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Left-orderable fundamental groups and
Dehn surgery on genus one 2–bridge knots

RYOTO HAKAMATA

MASAKAZU TERAGAITO

For any hyperbolic genus-one 2–bridge knot in the 3–sphere, such as any hyperbolic
twist knot, we show that the manifold resulting from r –surgery on the knot has
left-orderable fundamental group if the slope r lies in some range, which depends on
the knot.

57M25; 06F15

1 Introduction

A non-trivial group G is said to be left-orderable if it admits a strict total ordering that
is invariant under left-multiplication. Thus, if g< h then fg<f h for any f;g; h2G .
Many groups that arise in topology, such as orientable surface groups, knot groups,
braid groups, are known to be left-orderable. In 3–manifold topology, it is natural to
ask which 3–manifolds have left-orderable fundamental groups. Toward this direction,
there is very recent evidence of connections between Heegaard Floer homology and
left-orderability of fundamental groups. More precisely, Boyer, Gordon and Watson [3]
conjecture that an irreducible rational homology 3–sphere is an L–space if and only
if its fundamental group is not left-orderable. An L–space is a rational homology
3–sphere Y whose Heegaard Floer homology group cHF.Y / is a free abelian group
with rank equal to jH1.Y IZ/j (Ozsváth and Szabó [18]). Recently L–spaces have
become an object of interest, and it is an open problem to characterize L–spaces
without mentioning Heegaard Floer homology. An affirmative answer to the above
conjecture would give an algebraic characterization of L–spaces. Boyer, Gordon and
Watson confirmed the conjecture for several classes of 3–manifolds, including Seifert
fibered manifolds and Sol–manifolds. Also, they showed that if �4 < r < 4 then
r –surgery on the figure-eight knot yields a 3–manifold whose fundamental group is
left-orderable. Later, Clay, Lidman and Watson [6] confirmed the same conclusion
for r D˙4. Since the figure-eight knot cannot yield L–spaces by non-trivial Dehn
surgery [18], these give supporting evidence of the conjecture. Other results toward
this direction appear in Clay and Teragaito [7], Li and Roberts [16] and Teragaito [22].
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For a knot K in the 3–sphere, we call a slope r left-orderable if the manifold K.r/

resulting from r –surgery on K has left-orderable fundamental group. In this paper, a
slope is sometimes identified with its standard parameter in Q[f1=0g (see Rolfsen [21]).
In particular, the meridional slope corresponds to 1=0. It is known that any hyperbolic
2–bridge knot does not admit Dehn surgery yielding an L–space [18]. Hence any slope
but 1=0 is expected to be left-orderable for a hyperbolic 2–bridge knot, if we believe
the above conjecture. However, showing this seems beyond our reach at the moment.
The purpose of this paper is to give the ranges consisting of left-orderable slopes for
all hyperbolic genus-one 2–bridge knots. These include hyperbolic twist knots.

For non-zero integers m and n, let K.m; n/ be the 2–bridge knot S.4mnC 1; 2m/

in Schubert’s normal form as illustrated in Figure 1. Here, the twists in the vertical box
are left-handed (resp. right-handed) if m> 0 (resp. m< 0), but those in the horizontal
box are right-handed (resp. left-handed) if n> 0 (resp. n< 0). For example, K.1;�1/

is the right-handed trefoil, and K.1; 1/ is the figure-eight knot. By symmetry, K.m; n/

and K.�n;�m/ are isotopic. Since K.�m;�n/ is the mirror image of K.m; n/, we
may consider only m > 0. With the exception of the trefoil, K.m; n/ is hyperbolic.
It is also well known that any genus-one 2–bridge knot is equivalent to K.m; n/ for
some m; n (see Burde and Zieschang [5]).

n–full twists

m
–fulltw

ists

Figure 1: A genus-one 2–bridge knot K.m; n/ and K.2; 1/

Theorem 1.1 Let K DK.m; n/ be a hyperbolic genus-one 2–bridge knot S.4mnC

1; 2m/ in the 3–sphere as illustrated in Figure 1. Let I be the interval defined by

I D

8<:
.�4n; 4m/ if n> 0;

Œ0;maxf4m;�4ng/ if m> 1 and n< �1;

Œ0; 4� otherwise:

Then any slope in I is left-orderable. That is, the fundamental group �1.K.r// of the
resulting manifold K.r/ of r –surgery is left-orderable if r 2 I .
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In particular, K.1; n/ and K.m;˙1/ are twist knots. As mentioned before, K.m;�1/

is isotopic to K.1;�m/, and K.m; 1/ is the mirror image of K.1;m/.

Corollary 1.2 Let K.1; n/ be the n–twist knot with n¤�1. If n> 0, then any slope
in the interval .�4n; 4� is left-orderable. If n< �1, then any slope in the interval Œ0; 4�
is left-orderable.

A similar difference between positive and negative twist knots is also found in Da̧bkow-
ski, Przytycki and Togha [9], and Peters [19].

Remark 1.3 As mentioned before, the trefoil is the only non-hyperbolic knot among
genus-one 2–bridge knots. For the (right-handed) trefoil, it is known that r –surgery
yields an L–space if and only if r � 1. Since the resulting manifold under Dehn
surgery is either a Seifert fibered manifold or a connected sum of two lens spaces,
this is also equivalent to �1.K.r// being not left-orderable. See Boyer, Gordon and
Watson [3], and Clay and Watson [8].

Our argument works even for the figure-eight knot K.1; 1/, and it is much simpler
than that in [3], which involves character varieties.

Finally, Tran [23] informed us that he obtained a result similar to Theorem 1.1.

Acknowledgments

We would like to thank the referee for valuable comments, and Anh T Tran for informing
us of his result. The second author was partially supported by Japan Society for the
Promotion of Science, Grant-in-Aid for Scientific Research (C) 22540088.

2 Knot groups and two sequences of polynomials

Let K DK.m; n/ and let G D �1.S
3�K/ be its knot group. We always assume that

m> 0 and n¤ 0, unless specified otherwise.

Proposition 2.1 The knot group G admits a presentation

G D hx;y j wnx D ywn
i;

where x and y are meridians and w D .xy�1/m.x�1y/m . Furthermore, the longitude
L is given as L D wn

�w
n , where w� D .yx�1/m.y�1x/m is obtained from w by

reversing the order of letters.
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This is slightly different from that in Hoste and Shanahan [14, Proposition 1], but both
are isomorphic.

Proof We use a surgery diagram of K as illustrated in Figure 2, where 1=m–surgery
and �1=n–surgery are performed along the second and third components, respectively.
Let �i and �i be the meridian and longitude of the i th component.

x y

z1

2

3

Figure 2: A surgery diagram of K

First, y D ��1
3

x�3 , z D ��1
2

y�2 , �2 D x�1y and �3 D yz�1 . 1=m–surgery on
the second component yields a relation �m

2
�2 D 1, so �2 D �

�m
2

. Similarly, �1=n–
surgery on the third component gives �3 D �

n
3

. We remark that the knot group G is
generated by x and y . This fact can be seen by eliminating z , �2 and �3 .

Thus

�3 D y��1
2 y�1�2 D y�m

2 y�1��m
2 D y.x�1y/my�1.y�1x/m D .yx�1/m.y�1x/m:

Set

(1) w� D �3 D .yx�1/m.y�1x/m:

Then the relations y D ��1
3

x�3 and �3 D �
n
3

give y��n
3
D ��n

3
x . This gives

(2) yŒ.x�1y/m.xy�1/m�n D Œ.x�1y/m.xy�1/m�nx:

Set w D .xy�1/m.x�1y/m . Since Œ.x�1y/m.xy�1/m�n D .x�1y/mwn.x�1y/�m ,
(2) changes to y.x�1y/mwn.x�1y/�mD .x�1y/mwn.x�1y/�mx . By y.x�1y/mD

.yx�1/my , we have .yx�1/mywn.x�1y/�m D .x�1y/mwn.x�1y/�mx . Thus,

ywn
D .xy�1/m.x�1y/mwn.x�1y/�mx.x�1y/m D wnC1.x�1y/�mx.x�1y/m

D wn.xy�1/m.x�1y/m.x�1y/�mx.x�1y/m D wn.xy�1/mx.x�1y/m

D wnx:
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The longitude is LD �3�2�
�1
3
��1

2
D wn

��2w
�n
� ��1

2
. We have

�2w
�n
� ��1

2 D .x
�1y/�m

�
.yx�1/m.y�1x/m

��n
.x�1y/m

D .x�1y/�m
�
.x�1y/m.xy�1/m

�n
.x�1y/m

D
�
.xy�1/m.x�1y/m

�n
D wn:

Thus LD wn
�w

n .

To describe the Riley polynomial of K in Section 3, we prepare two sequences of
polynomials with a single variable s .

For non-negative integer m, let fm 2 ZŒs� be defined by the recursion

(3) fmC2� .sC 2/fmC1Cfm D 0

with initial conditions f0 D 1 and f1 D sC 1. Also, let gm 2 ZŒs� be defined by the
same recursion

(4) gmC2� .sC 2/gmC1Cgm D 0

with slightly different initial conditions g0 D 1 and g1 D sC 2. We remark that gm

is equivalent to the Chebyshev polynomial of the second kind. For convenience, set
f�1 D 1 and g�1 D 0.

Lemma 2.2 Let m� 0. The closed formulas for fm and gm are

fm D

mX
iD0

�
mC i

m� i

�
si ; gm D

mX
iD0

�
mC 1C i

m� i

�
si :

In particular,

(1) all the coefficients of fm and gm are positive integers,

(2) the degree of fm and gm is m,

(3) fm and gm are monic.

Proof By induction on m; apply the recursive formulas.

Lemma 2.3 For m� 0, the polynomials fm , gm satisfy the following relations.

(1) fmCgm�1 D gm

(2) fmC sgm D fmC1

(3) f 2
m D sgmgm�1C 1
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Proof These are easily proved by induction on m. We prove only (3). It holds when
mD 0. Assume f 2

m D sgmgm�1C 1. From (1), (2) and the recursive formula for gm ,

f 2
mC1 D .fmC sgm/

2
D f 2

mC 2sfmgmC s2g2
m

D .sgmgm�1C 1/C 2sfmgmC s2g2
m

D .sgmgm�1C 1/C 2s.gm�gm�1/gmC s2g2
m

D .s2
C 2s/g2

m� sgmgm�1C 1D s..sC 2/gm�gm�1/gmC 1

D sgmC1gmC 1:

Lemma 2.4 If a positive real number is substituted to s , then sgm�1 < 4fm .

Proof Since sgm�1 D fm � fm�1 by Lemma 2.3, the claim immediately follows
from 3fmCfm�1 > 0.

3 Riley polynomials

We will construct a family of representations of the knot group G into SL2.R/. Let F

be a free group generated by x and y . Let s and t be positive real numbers. Define a
homomorphism �W F ! SL2.R/ by

�.x/D

�p
t 1=
p

t

0 1=
p

t

�
; �.y/D

� p
t 0

�s
p

t 1=
p

t

�
:

Recall that w D .xy�1/m.x�1y/m . If �.wnx/ D �.ywn/, then � induces a repre-
sentation of G into SL2.R/. Although this relation yields four equations, Riley [20]
shows that the four equations reduce to a single one. Let W D �.w/ and zi;j be the
.i; j /–entry of W n . Then � induces a non-abelian representation of G if s and t are
a pair of solutions of Riley’s equation �K .s; t/D 0. The Riley polynomial of K is
given by �K .s; t/D z1;1C .1� t/z1;2 . (See also Dubois, Huynh and Yamaguchi [10].)

To calculate the Riley polynomial of K , we need to diagonalize the matrix W .

Assumption 3.1 In this section, we assume that n¤�1 and that positive real numbers
s and t are chosen to satisfy the inequality sC 2< t C 1=t < sC 2C 4=.sg2

m�1
/.

Proposition 3.2 For W D �.w/, we have

W D

 
f 2

m� stg2
m�1

fm�1gm�1�
fmgm�1

t

sfmgm�1� stfm�1gm�1 f 2
m�1
�

s
t
g2

m�1

!
:
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Proof We prove by induction on m. (For the knot K.m; n/, we assume m ¤ 0.
However, this proposition holds even for mD 0.)

If mD 0, then w D 1, so W is the identity matrix. It is easy to check that the claim
holds.

Assume the conclusion for m. Note that

�.xy�1/D

�
sC 1 1

s 1

�
; �.x�1y/D

�
sC 1 �1=t

�st 1

�
:

Calculate the product�
sC 1 1

s 1

� 
f 2

m� stg2
m�1

fm�1gm�1�
fmgm�1

t

sfmgm�1� stfm�1gm�1 f 2
m�1
�

s
t
g2

m�1

!�
sC 1 �1=t

�st 1

�
:

By using Lemma 2.3, each entry is identified as desired. For example, the .1; 1/–entry
is given by

�
sC 1 1

�  f 2
m� stg2

m�1
fm�1gm�1�

fmgm�1

t

sfmgm�1� stfm�1gm�1 f 2
m�1
�

s
t
g2

m�1

!�
sC 1

�st

�
:

Then the .1; 1/–entry is

..sC 1/2f 2
mC 2s.sC 1/fmgm�1C s2g2

m�1/

� st..sC 1/2g2
m�1C 2.sC 1/fm�1gm�1Cf

2
m�1/

D ..sC 1/fmC sgm�1/
2
� st.fm�1C .sC 1/gm�1/

2:

This can be changed further:

.fmC s.fmCgm�1//
2
� st..fm�1C sgm�1/Cgm�1/

2

D .fmC sgm/
2
� st.fmCgm�1/

2
D f 2

mC1� stg2
m

To calculate W n for jnj>1, we need to diagonalize W . Let �˙ 2C be the eigenvalues
of W . Since det W D 1, �C�� D 1.

Lemma 3.3 �C ¤ ��

Proof If �C D �� , then �C D �� D˙1. Then tr W D˙2.

On the other hand, tr W D f 2
mCf

2
m�1
�s.tC1=t/g2

m�1
D s.sC2� t�1=t/g2

m�1
C2

by Proposition 3.2 and Lemma 2.3. Since gm�1 ¤ 0 (recall m ¤ 0), s > 0 and
sC 2< t C 1=t by Assumption 3.1, we have tr W < 2. If tr W D�2, then

s.t C 1=t � s� 2/g2
m�1 D 4;
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so t C 1=t D s C 2C 4=.sg2
m�1

/. But this is impossible by Assumption 3.1 again.
Hence �C ¤ �� .

Let wi;j be the .i; j /–entry of W , and let P D

�
w1;2 w1;2

�C�w1;1 ���w1;1

�
.

Lemma 3.4 w1;2 ¤ 0

Proof Assume w1;2 D 0. By Proposition 3.2, w1;2 D fm�1gm�1 � fmgm�1=t .
Hence fm D tfm�1 . From the recursion (3), tfm�1 � .s C 2/fm�1 C fm�2 D 0.
Since fm�1 ¤ 0, we have t D sC 2� fm�2=fm�1 . Thus t < sC 2, contradicting
Assumption 3.1.

The next result will be used in Section 5.

Lemma 3.5 w2;1 D�stw1;2 . Hence w2;1 ¤ 0.

Proof This immediately follows from Proposition 3.2 and Lemma 3.4.

By Lemmas 3.3 and 3.4, det P D�w1;2.�C���/¤ 0. A direct calculation gives

P�1WP D

�
�C 0

0 ��

�
:

For any integer k , set �k D .�
k
C��

k
�/=.�C���/. Since �k is symmetric in �C and

�� , it can be expressed as a polynomial of tr W D �CC�� . Also, ��k D��k , and a
recursion �kC1� .tr W /�k C �k�1 D 0 holds for any integer k .

Lemma 3.6 For W n D �.wn/, we have

W n
D

�
w1;1�n� �n�1 w1;2�n

w2;1�n �nC1�w1;1�n

�
:

Proof When n D 1, it is easy to see the conclusion. Let jnj > 1. The conclusion
follows from the matrix calculation of

W n
D P

�
�n
C 0

0 �n
�

�
P�1:

We check only the .2; 1/–entry here. A direct calculation gives

�
�n

w1;2

.�C�w1;1/.���w1;1/
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for the .2; 1/–entry. By using tr W D�CC��Dw1;1Cw2;2 and det W Dw1;1w2;2�

w1;2w2;1 D 1,

�
�n

w1;2

.�C�w1;1/.���w1;1/

D�
�n

w1;2

.1� .tr W /w1;1Cw
2
1;1/D�

�n

w1;2

.1�w1;1w2;2/

D�
�n

w1;2

.�w1;2w2;1/D w2;1�n:

Proposition 3.7 The Riley polynomial of K is

�K .s; t/D .�nC1� �n/C .sC 2� t � 1=t/fm�1gm�1�n:

Proof By [20] (see also [10, page 309]), the Riley polynomial is

�K .s; t/D z1;1C .1� t/z1;2;

where zi;j is the .i; j /–entry of W n . From Lemma 3.6 and the recursive formula
for �k ,

�K .s; t/D .w1;1�n� �n�1/C .1� t/w1;2�n

D �nC1� .tr W /�nC .w1;1C .1� t/w1;2/�n

D .�nC1� �n/C .w1;1C .1� t/w1;2C 1� tr W /�n:

Recall that by Proposition 3.2, tr W D f 2
mCf

2
m�1
� s.t C 1=t/g2

m�1
. Thus we have

w1;1C .1� t/w1;2C 1� tr W

D .1� t/fm�1gm�1�
1�t

t
fmgm�1C 1�f 2

m�1C
s

t
g2

m�1

D .2� t � 1=t/fm�1gm�1C 1�f 2
m�1C sg2

m�1

from Lemma 2.3(2). Lemma 2.3(1) and (3) give

1�f 2
m�1C sg2

m�1 D�sgm�1gm�2C sg2
m�1

D sgm�1.gm�1�gm�2/D sgm�1fm�1:

Thus we obtain �K .s; t/D .�nC1� �n/C .sC 2� t � 1=t/fm�1gm�1�n .

For convenience, we introduce a variable T D t C 1=t . Then the Riley polynomial of
K is expressed as �K .s;T /D .�nC1� �n/C .sC 2�T /fm�1gm�1�n .

We remark that the Riley polynomial of K is also described by Morifuji and Tran [17]
in a different form.
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Example 3.8 If nD 1, then

�K .s;T /D .�2� �1/C .sC 2�T /fm�1gm�1�1

D .tr W � 1/C .sC 2�T /fm�1gm�1

D s.sC 2�T /g2
m�1C 1C .sC 2�T /fm�1gm�1

D .sC 2�T /gm�1.sgm�1Cfm�1/C 1D .sC 2�T /gm�1fmC 1:

Thus Riley’s equation �K .s;T /D 0 has the unique solution T D sC2C1=.fmgm�1/

for any s > 0. Then T > s C 2 > 2, because fm > 0 and gm�1 > 0. Hence
we have a real solution t D .T C

p
T 2� 4 /=2 > 1. By Lemma 2.4, we also have

sC 2< T < sC 2C 4=.sg2
m�1

/. Thus s and t satisfy Assumption 3.1.

Remark 3.9 Formally, the conclusions of Lemma 3.6 and Proposition 3.7 are true
even for nD�1. Then �K .s;T /D 1C .T � s� 2/fm�1gm�1 . Hence the equation
�K .s;T /D 0 has the unique solution T D sC 2� 1=.fm�1gm�1/, which is smaller
than sC 2. The requirement T > sC 2 plays a crucial role in Proposition 5.2 and
Section 6. This is the reason why the case nD�1 should be excluded.

4 Solutions of Riley’s equation

In this section, we examine whether Riley’s equation �K .s;T / D 0 has a pair of
real solutions .s;T / satisfying Assumption 3.1. In fact, we can choose T satisfying
sC2Cc=.sg2

m�1
/ <T < sC2Cd=.sg2

m�1
/, where c and d are constants depending

only n, for any s> 0, unless nD˙1. The case where nD 1 is covered in Example 3.8.

Let k be a positive integer. For z D ei� .0 � � � �/, set Tk.z/ D zk�1C zk�3C

� � � C z3�k C z1�k . If z ¤˙1, then Tk.z/D .z
k � z�k/=.z � z�1/. Define T0 D 0

and T�k.z/D�Tk.z/. Since Tk.z/ is symmetric for z and z�1 , it can be expanded
as a polynomial of zC z�1 . Furthermore, a recursive relation

TkC1.z/� .zC z�1/Tk.z/C Tk�1.z/D 0

holds. Also, Tk.1/D k and Tk.�1/D .�1/k�1k for any integer k .

Lemma 4.1 (1) Let k � 1. Then Tk.e
�

2kC1
i/ D TkC1.e

�
2kC1

i/. This value is
positive.

(2) Let k � 2. Then Tk.e
3�

2kC1
i/D TkC1.e

3�
2kC1

i/. This value is negative.

Proof (1) Let z D e
�

2kC1
i . Then zk � zkC1 D�1. Hence

Tk.z/D
zk � z�k

z� z�1
D
�z�k�1C zkC1

z� z�1
D TkC1.z/:
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A direct calculation shows

Tk.z/D
2 Im.zk/i

2 Im.z/i
D

sin k�
2kC1

sin �
2kC1

> 0:

(2) Similarly, set z D e
3�

2kC1
i . Then z3k � z3kC1 D �1. Hence we have Tk.z/ D

TkC1.z/ again, and

Tk.z/D
sin 3k�

2kC1

sin 3�
2kC1

< 0:

Now, fix an s > 0. We introduce a function ˆW ŒsC 2; sC 2C 4=.sg2
m�1

/�!R by

(5) ˆ.T /D .TnC1.z/� Tn.z//C .sC 2�T /fm�1gm�1Tn.z/;

where z D .�C i
p

4� �2/=2 with � D s.sC2�T /g2
m�1C2. Note that �2� � � 2.

We will seek a solution T for ˆ.T /D 0 satisfying sC 2< T < sC 2C 4=.sg2
m�1

/.
For a solution T , � D tr W (see the proof of Lemma 3.3) and z gives an eigenvalue of
W . Hence Tk.z/D �k , and so we have a pair of solutions .s;T / for Riley’s equation
�K .s;T /D 0 satisfying Assumption 3.1.

Proposition 4.2 Suppose n¤˙1. For any s > 0, Riley’s equation �K .s;T /D 0 has
a solution T satisfying sC2C c=.sg2

m�1
/ < T < sC2Cd=.sg2

m�1
/, where c and d

are constants in .0; 4/ depending only on n. In particular, �K .s; t/D 0 has a solution
t > 0 for any s > 0 satisfying Assumption 3.1.

Proof Suppose n> 1. By Lemma 4.1,

TnC1.e
�

2nC1
i/D Tn.e

�
2nC1

i/; TnC1.e
3�

2nC1
i/D Tn.e

3�
2nC1

i/:

Let c D 2� 2 cos �
2nC1

and c0 D 2� 2 cos 3�
2nC1

. Then c; c0 2 .0; 4/ and c < c0 .

If T D sC 2C c=.sg2
m�1

/ (resp. sC 2C c0=.sg2
m�1

/) then � D 2� c (resp. 2� c0 ).
Thus

ˆ

�
sC 2C

c

sg2
m�1

�
D�

cfm�1

sgm�1

Tn.e
�

2nC1
i/;

ˆ

�
sC 2C

c0

sg2
m�1

�
D�

c0fm�1

sgm�1

Tn.e
3�

2nC1
i/:

By Lemma 4.1, these values have distinct signs. We remark that ˆ.T / is a polynomial
function of T , so it is continuous. Thus if n> 1, we have a solution T for ˆ.T /D 0,
satisfying s C 2C c=.sg2

m�1
/ < T < s C 2C c0=.sg2

m�1
/, from the intermediate
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value theorem. Since T > 2, t C 1=t D T has a real solution for t . If we choose
t D .T C

p
T 2� 4 /=2, then t > 1.

Suppose n < �1. Set l D jnj. If l > 2, then set d D 2 � 2 cos �
2l�1

and d 0 D

2� 2 cos 3�
2l�1

. Then d; d 0 2 .0; 4/ and d < d 0 . As before,

Tl�1.e
�

2l�1
i/D Tl.e

�
2l�1

i/; Tl�1.e
3�

2l�1
i/D Tl.e

3�
2l�1

i/;

by Lemma 4.1. Thus

ˆ

�
sC 2C

d

sg2
m�1

�
D

d fm�1

sg2
m�1

Tl.e
�

2l�1
i/;

ˆ

�
sC 2C

d 0

sg2
m�1

�
D

d 0fm�1

sg2
m�1

Tl.e
3�

2l�1
i/:

Since these values have distinct signs, we have a solution T with sC2Cd=.sg2
m�1

/ <

T < sC 2C d 0=.sg2
m�1

/, if l > 2, as before.

When l D 2, we have

ˆ

�
sC 2C

1

sg2
m�1

�
D
fm�1

sgm�1

> 0; ˆ

�
sC 2C

2

sg2
m�1

�
D�1:

Therefore there exists a solution T with sC2C1=.sg2
m�1

/ <T < sC2C2=.sg2
m�1

/.

By Proposition 4.2, we have a representation �W G! SL2.R/ for any s > 0.

5 Longitudes

For any s > 0, we choose t so that �K .s; t/ D 0. Let �sW G ! SL2.R/ be the
representation defined by the correspondence

(6) �s.x/D

 p
t 0

0 1p
t

!
; �s.y/D

0B@
t�s�1
p

t� 1p
t

s

.
p

t� 1p
t
/2
� 1

�s
sC1� 1

tp
t� 1p

t

1CA :
For QD

 
t � 1 1

0
p

t � 1p
t

!
,

Q�1�s.x/QD

 p
t 1p

t

0 1p
t

!
; Q�1�s.y/QD

 p
t 0

�s
p

t 1p
t

!
:
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Therefore, �s is conjugate with � defined in the previous section. This implies that if
s and t satisfy Riley’s equation �K .s; t/D 0 then �s gives a representation of G , as
well as � . Hence we need to assume n¤�1. In this section, we examine the image
of the longitude L of G under �s .

Throughout the section, let U D �s.w/ and ui;j be its .i; j /–entry, and let vi;j be the
entries of U n . Also, set

� D
s
�p

t � 1p
t

�2�p
t � 1p

t

�2
� s

:

Lemma 5.1 For wn
� , we have

�s.w
n
�/D

�
v1;1

v2;1

�

v1;2� v2;2

�
:

Proof By a direct calculation,

�s.xy�1/D

 
t�1Cst

t�1
s
p

t
�

sp
t

t�1�s
t�1

!
; �s.y

�1x/D

 
t�1Cst

t�1
sp
t�

s
p

t t�1�s
t�1

!
;

�s.x
�1y/D

 
t�1�s

t�1
�

sp
t�

�s
p

t t�1Cst
t�1

!
; �s.yx�1/D

 
t�1�s

t�1
�

s
p

t
�

�
sp
t

t�1Cst
t�1

!
:

Thus we see that the .1; 2/–entry of �s.y
�1x/ is the .2; 1/–entry of �s.xy�1/ divided

by � , the .2; 1/–entry of �s.y
�1x/ is the .1; 2/–entry of �s.xy�1/ multiplied by

� , and the others of �s.y
�1x/ coincide with those of �s.xy�1/. The same relation

between entries holds for �s.x
�1y/ and �s.yx�1/.

In general, such a relation is preserved under the matrix multiplication;�
p r

�

q� s

��
a c

�

b� d

�
D

 
apC br cpCdr

�

.aqC bs/� cqC ds

!
Thus we can confirm that the same relation holds for �s.w

n/ and �s.w
n
�/.

Proposition 5.2 For the longitude L of G , the matrix �s.L/ is diagonal, and the
.1; 1/–entry of �s.L/ is a positive real number.

Proof The first assertion follows from the facts that for a meridian x , �s.x/ is diagonal
but �s.x/¤˙I and that x and L commute.
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Since LD wn
�w

n , Lemma 5.1 implies that

�s.L/D �s.w
n
�/�s.w

n/D

�
v1;1

v2;1

�

v1;2� v2;2

��
v1;1 v1;2

v2;1 v2;2

�

D

 
v2

1;1
C
v2

2;1

�
v1;1v1;2C

v2;1v2;2

�

v1;1v1;2� C v2;1v2;2 v2
1;2
� C v2

2;2

!
:

Since det �s.w
n/D 1, at least one of v1;1 and v2;1 is non-zero. Hence the .1; 1/–entry

is v2
1;1
Cv2

2;1
=� , which is positive, because s>0 and .

p
t�1=

p
t /2�sDT �s�2>0

by Proposition 4.2 and Example 3.8.

Remark 5.3 Since �s.L/ is diagonal, we also obtain an equation

v1;1v1;2� C v2;1v2;2 D 0

from the .2; 1/–entry of �s.L/. This will be used in the proof of Lemma 5.6.

For W D �.w/ in Section 3, recall that the entries are denoted wi;j .

Lemma 5.4 For U D �s.w/,

u1;1 D w1;1C
w2;1

t � 1
; u1;2 D

p
t
�
w1;2�

w1;1

t � 1

�
C

p
t

t � 1

�
w2;2�

w2;1

t � 1

�
;

u2;1 D
w2;1
p

t
; u2;2 D w2;2�

w2;1

t � 1
:

Proof This immediately follows by calculating the product U DQWQ�1 .

By Lemma 3.6, we have

W n
D

�
w1;1�n� �n�1 w1;2�n

w2;1�n �nC1�w1;1�n

�
:

Lemma 5.5 For U n D �s.w
n/, we have

v1;1 D u1;1�n� �n�1; v1;2 D u1;2�n; v2;1 D u2;1�n; v2;2 D �nC1�u1;1�n:

Proof Calculate the product U n DQW nQ�1 . Then

v1;1 D .w1;1Cw2;1=.t � 1//�n� �n�1 D u1;1�n� �n�1
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by Lemma 5.4. For v1;2 , we have

v1;2 D

p
t

.t � 1/2

�
.t � 1/�n�1� .t � 1/w1;1�nC .t � 1/2w1;2�n

C .t � 1/�nC1� .t � 1/w1;1�n�w2;1�n

�
:

Recall that the Riley polynomial is �K .s; t/D .w1;1�n� �n�1/C .1� t/w1;2�n . (See
the proof of Proposition 3.7.) Since �K .s; t/ D 0, �n�1 D w1;1�n C .1� t/w1;2�n .
Hence

v1;2 D

p
t

.t � 1/2

�
.t � 1/�nC1� .w2;1C .t � 1/w1;1/�n

�
D

p
t

.t � 1/2

��
.t � 1/w2;2�w2;1

�
�n� .t � 1/�n�1

�
D

p
t

t � 1

��
w2;2�

w2;1

t � 1

�
�n� �n�1

�
D

p
t

t � 1
.u2;2�n� �n�1/;

by using the recursion �nC1� .w1;1Cw2;2/�nC �n�1 D 0. By Lemma 5.4,

u2;2 D
t � 1
p

t

�
u1;2�

p
t
�
w1;2�

w1;1

t � 1

��
:

After substituting this and �K .s; t/D 0, we have

v1;2 D u1;2�nC

p
t

t � 1

�
w1;1�n� �n�1C .1� t/w1;2�n

�
D u1;2�n:

It is straightforward to check v2;1 and v2;2 . We omit them.

Let Bs be the .1; 1/–entry of the matrix �s.L/. By the proof of Proposition 5.2,
Bs D v

2
1;1
C v2

2;1
=� .

Lemma 5.6 Bs D�u2;1=.u1;2�/

Proof As noted in Remark 5.3, v1;1v1;2�Cv2;1v2;2D 0. Since det U nD v1;1v2;2�

v1;2v2;1 D 1, we have

v1;2Bs D v
2
1;1v1;2C

v1;2v
2
2;1

�
D v2

1;1v1;2C
v2;1

�
.v1;1v2;2� 1/

D v2
1;1v1;2C

v1;1

�
.�v1;1v1;2�/�

v2;1

�
D�

v2;1

�
:

Assume v1;2D0. Then v2;1D0. By Lemmas 5.4 and 5.5, v2;1Du2;1�nDw2;1�n=
p

t .
Since w2;1 ¤ 0 by Lemma 3.5, we have �n D 0. Recall that

�K .s; t/D .�nC1� �n/C .sC 2� t � 1=t/fm�1gm�1�n
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is zero. Thus �nC1D0. Then the recursive formula for �k implies �n�1D0. In turn, all
�kD0. But this is impossible, because �1D1. Hence v1;2¤0, so BsD�v2;1=.v1;2�/.

By Lemma 5.5, v1;2 D u1;2�n and v2;1 D u2;1�n . Thus we have shown that Bs D

�u2;1=.u1;2�/.

Proposition 5.7 For the longitude L, the .1; 1/–entry Bs of �s.L/ is given as

(7) Bs D
�fmC tfm�1

�fm�1C tfm
:

Proof From Lemma 5.6, Bs D�u2;1=.u1;2�/. Then Lemma 5.4 and Proposition 3.2
give

u1;2 D

p
t

t � 1

�
f 2

m�1�f
2

mC .st �
s

t
/g2

m�1

�
�
.t � 1/2C st
p

t.t � 1/2
gm�1.fm� tfm�1/;

u2;1 D
s
p

t
gm�1.fm� tfm�1/:

For the first term of u1;2 , Lemma 2.3 implies

f 2
m�1�f

2
mC

�
st �

s

t

�
g2

m�1 D .fm�1�fm/.fm�1Cfm/C
�
t �

1

t

�
sg2

m�1

D�sgm�1.fm�1Cfm/C
�
t �

1

t

�
sg2

m�1

D sgm�1

�
�fm�1�fmC

�
t �

1

t

�
gm�1

�
D sgm�1

�
�fm�1�fmC

�
t �

1

t

�fm�fm�1

s

�
D sgm�1

�
t2� 1� st

st
fm�

t2� 1C st

st
fm�1

�
:

Thus, dividing u1;2 by sgm�1=
p

t gives

t

t � 1

�
t2� 1� st

st
fm�

t2� 1C st

st
fm�1

�
�
.t � 1/2C st

s.t � 1/2
.fm� tfm�1/:

The coefficient of fm is t=� , and that of fm�1 is �1=� . Hence we have

Bs D�
u2;1

u1;2�
D
�fmC tfm�1

�fm�1C tfm
:
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6 Limits

Let r D p=q be a rational number, and let K.r/ denote the resulting manifold by
r –surgery on K . In other words, K.r/ is obtained by attaching a solid torus V to the
knot exterior E.K/ along their boundaries so that a loop of slope r bounds a meridian
disk of V .

Our representation �sW G! SL2.R/ induces a homomorphism �1.K.r//! SL2.R/
if and only if �s.x/

p�s.L/q D I . Since both of �s.x/ and �s.L/ are diagonal (see
(6) and Proposition 5.2), this is equivalent to the single equation

(8) Ap
s Bq

s D 1;

where As and Bs are the .1; 1/–entries of �s.x/ and �s.L/, respectively. We remark
that As D

p
t ( > 1) is a positive real number, as is Bs by Proposition 5.2. Hence the

equation (8) is furthermore equivalent to the equation

(9) �
log Bs

log As
D

p

q
:

Let gW .0;1/!R be a function defined by

g.s/D�
log Bs

log As
:

We will examine the image of g .

Lemma 6.1 (1) lim
s!C0

t D

�
1 if n¤˙1
2mC1C

p
4mC1

2m
if nD 1

(2) lim
s!1

t D1

(3) lim
s!1

.t � s/D 2

(4) lim
s!1

t

s
D 1

Proof (1) If n D 1, then T D s C 2 C 1=.fmgm�1/ is the unique solution for
�K .s;T /D 0 (see Example 3.8). From Lemma 2.2, we have lims!C0 fm D 1 and
lims!C0 gm�1 Dm. Hence lims!C0 T D 2C 1=m. Since t D .T C

p
T 2� 4 /=2,

lims!C0 t D .2mC 1C
p

4mC 1 /=.2m/.

Assume n¤˙1. From Proposition 4.2, we have sC 2C c=.sg2
m�1

/ < T , where c is
a positive constant. Hence lims!C0 T D lims!C0 t D1.

(2) As T > sC 2, lims!1 T D lims!1 t D1.

(3) Since sC 2< t C 1=t < sC 2C 4=.sg2
m�1

/, (2) implies lims!1.t � s/D 2.
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(4) From sC 2< T < sC 2C 4=.sg2
m�1

/ again, we have lims!1 T=s D 1, which
implies lims!1 t=s D 1.

Let Fk D tk�1.�fk C tfk�1/ for any integer k > 0.

Lemma 6.2 If 0< k �m, then lims!1 Fk D 1.

Proof First, F1 D�f1C tf0 D t � s� 1. Hence lims!1 F1 D 1 by Lemma 6.1(3).

Let n¤˙1. By Proposition 4.2, we have

(10) sC 2C
c

sg2
m�1

< t C
1

t
< sC 2C

d

sg2
m�1

;

where c and d are constants depending on only n. Multiplying by tk�1fk�1 in (10)
gives

.sC2/fk�1tk�1
C

ctk�1fk�1

sg2
m�1

< tkfk�1Ctk�2fk�1<.sC2/fk�1tk�1
C

dtk�1fk�1

sg2
m�1

:

Since .sC 2/fk�1 D fk Cfk�2 by the recursion,

.tk�1fk�2� tk�2fk�1/C
ctk�1fk�1

sg2
m�1

< tkfk�1� tk�1fk

< .tk�1fk�2� tk�2fk�1/C
dtk�1fk�1

sg2
m�1

:

Then we have

(11) Fk�1C
ctk�1fk�1

sg2
m�1

< Fk < Fk�1C
dtk�1fk�1

sg2
m�1

:

The degree of fk�1 is k�1, but that of gm�1 is m�1. Hence Lemma 6.1(4) implies

lim
s!1

ctk�1fk�1

sg2
m�1

D lim
s!1

dtk�1fk�1

sg2
m�1

D 0

as long as k �m. Thus lims!1 Fk D 1 will follow from lims!1 Fk�1 D 1.

Suppose nD 1. Riley’s equation has the unique solution

(12) t C
1

t
D sC 2C

1

fmgm�1

(see Example 3.8).
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Multiplying by tk�1fk�1 in (12) gives

tkfk�1C tk�2fk�1 D .sC 2/fk�1tk�1
C

tk�1fk�1

fmgm�1

:

Since .sC 2/fk�1 D fk Cfk�2 ,

tkfk�1� tk�1fk D tk�1fk�2� tk�2fk�1C
tk�1fk�1

fmgm�1

:

That is, Fk D Fk�1C tk�1fk�1=.fmgm�1/. Hence the fact that lims!1 Fk�1 D 1

and lims!1 tk�1fk�1=.fmgm�1/D 0 imply lims!1 Fk D 1.

Lemma 6.3 (1) lim
s!C0

Bs D 1

(2) lim
s!1

Bs t2m
D 1

Proof (1) By Proposition 5.7,

Bs D
�fmC tfm�1

�fm�1C tfm
:

By Lemma 2.2, lims!C0 fm D lims!C0 fm�1 D 1. Thus Lemma 6.1(1) implies
lims!C0 Bs D 1.

(2) We decompose Bst2m as

Bst2m
D tm�1.�fmC tfm�1/ �

tmC1

�fm�1C tfm
D Fm �

tmC1

�fm�1C tfm
:

Since the degree of fk is k and fm is monic,

lim
s!1

tmC1

�fm�1C tfm
D 1:

Then we have lims!1Bst2m D 1 by combined with Lemma 6.2.

Proposition 6.4 The image of g contains an open interval .0; 4m/.

Proof By Lemma 6.3(1), lims!C0 log Bs D 0. Hence

lim
s!C0

g.s/D� lim
s!C0

log Bs

log As
D� lim

s!C0

log Bs

log
p

t
D 0:

Also, we have lims!1.log BsC 2m log t/D 0 by Lemma 6.3(2). Thus

lim
s!1

g.s/D� lim
s!1

log Bs

log As
D� lim

s!1

2 log Bs

log t
D 4m:

Hence the image of g contains an interval .0; 4m/.
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7 Universal covering group

We briefly review the description of the universal covering group of SL2.R/. See
Bargmann [1] and Khoi [15].

Let

SU.1; 1/D
��
˛ ˇ
x̌ x̨

� ˇ̌̌
j˛j2� jˇj2 D 1

�
be the special unitary group over C of signature .1; 1/. It is well known that SU.1; 1/
is conjugate to SL2.R/ in GL2.C/. The correspondence is given by  W SL2.R/!
SU.1; 1/, sending A 7! JAJ�1 , where

J D

�
1 �i

1 i

�
:

Thus

 W

�
a b

c d

�
7!

 
aCdC.b�c/i

2
a�d�.bCc/i

2
a�dC.bCc/i

2
aCd�.b�c/i

2

!
:

There is a parametrization of SU.1; 1/ by .
; !/, where 
 D ˇ=˛ and ! D arg˛ are
defined mod 2� . Thus SU.1; 1/ D f.
; !/ j j
 j < 1;�� � ! < �g. Topologically,
SU.1; 1/ is an open solid torus �� S1 , where � D f
 2 C j j
 j < 1g. The group
operation is given by .
; !/.
 0; !0/D .
 00; !00/, where


 00 D

 0C 
 e�2i!0

1C 
 x
 0e�2i!0
;(13)

!00 D !C!0C
1

2i
log

1C 
 x
 0e�2i!0

1C x

 0e2i!0
:(14)

These equations come from the matrix operation. Here, the logarithm function is
defined by its principal value and !00 is defined mod 2� . The identity element is .0; 0/,
and the correspondence between

� ˛ ˇ
x̌ x̨

�
and .
; !/ gives an isomorphism.

Now, the universal covering group BSL2.R/ of SU.1; 1/ can be described as

BSL2.R/ D f.
; !/ j j
 j< 1;�1< ! <1g:

Thus BSL2.R/ is homeomorphic to ��R. The group operation is given by (13) and
(14) again, but !00 is not given mod 2� anymore.

Let �W BSL2.R/!SL2.R/ be the covering projection. Then ker�Df.0; 2j�/ j j 2Zg.

Lemma 7.1 The subset .�1; 1/�f0g of BSL2.R/ forms a subgroup, where .�1; 1/��.
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Proof From (13) and (14), it is straightforward to see that .�1; 1/� f0g is closed
under the group operation. For .
; 0/ 2 .�1; 1/� f0g, its inverse is .�
; 0/.

For the representation �sW G! SL2.R/ defined by (6),

(15)  .�s.x//D
1

2
p

t

�
t C 1 t � 1

t � 1 t C 1

�
2 SU.1; 1/:

Thus  .�s.x// corresponds to .
x; 0/, where 
x D .t � 1/=.t C 1/. Since t > 1,

x 2 .�1; 1/.

Also, for the longitude L, by Proposition 5.2,

 .�s.L//D
1

2

 
BsC

1
Bs

Bs �
1

Bs

Bs �
1

Bs
BsC

1
Bs

!
; Bs > 0:

Thus  .�s.L// corresponds to .
L; 0/, where 
L D .B2
s � 1/=.B2

s C 1/. Clearly,

L 2 .�1; 1/.

8 Proof of Theorem 1.1

Since the knot exterior E.K/ of K satisfies H 2.E.K/IZ/D 0, any �sW G! SL2.R/

lifts to a representation z�sW G! BSL2.R/ (Ghys [12]). Moreover, any two lifts z�s and
z�0s are related as

z�0s.g/D h.g/z�s.g/

for some homomorphism hW G! ker�� BSL2.R/ . Since ker�Df.0; 2j�/ j j 2Zg is
isomorphic to Z, the homomorphism h factors through H1.E.K//, so it is determined
only by the value h.x/ of a meridian x (see [15]).

The following result is the key in [3], which is originally claimed in [15], for the figure
eight knot. Our proof is essentially that of [3], but it is much simpler, because the
values of  .�s.x// and  .�s.L// are calculated explicitly in Section 7. For simplicity,
we identify SL2.R/ with SU.1; 1/ under  , and omit the symbol  . The fact that our
knot has genus one is crucial in the proof of the next lemma.

Lemma 8.1 Let z�sW G! BSL2.R/ be a lift of �s . Then replacing z�s by a represen-
tation z�0s D h � z�s for some hW G! BSL2.R/, we can suppose that z�s.�1.@E.K/// is
contained in the subgroup .�1; 1/� f0g of BSL2.R/.
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Proof Since �.z�s.L//D .
L; 0/, z�s.L/D .
L; 2j�/ for some j . On the other hand,
L is a commutator, because our knot has genus one. Therefore the inequality (5.5) of
Wood [24] implies �3�=2< 2j� < 3�=2. Thus we have z�s.L/D .
L; 0/.

Similarly, z�s.x/ D .
x; 2l�/ for some l . Let us choose hW G ! BSL2.R/ so that
h.x/D .0;�2l�/. Set z�0sDh� z�s . Then a direct calculation shows that z�0s.x/D .
x; 0/

and z�0s.L/D .
L; 0/. Since x and L generate the peripheral subgroup �1.@E.K//,
the conclusion follows from these.

Proof of Theorem 1.1 Suppose n¤�1. Let r D p=q 2 .0; 4m/. By Proposition 6.4,
we can find s so that g.s/ D r . Choose a lift z�s of �s so that z�s.�1.@E.K/// �

.�1; 1/� f0g (Lemma 8.1). Then �s.x
pLq/D I , so �.z�s.x

pLq//D I . This means
that z�s.x

pLq/ lies in ker�D f.0; 2j�/ j j 2 Zg. Hence z�s.x
pLq/D .0; 0/. Then

z�s can induce a homomorphism

�1.K.r//! BSL2.R/

with non-abelian image. Recall that BSL2.R/ is left-orderable (Bergman [2]) and
any (non-trivial) subgroup of a left-orderable group is left-orderable. Since K.r/ is
irreducible (Hatcher and Thurston [13]), �1.K.r// is left-orderable by Boyer, Rolfsen
and Wiest [4, Theorem 1.1]. For r D 0, K.0/ is irreducible (Gabai [11]) and has
positive Betti number. Hence �1.K.0// is left-orderable by [4, Corollary 3.4]. Thus
we have shown that any slope in Œ0; 4m/ is left-orderable for K DK.m; n/.

Suppose n> 0. If we apply the above argument for K.n;m/, then any slope in Œ0; 4n/

is shown to be left-orderable. Since K.n;m/ is equivalent to the mirror image of
K.m; n/, any slope in .�4n; 0� is left-orderable for K.m; n/. Thus we can conclude
that .�4n; 4m/ consists of left-orderable slopes for K DK.m; n/ with n> 0.

Suppose m> 1 and n<�1. Since K.m; n/ is equivalent to K.�n;�m/, the argument
in the first paragraph shows that any slope in Œ0;�4n/ is left-orderable. In this case,
we obtain Œ0;maxf4m;�4ng/ consisting of left-orderable slopes.

Finally, consider the remaining cases. They are K.1; n/ with n< �1 and K.m;�1/

with m > 1. Since K.m;�1/ is isotopic to K.1;�m/, two cases coincide. We
obtain Œ0; 4/ consisting of left-orderable slopes by the argument in the first paragraph.
Furthermore, since these knots are twist knots, the slope 4 is also left-orderable by [22].

Proof of Corollary 1.2 If n> 0, Theorem 1.1 gives the interval .�4n; 4/. The slope
4 is left-orderable as in the proof of Theorem 1.1 [6; 22]. The claim for the case where
n< �1 is just a repetition of Theorem 1.1.
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