition A.4(g), it follows that ˇ.'.g//D �.˛. //.ˇ.g//.
Therefore

(5.3) �.˛. //D ˇ'ˇ�1
D ˇ�. /ˇ�1:

So ˇ'ˇ�1 2 HomF .ˇ.P /; ˇ.Q// for each P;Q 2 Ob.L/ and ' 2 HomF .P;Q/.
Since Ob.L/ includes all subgroups which are F –centric and F –radical, all morphisms
in F are composites of restrictions of morphisms between objects of L by Alperin’s
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fusion theorem in the version of [9, Theorem 3.6]. Hence ˇ'ˇ�1 2Mor.F/ for all
' 2Mor.F/, and ˇ 2 Aut.S;F/.

Thus there is a well-defined functor y̌ from F to itself which sends each P � S

to ˇ.P / and sends each ' 2HomF .P;Q/ to ˇ'ˇ�1 . This is an automorphism of the
category F by the same argument applied to ˛�1 , and � ı˛ D y̌ ı� by (5.3).

We are now ready to define the structures which will be needed to construct extensions
of linking systems.

Definition 5.3 Fix a linking triple .S;F ;L/ and a finite group G .

(a) An extension pair for L and G is a pair .y�; �/, where y� is an extension of
� WD AutL.S/E y� by G , and where � W y� ! AutItyp.L/ is a homomorphism
which makes both triangles in the following diagram commute:

�
conj

//

incl
(|)

��

AutItyp.L/

.˛ 7!˛S /(})
��

y�
conj

//

�

::

Aut.�/

Fix an extension pair U D .y�; �/ for L and G . Let �W y�!G be the surjection with
kernel � .

(b) Let LU D L
.y�;�/

be the category with Ob.LU /D Ob.L/, and with

Mor.LU /DMor.L/�� y� D .Mor.L/� y�/=�;

where .'; 
 / � .'0; 
 0/ if and only if there is � 2 � such that '0 D '� and

 0 D ��1
 . Here, '� is as defined in (5.2). When ' 2MorL.
 .P /;Q/, the
equivalence class of .'; 
 / is denoted ŒŒ'; 
 �� 2 MorLU

.P;Q/. Composition
in LU is defined by

ŒŒ ; ��� ı ŒŒ'; 
 ��D ŒŒ ı �.�/.'/; �
 ��:

Here, �.�/.'/ 2 MorL.�
 .P /; �.Q// when ' 2 MorL.
 .P /;Q/ (where we
write �.P /D �.�/.P /, etc.).

Thus when U D .y�; �/ is an extension pair for L and G , ŒŒ'�; 
 �� D ŒŒ'; �
 �� in
Mor.LU / for all ' 2Mor.L/, � 2 � , and 
 2 y� .
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To show composition in LU is well defined, we note that for all  ; ' 2 Mor.L/,
�; � 2 � , and �; 
 2 y� with appropriate domain and range,

ŒŒ �; ��� ı ŒŒ'�; 
 ��D ŒŒ � ı �.�/.'�/; �
 ��

D ŒŒ � ı �.�/.'/; .����1/�
 ��

D ŒŒ � ı �.�/.'/��1; ���
 ��

D ŒŒ ı �.��/.'/; ���
 ��D ŒŒ ; ���� ı ŒŒ'; �
 ��:

The second equality follows from the commutativity of triangle (}) in Definition 5.3,
and the fourth from that of (|).

We are now ready to state and prove the main result of this section. The following
theorem is a generalization to p–local compact groups of [16, Theorem 9] (which in
turn was a generalization of [6, Theorem 4.6]).

Theorem 5.4 [16, Theorem 9] Fix a linking triple . xS ; xF ; xL/. Set xHD Ob. xL/, and
assume it is closed under overgroups. Let

T xH. xS/
xı
�! xL x�

�! xF

be the structure functors for xL. Set x� DAut xL. xS/, and regard xS as a subgroup of x� via
the inclusion xıW T xH. xS/! xL. Fix a finite group G and an extension pair U D .�; �/

for xL and G , and choose S 2 Sylp.�/. Then there is a saturated fusion system F
over S containing xF , and a transporter system T associated to F and containing xL,
such that the following hold.

(a) We have Ob.T / D H WD fP � S j P \ xS 2 xHg, and this set contains all
subgroups of S which are F –centric and F –radical. Also, T contains LU as a
full subcategory.

(b) The group � can be identified with AutT . xS/ in a way so that the inclusion of xL
in T induces the inclusion of x� D Aut xL. xS/ in � .

(c) For each 
 2 � , c
 D �.
 / 2 AutItyp.
xL/.

(d) The subcategory xL is normal in T (cf Definition A.7).

(e) The space jLU j is a deformation retract of jT j. The inclusion of geometric
realizations j xLj � jLU j .' jT j/ is homotopy equivalent to a regular covering
space X ! jT j with group of deck transformations G Š �=x� .

Proof The categories T and F will be constructed in Step 2, after preliminary
constructions in Step 1. We show that T is a transporter system in Steps 3 and 4, and
prove that F is saturated in Step 5. Finally we prove (d) and (e) in Step 6.
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Note that xS DOp.x�/ 2 Sylp.x�/, since x�= xS DAut xL. xS/=xı xS . xS/ has order prime to p

by Proposition A.4(e). For each 
 2 � , let c
 2 Aut. xS/ denote conjugation by 
 on
xS DOp.x�/E � . By the commutativity of triangle (}) in Definition 5.3(a), this is the
restriction to xS of �.
 / xS 2Aut.x�/. Hence by Proposition 5.2, c
 is fusion preserving
(induces an automorphism of the category xF ), and �.
 /.P /D c
 .P / for all P 2 xH .
To simplify notation below, we write 
 .P /D �.
 /.P / to denote this action of 
 on xH .

Step 1 Set L1 D LU . Thus by Definition 5.3, Ob.L1/D Ob. xL/D xH , and

Mor.L1/DMor. xL/�x� � D fŒŒ'; 
 �� j ' 2Mor. xL/; 
 2 �g:

We claim that

(5.4) all morphisms in L1 are monomorphisms and epimorphisms.

For any ŒŒ'; 
 ��, ŒŒ'0; 
 0��, and ŒŒ ; ��� with appropriate domain and range,

ŒŒ ; ��� ı ŒŒ'; 
 ��D ŒŒ ; ��� ı ŒŒ'0; 
 0��

H) ŒŒ ı �.�/.'/; �
 ��D ŒŒ ı �.�/.'0/; �
 0��

H) there exists � 2 x�; �
 D ��1�
 0 and  ı �.�/.'/D  ı �.�/.'0/ ı�

H) 
 D .��1��/�1
 0; and ' D '0 ı �.��1/.�/;

where the second equality in the last line holds since morphisms in xL are monomor-
phisms (Proposition A.4(g)). Also, �.��1/.�/D ��1�� by the commutativity of (}),
so ŒŒ'; 
 ��D ŒŒ'0; 
 0��, and hence ŒŒ ; ��� is a monomorphism. The proof that morphisms
are epimorphisms is similar.

Set Aut�. xS/D fc
 2 Aut. xS/ j 
 2 �g. Let F1 be the smallest fusion system over xS
which contains xF and Aut�. xS/. Define

�1W L1 �! F1

to be the identity on objects, while setting �1.ŒŒ'; 
 ��/D x�.'/ ı c
 . The proof that this
is a functor (ie that it preserves composition) reduces to showing that the square

P
x�.'/

//

c


��

Q

c


��


 .P /
x�.�.
 /.'//

// 
 .Q/

commutes for each ' 2Mor xL.P;Q/ and each 
 2 � . By the above remarks, c
 2

Aut. xS ; xF/ is the restriction to xS of �.
 / xS . By the last statement in Proposition 5.2,
applied with ˛ D �.
 / and ˇ D c
 , x� ı �.
 /D yc
 ı x� , where yc
 2 Aut. xF/ is such
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that yc
 .x�.'// D c
 x�.'/c
�1

 . Hence the square commutes. Since �1.L1/ contains

xF j xH and Autx�. xS/, and is closed under restrictions of morphisms to subgroups in xH
(Proposition A.4(d)), then �1 maps onto F1j xH .

We regard xL as a subcategory of L1 by identifying each morphism ' 2Mor xL.P;Q/
with ŒŒ'; 1�� 2 MorL1

.P;Q/. By construction, x� D �1j xL . For P � Q in xH , the
inclusion morphism �P;QDxıP;Q.1/ for xL is also considered as an inclusion morphism
in L1 . The existence of restricted morphisms in xL (Proposition A.4(d)) carries over
easily to the existence of restricted morphisms in L1 , and they are unique by (5.4).

For all P;Q 2 xH , define

.ı1/P;QW NS .P;Q/ �!MorL1
.P;Q/

by setting .ı1/P;Q.s/D ŒŒ�sPs�1;Q; s��. When s 2N xS .P;Q/, we have ŒŒ�sPs�1;Q; s��D

ŒŒxıP;Q.s/; 1��; and thus .ı1/P;Q extends the monomorphism xıP;Q from N xS .P;Q/ to
Mor xL.P;Q/, under the identification of xL as a subcategory of L1 . To simplify the
notation, we write ı1.x/D .ı1/P;Q.x/ when P and Q are understood.

We claim that for all P;Q 2 xH ,  2MorL1
.P;Q/, and x 2 P ,

.ı1/Q.�1. /.x// ı D  ı .ı1/P .x/:

Set  D ŒŒ'; 
 ��, where 
 2 � and ' 2Mor xL.
 .P /;Q/. Then

 ı ı1.x/D ŒŒ'; 
 �� ı ŒŒIdP ;x��D ŒŒ'; 
x��D ŒŒ'; c
 .x/
 ��D ŒŒ' ı xı.c
 .x//; 
 ��

D ŒŒxı.x�.'/.c
 .x/// ı'; 
 ��D ŒŒxı.�1. /.x// ı'; 
 ��

D ŒŒxı.�1. /.x//; 1�� ı ŒŒ'; 
 ��D ı1.�1. /.x// ı ;

where the fifth equality holds by axiom (C) for the linking system xL.

We next show that morphisms in L1 have the following extension property:

(5.5) For all P;Q 2 xH;  2 IsoL1
.P;Q/ and P 0;Q0 � xS

for which P E P 0;QEQ0 and  ı1.P 0/ �1
� ı1.Q

0/;

there is a unique  0 2MorL1
.P 0;Q0/; where  0jP;Q D  :

Set  D ŒŒ'; 
 ��, where ' 2Mor xL.
 .P /;Q/. For all x 2 P 0 ,

ŒŒ'; 
 �� ı ŒŒxı.x/; 1�� ı ŒŒ'; 
 ���1
D ŒŒ' ı �.
 /.xı.x// ı'�1; 1��

D ŒŒ' ı xı.c
 .x// ı'
�1; 1�� 2 ı1.Q

0/;

where �.
 /.xı.x// D xı.c
 .x// by the commutativity of (}). Thus 'xı.
 .P 0//'�1 �

xı.Q0/, so ' extends to '0 2 Mor xL.
 .P
0/;Q0/ by Proposition A.4(f). Set  0 D
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ŒŒ'0; 
 ��. Then  0jP;Q D  since �.
 /.�P;P 0/D �
.P/;
 .P 0/ (ie �.
 / sends inclusions
to inclusions), and this proves (5.5).

Step 2 Throughout the rest of the proof, for each P � S , we set xP D P \ xS . We
next construct categories T and F2 , both of which have object sets H , and which
contain L1 and the restriction of F1 to xH , respectively. Afterwards, we let F be the
fusion system over S generated by F2 and restrictions of morphisms.

Let T be the category with Ob.T /DH , and where for all P;Q 2H ,

(5.6) MorT .P;Q/D f 2MorL1
. xP ; xQ/ j for all x 2 P; there exists y 2Q

such that  ı ı1.x/D ı1.y/ ı g:

If  2Mor.T /, then we denote the corresponding morphism in L1 by x . Let

ıP;QW NS .P;Q/ // MorT .P;Q/

�NS . xP ; xQ/ �MorL1
. xP ; xQ/

be the restriction of .ı1/ xP ; xQ . Let F2 be the category with Ob.F2/DH , and where

MorF2
.P;Q/D f' 2 Hom.P;Q/ j there exists  2MorL1

. xP ; xQ/;

where  ı ı1.x/D ı1.'.x// ı ; for all x 2 Pg:

Define � W T ! F2 to be the identity on objects, and to send  2 MorT .P;Q/ to
the homomorphism �. /.x/D y whenever  ı ı1.x/D ı1.y/ ı (uniquely defined
by (5.6) and (5.4)). This is clearly a functor: it is seen to preserve composition by
juxtaposing the commutative squares which define � on morphisms.

Let F be the fusion system over S generated by F2 and restriction of homomorphisms.
Since HDOb.F2/ is closed under overgroups, F2 is a full subcategory of F . Since L1

is a full subcategory of T , HomF1
.P;Q/ D HomF2

.P;Q/ for all P;Q 2 xH . If
P;Q� xS are any subgroups and '2HomF .P;Q/, then ' is a composite of restrictions
of morphisms in F2 , and hence (since P 2Ob.F2/DH implies xP 2 xH) a composite
of restrictions of morphisms in F2 (equivalently F1 ) between subgroups in xH . Thus
' 2 HomF1

.P;Q/; and we conclude that F1 is also a full subcategory of F .

Step 3 We next prove that

(5.7) each P 2H is F –conjugate to some P 0 2H
such that ı xP 0.NS . xP 0// 2 Sylp.AutT . xP 0//.

Fix P 2H . Let P be the set of all xS –conjugacy classes Œ xQ� of subgroups xQ 2 xP xF

(recall xP D P \ xS ) which are fully normalized in xF . (If xQ is fully normalized in xF ,
then so is every subgroup in Œ xQ�.) By Lemma 2.5, jPj is finite and prime to p .
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We claim that in general, for each 
 2 � and each xQ; xR 2 xH ,

xQ and xR xF–conjugate() 
 . xQ/ and 
 . xR/ xF–conjugate,(5.8)

xQ and xR xS–conjugate() 
 . xQ/ and 
 . xR/ xS–conjugate.(5.9)

The first holds since 
 acts on xL and hence on xF as a group of automorphisms
(Proposition 5.2), and the second since xS E � .

Let � 0 � � be the subset of those 
 2 � such that 
 . xP / 2 xP xF . Then for 
1 and 
2 in
� 0 , 
1
2. xP /2 
1. xP /

xF by (5.8) and since 
2. xP /2 xP
xF , and hence 
1
2 2�

0 . By (5.9)
and since each 
 2 � acts on xS via the fusion preserving automorphism c
 2 Aut. xS/
as shown above, 
 permutes the S –conjugacy classes of subgroups which are fully
normalized in xF . Thus each element of � 0 permutes the set P .

Fix S 0 2 Sylp.�
0/. Let � 2 � be such that S 00 WD �S 0��1 � S . Since P has order

prime to p by Lemma 2.4, there is some Œ xQ� 2 P fixed by S 0 . In other words, for
each 
 2 S 0 , 
 . xQ/ is xS –conjugate to xQ. So by (5.9), for each s D �
��1 2 S 00

(where 
 2 S 0 ), s.�. xQ// is xS –conjugate to �. xQ/. Set xRD �. xQ/. Then each coset in
S 00= xS contains some element s which normalizes xR, ie the obvious homomorphism
NS 00. xR/! S 00= xS is onto with kernel N xS .

xR/. Since S and xS have the same identity
component,

(5.10) j�0.NS . xR//j � j�0.NS 00. xR//j D j�0.N xS .
xR//j � jS 00= xS j

D j�0.N xS .
xQ//j � jS 0= xS j:

Since � 0 is the subgroup of elements of � which send xP to a subgroup in its xF –
conjugacy class,

(5.11) j�0.AutT . xR//j D j�0.AutT . xP //j D j�0.Aut xL. xP //j � j�
0=x�j

D j�0.Aut xL. xQ//j � j�
0=x�j:

Since xQ is fully normalized in xF , S 0 2 Sylp.�
0/, and xS 2 Sylp.x�/, (5.10) and (5.11)

imply that ı xR.NS . xR// is a Sylow p–subgroup of AutT . xR/.

Choose any  2 IsoT . xP ; xR/. Then  ı xP .NS . xP // 
�1 is a p–subgroup of AutT . xR/.

Choose � 2 AutT . xR/ such that .� /ı xP .NS . xP //.� /
�1 � ı xR.NS . xR//. By defi-

nition of the category T , � extends to a morphism x 2 MorT .P;NS . xR//. Set
P 0 D �. x /.P /. Then xP 0 D xR, P 0 is F –conjugate to P , and P 0 2H since xP 0 2 xH
( xH is invariant under xF –conjugacy). This finishes the proof of (5.7).

Step 4 We are now ready to show that T is a transporter system. For each P 2 xH , set

E.P /D Ker
�
AutT .P /

�P
�!AutF .P /

�
:
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For each P;Q 2Ob.T /, E.P / acts on MorT .P;Q/ by right composition and E.Q/

by left composition. Both actions are free since all morphisms in L1 (hence in T )
are monomorphisms and epimorphisms by (5.4). We claim that �P;Q is the orbit map
of the action of E.P / on MorT .P;Q/. Since every morphism in T (and also by
definition in F ) factors uniquely as the composite of an isomorphism followed by an
inclusion, it suffices to prove this when P and Q are F –conjugate. It thus suffices to
prove it when P DQ, and this holds by definition of E.P /.

This proves axiom (A2). Axioms (A1) and (B) hold by construction, and (C) holds by
definition of the functor � W T ! F . It remains to prove axioms (I)–(III).

Fix P 2H such that ı xP .NS . xP // 2 Sylp.AutT . xP //. By (5.7), every subgroup in H is
F –conjugate to some such P . Write GDAutT . xP /, T Dı xP .NS . xP // and P 0Dı xP .P /

for short, where ı xP is injective by construction. Thus P 0 � T 2 Sylp.G/. Fix
R 2 Sylp.NG.P

0//, and choose ˛ 2 G such that ˛R˛�1 � T . Then ˛R˛�1 2

Sylp.NG.˛P 0˛�1//, and so

˛P 0˛�1
� ˛R˛�1

DNT .˛P 0˛�1/:

Set QD ı�1
xP
.˛P 0˛�1/� ı�1

xP
.T /DNS . xP /. Then Q is F –conjugate to P , NS .Q/�

NS . xP /, and so

NT .˛P 0˛�1/DNı xP .NS . xP//
.ı xP .Q//D ı xP .NS .Q//;

NG.˛P 0˛�1/DNAutT . xP/
.ı xP .Q//D AutT .Q/:

Thus ıQ.NS .Q// 2 Sylp.AutT .Q//, and this proves axiom (I).

We next claim that

(5.12) P E P 0 � S; QEQ0 � S;  2 IsoT .P;Q/;  .ıP .P 0// �1
� ıQ.Q

0/

D) there exists  0 2MorT .P 0;Q0/ with  0jP;Q D  :

Set x D j xP ; xQDŒŒ'; 
 �� , where '2 Iso xL.
 . xP /; xQ/ and 
 2� . By Proposition A.4(f), '
extends in a unique way to 
 . xP 0/. Therefore, x extends to some unique x 0 2
MorL1

. xP 0; xQ0/. By definition of morphisms in T and the original hypothesis on  , x 0

extends to a morphism  0 2MorT .P 0;Q0/ which extends  . This proves (5.12), and
thus proves axiom (II).

It remains to prove axiom (III). Fix P1 � P2 � P3 � � � � in Ob.T / and  i 2

MorT .Pi ;S/ such that for all i � 1,

 i D  iC1 ı ıPi ;PiC1
.1/:
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Set P D
S1

iD1 Pi . Let 'i 2Mor. xL/ and 
i 2
x� be such that x i D ŒŒ'i ; 
i �� for each

i . Since j�=x�j <1, we can assume, after passing to a subsequence, that the 
i all
lie in the same coset x�
 . If 
i D �i
 for some �i 2

x� , then x i D ŒŒ'i�i ; 
 ��; we
can thus assume 
i D 
 for each i . But then 'i D 'iC1jPi ;PiC1

for each i , so by
Proposition A.4(h) applied to xL, there is ' 2Mor xL.P; xS/ such that 'jPi ; xS

D 'i for
each i . Set x D ŒŒ'; 
 �� 2MorT . xP ; xS/; then x j xPi

D x i WD  i j xPi
for each i .

Fix g 2 P , and let i be such that g 2 Pi . Set hD �. i/.g/ 2 S . Then ıS .h/ ı i D

 i ı ıPi
.g/ by axiom (C) for T , so .ı1/ xS .h/ ı

x D x ı .ı1/ xPi
.g/ by (5.4) (the

morphisms are epimorphisms in L1 ). Hence by definition of T , there is a unique
morphism  2 MorT .P;S/ such that  j xP D x . By the uniqueness of extensions
again,  jPi

D  i for each i .

Step 5 We are now ready to show that F is saturated. By Theorem 4.2, it suffices to
prove the following statements.

(i) The group AutF .S0/ is finite.

(ii) For all P � S , Q � S0 , and ' 2 HomF .P;Q/, there exists a morphism
x' 2 HomF .P �CS .P /0;S0/ such that x'jP D ' .

(iii) We have H is closed in Sub.S/, and F is H–generated and H–saturated.

(iv) For all P 2H and P �Q� P� , Q 2H .

(v) If P 2 F� is F –centric and P 62H , then there is Q 2 PF such that

Op.OutF .Q//\OutS .Q/¤ 1:

Point (i) holds by construction (and since xF is saturated). By Step 4 and Proposition A.3,
we have F is H–saturated; ie it satisfies the saturation axioms for subgroups in H . It
is also H–generated by definition: each morphism in F is a composite of restrictions
of morphisms between subgroups in H . Since xH is closed under overgroups and
xF –conjugacy, H is closed under overgroups and F –conjugacy by definition, and this

finishes the proofs of (iii) and (iv).

If P �S , Q�S0 , and ' 2HomF .P;Q/, then P � xS since xS is strongly closed in F
(and xS0D S0 ). By definition of F1 , ' D � ı for some � 2AutF .S0/ (�D �.
 /jS0

for some 
 2 � D AutT . xS/) and some  2 Mor. xF/. Set P 0 D  .P / � S0 , and
choose R 2 P

xF D P 0
xF which is receptive in xF . By [9, Lemma 2.4(a)], R� S0 , and

there is w 2 Aut xF .S0/ such that w.P 0/DR. Since R is receptive, w ı extends to
x 2 Hom xF .P �CS .P /0;S0/, so ' extends to � ıw�1

ı x . This proves (ii).

It remains to prove (v). Let K be the set of all P 2F� such that the saturation axioms
hold for subgroups F –conjugate to P and all of their overgroups. Since H is closed
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under overgroups and F –conjugacy, K �H� . Set K0 D F�XK , and let xK0 be the set
of all xP D P \ xS for P 2K0 . We will show that for all P � S ,

(5.13) P 2K or xP maximal in xK0 H) (v) holds for P .

Having done that, we will prove that K0 D ∅, so K � F� , and hence (using (5.13))
that (v) holds for all P 2 F� .
We first show that

(5.14) P 2K or xP maximal in xK0

D) there exists Q 2 PF such that xQ is fully normalized in xF .

If xP is fully normalized, we are done, so assume otherwise. Let xP 0 be xF –conjugate
to xP and fully normalized in xF . Since xF is saturated, xP 0 is fully automized and
receptive, and so by Lemma 1.7(c), there is � 2 Hom xF .N xS . xP /;N xS . xP

0// such that
�. xP / D xP 0 . Clearly, xP < xS , so N xS .

xP / > xP . If xP is maximal in xK0 , then by
Lemma 3.5(b), the saturation axioms hold for all Q such that xQ > xP . So whether
xP 2K or xP is maximal in xK0 , the saturation axioms hold for N xS .

xP /, N xS .
xP 0/ and

all subgroups of S which contain them.

Set RDN xS .
xP /, and let KDf˛ 2Aut.R/ j˛. xP /D xPg. Set R0D�.R/ and K0D �K .

Choose R00 � xS and � 2 IsoF .R;R00/ such that R00 is fully �K–normalized in F , and
set xP 00 D �. xP / and K00 D �K . Thus K0 and K00 are the groups of automorphisms
of R0 and R00 , respectively, which send xP 0 and xP 00 to themselves. By Lemma 2.2(b),
there are automorphisms �; �0 2 AutK

00

F .R00/, and morphisms

x� 2 HomF
�
N K

S .R/;N K 00

S .R00/
�

and x� 2 HomF
�
N K 0

S .R0/;N K 00

S .R00/
�

such that x� jR D �� and x�jR0 D �0���1 .

We claim that

(5.15) jN xS .
xP /j<

ˇ̌
N K 0

xS
.R0/

ˇ̌
�
ˇ̌
N K 00

xS
.R00/

ˇ̌
� jN xS .

xP 00/j:

Since xP is not fully normalized in xF , R0 D �.N xS .
xP // <N xS .

xP 0/, and hence

R0 <NNxS .
xP 0/.R

0/DN K 0

xS
.R0/

by Lemma 1.12. This proves the first inequality in (5.15). The next one holds since x�
sends

N K 0

xS
.R0/ into N K 00

xS
.R00/;

and the last holds since all elements of N K 00

xS
.R00/ normalize xP 00 . Hence P 00 is F –

conjugate to P and
jN xS .

xP 00/j> jN xS .
xP /j:
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If xP 00 is not fully normalized in xF , then since PF contains finitely many S –conjugacy
classes (Lemma 4.1), we can repeat this procedure, until we find a subgroup Q which
satisfies (5.14).

We now prove (5.13). Assume P is F –centric and P 62H (otherwise the statement is
empty), and let Q be F –conjugate to P such that xQ is fully xF –normalized. Thus
xP 62 xH D Ob. xL/. Since by definition, a linking system must contain all centric and

radical subgroups with respect to the underlying fusion system, either xP and xQ are not
xF –centric or they are not xF –radical. If xQ is not xF –centric, then there is g2C xS .

xQ/X xQ

(since xQ is fully centralized). If xQ is not xF –radical, then Op.Aut xF . xQ// > Inn. xQ/
and is contained in the Sylow subgroup Aut xS . xQ/ ( xQ is fully normalized), and thus
there is g 2N xS .

xQ/X xQ such that cg 2Op.Aut xF . xQ//. In either case,

g 2Q0 WD
˚
g 2N xS .

xQ/
ˇ̌
cg 2Op.Aut xF . xQ//

	
and g 62 xQ;

and hence Q0 > xQ. Also, Q normalizes Q0 and QQ0 > Q, so NQQ0.Q/ > Q,
and there is x 2 Q0XQ such that x 2 NS .Q/. For any such x , cx 62 Inn.Q/ since
CS .Q/ � Q (recall P is F –centric), and cxj xQ is in Op.Aut xF . xQ//. Also, since
x 2 xS E S , Œx;S � � xS , and so cx induces the identity on Q= xQ. Thus cx is in
the subgroup

U D
˚
˛ 2 AutF .Q/

ˇ̌
˛j xQ 2Op.Aut xF . xQ//; ˛ induces the identity on Q= xQ

	
E AutF .Q/:

Since the group of all ˛ 2 Aut.Q/ which induce the identity on xQ and on Q= xQ is
discrete p–toral by Lemma 1.13, and is contained in U with p–power index, U is
a nontrivial normal discrete p–toral subgroup of AutF .Q/, and U �Op.AutF .Q//.
Since x 2N xS .Q/XQ, cx represents a nontrivial element of OutS .Q/\Op.OutF .Q//,
so (v) holds for P , and the proof of (5.13) is complete.

We want to show that K0 D∅. Assume otherwise; then xK0 ¤∅ since P 2K0 implies
xP 2 xK0 . Choose Q to be maximal in xK0 , and choose P to be maximal among those
P 2K0 such that xP DQ. Then P is also maximal in K0 . So by Lemma 3.5(b), P is
maximal among subgroups not satisfying the saturation axioms. By Lemma 4.6, this
maximality of P implies that (v) does not hold for P . Since this contradicts (5.13),
we now conclude that K0 D∅, and hence (by (5.13)) that (v) holds for all P 2 F� .

Thus F is saturated. Also, (v) implies that H contains all subgroups which are
F –centric and F –radical.

Step 6 By [9, Corollary 3.5], F� contains all subgroups which are F –centric and
F –radical, so they are all contained in H by point (v) in Step 5. Point (a) holds by
this together with the definition of H D Ob.T /. Point (b) holds by the definition
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of T in Step 2, and (c) holds by the definition of composition (of morphisms between
subgroups in xH) in Step 1.

Condition (i) in Definition A.7 (for the inclusion xL� T ) holds by (a), and since xS is
strongly closed in F by construction. Condition (ii) (the Frattini condition) holds by
the construction in Step 1, and (iii) (invariance of xL under AutT . xS/–conjugacy) holds
by (c). Thus xLE T .

Let r W T ! T be the retraction r.P /D xP and r.'/D x' with image L1 . There is a
natural transformation of functors r ! IdT which sends an object P to the inclusion
� xP ;P . Hence jr j ' IdjT j , and so jLU j is a deformation retract of jT j. Also, the
inclusion of j xLj into jLU j is homotopy equivalent to a regular covering with group of
deck transformations G Š �=x� by the last author and Ventura [17, Proposition A.4],
and this finishes the proof of (e).

6 The category Auttyp.L/

Fix a p–local compact group .S;F ;L/. Let Auttyp.L/ be the groupoid with object set
AutItyp.L/ and with morphisms the natural transformations. Since a natural transforma-
tion �W ˛! ˇ is determined by �S 2AutL.S/ (since ˛.S/D ˇ.S/D S ), morphisms
can be described as

MorAuttyp.L/.˛; ˇ/D f� 2 AutL.S/ j �˛.'/D ˇ.'/�; all ' 2Mor.L/g(6.1)

D f� 2 AutL.S/ j ˇ D c� ı˛g:

Thus � 2 AutL.S/ corresponds to a natural transformation � with �D �S . With this
notation, composition of morphisms takes the form

˛

!ı�

77

�
// ˇ

!
// 


because 
 D c! ıˇ D c! ı c� ı˛ D c!ı� ı˛ . Here, ! ı� is the composite of ! and �
in AutL.S/.

Composition in AutItyp.L/ gives Auttyp.L/ the structure of a discrete strict monoidal cat-
egory, where ˛ �ˇ D ˛ ıˇ , and where

(6.2)
�
˛

�
�!ˇ

�
�
�
˛0

�0

�!ˇ0
�
D

�
˛ ı˛0

ˇ.�0/ı�
�������!
D�ı˛.�0/

ˇ ıˇ0
�
:

This structure makes the nerve NAuttyp.L/ into a simplicial group, and its geometric
realization jAuttyp.L/j becomes a topological group. The projection from Auttyp.L/

Algebraic & Geometric Topology, Volume 14 (2014)



An algebraic model for finite loop spaces 2955

onto Outtyp.L/ induces a map of simplicial groups

NAuttyp.L/
pr
�!Outtyp.L/;

where now Outtyp.L/, by abuse of language, denotes the discrete simplicial group with
vertex set Outtyp.L/. This projection is explicitly given by

pr.˛0 �! ˛1 �! � � � �! ˛n/D Œ˛0� .D Œ˛1�D � � � D Œ˛n�/;

and it sends �0.jAuttyp.L/j/ isomorphically onto Outtyp.L/.

The evaluation functor Auttyp.L/�L! L induces an action of the simplicial group
NAuttyp.L/ on the simplicial set NL as follows. In dimension 0, N0Auttyp.L/ D
AutItyp.L/ acts on N0L D Ob.L/ in the obvious way. For � 2 N1Auttyp.L/ and
' 2MorL.P;Q/DN1L,

(6.3)
�
˛

�
�!ˇ

��
P

'
�!Q

�
D

�
˛.P /

ˇ.'/ı�P
������!
D�Qı˛.'/

ˇ.Q/
�
;

and this extends naturally to higher dimensional sequences. The simplicial action
induces an action of the topological group jAuttyp.L/j on the space jLj.

Our aim is to describe maps BG! BjNAuttyp.L/j via twisting functions (see, eg,
Curtis [11, Definition 3.14]). We need to show extensions of the type constructed
in Theorem 5.4 realize certain types of topological fibre bundles, and the relevant
obstruction theory is encoded in the simplicial equalities that characterize the twisting
functions.

For any (discrete) group G , let E.G/ denote the category whose objects are the
elements of G , with a unique morphism between each pair of objects. Let B.G/
be the category with a single object �, and with G as the automorphism group of
that object. Then G acts on E.G/ by translation, and the quotient category can be
identified with B.G/. The geometric realizations of E.G/ and B.G/ are the universal
contractible free G –space EG, and the classifying space BG, respectively.

For a discrete group G , we will use the simplicial set NB.G/op as a model for BG.
This allows us to conveniently denote simplices in NnB.G/op by the usual bar notation

g D Œg1jg2j � � � jgn� WD
�
�

g1
 � �

g2
 � � � � � �

gn
 � �

�
;

where gi 2G . We generally omit the superscript “op” from the notation. More generally,
for any small category C , we will consider the nerve of the opposite category Cop as a
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model for the nerve of C . Thus, for example, we consider face maps as

d0

�
c0

f1
 � c1

f2
 � c2 � � �

fn
 � cn

�
D
�
c1

f2
 � c2 � � �

fn
 � cn

�
;

d1

�
c0

f1
 � c1

f2
 � c2 � � �

fn
 � cn

�
D
�
c0

f1ıf2
 ���� c2 � � �

fn
 � cn

�
;

etc.

To each simplicial group K , one associates a simplicial set SW .K/ (cf [11, Defini-
tion 3.20] or Goerss and Jardine [13, Section V.4]), by setting SW0.K/D �,

SWn.K/DKn�1 �Kn�2 � � � � �K0 for n> 0,

and with face and degeneracy maps

di.�n�1; : : : ; �0/D

8<:
.�n�2; : : : ; �0/ if iD0;

.di�1�n�1; : : : ; .d0�n�i/�n�i�1; : : : ; �0/ if 0<i<n;

.dn�1�n�1; : : : ; d1�1/ if iDn;

si.�n�1; : : : ; �0/D.si�1�n�1; : : : ; s0�n�i ; 1; �n�i�1; : : : ; �0/ all 0�i�n;

(6.4)

for �i 2Ki . Then j SW .K/j'BjKj, and so we can take SW .NAuttyp.L// as a simplicial
model for classifying space of the topological group jAuttyp.L/j.

A twisting function t from a simplicial set X to a simplicial group U is a collection
of maps tnW Xn ! Un�1 satisfying certain identities formulated in [11, Definition
3.14]. When X DNB.G/ and U DNAuttyp.L/, a twisting function �W NB.G/!
NAuttyp.L/ is a collection of maps

�nW NnB.G/ �!Nn�1Auttyp.L/ (all n� 1)

satisfying the relations

(6.5)

�n�1.dig/D di�1�n.g/ for 2� i � n,

�n�1.d1g/D d0�n.g/ ��n�1.d0g/;

�nC1.sig/D si�1�n.g/ for i � 1,

�nC1.s0g/D 1;

for all n � 1 and for all g 2 NnB.G/. Here, 1 denotes the identity element in
NnAuttyp.L/.

To a twisting function � D f�ngn�1 as above, one associates the simplicial map

(6.6) 'WNB.G/ �! SW .NAuttyp.L//
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where for each g D Œg1j � � � jgn� 2NnB.G/,

'
�
g
�
D .�n.g/; �n�1.d0g/; : : : ; �1.d

n�1
0 g//

D
�
�n.Œg1j � � � jgn�/; �n�1.Œg2j � � � jgn�/; : : : ; �1.Œgn�/

�
:

It is not hard to see that the simplicial equalities (6.5) are designed so that ' is a
simplicial map. For example, ' commutes with the face maps by (6.5) together with
the face relations

d
j
0

di D

(
di�j d

j
0

if j � i ,

d
jC1
0

if j � i ,

and formal manipulations.

The following lemma will be needed.

Lemma 6.1 Fix a linking triple .S;F ;L/, and an extension pair U D .y�; �/ for L
and G . Let �W y�!G be the surjection with kernel � WDAutL.S/, and let tU W G! y�

be a regular section of � (ie tU is a right inverse for � as a map of sets, and tU .1/D 1).
Define maps of sets

t W G! AutItyp.L/ by setting tD� ı tU ;

vW G�G! Inn.L/ such that t.g/t.h/Dv.g; h/t.gh/ for all g; h2G;

�W G�G! AutL.S/ such that tU .g/tU .h/D�.g; h/tU .gh/ for all g; h2G:

(6.7)

Then the following hold.

(a) For each g; h 2G , v.g; h/D c�.g;h/ 2 Inn.L/.
(b) For each g 2G , �.1;g/D �.g; 1/D 1.

(c) For each g; h; k 2G , �.g; h/�.gh; k/D t.g/.�.h; k//�.g; hk/.

Proof Part (a) follows by the commutativity of triangle (|) in Definition 5.3(a), and
(b) is immediate from the definition of �. It remains to prove (c).

By definition,�
tU .g/tU .h/

�
tU .k/D �.g; h/�.gh; k/ � tU .ghk/;

tU .g/
�
tU .h/tU .k/

�
D

tU .g/�.h; k/ ��.g; hk/ � tU .ghk/

D t.g/.�.h; k// ��.g; hk/ � tU .ghk/;

where the last equality holds by the commutativity of triangle (}) in Definition 5.3(a).
The claim now follows by the associativity of multiplication in � .
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We are now ready to show for given L and G , there is a bijective correspondence
between twisting functions from NB.G/ to NAuttyp.L/ and extension pairs for L;G .

Proposition 6.2 Fix a linking triple .S;F ;L/ and a finite group G .

(a) Let U D .y�; �/ be an extension pair for L and G , and let tU W G ! y� be a
regular section. Then there is a unique twisting function � D �U W NB.G/!
NAuttyp.L/ such that

(i) for all g 2G , � ı tU .g/D �1.Œg�/,
(ii) for all g; h 2G , tU .g/tU .h/D �2.Œgjh�/tU .gh/.

(b) Let �Df�ng be any twisting function from NB.G/ to NAuttyp.L/. There is an
extension pair U D .y�; �/, and a regular section tU WG! y� , such that �U D � .

Proof (a) Let U D .y�; �/ be an extension pair for L and G , and fix a regular section
tU W G ! y� of the natural projection. Since a simplex in the nerve of a category is
determined by its 1–faces, there is at most one twisting function � which satisfies (i)
and (ii). We will prove that such a twisting function exists.

We define t W G!AutItyp.L/, vWG�G! Inn.L/ and �W G�G!AutL.S/, as in (6.7).
For g D Œg1j � � � jgn� and i � j , write gi;j D gigiC1 � � �gj . Define � by setting

(6.8) �n.Œg1jg2j � � � jgn�/

D

�
t.g1/

�.g1;g2/
 ������ t.g1;2/t.g2/

�1
Dv.g1;g2/

�1t.g1/

�.g1;g2/
�1�.g1;g2;3/

 ��������������� � � �  � t.g1;n�1/t.g2;n�1/
�1
Dv.g1;g2;n�1/

�1t.g1/

�.g1;g2;n�1/
�1�.g1;g2;n/

 ������������������ t.g1;n/t.g2;n/
�1
Dv.g1;g2;n/

�1t.g1/

�
:

The equalities between the objects hold by (6.7) (the definition of v ).

The first and third relations in (6.5) clearly hold for � . Also, �n.Œg1j � � � jgn�/ is the
identity sequence if g1 D 1, which implies the fourth identity in (6.5). Thus we need
only check the second relation, namely that

(6.9) d0�n.Œg1j � � � jgn�/ ��n�1.Œg2j � � � jgn�/D �n�1.Œg1g2jg3j � � � jgn�/

for each g1; : : : ;gn 2G . Each side of (6.9) lies in Nn�2Auttyp.L/, ie a sequence of
.n� 1/ objects and .n� 2/ morphisms. The objects on each side of (6.9) are the same,
since

t.g1;m/t.g2;m/
�1
ı t.g2;m/t.g3;m/

�1
D t.g1;m/t.g3;m/

�1
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for all m� 2 (where we now set g3;2D 1 and g2;2Dg2 ). To show that the morphisms
in the sequences coincide, we must show that

.�.g1;g2;m/
�1�.g1;g2;mC1// � .�.g2;g3;m/

�1�.g2;g3;mC1//

D �.g1;2;g3;m/�.g1;2;g3;mC1/

for all m � 2 (where again g3;2 D 1). By (6.2), the left-hand side of this equation
takes the form

(6.10) .�.g1;g2;m/
�1
ı�.g1;g2;mC1// ı .t.g1;mC1/t.g

�1
2;mC1//.�.g2;g3;m/

�1

ı�.g2;g3;mC1//

D �.g1;g2;m/
�1�.g1;g2;mC1/

ı c�1
�.g1;g2;mC1/

t.g1/.�.g2;g3;m/
�1�.g2;g3;mC1//

D �.g1;g2;m/
�1t.g1/.�.g2;g3;m//

�1

ı t.g1/.�.g2;g3;mC1//�.g1;g2;mC1/

D .�.g1;g2/�.g1g2;g3;m//
�1�.g1;g2/�.g1;2;g3;mC1/

D �.g1;2;g3;m/
�1�.g1;2;g3;mC1/:

Here, the first equality in (6.10) follows from (6.7) and the definition of v , and the
third follows upon applying Lemma 6.1(c) twice. This finishes the proof that � is a
twisting function.

By construction, �1.Œg�/D t.g/D � ı tU .g/, and so � satisfies (i). Upon setting nD 2

in (6.8), we may identify �2.Œgjh�/ with �.g; h/, and so (ii) holds by Lemma 6.1.

(b) Fix a twisting function � , and define t W G!AutItyp.L/ by t.g/ WD �1.Œg�/. Then
t.1/D 1.

For each g; h 2G , the formulas in (6.5) for faces of �2.Œgjh�/ take the form

d1�2.Œgjh�/D t.g/ and d0�2.Œgjh�/D t.gh/ � t.h/�1:

So there is �.g; h/ 2N1Auttyp.L/D AutL.S/ such that

�2.Œgjh�/D
�
t.g/

�.g;h/
 ���� t.gh/t.h/�1

�
:

By (6.1), t.g/D c�.g;h/ ı t.gh/t.h/�1 , and hence

(6.11) t.g/t.h/D c�.g;h/ � t.gh/:

Also, by the degeneracy relations in (6.5), for each g 2G , �.g; 1/D 1D �.1;g/.
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Similarly, for each g; h; k 2G , �3.Œgjhjk�/ has faces

d2�3.Œgjhjk�/D �2.Œgjh�/;

d1�3.Œgjhjk�/D �2.Œgjhk�/;

d0�3.Œgjhjk�/D �2.Œghjk�/ ��2.Œhjk�/
�1

(6.12)

by (6.5). Hence �3.Œgjhjk�/ takes the form

�3.Œgjhjk�/D
�
t.g/

�.g;h/
 ���� t.gh/t.h/�1 �1

 � t.ghk/t.hk/�1
�

for some �1 2AutL.S/. The second formula in (6.12) implies �.g; h/ı�1D�.g; hk/,
and hence �1 D �.g; h/

�1�.g; hk/. The third formula in (6.12) now implies

�
t.gh/t.h/�1 �.g;h/�1�.g;hk/

 ������������ t.ghk/t.hk/�1
�
�
�
t.h/

�.h;k/
 ���� t.hk/t.k/�1

�
D
�
t.gh/

�.gh;k/
 ����� t.ghk/t.k/�1

�
:

Hence by definition of the monoidal structure on Auttyp.L/ (see (6.2)),

�.gh; k/D �.g; h/�1�.g; hk/ �
�
t.ghk/t.hk/�1

�
.�.h; k//:

By (6.11), c�.g;hk/ ı t.ghk/t.hk/�1 D t.g/. Hence

�.g; h/�.gh; k/D �.g; hk/ �
�
c�1
�.g;hk/ ı t.g/

�
.�.h; k//(6.13)

D t.g/.�.h; k//�.g; hk/:

Now define y� D AutL.S/�G , with group multiplication

.a;g/ � .b; h/D
�
a � t.g/.b/ ��.g; h/;gh

�
for each g; h 2 G and each a; b 2 AutL.S/. Define � W y� ! AutItyp.L/ by setting
�.a;g/D ca ı t.g/. For each g; h; k 2G and each a; b; c 2 AutL.S/,�
.a;g/ � .b; h/

�
� .c; k/D

�
a � t.g/.b/ ��.g; h/ � t.gh/.c/ ��.gh; k/;ghk

�
D
�
a � t.g/.b/ � t.g/t.h/.c/ ��.g; h/ ��.gh; k/;ghk

�
D
�
a � t.g/.b/ � t.g/t.h/.c/ � t.g/.�.h; k// ��.g; hk/;ghk

�
D .a;g/ �

�
b � t.h/.c/ ��.h; k/; hk

�
D .a;g/ �

�
.b; h/ � .c; k/

�
;

where the second and third equalities follow from (6.11) and (6.13) respectively. Thus
multiplication in y� is associative, and y� is a group, with the obvious identity and
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inverses. Similarly,

�
�
.a;g/ � .b; h/

�
D �

�
a � t.g/.b/ ��.g; h/;gh

�
D ca ı ct.g/.b/ ı c�.g;h/ ı t.gh/

D ca ı t.g/cbt.g/�1
ı c�.g;h/t.gh/D ca ı t.g/cbt.g/�1

ı t.g/t.h/

D �.a;g/�.b; h/;

and so � is a homomorphism.

The triangle (|) in Definition 5.3)(a) commutes by definition of � . Triangle (}) com-
mutes since

.a;g/.b; 1/.a;g/�1
D .at.g/.b/a�1; 1/D .�.a;g/.b/; 1/ 2 �

for each .a;g/2 y� and each b 2AutL.S/. This shows that U WD .y�; �/ is an extension
pair for L and G .

Finally, for g 2 G , set tU .g/ D .1;g/ 2 y� . Then tU is a regular section of the
obvious projection �W y�!G . By the definitions, �.tU .g//D t.g/D �1.Œg�/, while
for g; h 2G ,

tU .g/tU .h/D .1;g/ � .1; h/D .�.g; h/;gh/D .�.g; h/; 1/ � .1;gh/:

Upon identifying .�.g; h/; 1/ 2 y� with �2.Œgjh�/, we obtain (i) and (ii).

A twisting function �WNB.G/!NAuttyp.L/ determines a map

BG �! BjNAuttyp.L/j

(see (6.6)), and hence determines a fibre bundle over BG with fibre jLj and structure
group jAuttyp.L/j. This pullback bundle is the realization of a simplicial set E.�/D

jLj �� BG: a twisted cartesian product which is described as follows (cf [11, (6.4)]).

Definition 6.3 For any twisting function �W NB.G/ ! NAuttyp.L/, let E.�/ be
the simplicial set with n–simplices E.�/n D NnL �NnB.G/, and with face and
degeneracy maps

di.� ;g/D

�
.�n.g/

�1 � d0� ; d0g/ if i D 0,
.di� ; dig/ if i > 0,

si.� ;g/D .si� ; sig/ for all i ,

for all � 2 NnL and all g 2 NnB.G/. Let p� WE.�/ ! NB.G/ be the natural
projection which maps a pair .� ;g/ 2E.�/ to g .

Algebraic & Geometric Topology, Volume 14 (2014)



2962 Carles Broto, Ran Levi and Bob Oliver

By [11, Section 6.4], in the situation of Definition 6.3, p� induces a fibre bundle

jp� jW jE.�/j �! BG

with fibre jLj and structure group jAuttyp.L/j. We want to identify the nerve of the
extension LU of Definition 5.3 with E.�/ for the associated twisting function � .
Before we can do this, one more technical lemma is required.

Lemma 6.4 Let X be a simplicial set such that for each n� 2, the map

Dn DW Xn

..d2/
n�1;d0/

���������! f.x1;x2/ 2X1 �Xn�1 j d0x1 D .d1/
n�1.x2/ 2X0g

is a bijection. Then there is a category X with Ob.X / D X0 and Mor.X / D X1 ,
where f 2X1 is a morphism from d0f to d1f and Idx D s0x for x 2X0 , in which
composition is defined as follows. If f1; f2 2 X1 are composable morphisms (ie
if d0f1 D d1f2 ), then their composite is defined by setting f1 ı f2 D d1x , where
x 2X2 is the unique element such that D2.x/D .f1; f2/. In other words, f1 ı f2 D

d1 ıD�1
2
.f1; f2/. Furthermore, NX ŠX as simplicial sets.

Proof For each 0 � i < n, let en
i W Xn ! X1 be the “edge map” induced by the

morphism Œ1�! Œn� in � with image fi; iC1g. Thus, for example, e2
0
D d2 , e2

1
D d0 ,

en
0
D .d2/

n�1 for n> 2, etc.

For each n� 2, set

NnX D f.f0; : : : ; fn�1/ 2 .X1/
n
j d0fi D d1fiC1 for all 0� i � n� 2g W

the set of n–tuples of composable morphisms. Set

En D .e
n
0 ; e

n
1 ; : : : ; e

n
n�1/W Xn �!NnX � .X1/

n:

It is easy to check that En D .Id�D2/ ı .Id�D3/ ı � � � ıDn , and so En is a bijection
since the Di are. In particular, for each .f1; f2; f3/ 2N3X , there is a unique y 2X3

such that E3.y/D .f1; f2; f3/D .d
2
2

y; d2d0y; d2
0

y/D .d2d3y; d0d3y; d0d1y/ and
that

.f1ıf2/ıf3D d1d3y
.Dd2d1y/

ı f3
.Dd0d1y/

Dd1d1yDd1d2yD f1
.Dd2d2y/

ı d1d0y
.Dd0d2y/

Df1ı.f2ıf3/:

The first equality follows since D2.d3y/D .d2d3y; d0d3y/D .f1; f2/, and the fifth
since D2.d0y/D .d2

0
y; d0d0y/D .f2; f3/, the second and fourth equalities hold by

definition of D2 , and the third is a simplicial identity. This shows that composition
in X is associative, and hence that X is a category.

Set E0D IdX0
, E1D IdX1

and ED fEngW X !NX . By construction, E commutes
with face maps on Xn for n � 2. We claim that di ıEn D En�1 ı di for n � 3 and
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0 � i � n. This is clear from the definition of En , when i D 0 or i D n, since
in these two cases d0 and dn on NnX are restrictions of the obvious projections
p0;pnW .X1/

n! .X1/
n�1 . So assume 0< i < n, and consider the map

T W Xn

.en
0
;:::;en

i�2
;t;en

iC1
;:::;en

n�1
/

������������������! .X1/
i�1
�X2 � .X1/

n�i�1;

where t is induced by the morphism Œ2� ! Œn� with image fi � 1; i; i C 1g. Then
En D .Id; .d2; d0/; Id/ ı T , while En�1 ı di D .Id; d1; Id/ ı T . In other words, for
each x 2 Xn with En.x/D .f1; : : : ; fn/, we have En�1.dix/D .f1; : : : ; fi�1; fi ı

fiC1; : : : ; fn/D di.En.x//.

This proves that E commutes with face maps, and it is easily seen (by the choice of
identity morphisms) to commute with degeneracies. Since all of the Ei are bijections, E

is an isomorphism of simplicial sets.

For any extension pair U D .y�; �/ for L and G , we let prW LU !B.G/ be the functor
defined by setting pr.ŒŒ'; 
 ��/D �.
 /.

Proposition 6.5 Fix a linking triple .S;F ;L/, a finite group G , and an extension
pair U D .y�; �/ for L and G with a regular section tU W G ! y� . Let � D �U be
the associated twisting function, as in Proposition 6.2(a). Then NLU Š E.�/, via a
simplicial isomorphism which commutes with the projections to NB.G/. In particular,

jLU j
j prU j

���! BG

is a fibre bundle over BG with fibre jLj and structure group jAuttyp.L/j.

Proof We first claim, for each n� 2, that the map

Dn D .d
n�1
2 ; d0/W E.�/n

�! f.�1;�2/ 2E.�/1 �E.�/n�1 j d0�1 D dn�1
1 �2 2E.�/0g

is a bijection. For � D .P0

'1
 � P1 � � �  Pn/ and g D Œg1j � � � jgn�,

Dn.� ;g/D
�
.P0

'1
 � P1; Œg1�/; .�n.g/

�1
� d0� ; Œg2j � � � jgn�/

�
;

dn�1
1 .�n.g/

�1
� d0� ; Œg2j � � � jgn�/D

�
�1.d

n�1
2 g/�1

� dn�1
1 d0� ;�

�
D
�
�1.Œg1�/

�1P1;�
�
D d0

�
P0

'1
 � P1; Œg1�

�
:

For fixed g , Dn restricts to a function from NnL to the set of pairs .�1; �2/ 2

N1L�Nn�1L such that

(6.14) �1.Œg1�/
�1.d0�1/D dn�1

1 �2:
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This function is in fact a bijection, since by (6.14), the last term of �2 is the first
term of �1.Œg1�/

�1.d0�1/, and since �1.Œg1�/ is invertible. Since g D Œg1j � � � jgn� is
determined by Œg1� and d0g D Œg2j � � � jgn�, it follows that Dn is a bijection.

By Lemma 6.4, E.�/ŠNE.�/, where E.�/ is the category with

Ob.E.�//DE.�/0 D Ob.L/� f�g and Mor.E.�//DE.�/1 DMor.L/�G;

with source and target defined by d0 and d1 , respectively, with Id.P;�/ D s0.P;�/D

.IdP ; 1/, and with composition defined by d1 ıD�1
2

. Let t and � be the functions
associated to U and tU via (6.7) (we do not use v here). For each ' 2MorL.P;Q/
and g 2G ,

d0

�
Q

'
 � P; Œg�

�
D .�1.Œg�/

�1.P /;�/D .t.g/�1.P /;�/;

d1

�
Q

'
 � P; Œg�

�
D .Q;�/;

so .';g/ 2MorE.�/..t.g/�1.P /;�/; .Q;�//.

We next describe composition in E.�/. For each

�D
�
R

'
 �Q

�
 � P; Œgjh�

�
2E.�/2;

d1�D .' ı�; Œgh�/ and d2�D .'; Œg�/, while

d0�D
�
�2.Œgjh�/

�1
�
Q

�
 � P

�
; Œg�

�
D
��

t.g/
�.g;h/
 ���� t.gh/t.h/�1

��1
�
�
Q

�
 � P

�
; Œg�

�
D
�
t.g/�1.Q/

 
 � t.h/t.gh/�1.P /; Œg�

�
where by formula (6.3) for the action of Mor.Auttyp.L// on Mor.L/,

�D
�
t.gh/t.h/�1 �.g;h/

����! t.g/
�
� D t.g/. / ı�.g; h/:

In other words, composition in E.�/ satisfies

(6.15) .';g/ ı . ; h/D .' ı�;gh/D
�
' ı t.g/. / ı�.g; h/;gh

�
:

It remains to show that E.�/ Š LU . By construction, each morphism in LU has
the form ŒŒ'; tU .g/�� for some unique ' and g . Define !W LU ! E.�/ by setting
!.P / D .P;�/ and !.ŒŒ'; tU .g/��/ D .';g/. By (6.15), this preserves composition,
and hence is an isomorphism of categories.
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7 The proof of Theorem A

Before proving Theorem A, we need one more result, which allows us to compare
fibrations with fibre jLj^p and fibre bundles with fibre jLj.

Proposition 7.1 For each p–local compact group .S;F ;L/ and each finite group G ,
there is a bijection ˆ from the set of equivalence classes of fibre bundles over BG with
fibre jLj and structure group jAuttyp.L/j to the set of equivalence classes of fibrations
over BG with fibre homotopy equivalent to jLj^p : a bijection which sends the class of a
fibre bundle to the equivalence class of its fibrewise p–completion.

Proof For any space X , let Aut.X / denote the space of its self homotopy equivalences.
Let

�W jAuttyp.L/j �! Aut.jLj/ and y�W jAuttyp.L/j �! Aut.jLj^p /

be the homomorphisms induced by the evaluation functor Auttyp.L/�L! L and by
p–completion.

By Barratt, Gugenheim and Moore [3, Theorem 5.6], equivalence classes of fibrations
over BG with fibre jLj^p are in one-to-one correspondence with the set of homotopy
classes of pointed maps ŒBG;BAut.jLj^p /�� . Also, equivalence classes of jAuttyp.L/j–
bundles over BG with fibre jLj are in one-to-one correspondence with the set of
homotopy classes of pointed maps ŒBG;BjAuttyp.L/j�� .

If a map
f W BG! BjAuttyp.L/j

classifies an jAuttyp.L/j–bundle �f with fibre jLj, then B y�ıf classifies the fibrewise
p–completion y�f of �f . So we must show that the map

ˆW
�
BG;BjAuttyp.L/j

�
�

B y�ı�
����!

�
BG;BAut.jLj^p /

�
�

is a bijection.

By [9, Theorem 7.1], �� induces a homotopy equivalence after (componentwise) p–
completion. Hence BAut.jLj^p / is the fibrewise p–completion of BAuttyp.L/ over
BOut.jLj^p /Š BOuttyp.L/, and there is a map of fibration sequences

K.Z; 2/ //

�p

��

BjAuttyp.L/j //

B��
��

BOuttyp.L/

'

��

K.Z; 2/^p
// BAut.jLj^p/ // BOut.jLj^p/:
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Here, ZDAutAuttyp.L/.Id/, and by (6.1) in Section 6, it can be identified as a subgroup
of Z.S/. (In fact, Z D Z.F/: the center of the fusion system F .) Hence it is an
abelian discrete p–toral group of the form Z Š .Z=p1/r �A for some finite abelian
p–group A.

By [4, Proposition VI.5.1], K.Z=p1; 2/^p 'K.Zp; 3/, K.Qp; 2/
^
p '� and K.Zp; 2/

is p–complete. Hence by the fibre completion lemma [4, Lemma II.4.8], there is a
map of fibration sequences

K.Zp; 2/ //

Š

��

K.Qp; 2/ //

��

K.Z=p1; 2/

�

��

K.Zp; 2/ // � // K.Zp; 3/,

and so hofibre.�/ ' K.Qp; 2/. Thus K.Z; 2/^p ' K..Zp/
r ; 3/ �K.A; 2/, and the

homotopy fibre of B y� is equivalent to hofibre.�p/'K..Qp/
r ; 2/.

Since G is finite, H i.GI .Qp/
r /D 0 for all i � 1. Thus ˆ is a bijection by obstruction

theory.

Remark 7.2 In particular, we have shown that each class of fibrations over BG with
fibre jLj^p has a representative which is actually an jAuttyp.L/j–bundle. In other words,
the structure group of a fibration can always be reduced to jAuttyp.L/j.

We are now ready to prove Theorem A, in the following slightly more precise form.

Theorem 7.3 Assume f W X!Y is a finite regular covering space with group of deck
transformations G , where X ' j xLj^p is the classifying space of a p–local compact
group . xS ; xF ; xL/. Then Y ^p is the classifying space of a p–local compact group
.S;F ;L/. Furthermore, there is a transporter system T associated to F and L such
that xLE T , and such that AutT . xS/=Aut xL. xS/ŠG .

Proof By Proposition 7.1, there is a fibre bundle j xLj ! E ! BG with structure
group jAuttyp. xL/j whose fibrewise p–completion is equivalent up to homotopy to the
fibration X ! X �G EG! BG. This bundle is classified by a map ' from BG to
BjAuttyp. xL/j D j SWAuttyp. xL/j. Since SWAuttyp. xL/ is fibrant (cf [13, Corollary V.6.8]),
we can assume that ' is the realization of a simplicial map, and hence is determined
by a twisting function � .

By Proposition 6.2(b), �D�U for some extension pair U D .y�; �/ with regular section
tU W G! y� . By Proposition 6.5, j xLU j ŠE as bundles over BG. In particular, there is
a mod p equivalence from j xLU j to X �G EG' Y .
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By Theorem 5.4, there is a saturated fusion system F over a discrete p–toral group S ,
and a transporter system T associated to F , such that xLET , AutT . xS/=Aut xL. xS/ŠG ,
and such that jT j contains j xLU j as deformation retract. Hence jT j^p ' j xLU j

^
p ' Y ^p .

Let T1 � T be the full subcategory whose objects are the objects of T which are F –
centric. Then Ob.T1/ is invariant under F –conjugacy, closed under overgroups, and
contains all subgroups which are F –centric and F –radical. Hence jT1j

^
p ' jT j^p by

Proposition A.9(a). By Proposition A.6, there is a linking system L1 associated to T1

and to F , with Ob.L1/DOb.T1/, and such that jL1j
^
p ' jT1j

^
p . By Proposition A.12,

there is a centric linking system L associated to F which contains L1 as a full
subcategory, and jLj^p ' jL1j

^
p by Corollary A.10. So jLj^p ' Y ^p , and this finishes

the proof of the theorem.

Appendix: Transporter systems over discrete p–toral groups

Transporter systems are a generalization of linking systems, which were first defined
(over finite p–groups) in [17]. We need them here in order to state our main theorem
on extensions of fusion and linking systems (Theorem 5.4) in sufficient generality. In
the first half of this section, we define and prove the basic properties of transporter
systems over discrete p–toral groups; especially those properties needed to prove and
apply Theorem 5.4.

Afterwards, we give some conditions under which an inclusion of transporter or link-
ing systems (one a full subcategory of the other) induces an equivalence or mod p

equivalence of geometric realizations. We also prove that every linking system all of
whose objects are centric can be embedded in a centric linking system. When it is a
question of adding only finitely many conjugacy classes, these results can be proven
using arguments similar to those already used in [5; 17] for linking and transporter
systems over finite p–groups. What is new here (and makes the proofs harder) is the
necessity of handling infinitely many classes at a time.

Let G be a group, and let H be a family of subgroups of G which is invariant under
G–conjugacy and overgroups. The transporter system of G with respect to H is the
category TH.G/ with object set H , and which has morphism sets

MorTH.G/.P;Q/D TG.P;Q/ WD fx 2G j xPx�1
�Qg

(the transporter set) for each pair of subgroups P;Q 2H .

Definition A.1 Let F be a fusion system over a discrete p–toral group S . A trans-
porter system associated to a fusion system F is a nonempty category T such that
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Ob.T /�Ob.F/ is closed under F –conjugacy and overgroups, together with a pair of
functors

TOb.T /.S/
"
�! T

�
�!F ;

satisfying the following conditions.

(A1) The functor " is the identity on objects and the functor � is the inclusion on
objects.

(A2) For each P;Q 2 Ob.T /, the kernel

E.P / WD Ker
�
�P W AutT .P / �! AutF .P /

�
acts freely on MorT .P;Q/ by right composition, and �P;QW MorT .P;Q/!
HomF .P;Q/ is the orbit map for this action. Also, E.Q/ acts freely on the set
MorT .P;Q/ by left composition.

(B) For each P;Q 2Ob.T /, "P;QW NS .P;Q/!MorT .P;Q/ is injective, and the
composite �P;Q ı "P;Q sends g 2NS .P;Q/ to cg 2 HomF .P;Q/.

(C) For all ' 2MorT .P;Q/ and all g 2 P , the diagram

P
'
//

"P .g/

��

Q

"Q.�.'/.g//

��

P
'
// Q

commutes in T .

(I) Each F –conjugacy class of subgroups in Ob.T / contains a subgroup P such
that "P .NS .P // 2 Sylp.AutT .P //; ie such that ŒAutT .P / W "P .NS .P //� is
finite and prime to p .

(II) Let ' 2 IsoT .P;Q/, PE xP �S , and QE xQ�S be such that 'ı"P . xP /ı'�1�

"Q. xQ/. Then there is some x' 2MorT . xP ; xQ/ such that x'ı"P; xP .1/D"Q; xQ.1/ı' .

(III) Assume P1 � P2 � P3 � � � � in Ob.T / and  i 2MorT .Pi ;S/ are such that
for all i � 1,  i D  iC1 ı "Pi ;PiC1

.1/. Set P D
S1

iD1 Pi . Then there is
 2MorT .P;S/ such that  ı "Pi ;P .1/D  i for each i .

When P � Q are both in Ob.T /, we write �P;Q D "P;Q.1/, considered to be the
“inclusion” of P into Q. By axiom (B), � sends �P;Q 2 MorT .P;Q/ to inclQ

P
2

HomF .P;Q/ (the inclusion in the usual sense).

Proposition A.2 The following hold for any transporter system T associated to a
fusion system F over a discrete p–toral group S .

Algebraic & Geometric Topology, Volume 14 (2014)



An algebraic model for finite loop spaces 2969

(a) Fix morphisms ' 2 HomF .P;Q/ and  2 HomF .Q;R/, where P;Q;R 2

Ob.T /. Then for any pair of liftings

z 2 ��1
Q;R. / and e ' 2 ��1

P;R. '/;

there is a unique lifting z' 2 ��1
P;Q

.'/ such that z ı z' De ' .

(b) For every morphism  2MorT .P;Q/, and every P�;Q� 2 Ob.T / such that
P� � P , Q� � Q, and �. /.P�/ � Q� , there is a unique morphism  � 2

MorT .P�;Q�/ such that  ı �P;P� D �Q;Q� ı � .

(c) For each  2 Mor.T /,  is an isomorphism in T if and only if �. / is an
isomorphism in F .

(d) All morphisms in T are monomorphisms and epimorphisms in the categorical
sense.

Proof Point (a) follows from [17, Lemma A.7(a)], and (b) is a special case of (a). All
morphisms in T are monomorphisms by [17, Lemma A.7(b)] and since morphisms
in F are monomorphisms.

If  2 MorT .P;Q/ is such that �. / 2 IsoF .P;Q/, then by (a), there are  0 2
MorT .Q;P / and  00 2MorT .P;Q/ such that  ı 0D IdQ and  0 ı 00D IdP . Then
 D   0 00 D  00 is an isomorphism in T with  0 as inverse. This proves (c).

It remains to prove that all morphisms in T are epimorphisms. Fix  2MorT .P;Q/
and '1; '2 2 MorT .Q;R/ such that '1 ı D '2 ı ; we must show that '1 D '2 .
Since  is the composite of an isomorphism followed by an inclusion by (b) and (c),
it suffices to prove this when P �Q and  D �P;Q is the inclusion.

Assume we can show that �.'1/ D �.'2/. By axiom (A2), '2 D '1 ı ˛ for some
˛ 2E.Q/. Hence

'1 ı˛ ı �P;Q D '2 ı �P;Q D '1 ı �P;Q;

so ˛ ı �P;Q D �P;Q by (a), and ˛ D IdQ since E.Q/ acts freely on MorT .P;Q/
(axiom (A2)). Thus '1 D '2 .

To complete the proof, we need to show that �.'1/ D �.'2/. Assume otherwise,
and let xP <Q be the subgroup of all g 2Q such that �.'1/.g/D �.'2/.g/. Then
P <NQ. xP / by Lemma 1.12, and

�.'1/jNQ. xP/
¤ �.'2/jNQ. xP/

by definition of xP . So upon replacing P by xP and Q by NQ. xP /, we can arrange
that P EQ.
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Set P 0D �.'1/.P /D �.'2/.P /. By (b), '1 ı �P;QD '2 ı �P;Q has a unique restriction
ˇ D '1jP;P 0 D '2jP;P 0 2 IsoT .P;P 0/. Fix x 2Q, set yi D �.'i/.x/, and consider
the following two squares for each i D 1; 2:

Q
'i

//

"Q.x/

��

R

"R.yi /

��

Q
'i

// R

P
ˇ

//

"P .x/

��

P 0

"P 0 .yi /

��

P
ˇ

// P 0

The first square commutes by axiom (C), and the second square is defined to be a
restriction of the first. Note that "P .x/ sends P to itself because P EQ0 . Note also
that "P .x/ is the restriction of "Q0.x/ since " is a functor (and since �U;V D "U;V .1/

for all U � V in Ob.T /). Hence the second square commutes by the uniqueness
of restriction morphisms (point (b)). Thus "P 0.y1/ D "P 0.y2/ D ˇ ı "P .x/ ı ˇ

�1 .
Since "P 0 is injective (axiom (B)), this shows that y1 D y2 . Since this holds for all
x 2Q, �.'1/D �.'2/, contradicting our assumption that they are distinct.

In the situation of Proposition A.2(b), we write  � D  jP�;Q� 2MorT .P�;Q�/, and
regard it as the restriction of  .

Proposition A.3 For any fusion system F over a discrete p–toral group S , and any
transporter system T associated to F , F is Ob.T /–saturated.

Proof Set H D Ob.T / for short. By axiom (I) for T , each subgroup in H is F –
conjugate to some P such that "P .NS .P // 2 Sylp.AutT .P //. Hence

(7.1) AutS .P / 2 Sylp.AutF .P // and "P .CS .P // 2 Sylp.E.P //;

where as usual, E.P /DKerŒAutT .P /
�P
!AutF .P /�. In particular, P is fully automized

in F .

We claim that P is also receptive. Fix any Q 2 PF and ' 2 IsoF .Q;P /. By
axiom (A2), there is  2 IsoT .Q;P / such that �Q;P . /D ' . Let N' �NS .Q/ be
the subgroup of all g 2NS .Q/ such that 'cg'

�1 2AutS .P /. Then  "Q.N'/ 
�1 �

"P .NS .P // �E.P /. Since "P .CS .P // 2 Sylp.E.P //, we have that "P .NS .P // 2

Sylp."P .NS .P // �E.P //. So there is � 2E.P / such that

.� /"Q.N'/.� /
�1
� "P .NS .P //:

Axiom (II) now implies that there is x 2MorT .N' ;S/ such that x ı�Q;N' D �P;S ı� ,
and so �. x / 2 HomF .N' ;S/ is an extension of ' D �. /D �.� /.
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It remains to prove that axiom (III) (for a fusion system) holds for all subgroups in H .
So assume P1�P2�P3�� � � are subgroups in H , PD

S
iD1 Pi , and '2Hom.P;S/

is such that 'i WD 'jPi
2 HomF .Pi ;S/ for each i . For each i , E.Pi/ contains a

discrete p–toral group with index prime to p , and thus is an extension of a discrete
p–torus by a finite group. Also, restriction defines a homomorphism from E.PiC1/ to
E.Pi/, and this is injective by Proposition A.2(d). We can thus regard the E.Pi/ as
a decreasing sequence of discrete–p–toral-by-finite groups, and any such sequence
becomes constant, since discrete p–toral groups are Artinian (see [9, Proposition 1.2]).
In other words, there is N such that for all j > i � N , the restriction of E.Pj / to
E.Pi/ is an isomorphism.

For each i �N , choose  0i 2HomT .Pi ;S/ such that 'i D �Pi ;S . 
0
i/. Set  N D 

0
N

.
By (A2), for each i > N , there is �i 2 E.PN / such that  N D  

0
i jPN ;S ı �i . We

just saw that there is x�i 2 E.Pi/ such that x�i jPN
D �i . So if we set  i D  

0
i ı x�i ,

then  i jPN ;S D  
0
i jPN ;S ı �i D  N . Since morphisms in T are epimorphisms by

Proposition A.2(d),  iC1jPi ;S D  i for each i >N , and by axiom (III) for T , there
is  2MorT .P;S/ such that  jPi ;S D i for each i �N . Then �. /jPi ;S D 'i for
each i , so ' D �. / 2 HomF .P;S/.

We next show that linking systems over saturated fusion systems are transporter systems
and characterize linking systems among transporter systems. This is a generalization
to linking systems over discrete p–toral groups of [16, Proposition 4]. We will first
list the properties of linking systems that we need as a separate proposition that might
be useful for future reference and then state the result as a corollary.

Proposition A.4 The following hold for any linking system L associated to a saturated
fusion system F over a discrete p–toral group S .

(a) For each P;Q2Ob.L/, the subgroup E.P / WDKerŒAutL.P /!AutF .P /� acts
freely on MorL.P;Q/ via right composition, and �P;Q induces a bijection

MorL.P;Q/=E.P /
Š
�!HomF .P;Q/:

(b) The functor ı is injective on all morphism sets.

(c) The action of E.Q/ on HomF .P;Q/ via left composition is free.

(d) For every morphism  2 MorL.P;Q/, and every P�;Q� 2 Ob.L/ such that
P��P , Q��Q, and �. /.P�/�Q� , there is a unique morphism  jP�;Q� 2

MorL.P�;Q�/ (the “restriction” of  ) such that  ı �P�;P D �Q�;Q ı jP�;Q� .

(e) If P 2 Ob.L/ is fully normalized in F , then ıP .NS .P // 2 Sylp.AutL.P //.
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(f) Let P E xP �S and Q� xQ�S be objects in L. Let  2MorL.P;Q/ be such
that for each g 2 xP , there is h 2 xQ satisfying

�Q; xQ ı ı ıP .g/D ıQ; xQ.h/ ı :

Then there is a unique morphism x 2MorL. xP ; xQ/ such that x jP;Q D  .

(g) All morphisms in L are monomorphisms and epimorphisms in the categorical
sense.

(h) Assume P1 �P2 �P3 � � � � in Ob.L/ and  i 2MorL.Pi ;S/ are such that for
all i � 1,  i D  iC1jPi ;S . Set P D

S1
iD1 Pi . Then there is  2MorL.P;S/

such that  jPi ;S D  i for each i .

Proof Points (a) and (b) are exactly the same as points (a) and (c), respectively,
in [16, Proposition 4], and the proofs go through unchanged. The proof of (c) is
contained in that of [16, Proposition 4(f)], again with no modification necessary. We
prove the remaining points.

(d) This is a special case of [9, Lemma 4.3(a)] (which is Proposition A.2(a) for linking
systems).

(e) For each P 2 Ob.L/ which is fully centralized in F ,

AutF .P /Š AutL.P /=ıP .CS .P // and AutS .P /ŠNS .P /=CS .P /:

Hence ŒAutF .P / W AutS .P /� D ŒAutL.P / W ıP .NS .P //�, since ıP is injective. If
P 2 Ob.L/ is fully normalized in F , then AutS .P / 2 Sylp.AutF .P //, and so
ıP .NS .P // 2 Sylp.AutL.P //.

(f) The proof of existence of an extension x is identical in our case to the proof of
the corresponding statement [16, Propostion 4(e)]. It remains to prove uniqueness.

Assume x 1; x 2 2 IsoL. xP ; xQ/ are two extensions of  . We must show that x 1D
x 2 .

It suffices to do this when  is an isomorphism, and also (after composing by an
isomorphism, if necessary) when xP is fully centralized in F .

Fix x 2 xP , set yi D �. x i/.x/, and consider the following two squares of morphisms
in L:

xP
x i

//

ı xP .x/
��

xQ

ı xQ.yi /
��

xP
x i

// xQ

P
 

Š

//

ıP .x/

��

Q

ıQ.yi /

��

P
 

Š

// Q
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The first square commutes by axiom (C), and the second square is defined to be a
restriction of the first. Note that ıP .x/ is the restriction of ı xP .x/ since ı is a functor
(and since �U;V D ıU;V .1/ for all U � V in Ob.L/). Hence the second square
commutes by the uniqueness of restriction morphisms (point (d)). Thus ıQ.y1/ D

 ı ıP .x/ ı 
�1 D ıQ.y2/. Since ıQ is injective by (b), this shows that y1 D y2 .

Since this holds for all x 2 xP , �. x 1/D �. x 2/.

By axiom (A) (and since xP is fully centralized), x 2D
x 1 ıı xP .a/ for some a2CS . xP /.

Hence
�Q; xQ ı D

x 2jP; xQ D .
x 1 ı ı xP .a//jP; xQ D

x 1 ı ıP; xP .a/

D x 1jP; xQ ı ıP .a/D �Q; xQ ı ı ıP .a/;

so ıP .a/D 1 since E.P / acts freely on MorL.P; xQ/ by (a) (note that a 2 CS .P /).
Then aD 1 since ıP is injective by (b), and so x 1 D

x 2 .

(g) By [17, Lemma A.6], for each ' 2Mor.L/, ' is an isomorphism in L if and only
if �.'/ is an isomorphism in F . Hence by (d), each morphism in L is the composite
of an isomorphism followed by an inclusion. So it suffices to prove that inclusions are
monomorphisms and epimorphisms. That they are monomorphisms follows from the
uniqueness of restrictions in (d).

By the uniqueness of extensions in (f), any inclusion �P;Q for PEQ is an epimorphism.
Since a composite of epimorphisms is an epimorphism, this proves that �P;Q is an
epimorphism if P <Q with finite index.

Assume this is not true in general. Then there are  1;  2 2 IsoL.P;Q/ and P� < P

such that  1 ¤  2 and  1jP� D  2jP� . Choose P� < P1 � P which is minimal
among subgroups of P containing P� for which  1jP1

¤  2jP1
(S is Artinian

by [9, Proposition 1.2]). There is no proper subgroup P2 < P1 of finite index which
contains P� (otherwise  1jP2

D  2jP2
and the result follows from (f)), so P1 is the

union of its proper subgroups which contain P� . In particular, �. 1/jP1
D �. 2/jP1

.
The rest of the argument to show that  1jP1

D  2jP1
(thus giving a contradiction)

goes through exactly as in the last paragraph of the proof of (f). (Note that we can
easily arrange for P to be fully centralized.)

(h) Assume P1 � P2 � P3 � � � � in Ob.L/ and  i 2MorL.Pi ;S/ are such that for
each i � 1,  i D  iC1jPi ;S . Set P D

S1
iD1 Pi , and set 'i D �. i/ 2 HomF .Pi ;S/

for each i . Then 'iC1jPi
D 'i for each i , so the union of the 'i is a homomorphism

' 2 Hom.P;S/. By axiom (III) in Definition 1.4, ' 2 HomF .P;S/.

By Lemma 3.2(d), there is N such that P�i DP� for each i �N . Let QN 2 .PN /
F be

fully centralized in F , fix � 2 IsoF .PN ;QN /, and set QD ��.P /. Thus E.QN /D
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ıQN
.CS .QN //, each element of CS .QN / also centralizes Q�

N
by the uniqueness of

extensions to Q�
N

, so each element of E.QN / extends to an element of E.Q/, which
implies that each element of E.PN / extends to an element of E.P /.

Choose  0 2MorL.P;S/ such that �. 0/D ' . By axiom (A), there is �N 2E.PN /

such that  N D  0jPN ;S ı �N . Let � 2 E.P / be such that �jPN
D �N , and set

 D  0 ı�. Then  jPN ;S D  
0jPN ;S ı�N D  N , and  jPi ;S D  i for each i : via

composition with inclusions when i � N , and by (g) (morphisms in L are epimor-
phisms) when i >N .

We are now ready to show that all linking systems are transporter systems.

Corollary A.5 Fix a saturated fusion system F over a discrete p–toral group S .
Then each linking system L associated to F is also a transporter system. Conversely,
a transporter system T associated to F which contains all F –centric F –radical
subgroups as objects, and such that the kernel subgroups E.P / are all discrete p–toral
groups, is a linking system.

Proof Assume L is a linking system associated to F . Axiom (A2) in Definition A.1
follows from Proposition A.4(a),(c), (B) and (C) follow from the corresponding axioms
in Definition 1.9, and (I), (II), and (III) follow from points (e), (f), and (h), respectively,
in Proposition A.4. Thus L is a transporter system.

Assume now that T is a transporter system associated to F such that Ob.T / contains
all F –centric F –radical subgroups of S . By axiom (A2), �P;Q sends MorT .P;Q/
surjectively onto HomF .P;Q/ for each P;Q 2 Ob.T /, so every object of T is
isomorphic in T to an object which is fully centralized. If P is fully centralized,
then "P sends CS .P / injectively to a Sylow p–subgroup of E.P /, and hence E.P /D

"P .CS .P // in that case since we are assuming that E.P / is discrete p–toral. It follows
that T is a linking system associated to F .

Proposition A.6 Let F be a saturated fusion system over a discrete p–toral group S .
Let T be a transporter system associated to F , all of whose objects are F –centric,
which contains all F –centric F –radical subgroups of S . Then for every P 2 Ob.T /,
E.P /ŠE0.P /�Z.P / for some E0.P /EE.P / which is finite of order prime to p

and normal in AutT .P /. There is a linking system L associated to F , defined by
setting Ob.L/D Ob.T / and

MorL.P;Q/DMorT .P;Q/=E0.P /;

and the natural functor T � L induces a mod p equivalence between the geometric
realizations and hence a homotopy equivalence jT j^p ' jLj^p .
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Proof By axiom (C), for all P 2 Ob.T /, E.P / commutes with "P .P / in the group
AutT .P /. Hence "P .Z.P // D "P .P /\E.P / is central in E.P /, and it has finite-
index prime to p by axiom (I) and since P is F –centric. So E.P /ŠZ.P /�E0.P /

for some unique E0.P /EE.P / which is finite of order prime to p .

It is now straightforward to check that L, when defined as above, is a quotient category
of T (ie composition is well defined). Axioms (A1), (A2), (B) and (C) for a transporter
system imply that L satisfies the corresponding axioms for a linking system, and thus
is a linking system associated to F . The induced map of spaces jT j ! jLj is a mod p

equivalence (and hence jT j^p ' jLj^p ) by the authors [7, Lemma 1.3].

We next define normal transporter subsystems. Recall that for any fusion system F
over a discrete p–toral group S , a normal subgroup xS E S is weakly closed in F
if for each g 2 xS , gF � xS . In other words, no element of xS is F –conjugate to any
element of SXxS .

Definition A.7 Fix a pair of saturated fusion systems xF � F over discrete p–toral
groups xS E S , and let xT � T be associated transporter systems. Then xT is normal in
T ( xT E T ) if:

(i) xS is strongly closed in F and Ob. xT /D fP \ xS j P 2 Ob.T /g.
(ii) For all P;Q2Ob. xT / and  2MorT .P;Q/, there are morphisms 
 2AutT . xS/

and  � 2MorxT .
 .P /;Q/ such that  D  � ı 
 jP;
 .P/ .

(iii) For all P;Q 2 Ob. xT /,  2 MorxT .P;Q/, and 
 2 AutT . xS/, 
 jQ;
 .Q/ ı ı

 j�1

P;
 .P/
is in MorxT .
 .P /; 
 .Q//.

Here, in (ii) and (iii), we write 
 .P /D �.
 /.P / and 
 .Q/D �.
 /.Q/ for short. In
this situation, we define

T = xT D AutT . xS/=AutxT . xS/:

Let T be a transporter system. A subgroup P 2 Ob.T / is defined to be T –radical
if Op.AutT .P //D "P .P /. When T is a linking system associated to F , then P is
T –radical if and only if it is F –centric and F –radical. If T D TS .G/ for a finite group
G and S 2 Sylp.G/, then P �S is T –radical if and only if it is a radical p–subgroup
of G in the usual sense.

Lemma A.8 Let F be a saturated fusion system over a discrete p–toral group S , and
let T be a transporter system associated to F . Let P 2 Ob.T / be a minimal object,
let P be the F –conjugacy class of P , and let T0 � T the full subcategory with object
set Ob.T /XP . Assume that:
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� P is fully normalized.

� NS .P /=P is finite.

� P is either not F –centric or not T –radical.

Then the inclusion of jT0j into jT j induces an isomorphism in mod p cohomology.

Proof Let ˆW T op! Z.p/–mod be the functor which sends objects in P to Fp

and other objects to 0, regarded as a subfunctor of the constant functor Fp . By the
minimality of P , and since the quotient functor Fp=ˆ vanishes on P , it follows that

H�.T ;Fp=ˆ/ŠH�.T0;Fp/ŠH�.jT0j;Fp/;

where the second isomorphism holds because Fp is constant on T0 . Upon applying
H�.T ;�/ to the short exact sequence of functors associated to the inclusion of ˆ in Fp ,
and using the above isomorphism, we conclude that H�.T ; ˆ/ŠH�.jT j; jT0j;Fp/.

Let O.T / denote the orbit category associated to T : the category with the same objects
as T , and with morphism sets MorO.T /.P;Q/DMorT .P;Q/=Q, where QŠ "Q.Q/

acts freely by left composition. The projection T !O.T / is target regular in the sense
of [17, Definition A.5(b)], so by [17, Proposition A.11], there is a spectral sequence

E
ij
2
DH i

�
O.T /IH j .�Iˆ.�//

�
D)H iCj .T Iˆ/:

Since NS .P /=P is finite, and ŒAutT .P / W "P .NS .P //� <1 by axiom (I) (recall P is
fully normalized), AutT .P /="P .P / is also finite. By [9, Proposition 5.4], and since
ˆ.Q/D 0 for Q 62 P ,

H i
�
O.T /IH j .�Iˆ.�//

�
Šƒi

�
AutT .P /="P .P /IH j .P Iˆ.P //

�
Šƒi

�
AutT .P /="P .P /IH j .P IFp/

�
for each i and j . If P is not F –centric (and since it is fully normalized), there
is g 2 CS .P /XP , and the class of "P .g/ ¤ 1 in AutT .P /="P .P / acts trivially on
H j .P IFp/. If P is not T –radical, then Op.AutT .P /="P .P // ¤ 1. In either case,
by Jackowski, McClure and the third author [14, Proposition 6.1(ii)], we have that
ƒi.AutT .P /="P .P /IH j .P IFp//D 0 for each i and j , so

H�.jT j; jT0jIFp/ŠH�.T Iˆ/D 0:

Thus the inclusion jT0j ! jT j induces an isomorphism on mod p cohomology as
claimed.
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Lemma A.8 gives us a tool for proving that under certain conditions, adding or subtract-
ing one conjugacy class in a transporter system does not change the (mod p ) homotopy
type of its realization. However, more is needed when dealing with infinitely many
conjugacy classes. One problem when doing this is that the “bullet functor” P 7! P�

need not lift to a functor on a transporter system. This is why we need to assume the
existence of a normal linking subsystem in the following proposition.

Proposition A.9 Let F be a saturated fusion system over a discrete p–toral group S ,
and let T be a transporter system associated to F . Let T0 � T be a full subcategory
which is a transporter subsystem associated to a full subcategory F0 � F . Assume
there is a normal linking subsystem xLE T over a subgroup xS � S of finite index, and
let xF � F be the corresponding fusion subsystem. Assume also that either:

(a) All objects in xL are xF –centric and Ob.T0/� Ob.T /\Ob.Fc/.

(b) Each object in Ob.T /XOb.T0/ is F –centric and not T –radical.

Then the inclusion of jT0j in jT j is a mod p homology equivalence.

Proof For each P � S , we write xP D P \ xS , and set P_ D P xP� (where .�/�

means the bullet construction for F ). By Lemma 3.2(b), NS . xP /�NS . xP
�/, and since

xP E P , it follows that P normalizes xP� (so P_ is a subgroup). Also, since xP� � xS ,
xP_ D xP � xP� D xP� , and so .P_/_ D P_ .

For each P;Q2Ob.T / and each  2MorT .P;Q/, let x D j xP ; xQ . Then x extends to
 2MorT .P;Q/ and to x � 2MorT . xP�; xQ�/ (Lemma 3.5(a)), and hence by axiom (II)
to  _ 2 MorT .P_;Q_/. By the uniqueness of these extensions,  _jP D  , and
thus .�/_ defines an idempotent functor from T to itself.

Let T _ � T be the full subcategory whose objects are those P such that P_ D P

(and use the same notation for the corresponding subcategory of any subtransporter
system of T ). For each P � S , P_= xP� is a subgroup of order at most jS= xS j in
NS . xP

�/= xP� , and by [9, Lemma 1.4(a)], there are only finitely many conjugacy classes
of such subgroups. Since F� has finitely many S –conjugacy classes of objects, T _
also has finitely many S –conjugacy classes of objects.

Let H be the set of all transporter subsystems T 0 � T such that:
� T 0 � T0 .
� T 0 is a full subcategory of T .
� The inclusion jT0j � jT 0j is a mod p homology equivalence in case (a), or a

homotopy equivalence in case (b).

We must show that T 2 H.
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Assume otherwise, and choose T1 2H for which Ob.T1/\Ob.T _/ contains the largest
possible number of F –conjugacy classes. Let T2 � T be the full subcategory with
Ob.T2/D fP 2 Ob.T / j P_ 2 Ob.T1/g. By the above discussion, jT _

1
j D jT _

2
j is a

strong deformation retract of jT1j and of jT2j, so jT1j ' jT2j, and T2 2 H.

Since T2 ¤ T by assumption, Ob.T _/ 6� Ob.T2/. Let P be maximal among objects
in T _ not in T2 . By definition of Ob.T2/, P is maximal among all objects of T not
in T2 . Let T3 � T be the full subcategory with Ob.T3/D Ob.T2/[PF .

Now, NS .P /=PCS .P /ŠOutS .P / is finite by [9, Lemma 2.5]. In case (a), the group
PCS .P /=P is finite since xP is xF –centric and ŒS W xS � <1, while CS .P / � P in
case (b). So jNS .P /=P j<1 in either case.

By assumption, P is either not F –centric (case (a)) or not T –radical (case (b)). So by
Lemma A.8, the inclusion of jT2j into jT3j is a mod p equivalence. Hence T3 2 H,
contradicting our maximality assumption on T1 .

Corollary A.10 Let .S;F ;L/ be a linking triple, and let L0�L be a full subcategory
which is a linking subsystem associated to some F0 � F . Then the inclusion of jL0j

into jLj is a mod p homology equivalence.

Proof Since L is a linking system, a subgroup P � S is L–radical exactly when it
is F –centric and F –radical. So by definition, L0 contains all L–radical subgroups.
Hence the lemma is a special case of Proposition A.9(b).

It remains to look at the problem of constructing a centric linking system which contains
as full subcategory a linking system over a smaller set of objects. As usual, we first
check what happens when we add one conjugacy class of objects.

Lemma A.11 Let F be a saturated fusion system over a discrete p–toral group S ,
and let Fc be the full subcategory of F –centric objects. Let F0 � F1 � Fc be full
subcategories such that Ob.F0/ and Ob.F1/ are invariant under F –conjugacy and
closed under overgroups, F0 contains all F –centric F –radical subgroups of S , and
Ob.F1/ D Ob.F0/[ P for some F –conjugacy class P . If L0 is a linking system
associated to F0 , then there is a linking system L1 associated to F1 such that L0 is
isomorphic as a linking system to the full subcategory of L1 with same set of objects
as L0 .

Proof This follows by the same proof as in [2, Proposition III.4.8] (Steps 1–3), together
with Lemma 2.4.
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Alternatively, let ˆ be the functor ˆ.P /DZ.P / when P 2 P , and ˆ.P /D 0 when
P 2 Ob.F0/. For P 2 P , ƒ�.OutF .P /Iˆ.P //D 0 by [14, Proposition 6.1(ii)] and
since Op.OutF .P // ¤ 1. Hence by [9, Proposition 5.4], H 3.O.F1/Iˆ/ D 0. By
an argument similar to that used by the authors to prove [8, Proposition 3.1], the
obstruction to extending L0 to L1 lies in H 3.O.F1/Iˆ/, and hence L1 does exist.

This is now generalized as follows.

Proposition A.12 Let F be a saturated fusion system over a discrete p–toral group S ,
and let Fc be the full subcategory of F –centric objects. Let F0 � Fc be a full subcat-
egory such that Ob.F0/ is invariant under F –conjugacy and closed under overgroups,
and contains all F –centric F –radical subgroups of S . If L0 is a linking system
associated to F0 , then there is a centric linking system L associated to F (associated
to Fc ) which contains L0 as a linking subsystem.

Proof Let H be the set of all families of subgroups H� Ob.Fc/ such that:

� H� Ob.F0/.

� H is invariant under F –conjugacy and closed under overgroups.

� There is a linking system with object set H which contains L0 as a linking
subsystem.

We must show that Ob.Fc/ 2 H.

Choose H1 2 H for which H1 \ F� contains the largest possible number of F –
conjugacy classes. Set H2 D fP 2 Ob.Fc/ j P� 2H1g, and let F1 � F2 � F be the
full subcategories with Ob.Fi/DHi . Let L2 be the pullback of L1 and F2 via the
functors

L1

�1
�!F1

.�/�

 ��� F2:

Then L2 is a linking system associated to F2 (recall that Z.P /DZ.P�/), and hence
H2 2 H.

Assume Ob..Fc/�/XH1 ¤ ∅, and let P be maximal among subgroups in this set.
Then P is maximal among subgroups in Ob.Fc/XH2 , and so H2 [ PF 2 H by
Lemma A.11, and this contradicts the choice of H1 . Hence Ob..Fc/�/�H1 , and so
H2 D Ob.Fc/ 2 H.
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