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Higher topological complexity and its symmetrization
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We develop the properties of the nth sequential topological complexity TCn , a homo-
topy invariant introduced by the third author as an extension of Farber’s topological
model for studying the complexity of motion planning algorithms in robotics. We
exhibit close connections of TCn.X / to the Lusternik–Schnirelmann category of
cartesian powers of X , to the cup length of the diagonal embedding X ,!X n , and
to the ratio between homotopy dimension and connectivity of X . We fully compute
the numerical value of TCn for products of spheres, closed 1–connected symplectic
manifolds and quaternionic projective spaces. Our study includes two symmetrized
versions of TCn.X / . The first one, unlike Farber and Grant’s symmetric topological
complexity, turns out to be a homotopy invariant of X ; the second one is closely
tied to the homotopical properties of the configuration space of cardinality-n subsets
of X . Special attention is given to the case of spheres.

55M30; 55R80

1 Introduction, main results and organization

A motion planning algorithm (mpa) for an autonomous system (robot) S is a rule
assigning to each pair .A;B/ of initial–final positions of S a (continuous) motion
from A to B ; see Latombe [20] and LaValle [21]. If X stands for the space of
all possible states of S , and P .X / is the space of all paths 
 W Œ0; 1�! X , then an
mpa for S is a (nonnecessarily continuous) section for the endpoints evaluation map
eW P .X /!X �X defined as e.
 /D .
 .0/; 
 .1//.

For practical applications one is interested in continuous mpa’s. However it is easy to
see that the endpoints evaluation map e admits a continuous section if and only if the
space of states X is contractible. An alternative to continuity is to look at the Švarc
genus of the map e , which leads to Farber’s concept of topological complexity. This
gives a way of recognizing mpa’s with the least possible order of instability; see [6,
Section 4]. The recognition is done directly from the homotopical properties of the
space of states of the robot.
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Definition (Farber) Given a path-connected topological space X , the topological
complexity of X , TC.X /, is the least positive integer k such that the cartesian product
X �X can be covered by k open subsets U1;U2; : : : ;Uk on each of which e admits a
continuous section si W Ui!P .X /. Each pair .Ui ; si/ is called a local motion planner
with domain Ui . We set TC.X /D1 if no such k exists.

A symmetrized version of topological complexity arises when attention is restricted to
local planners for which the motion from A to B is the reverse of the motion from B

to A; see Farber and Grant [9]. A number of properties of topological complexity
and symmetric topological complexity were found by Farber in [5; 7; 8], Farber and
Grant in [9; 10] and Farber and Yuzvinsky in [12]. The papers by Farber, Tabachnikov
and Yuzvinsky [11] and the second author and Landweber [15] identify these concepts
in the case of real projective spaces as their immersion and embedding dimensions,
respectively.

This paper is concerned with the third author’s generalization of the above concepts.
In such a view, the motion planning does not only depend on a couple of initial–final
states of a robot, but in a sequence of prescribed intermediate stages that the robot
should reach through the motion. Such a setting is standard in industrial production
processes in which the manufacture of a given good goes through a series of production
steps. The corresponding need to identify best possible sequential motion planning
algorithms leads to a homotopy invariant TCn.X /, the nth topological complexity
of X , introduced by the third author in [23] and reviewed in Section 2 (where we use
normalized notation, ie in such a way that contractible spaces have TCn D 0).

In Section 3 we discuss basic properties of TCn , including methods for calculating
this homotopy invariant. In Theorem 3.9 we describe optimal bounds for TCn.X /:
lower bounds are given in terms of the cup length of elements in the kernel of the
iterated diagonal, whereas connectivity and homotopy dimension of X lead to upper
bounds. The subadditivity of TCn is settled in Proposition 3.11. As an application, we
obtain the full determination of the numerical value of TCn.X / when X is either a
product of spheres (Corollary 3.12), a closed simply connected symplectic manifold
(Corollary 3.15) or a quaternionic projective space (Corollary 3.16).

Many of our results generalize existing properties of Farber’s TC. For instance, in
Corollary 3.3 we show the following close connection between higher topological
complexity and the Lusternik–Schnirelmann category of cartesian powers of spaces.

Theorem For a path-connected space X , cat.X n�1/� TCn.X /� cat.X n/.

Theorem 3.5 below gives TCn.G/ D cat.Gn�1/ for a path-connected topological
group G , which extends the n D 2 property proved by Farber in [6, Lemma 8.2].
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Lupton and Scherer have recently proved that this property extends to not necessarily
homotopy-associative Hopf spaces; see Lupton and Scherer [22].

Section 4 deals with symmetric versions of higher topological complexity. We begin by
introducing TC†.X /, a variation of the symmetric topological complexity TCS .X /

introduced in [9]. We prove that the numerical values of the two invariants differ at
most by a unit (Proposition 4.2). Such a fact should be prised by noticing that, although
Farber and Grant observe that TCS .X / is not a homotopy invariant, TC†.X / depends
only on the homotopy type of X . It should be noted that the homotopy invariance also
fails in general for the monoidal topological complexity introduced by Iwase and Sakai
(see [16, Definition 1.3 and Remark 1.4]), where the stasis property is imposed on the
motion planning problem, instead of the symmetry condition we impose on TC† . We
construct the corresponding higher analogues TCS

n and TC†n , and prove the homotopy
invariance of the latter (Proposition 4.7).

The calculation of TCS
n can turn out to be an extremely difficult task, mainly due to

what seems to be the limited current knowledge of precise homotopy information about
braid spaces (even braid manifolds, for that matter). In Section 5 we exhibit evidence
leading to the conjecture that

(1) TCS
n .S

k/� Œ.nC 2/.k � 1/C 4�.n� 1/=2k

holds for integers k � 1 and n� 2. In particular, we observe in Corollary 5.5 that the
equality TCS

n .S
k/D 2.n� 1/ holds provided nD 2 or k D 1.
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2 Preliminaries on notation

We use the normalized version of Švarc’s concept of the genus of a map [24].

Definition 2.1 The Švarc genus (also known as sectional category) of a map pW E!B

is the least number k such that there is an open covering U0;U1; : : : ;Uk of B for
which the restriction of p to each Ui (i D 0; 1; : : : ; k ) admits a homotopy section, ie a
(continuous) map si W Ui !E such that psi is homotopic to the inclusion Ui ,! B .
We agree to set genus.f /D�1 for f W X ! Y with X D¿D Y .

The following result, proved in [24, Proposition 22, page 84] (see also the comments
in [24, Section 1, page 54]), will be used in the proof of Proposition 3.11. Here we
agree that a normal space is, by definition, required to be Hausdorff. This convention
will also be in force throughout Section 3.

Proposition 2.2 Let f �f 0W X�X 0!Y �Y 0 be the product of two maps f W X!Y

and f 0W X 0! Y 0 . If Y �Y 0 is normal, then genus.f �f 0/� genus.f /Cgenus.f 0/.

Definition 2.3 Let X be a path-connected space. The nth topological complexity
of X , TCn.X /, is the Švarc genus of the fibration

(2) eX
n D enW X

Jn !X n; en.
 /D .
 .11/; : : : ; 
 .1n//;

where Jn is the wedge of n closed intervals Œ0; 1� (each with 0 2 Œ0; 1� as the base
point), and 1i stands for 1 in the i th interval.

We note that (2) is the standard fibrational substitute for the iterated diagonal map
dn D dX

n W X ! X n , so TCn.X / D genus.dX
n /. More generally, for a contractible

space Yn with n distinct distinguished points v1; : : : ; vn 2 Yn , consider the evaluation
map eYn

W X Yn !X n , eYn
.f /D .f .y1/; : : : ; f .yn//. Because of the contractibility

of Yn , the genus of eYn
is equal to TCn.X /; the proof is just as the one in [23, Re-

mark 3.2.5]. In particular, we can take Yn to be a tree with n leaves, or the unit
interval In , say with distinguished points vi D .i � 1/=.n� 1/, i D 1; : : : ; n. In the
latter case we see that the nth higher topological complexity gives a topological measure
of the complexity of the motion planning problem where the robot is required to visit n

ordered prescribed stages. For this reason, we also refer to TCn as the nth sequential
topological complexity. Farber’s TC is TC2C1.

Other fibrations (which not necessarily give fibrational substitutes of the iterated
diagonal) can be used to define TCn . Indeed, let Gn be any connected graph where n

ordered distinct vertices v1; : : : ; vn have been selected. We assert that the evaluation
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map eGn
W X Gn !X n at the chosen vertices has genus.eGn

/D TCn.X /. To see this,
choose maps In!Gn! Jn preserving the selected vertices. For instance, the latter
map can be taken so to collapse most of Gn to the base point in Jn , except that the
first half of each directed edge .vi ; v/ in Gn is mapped linearly onto the directed edge
.1i ; 0/ in Jn (in particular vertices vi are mapped to vertices 1i ). Since the induced
maps X Jn ! X Gn ! X In are compatible with the three evaluation maps, we get
genus.eIn

/� genus.eGn
/� genus.eJn

/. But, as explained in the paragraph above, the
extremes in the previous chain of inequalities agree with TCn.X /.

We close this section setting notation relevant to the construction (in Section 5) of our
two symmetric versions of higher topological complexity.

The (left) action of the symmetric group †n on f11; : : : ; 1ng extends to one on Jn .
This yields corresponding (right) †n –actions on X n and X Jn in such a way that (2)
is an equivariant map. The action is free on the configuration space Confn.X / of n

ordered distinct points in X and, consequently, on e�1
n .Confn.X //. Thus, at the level

of orbit spaces we get a fibration

"X
n D "nW Yn.X /! Braidn.X /;

where Yn.X /De�1
n .Confn.X //=†n and Braidn.X /DConfn.X /=†n , the latter being

the usual “braid” configuration space of cardinality-n subsets of X .

We think of genus."X
n / as giving a measure for the topological complexity of the nth

ubiquitous motion planning problem on X . This concept serves in Section 4 as the
building block relating our two symmetrized forms of TCn ; see Theorem 4.8 and
Definition 4.13. Section 5 will be devoted to exploring genus."Sk

n /.

Note that the commutative diagram (where horizontal arrows are canonical projections)

(3)

e�1
n .Confn.X // Yn.X /

Confn.X / Braidn.X /

"nen

is a pullback square, so that (local) sections of "n correspond to †n –equivariant (local)
sections of en . In particular, the homotopy fiber of "n is .�X /n�1 , just as for en ;
see [23, Remark 3.2.3]. For instance, a copy of .�X /n�1 sits inside the fiber of en over
an n–tuple .x1;x2; : : : ;xn/ as the strong deformation retract consisting of multipaths
f
j g

n
jD1

for which 
1 is the constant path at x1 . Here and below, the term “multipath”
refers to an element 
 2X Jn , and we will use the notation 
 D f
j gnjD1

, where 
j is
the restriction of 
 to the j th wedge summand of Jn .
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3 Properties of higher topological complexity

The higher topological complexities of a space X are closely related to the category
of cartesian powers of X . The first indication of such a property comes from the
inequality

(4) TCn.X /� cat.X n/;

which is an immediate consequence of the well known fact that the Švarc genus of
a fibration does not exceed the category of the base space. On the other hand, the
inequality cat.X /� TC2.X / is well known, and can be generalized to the following.

Proposition 3.1 For any path-connected space X ,

cat.X n�1/� TCn.X /:

Proof Let TCn.X /D k and choose a covering B0[B1[ � � � [Bk DX n such that
there is a continuous section si for eX

n over Bi for i D 0; : : : ; k . Let pW X n! X

be the projection onto the first factor, choose x1 2 X , and put Ai D p�1.x1/\Bi .
Note that fAig

k
iD0

is an open cover for p�1.x1/. Since p�1.x1/ is homeomorphic
to X n�1 , it suffices to show that each Ai is contractible within p�1.x1/.

For a point .x1;x2; : : : ;xn/ 2 Ai consider the n paths 
1; : : : ; 
n making up the
multipath si.x1;x2; : : : ;xn/D f
j g

n
jD1

. Then 
j .1/D xj and 
j .0/D x0 for some
x0 2X which is independent of j 2 f1; : : : ; ng. Then, the constant path ı1 at x1 , and
the paths ıj (j D 2; : : : ; n) — formed by using the time reversed path 
�1

j the first half
of the time, and 
1 the second half — are the components of a path ı D .ı1; : : : ; ın/
in p�1.x1/ from ı.0/D .x1;x2; : : : ;xn/ to ı.1/D .x1;x1; : : : ;x1/. The continuity
of si implies that ı depends continuously on .x1;x2; : : : ;xn/, so we have constructed
a contraction of Ai to .x1;x1; : : : ;x1/ in p�1.x1/. Thus, cat.X n�1/� TCn.X /.

Remark 3.2 Using the fact that cat.X n/ � n if X is not contractible (see Cornea,
Lupton, Oprea and Tanré [3, Theorem 1.47]), we see that Proposition 3.1 recov-
ers [23, Proposition 3.5].

Proposition 3.1 and (4) yield the following.

Corollary 3.3 For any path-connected space X ,

cat.X n�1/� TCn.X /� cat.X n/:

We next show that the lower bound in Corollary 3.3 is optimal for topological groups.
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Proposition 3.4 For any path-connected topological group G ,

TCn.G/� cat.Gn�1/:

Proof Let � denote the neutral element of G . Let k D cat.Gn�1/ and choose an
open covering A0 [ � � � [Ak D Gn�1 , where each Ai (i 2 f0; : : : ; kg) contracts in
Gn�1 to an .n� 1/–tuple pi . Since G is path-connected, each contracting homotopy
can be extended to arrange that pi D .�; : : : ; �/D �

.n�1/ for all i D 0; : : : ; k .

Then, for i 2 f0; : : : ; kg set

Bi D f.g;ga2; : : : ;gan/ j .a2; : : : ; an/ 2Ai ;g 2Gg;

which is open in Gn . We assert that eG
n admits a (continuous) section over each

Bi . Indeed, for each i the contractibility of Ai in Gn�1 yields a path 
a in Gn�1

joining �.n�1/ to each a D .a2; : : : ; an/ 2 Ai � Gn�1 and depending continuously
on a 2 Ai . Augment 
a to a path 
 0a from �.n/ to .�; a2; : : : ; an/ 2 Bi with the
first coordinate remaining constant. Then, for any g 2 G , g
 0a is a path joining
.g; : : : ;g/D g�.n/ 2 Gn to .g;ga2; : : : ;gan/ 2 Bi and depending continuously on
n–tuples in Bi . Then, we get the required section

si W Bi!GJn ;

where, on the j th interval of Jn , si.g;ga2; : : : ;gan/ is the j th coordinate of g
 0a .

The proof will be complete once we check B0[� � �[BkDGn . Take .b1; : : : ; bn/2Gn

and put gD b1 and ai D g�1bi . Then there exists j such that .a2; : : : ; an/ 2Aj . So,
.b1; : : : ; bn/ 2 Bj .

Corollary 3.3 and Proposition 3.4 combined yield the following.

Theorem 3.5 For any path-connected topological group G ,

TCn.G/D cat.Gn�1/:

Alternatively, we can look at the growth of TCn in terms of the difference of any two
consecutive values of n.

Corollary 3.6 Let G be a path-connected topological group all of whose finite carte-
sian powers Gk are normal.1 Then for n� 3,

TCn.G/�TCn�1.G/� cat.G/:

1As noted in Section 2, we assume that a normal space is, by definition, Hausdorff. Thus, in view
of the classical Birkhoff–Kakutani Theorem, the normality hypothesis in Corollary 3.6 holds when G

satisfies the first axiom of countability, ie provided G is metrizable.
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Proof This is a consequence of Theorem 3.5 and the product inequality for the
category, valid under the current normality assumptions in view of Proposition 2.2.

Unlike with topological groups, higher topological complexities of an arbitrary path-
connected space X do not appear to be completely determined by the category of
cartesian powers of X . Nonetheless, we can directly obtain the following bound on
the difference of two consecutive higher topological complexities of X .

Proposition 3.7 Let X be a path-connected space all of whose finite cartesian pow-
ers X k are normal. Then for n� 3,

TCn.X /�TCn�1.X /� cat.X 2/:

Proof Use the argument in the proof of Corollary 3.6, replacing Theorem 3.5 by the
inequalities in Corollary 3.3.

In particular TCn.X / is bounded from above by a linear function on n with slope
cat.X 2/. According to [23, (5.1)], this slope can be improved to TC2.X /.

Next we consider the higher analogue of the usual cup length lower bound for TC.
Recall that dn D dX

n W X !X n stands for the iterated diagonal map. In the following
definition we allow cohomology with local coefficients.

Definition 3.8 Given a space X and a positive integer n, cl.X; n/ denotes the
cup length of elements in the kernel of the map induced in cohomology by dX

n .
Thus, cl.X; n/ is the largest integer m for which there exist cohomology classes
ui 2H�.X nIAi/ such that d�n ui D 0 for i D 1; : : : ;m and

u1 ` � � �` um ¤ 0 2H�.X n
IA1˝ � � �˝Am/:

The following result, which follows directly from [24, Theorems 4 and 5’], bounds
TCn.X / from below by cl.X; n/, and from above by a ratio between the connectiv-
ity conn.X / and homotopy dimension hdim.X / of X , the latter being the smallest
dimension of CW complexes having the homotopy type of X .

Theorem 3.9 For any path-connected space X we have the inequalities

cl.X; n/� TCn.X /�
n hdim.X /

conn.X /C 1
:

We will also need the following bound on cl.X �Sk ; n/ in terms of cl.X; n/.
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Theorem 3.10 For any path-connected space X and positive integers n and k we
have cl.X �Sk ; n/� cl.X; n/Cn�1. Provided k is even and H�.X / is torsion free,
this inequality can be improved to cl.X �Sk ; n/� cl.X; n/C n.

Proof Let v be a generator of H k.Sk/D Z. Let pi W .S
k/n! Sk be the projection

onto the i th factor and put vi D p�i .v/ for i D 1; : : : ; n. Assume that cl.X; n/Dm

and take u1; : : : ;um such that d�n .uj /D 0 for j D 1; : : : ;m and u1 ` � � �` um ¤ 0.

To prove the first assertion note that d�n .vi�v1/D 0 for i > 1, while the basis element
v2 ` � � �` vn 2H�..Sk/n/ appears in the reduced expansion (using distributivity) of
.v2� v1/` � � �` .vn� v1/. Hence,

u1 ` � � �` um ` .v2� v1/` � � �` .vn� v1/¤ 0:

Thus cl.X �Sk ; n/� cl.X; n/C n� 1.

Assume k is even and H�.X / is torsion free. Then v1C v2C � � �C vn�1� .n� 1/vn

lies in the kernel of d�n and also has cup nth power which is equal to a nonzero multiple
of v1 ` v2 ` � � �` vn . Hence,

u1 ` � � �` um ` .v1C v2C � � �C vn�1� .n� 1/vn/
n
¤ 0:

Thus cl.X �Sk ; n/� cl.X; n/C n.

In [5] Farber obtained the subadditivity of TC2 under suitable topological hypothesis.
The corresponding property for higher topological complexity is given next.

Proposition 3.11 Let X and Y be path-connected spaces. If .X � Y /n is normal,
then TCn.X �Y /� TCn.X /CTCn.Y /.

Proof The natural homeomorphisms

.X �Y /n!X n
�Y n;

..x1;y1/; : : : ; .xn;yn// 7! .x1; : : : ;xn;y1; : : : ;yn/;xi 2X;yj 2 Y;

.X �Y /Jn !X Jn �Y Jn ;

.'W Jn!X �Y / 7! ..pX ı'W Jn!X /; .pY ı'W Jn! Y //;

fit into the commutative diagram

.X �Y /Jn X Jn �Y Jn

.X �Y /n X n �Y n .

eX
n � eY

neX�Y
n

So, the desired conclusion follows directly from Proposition 2.2.
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As revealed in the case of spheres (next), Proposition 3.11 is optimal in general.

Corollary 3.12 TCn.S
k1 �Sk2 � � � � �Skm/Dm.n� 1/C l , where l is the number

of even dimensional spheres.

Proof Note that TCn.S
k/D cl.Sk ; n/ for all k [23, Section 4]. Then the inequality

cl.Sk1 � � � � �Skm ; n/ � m.n� 1/C l follows from Theorem 3.10 by induction, so
TCn.S

k1 � � � � �Skm/�m.n� 1/C l by Theorem 3.9. The opposite estimate follows
from Proposition 3.11.

The calculation of the higher topological complexity of the k –dimensional torus
T k D .S1/k , partially solved for k D 2 in [23, Proposition 5.1], is a consequence of
either Corollary 3.12 or Theorem 3.5.

Corollary 3.13 We have TCn.T
k/D k.n� 1/.

Theorem 3.14 Let X be a CW complex of finite type, and R a principal ideal domain.
Take u 2 H d .X IR/ with d > 0, d even, and assume that the n–fold iterated self
R–tensor product um˝ � � �˝um 2 .H md .X IR//˝n is an element of infinite additive
order. Then TCn.X /�mn.

Proof For i D 1; : : : ; n, let pi W X
n!X be the projection onto the i th factor and put

ui D p�i .u/ 2H d .X nIR/. In view of Theorem 3.9, the our inequality follows from

(5) v WD .u2�u1/
2m.u3�u1/

m
� � � .un�u1/

m
¤ 0:

In order to check (5), note that v comes from the tensor product, which injects into
the cohomology of the cartesian product by the Künneth Theorem (this is where the
finiteness hypotheses are used). So, calculations can be performed in the former
R–module. Now, assuming that dim.X /� dmC 1, we have

v D .u2�u1/
2m.u3�u1/

m
� � � .un�u1/

m

D .�1/m
�

2m

m

�
um

1 um
2 .u3�u1/

m
� � � .un�u1/

m

D .�1/m
�

2m

m

�
um

1 um
2 um

3 .u4�u1/
m
� � � .un�u1/

m

:::

D .�1/m
�

2m

m

�
um

1 um
2 � � �u

m
n ;

which is nonzero by hypothesis. For dim.X / arbitrary, consider the skeletal inclusion
j W X .dmC1/!X and note that v ¤ 0 since j �.v/¤ 0.
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Corollary 3.15 For every closed simply connected symplectic manifold M 2m we
have TCn.M /D nm.

Proof This follows from Theorem 3.14 (taking u to be the cohomology class given by
the symplectic 2–form on M , and noting that the hypothesis on um˝ � � �˝um holds
since the coefficients are taken over the reals), inequality (4), the product inequality
for category and the inequality cat.M 2m/�m which follows from [24, Theorem 5,
page 75]. (This argument also yields cat.M 2m/Dm, a well known fact.)

Of course, Corollary 3.15 applies to complex projective spaces. In the quaternionic
case essentially the same proof gives the following.

Corollary 3.16 The quaternionic projective space of real dimension 4m, HPm , has
TCn.HPm/D nm.

Note that Corollaries 3.15 and 3.16 imply that the upper bound in Corollary 3.3 as well
as both bounds in Theorem 3.9 are optimal in general.

4 Symmetric topological complexity

In this section we introduce two symmetric versions of TCn . One of them, TC†n ,
has the advantage of being a homotopy invariant. The other, TCS

n , gives (up to our
normalization convention) the natural generalization of the symmetric topological
complexity studied by Farber and Grant in [9]. We begin with the nD 2 case of the
homotopically well-behaved version.

Consider the involutions � W X � X ! X � X and x� W P .X / ! P .X / defined by
�.x;y/ D .y;x/ and x�.
 /.t/ D 
 .1� t/, for .x;y/ 2 X �X and 
 2 P .X /. We
work with symmetric subsets A�X �X (ie those for which �ADA) and equivariant
maps sW A! P .X / (ie those satisfying x�.s.a//D s.�.a// for all a 2A).

Definition 4.1 We have TC†.X / is the least integer k which satisfies X � X D

A0 [ A1 [ � � � [ Ak , where each Ai is open, symmetric and admits a continuous
equivariant section si W Ai! P .X / of the map e2 in (2).

Before proving (in Proposition 4.7 below) that TC†.X / is a homotopy invariant of X ,
we show that its numerical value differs by at most one from the numerical value
of Farber and Grant’s symmetric topological complexity. In accordance with the
normalization hypothesis in this paper, we must compare TC†.X / with

(6) TCS
2 .X /D genus."2/C 1;
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where "2 is the map on the right-hand side in (3). Note that, under the perspective
of [9], the “C1” summand in (6) is meant to take into account the obvious equivariant
section of e2 on the diagonal.

Proposition 4.2 For each Euclidean neighborhood retract (ENR) X we have

TCS
2 .X /� 1� TC†.X /� TCS

2 .X /:

Remark 4.3 We will prove a more general version of Proposition 4.2 (Theorem 4.8
below). The proof of the general version is considerably more elaborate as it requires a
rather involved use of equivariant Euclidean neighborhood retracts. For the sake of
clarity, we offer first a much simpler argument proving Proposition 4.2.

Proof of Proposition 4.2 To prove the first inequality, take an open covering X �X D

A0[ � � � [Ak , where each Ai is symmetric and has a continuous equivariant section
of e2 . The Z=2–action � on X �X yields the orbit map �2W X �X ! .X �X /=� .
Then, for each i D 0; : : : ; k , �2.Ai�d2.X // is open and has a section of "2 , and thus
genus."2/� TC†.X /.

For the second inequality, take B0; : : : ;Bl , with B0[� � �[Bl D �2.X �X �d2.X //,
where each Bi is open and has a section of "2 . Then each ��1

2
.Bi/ is symmetric,

open in X �X and admits an equivariant section of e2 , cf [9, Lemma 8]. Further,
since X is an ENR, there is a symmetric open neighborhood of d2.X / supporting an
equivariant section of e2 ; see the proof of [9, Corollary 9]. Consequently we have that
TC†.X /� 1C genus."2/.

The two examples below show that both bounds in Proposition 4.2 are optimal in
general.

Example 4.4 For X contractible, TC2.X / D TC†.X / D 0 while TCS
2 .X / D 1.

Indeed, take a point x0 2X and a contraction H W X �I!X , with H.x; 0/D x and
H.x; 1/D x0 for all x 2X . Given .a; b/ 2X �X , take the path � D s.a; b/W I!X

such that �.t/DH.a; 2t/ for 0� t � 1
2

and �.t/DH.b; 2�2t/ for 1
2
� t � 1. Then

s is an equivariant section for eX
2

and, in view of the general inequality

TC2.X /� TC†.X /;

this gives TC2.X / D TC†.X / D 0. The same argument, but now using (6), gives
TCS

2 .X /D 1; see [10, Example 7].
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Example 4.5 The numbers TCS
2 .S

k/ and TC2.S
k/ have been computed in [9, Corol-

lary 18] and [5], respectively. Here we use the inequalities TC2�TC† �TCS together
with the fact that TCS

2 .S
k/D 2D TC2.S

2k/ to deduce TC†.S2k/D TCS
2 .S

2k/D 2

for all k . On the other hand, since TC2.S
2kC1/ D 1, the above argument only

gives 1� TC†.S2kC1/� TCS
2 .S

2kC1/D 2. Incidentally, note that the construction
in [8, Example 4.8] gives an open covering S2kC1�S2kC1 DA0[A1 by symmetric
sets Ai , and continuous sections of e2 over each Ai , i D 0; 1. However, one of these
sections is not equivariant, which prevents us from deducing TC†.Sk/D 1.

We next define higher analogues of TC† . Recall that for a given n, the symmetric
group †n acts on the right of X n and X Jn by permuting coordinates and paths,
respectively. Further, the fibration en in (2) is †n –equivariant. We now work with
symmetric subsets A�X n (ie those for which A� DA for all � 2†n ) and equivariant
maps sW A! X Jn (ie those satisfying s.a/� D s.a�/ for all a 2 A and � 2 †n ).
Definition 4.1 can now be extended to the following.

Definition 4.6 We have that TC†n .X / is the least integer k which satisfies X n D

A0 [ A1 [ � � � [ Ak , where each Ai is open, symmetric and admits a continuous
equivariant section si W Ai!X Jn for the map en in (2).

Proposition 4.7 We have TC†n .X / is a homotopy invariant of X .

Proof It suffices to prove that, given f W Y !X and gW X ! Y with gf ' 1Y , we
have TC†n .X /�TC†n .Y / for all n. Let H W 1Y 'gf be a homotopy H W Y �Œ0; 1�!Y

such that H.y; 0/D y and H.y; 1/D gf .y/.

Let A be an open symmetric subset of X n , and let sW A! X Jn be an equivariant
section of eX

n over A. Given aD .a1; : : : ; an/ 2A, let si.a/ denote the restriction of
s.a/2X Jn to the i th wedge summand of Jn (this is a path in X joining x0 and ai for
some x0 2X that depends continuously on a). Note that the equivariance of s gives

(7) si.a�.1/; : : : ; a�.n//D s�.i/.a1; : : : ; an/ for � 2†n:

Take B WD .f n/�1.A/, where f n stands for the nth cartesian power of f , and
consider the map s0W B ! Y Jn which, at a given b 2 B such that f n.b/ D a, has
s0i.b/ WD .g ı si.a// � 
i as its restriction to the i th wedge summand of Jn , where 
i is
the path in Y given by


i.t/DH.bi ; 1� t/:

Then, s0 is an equivariant continuous section of eY
n over B in view of (7).
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In this setting, if X DA0[� � �[Ak , where each Aj (j D 0; : : : ; k ) is open, symmetric
and admits a continuous equivariant section of eX

n , then Y D B0 [ � � � [Bk where
each Bj — defined as above using Aj — is open, symmetric, and admits a continuous
equivariant section of eY

n . Hence, TC†n .X /� TC†n .Y /.

The following assertion is our higher analogue of Proposition 4.2.

Theorem 4.8 If X is an ENR, and "n is the map on the right-hand side in (3), then

(8) genus."n/� TC†n .X /� genus."n/C � � �C genus."2/C n� 1:

The first inequality in (8) follows just as in the proof of Proposition 4.2: if en admits
an equivariant section over A�X n , then "n admits a section over �n.A\Confn.X //,
where �nW X

n!X n=†n stands for the canonical projection. Our efforts will therefore
focus on the second inequality in (8), whose proof requires some preparation.

Definition 4.9 A topological space X with an action of a compact Lie group G is
called a Euclidean neighborhood G –retract (G –ENR) if X can be G –equivariantly
embedded, as a G –equivariant retract of a G –symmetric neighborhood of X , into an
orthogonal representation of G .

In what follows we will make implicit use of the following fact: if a G–ENR X is
G –equivariantly embedded in a given orthogonal representation RN of G , then there
exists a G –symmetric neighborhood U of X in RN and a G –equivariant retraction
U !X . As noticed at the end of the introduction in Jaworowski [17], such a property
follows by applying the equivariant version of the Tietze Theorem (Tietze–Gleason
Theorem; see Bredon [2] and Gleason [14]) to the nonequivariant argument by Dold
in [4, Proposition and Definition IV.8.5].

We shall use the following weaker version of [17, Theorem 2.1].2

Theorem 4.10 (Jaworowski) Let L be a finite group acting on an ENR Z . Then Z

is an L–ENR if for every subgroup G of L, the fixed point set ZG is an ENR.

Next, consider the †n –equivariant filtration

(9) dn.X /DD1.X /� � � � �Dn�1.X /�Dn.X /DX n;

2Although Jaworowski’s theorem was originally set in terms of a combination of the concepts of
ANR’s and ENR’s, for our formulation the reader should keep in mind the fact that any ENR is an ANR
(which is elementary in view of the Tietze Theorem).
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where, for i 2 f1; : : : ; ng, we have that Di.X / is the closed set consisting of the n–
tuples .x1;x2; : : : ;xn/ such that the set fx1;x2; : : : ;xng has cardinality at most i . For
instance, Dn�1.X / is the so-called fat diagonal in X n , otherwise denoted by �n.X /.
Compare the filtration in (9) with the one considered in Kallel [18, Section 1].

Set D0.X /D¿, and for 1� i � n let C i stand for the difference Di.X /�Di�1.X /,
the subspace of n–tuples .x1;x2; : : : ;xn/ such that the set fx1;x2; : : : ;xng has cardi-
nality i . Note that C nDConfn.X / and that for i <n, each partition PDfP1; : : : ;Pig

of f1; 2; : : : ; ng into i nonempty sets determines a closed subspace C i
P � C i formed

by those tuples .x1; : : : ;xn/ in C i satisfying xr D xs whenever both r and s lie in
the same part Pj for some j .

Note that C i is the disjoint union of the C i
P ’s, each of which maps homeomorphically

onto Confi.X / under a suitable coordinate projection. (For instance, for n D 3 the
three closed subspaces partitioning C 2 are determined by the three requirements
x1 D x2 , x1 D x3 , and x2 D x3 ; in the latter case, the required projection can be
chosen to be .x1;x2;x3/ 7! .x1;x2/.) Therefore, we have a continuous (surjective)
map �i W C

i! Confi.X /.

Let P i denote the subspace of e�1
n .C i/ consisting of those multipaths ˛ D f˛ig

n
iD1

satisfying ˛k D ˛` whenever ˛k.1k/ D ˛`.1`/. Proceeding as above, we get a
continuous surjection …i W P

i! e�1
i .Confi.X // in such a way that in the commutative

diagram

(10)

X Jn P i e�1
i .Confi.X // Yi.X /

X n C i Confi.X / Braidi.X /,

…i

en en ei "i

�i

the second and third squares are pullbacks, and the two leftmost horizontal maps are
inclusions but do not determine a pullback square.

Our last ingredient in preparation for the proof of (8) is given by taking an arbitrary
open subset W of Braidi.X /. We then let AD ��1

i .W 0/, where W 0 stands for the
inverse image of W under the projection Confi.X /! Braidi.X /. Clearly W 0 is
†i –symmetric and A is †n –symmetric. This setup will be in force in the following
two auxiliary results, which are the basis of our proof of the second inequality in (8).

Lemma 4.11 The space A is a †n –ENR.
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Proof Note first that every C i
P is an ENR, because it is homeomorphic to Confi.X /

which, in turn, is an open subset of the ENR X i . Now, every g 2 †n yields a
homeomorphism from any given C i

P onto some C i
P 0 . In particular for P D P 0 , if

there is some x 2 C i
P fixed by g , then y � g D y for all y 2 C i

P , ie .C i
P/

g D C i
P .

Hence, for any subgroup G of †n , the set .C i
P/

G is either empty or the whole of C i
P ,

and therefore an ENR. Consequently, .C i/G is an ENR since C i is the disjoint union of
the various C i

P ’s, and AG is an ENR since A is open in C i . Thus, by Theorem 4.10, A

is a †n –ENR, as asserted.

Lemma 4.12 Assume sW A! P i is a †n –equivariant section of the second vertical
map in (10). Then there is a †n –symmetric neighborhood U of A in X n that admits a
†n –equivariant section � W U !X Jn of the first vertical map in (10).

Proof We begin by noticing that, as a consequence of Theorem 4.10, X n is a †n –ENR.
Indeed, for any subgroup G of †n , the fixed point set of G on X n is an intersection
of hyperplanes xi D xj in X n . Hence, .X n/G is an ENR since it is homeomorphic
to X m for m� n. Thus, we can take †n –equivariant embeddings A!X n!RN ,
and a †n –equivariant retraction r 0W O!A of a †n –symmetric neighborhood O of A

in RN , where RN is an orthogonal representation of †n .

Set V D O \ X n . Then V is a †n –symmetric neighborhood of A in X n , and
rD r 0jV W V !A is a †n –equivariant retraction. Note that V is an open †n –symmetric
subset of the †n –ENR X n , and so V is a †n –ENR too. We can then choose an
open †n –symmetric neighborhood Y of V in RN , and a †n –equivariant retraction
�W Y ! V . Let U � V consist of all points v 2 V such that the segment from v to
i ı r.v/ lies in Y where i stands for the inclusion A ,! V (cf [4, Corollary IV.8.7]).
Clearly U is a neighborhood of A in V , and hence in X n . Furthermore, the composi-
tion i ı r jU and the inclusion U ,! V are homotopic via the homotopy

ˆW U � I ! V; ˆ.u; t/D �.t �uC .1� t/ � i ı r.u//:

Note that U is †n –symmetric and ˆ is †n –equivariant, since the †n –action on RN

is orthogonal and so it maps lines to lines.

We use the homotopy ˆ in order to construct a †n –equivariant section � W U!X Jn of
the first vertical map in (10). For x 2U , consider the path ˇW I! V , ˇ.t/Dˆ.x; t/,
starting at y D ˇ.0/ D r.x/ 2 A and ending at x . Since V is a subset of X n , we
can set x D .x1; : : : ;xn/, y D .y1; : : : ;yn/, and ˇ D .ˇ1; : : : ; ˇn/, so each ˇi is a
path in X from yi to xi . Further, s.y/ gives a multipath f˛ig

n
iD1

with ˛i.1/ D yi

and ˛i.0/D j̨ .0/ for all 1� i; j � n. Then the multipath f˛i �ˇig
n
iD1

determines an
element �.x/ 2 X Jn with en.�.x//D x . This defines the required †n –equivariant
section over U .
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Note that the commutativity of the two pullback squares in (10) imply that the hypothesis
in Lemma 4.12 holds whenever W (the arbitrary open subset of Braidi.X / taken in the
paragraph previous to Lemma 4.11) is chosen to admit a section of the fourth vertical
map in (10). Thus we obtain the following.

Proof of Theorem 4.8 (conclusion) In view of Lemmas 4.11 and 4.12 we can choose
1C genus."i/ †n –equivariant local sections for en whose domains cover C i , and
thus a total of

(11)
nX

iD2

.1C genus."i//C 1D genus."n/C � � �C genus."2/C n

†n –equivariant local sections for en whose domains cover X n . Here the “C1” on
the left-hand side in (11) accounts for the obvious equivariant section on the diago-
nal D1.X /. The theorem follows.

A comparison of Proposition 4.2 and Theorem 4.8 suggests the following generalization
of (6).

Definition 4.13 For n� 2 set

TCS
n .X /D genus."n/C � � �C genus."2/C n� 1:

This is a minor variation of the one proposed in the short final section in [23], and will
be explored next for X a sphere.

5 Švarc genus of "n and configuration spaces of spheres

The following result, which is a specialization of [24, Theorem 5, page 75] (recalling
that .�X /n�1 is the homotopy fiber of the map "nD "

X
n W Yn.X /!Braidn.X / in (3)),

gives a general upper bound for genus."n/ analogous to that in Theorem 3.9.

Proposition 5.1 If X is an .s�1/–connected space and Braidn.X / has the homotopy
type of a d –dimensional CW space, then genus."n/� d=s .

For instance, genus."X
n / D 0 for any contractible space X . This generalizes the

phenomenon noted in Example 4.4. Part of the goal of this section is to show that the
bound in Proposition 5.1 becomes an equality in some concrete situations, other than
those noted for a contractible space X . Yet, the following considerations are written in
conjectural terms; nonconjectural statements start from equation (14) on.
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The conjectural inequality in (1) is based on Proposition 5.1. To illustrate the idea,
start by recalling from Example 4.5 the equality TCS

2 .S
k/D 2 valid for any k . Farber

and Grant prove that TCS
2 .S

k/ is no greater than 2 by producing a symmetric motion
planner with two local rules. Their construction makes use of a well-known explicit
†2 –equivariant deformation retraction Conf2.S

k/! Sk that implies a corresponding
homotopy equivalence

(12) Braid2.S
k/'RPk :

Here we note that Proposition 5.1 gives an alternative direct way to deduce the inequality
TCS

2 .S
k/ � 2: all that is needed is the fact that hdim.Braid2.S

k//D k . In order to
extend this simple argument for higher TCS

n we would need to have a good hold on
the homotopy dimension of Braidn.S

k/. Remark 5.3 below provides evidence toward
the following.

Conjecture 5.2 For n� 2 and k � 1, hdim.Braidn.S
k//D .k � 1/.n� 1/C 1.

Remark 5.3 Note that the validness of Conjecture 5.2 for nD 2 follows from (12).
Likewise, the case k D 1 of Conjecture 5.2 is well known: Braidn.S

1/ has the
homotopy type of S1 (cf [18, Proposition 2.5]). On the other hand, from the calculations
of homology groups in Feichtner and Ziegler [13], it can be proved that Conjecture 5.2
is true if Braidn.S

k/ is replaced by Confn.S
k/ when k � 3. At any rate, since the

homotopy dimension of a space is not less than the homotopy dimension of any of its
covering spaces, we have

hdim.Braidn.S
k//� hdim.Confn.S

k//D .k � 1/.n� 1/C 1:

Therefore the crux of the matter in settling Conjecture 5.2 (and, as a consequence, the
equality hdim.Confn.S

k//D .n� 1/.k � 1/C 1) rests in producing a CW complex
of dimension .k � 1/.n � 1/C 1 which has the †n –equivariant homotopy type of
Confn.S

k/. The second and fourth authors of this paper have an ongoing project
aiming at such a goal; the basic ideas have been presented by the authors in the second
half of [1]. However, it turns out that those ideas require an important tuning and have
actually become a completely independent paper (which will appear elsewhere). The
present paper then focuses on the first half of [1], ie the development of the properties
of the sequential topological complexity.

We have mentioned that the validness of (1) would follow from Conjecture 5.2. In
fact, in view of Proposition 5.1, we see that Conjecture 5.2 would actually imply the
validness of the more detailed but still conjectural estimate

(13) genus."i/� i � 1�
i�2

k
for X D Sk and i � 2:
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The remainder of the section is devoted to presenting evidence for the validness and
general optimality of (13).

We have observed that (13) holds true for i D 2. As for its optimality, it is worth
observing that Farber and Grant prove in [9, Section 3] the inequality

(14) TCS
2 .S

k/� 2

by means of an involved extension of Haefliger’s calculation of the mod 2 cohomology
ring H�.Braid2.M /IZ=2/ for M a closed smooth manifold. But a simpler argument
is available. Start by observing that if (14) were to fail, then there would exist a
continuous section � for "Sk

2
. In such a situation we could consider the composite

Sk ˛
�! Conf2.S

k/
z�
�! e�1

2 .Conf2.S
k// ,! PSk ;

where ˛.x/D .x;�x/ and z� would be the (Z=2–equivariant) pullback of � under (3).
The adjoint of this composite would then yield a homotopy H W Sk � Œ0; 1� ! Sk

between the identity H.�; 0/ and the antipodal map H.�; 1/, and which would in
addition satisfy the relation

(15) H.x; t/DH.�x; 1� t/:

But this is impossible since the identity on Sk (which has degree 1) cannot be homotopic
to the presumed map H.�; 1

2
/ which, in view of (15), would factor as

Sk proj
��!RPk

! Sk ;

and would therefore have even degree.

The above argument, as well as the closely related proof of Proposition 5.4 below, were
pointed out to the authors by Peter Landweber.

Proposition 5.4 Let k be a positive odd integer. For X DSk and i�2, genus."i/�1.
Further, genus."i/D 1 provided k D 1.

Proof of Proposition 5.4 The second assertion follows from the first one in view of
Proposition 5.1 and the first part of Remark 5.3. To prove the first assertion, we derive
a contradiction from the assumption that "i admits a global continuous section � .
Consider the map cW Sk ! .Sk/Ji given as the composite

Sk ˛
�! Confi.S

k/
z�
�! e�1

i .Confi.S
k// ,! .Sk/Ji :

Here ˛.x/D .x; zx; z2x; : : : ; zi�1x/, where z 2 S1 is a primitive i th root of unity
acting on Sk in the standard way (recall k is odd), and z� is the †n –equivariant section
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of the map ei W e
�1
i .Confi.S

k//! Confi.S
k/ obtained as the pullback in (3) of the

assumed � . Thus, for each x 2 Sk , c.x/ is a multipath fcj .x/g
i�1
jD0
2 .Sk/Ji , where

each cj .x/ is a path in Sk starting at a point s.x/ 2 Sk and ending at zj x , for a
continuous map sW Sk ! Sk . Note that the equivariance of z� gives

(16) cj .zx/D cjC1.x/

for all x 2 Sk ; here the value of j is to be interpreted modulo i . Then the map
H W Sk � Œ0; 1�! Sk defined by H.x; t/D c0.x/.t/ is a homotopy starting at s and
ending at the identity. In particular, sW Sk ! Sk has degree 1. The contradiction
comes by observing that the degree of s would be divisible by i . Indeed, (16) gives

s.zx/D c0.zx/.0/D c1.x/.0/D s.x/;

so that s factors as Sk
proj
��! Lk.i/! Sk , where Lk.i/ is the standard lens space

Sk=.Z= i/.

Corollary 5.5 The known equality TCS
2 .S

k/D2 (valid for any integer k>0) extends
to TCS

n .S
k/D 2.n� 1/ for k D 1.

Remark 5.6 The first conclusion in Proposition 5.4 is partially extended by Karasev
and Landweber’s result in [19] asserting that genus."Sk

3
/�1 for k not of the form 4�3e

with e � 0. Note that the conjectural (13) would in fact sharpen the above estimate to
an equality.
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