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three-component links: Toward higher helicities
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We describe a new approach to triple linking invariants and integrals, aiming for a
simpler, wider and more natural applicability to the search for higher order helicities.

To each three-component link in Euclidean 3–space, we associate a generalized
Gauss map from the 3–torus to the 2–sphere, and show that the pairwise linking
numbers and Milnor triple linking number that classify the link up to link homotopy
correspond to the Pontryagin invariants that classify its generalized Gauss map up to
homotopy. This generalized Gauss map is a natural successor to Gauss’s original map
from the 2–torus to the 2–sphere. Like its prototype, it is equivariant with respect to
orientation-preserving isometries of the ambient space, attesting to its naturality and
positioning it for application to physical situations.

When the pairwise linking numbers are all zero, we give an integral formula for the
triple linking number which is a natural successor to the classical Gauss integral for
the pairwise linking numbers, with an integrand invariant under orientation-preserving
isometries of the ambient space. This new integral is patterned after J H C Whitehead’s
integral formula for the Hopf invariant, and hence interpretable as the ordinary helicity
of a related vector field on the 3–torus.

57M25, 76B99, 78A25

1 Introduction

In the first paper of this series [10], hereafter “Part I”, we did all of the above for
three-component links in the three-sphere (see also our [9]). The first step there was to
find a geometrically natural generalized Gauss map. That same first step is taken here
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in Euclidean 3–space, but the map itself is entirely different because the requirement
of geometric naturality involves a different, and in this case noncompact, group of
isometries. After describing this new version of the generalized Gauss map, we build a
bridge between the spherical and Euclidean versions, across which we transport proofs
and save labor.

Setting the stage

Three-component links in R3 were classified up to link homotopy – a deformation
during which each component may cross itself but distinct components must remain
disjoint – by John Milnor in his senior thesis, published in 1954 [24]. A complete set
of invariants is given by the pairwise linking numbers p , q and r of the components,
and by the triple linking number, which is the residue class � of one further integer
modulo the greatest common divisor of p , q and r .

For example, the Borromean rings shown below have p D q D r D 0 and �D˙1,
where the sign depends on the ordering and orientation of the components.

Borromean Rings. This is a photograph, courtesy of Peter Cromwell [8],
of a panel in the carved walnut doors of the Church of San Sigismondo in
Cremona, Italy.

To each ordered, oriented three-component link L in R3 , we will associate a generalized
Gauss map gL from the 3–torus T 3 D S1 �S1 �S1 to the 2–sphere S2 , in such a
way that link homotopies of L become homotopies of gL . The definition of gL will
be given below.

Maps from T 3 to S2 were classified up to homotopy by Lev Pontryagin in 1941 [27].
A complete set of invariants is given by the degrees p , q and r of the restrictions to
the 2–dimensional coordinate subtori, and by the residue class � of one further integer
modulo twice the greatest common divisor of p , q and r , the Pontryagin invariant of
the map.
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This invariant is an analogue of the Hopf invariant for maps from S3 to S2 , and is an
absolute version of the relative invariant originally defined by Pontryagin for pairs of
maps from a 3–complex to the 2–sphere that agree on the 2–skeleton of the domain.

Our first main result, Theorem A below, equates Milnor’s and Pontryagin’s invariants
p , q and r for L and gL , and asserts that

2�.L/D �.gL/:

In the special case when p D q D r D 0, we derive an explicit and geometrically
natural integral formula for the triple linking number, generalizing Gauss’s classical
integral formula for the pairwise linking number and patterned after J H C Whitehead’s
integral formula [30] for the Hopf invariant [14]. This formula and variations of it are
presented in Theorem B below.

In the rest of this introduction, we give the background and motivation for our work,
then lead up to and provide the definition of the generalized Gauss map of a three-
component link in R3 , give careful statements of Theorems A and B, and finally
present the results of a numerical calculation of Milnor’s triple linking number using
Theorem B.

Background and motivation

We recall the famous integral formula of Gauss from 1833 [12] for the linking number
of two disjoint smooth closed curves

X D fx.s/ W s 2 S1
g and Y D fy.t/ W t 2 S1

g

in Euclidean 3–space R3 :

Lk.X;Y /D
1

4�

Z
T 2

dx

ds
�

dy

dt �
x�y

jx�yj3
ds dt:

The helicity of a vector field V defined on a bounded domain � in R3 is given by the
formula

Hel.V /D
1

4�

Z
���

V .x/�V .y/�
x�y

jx�yj3
dx dy ;

where dx and dy are volume elements.

There is no mistaking the analogy with Gauss’s linking integral, and no surprise that
helicity is a measure of the extent to which the orbits of V wrap and coil around one
another.

Woltjer introduced this notion in 1958 [31] during his study of the magnetic field in
the Crab Nebula, showed that the helicity of a magnetic field remains constant as the
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field evolves according to the equations of ideal magnetohydrodynamics, derived from
this a lower bound for the changing field energy, and calculated the stable field at the
end of the evolution. The term “helicity” was coined by Moffatt in 1969 [25], who
also derived the above formula from Woltjer’s original expression, and revealed that
the helicity of a field measures the extent to which its orbits wrap and coil around one
another.

Since its introduction, helicity has played an important role in astrophysics and solar
physics, and in plasma physics here on earth.

Our study was motivated by a problem proposed by Arnol´d and Khesin [3] regarding
the search for “higher helicities” for divergence-free vector fields. In their own words:

The dream is to define such a hierarchy of invariants for generic vector fields
such that, whereas all the invariants of order � k have zero value for a given
field and there exists a nonzero invariant of order kC1, this nonzero invariant
provides a lower bound for the field energy.

Previous integral formulas for Milnor’s triple linking number and attempts to de-
fine a higher order helicity can be found (in chronological order) in the work of
Massey [22; 23], Monastyrsky and Retakh [26], Berger [5; 6], Guadagnini, Martellini
and Mintchev [13], Evans and Berger [11], Akhmetiev and Ruzmaiken [29; 2], Arnol´d
and Khesin [3], Laurence and Stredulinsky [19], Leal [20], Hornig and Mayer [15],
Rivière [28], Khesin [16], Bodecker and Hornig [7], Auckly and Kapitanski [4],
Akhmetiev [1] and Leal and Pineda [21].

The principal sources for these formulas are Massey triple products in cohomology,
quantum field theory in general, and Chern–Simons theory in particular. A common
feature of these integral formulas is that choices must be made to fix the domain of
integration and the value of the integrand.

Our own approach to this problem, initiated in Part I and continued here, has been
applied by Komendarczyk [17; 18] in special cases to derive a higher order helicity for
magnetic fields whose ordinary helicity is zero, and to obtain from this nonzero lower
bounds for the field energy.

The key map from Conf3 R3 to S 2

Let x , y and z be three distinct points in Euclidean 3–space R3 . They will typically
span a triangle there, but are permitted to be colinear, as long as they remain distinct.
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We show a typical configuration below, with the sides of the triangle oriented and
labeled as a, b , c , with the interior angles labeled as ˛ , ˇ , 
 , and with the orientation
of the triangle determining a choice of unit normal vector n.

If the triangle degenerates to a doubly covered line segment, then the sides are still
recognizable, and likewise the interior angles, with two of them zero and the third
180ı . In this case we set n equal to the zero vector.

x

y

z

a

b

c

˛

ˇ




n

Figure 1: Triangle and normal vector

We write Œa� D a=jaj for the unit vector pointing along the oriented side a of our
triangle, and likewise for the other two sides, and similarly define

Œb; c�D
b � c

jbjjcj
D .sin˛/n;

and likewise for the other two pairs of sides. Next, we define a vector in 3–space by
the formula

F.x;y; z/D Œa�C Œb�C Œc�C Œb; c�C Œc; a�C Œa; b�;

equivalently,

F.x;y; z/D .a=jajC b=jbjC c=jcj/C .sin˛C sinˇC sin 
 /n:

The term Œa�D a=jaj is just the classical Gauss map applied to the vertices y and z ,
and the expression Œa�C Œb�C Œc� is the symmetrization of this. It is a vector tangent to
the plane of the triangle, and is easily seen to vanish only for equilateral triangles.

The term Œb; c�D b � c=jbjjcj D .sin˛/n is a dimensionless version of the “directed
area” of the triangle, and the expression Œb; c�C Œc; a�C Œa; b� is the symmetrization of
this. This vector is orthogonal to the plane of the triangle, and vanishes only when the
triangle degenerates, with the vertices lying along a line but remaining distinct.
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It follows that F.x;y; z/ is never zero, since it is the sum of two orthogonal vectors
that do not vanish simultaneously.

The smoothness of F as a function of x , y and z is apparent from its defining formula,
since each of its six terms is a smooth function of distinct points. The equivariance of
F with respect to orientation preserving isometries of R3 is similarly apparent, since

Œ'.a/�D '.Œa�/ and Œ'.b/; '.c/�D '.Œb; c�/

for any rotation ' of R3 , while translations don’t change a, b and c . F is likewise
insensitive to change of scale.

Let Conf3 R3 denote the configuration space of ordered triples of distinct points in
R3 . Then with the above definition, we have

F W Conf3 R3
�!R3

�f0g:

Since the image of F misses the origin of R3 , we may normalize to obtain

f D F=jF jW Conf3 R3
�! S2:

Then the map f is also smooth, equivariant as above, and insensitive to change of
scale.

The generalized Gauss map

Suppose now that L is a link in R3 with three parametrized components

X D fx.s/ W s 2 S1
g; Y D fy.t/ W t 2 S1

g; Z D fz.u/ W u 2 S1
g:

We define the generalized Gauss map gLW T
3! S2 by

gL.s; t;u/D f .x.s/;y.t/; z.u//:

We regard this map as a natural generalization of the classical Gauss map from the
2–torus T 2 to the 2–sphere S2 associated with a two-component link in R3 . If the
link L is smooth, then so is the map gL .

The map gL is equivariant with respect to the group IsomCR3 of orientation-preserving
isometries of R3 . That is, if ' is such an isometry, then g'.L/D ' ıgL , where ' acts
on S2 via its “rotational part”. In particular, if ' is a translation, then g'.L/ D gL .

Since the map f is insensitive to change of scale, so is the map gL .

The homotopy class of gL is unchanged under reparametrization of L, or more
generally under any link homotopy of L. The generalized Gauss map is also “sign
symmetric” in that it transforms under any permutation of the components of L by

Algebraic & Geometric Topology, Volume 13 (2013)



Generalized Gauss maps and integrals for three-component links 2903

precomposing with the corresponding permutation automorphism of T 3 multiplied by
the sign of the permutation.

Pictures of the generalized Gauss map

In each of the three parts of Figure 2, we show the vector

F.x;y; z/D .a=jajC b=jbjC c=jcj/C .sin˛C sinˇC sin 
 /n

attached to a triangle in R3 with vertices at x , y and z .

x y

z

a

b

c
60ı

60ı

60ı

F � 2:6n

(a) equilateral triangle

x

y

z

a

b

c
60ı

90ı

30
ı

2:37n

:52

F

(b) 30–60–90 right triangle

y xza b

c
F
(c) degenerate triangle

Figure 2: The vector F for various triangles

Equilateral triangle In this case a=jajC b=jbjC c=jcj D 0, and so

F D .sin 60ıC sin 60ıC sin 60ı/nD 3.
p

3=2/n� 2:6n;

as depicted in Figure 2(a).

30–60–90 right triangle In Figure 2(b), we take a to be of length
p

3, b to be of
length 2, and c to be of length 1. The vector a=jaj C b=jbj C c=jcj is shown above
running from a point on the hypotenuse b to a point on the longer side a, and has
length � :52. The quantity

.sin 90ıC sin 60ıC sin 30ı/nD .1C
p

3=2C 1=2/n� 2:37n;

and so
F � (horizontal vector of length .52)C 2:37n:
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Degenerate triangle The degenerate triangle shown in Figure 2(c) has a of length 1,
b of length 2, and c of length 3. The vector a=jajC b=jbjC c=jcj is then of length 1

lying in the line of the triangle as shown, while

.sin 0ıC sin 0ıC sin 180ı/nD 0;

and so F is the unit vector shown.

Statement of results

The first of our two main results gives an explicit correspondence between the Milnor
link homotopy invariants of a three-component ordered, oriented link in R3 and the
Pontryagin homotopy invariants of its generalized Gauss map.

Theorem A Let L be a three-component link in R3 . Then the pairwise linking
numbers p , q and r of L are equal to the degrees of its generalized Gauss map
gLW T

3! S2 on the two-dimensional coordinate subtori of T 3 , while twice Milnor’s
�–invariant for L is equal to Pontryagin’s �–invariant for gL modulo 2 gcd.p; q; r/.

Each two-dimensional coordinate subtorus of T 3 is oriented to have positive intersec-
tion with the remaining circle factor.

We refer the reader to Part I for a discussion of Milnor’s �–invariant for a three-
component link in R3 or S3 , and of Pontryagin’s �–invariant in the special case
of a smooth map of a 3–manifold to the 2–sphere. We also explained there how to
convert Pontryagin’s original relative invariant to an absolute invariant for maps from
the 3–torus to the 2–sphere by comparing with an appropriate family of “base maps”.

In Part I, the long and detailed proof of Theorem A in the spherical case was carried
out in terms of framed bordism of framed links in the 3–torus. We will capitalize on
that effort here by building a bridge from the Euclidean to the spherical versions, and
cross it to transfer the burden of proof from the Euclidean side back to the spherical
side, to work already done there.

Our second main result provides an integral formula for Milnor’s �–invariant in the
special case when the pairwise linking numbers p , q and r of L vanish.

To explain the symbols that appear in that formula, let ! denote the usual area form
on S2 , normalized to have total area 1. Then ! pulls back under the generalized
Gauss map gLW T

3! S2 to a closed 2–form !L on T 3 , which we refer to as the
characteristic 2–form of L.

When p , q and r are all zero, it follows from Theorem A that !L is exact. We then let
d�1.!L/ denote any “primitive” of !L , meaning any 1–form on T 3 whose exterior
derivative is !L .
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Theorem B Let L be a three-component link in R3 whose pairwise linking numbers
are all zero. Then Milnor’s �–invariant of L is given by the formula

(1) �.L/D
1

2

Z
T 3

d�1.!L/^!L:

The value of this integral is easily seen to be independent of the choice of primitive
d�1.!L/ of !L .

The geometrically natural choice for d�1.!L/ is the primitive of least L2 –norm. It
can be obtained explicitly by convolving !L with the fundamental solution ' of the
scalar Laplacian on T 3 , and then taking the exterior coderivative ı of the resulting
2–form:

d�1.!L/D ı.' �!L/:

Details of this construction are presented after the proof of Theorem B. If we make
this geometrically natural choice for d�1.!L/, then the integrand in the above formula
is also geometrically natural in the sense that it is unchanged if L is moved by an
orientation-preserving isometry of R3 .

For comparison with formula (1) above, we recall J H C Whitehead’s integral formula
for the Hopf invariant of a smooth map f W S3! S2 ,

Hopf.f /D
Z

S3

d�1.f �!/^f �!;

where ! is the normalized area form on S2 , and f �! is its pullback to an exact
2–form on S3 .

There are two additional versions of the integral formula for Milnor’s �–invariant
given in Theorem B, and we present them next. To state these formulas, we again need
some definitions.

Let L be a three-component link in R3 , and !L its characteristic 2–form on T 3 . We
convert the closed 2–form !L to a divergence-free vector field VL on T 3 via the usual
formula,

!L.A;B/D .A�B/�VL;

for all vector fields A and B on T 3 . We refer to VL as the characteristic vector field
of L on T 3 . When the pairwise linking numbers p , q and r of L are all zero, the
vector field VL on T 3 is in the image of curl.

For the third version of our formula for Milnor’s �–invariant, we need to express the
characteristic 2–form and vector field in terms of Fourier series on the 3–torus. To that
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end, view T 3 D S1 �S1 �S1 as the quotient .R=2�Z/3 , and write x D .s; t;u/ for
a general point there.

Using the complex form of Fourier series, express

!L D

X
n2Z3

.cs
n dt ^ duC ct

n du^ dsC cu
n ds ^ dt/ ei n�x:

We compress notation by writing

cn D .c
s
n; c

t
n; c

u
n/;

dx D .ds; dt; du/; ?dx D .dt ^ du; du^ ds; ds ^ dt/;

@x D .@s; @t ; @u/D .@=@s; @=@t; @=@u/:

Using this compression, the formulas for !L and VL become

!L D

X
n

cn ei n�x � ? dx and VL D

X
n

cn ei n�x �@x:

Writing 0D .0; 0; 0/, the coefficient c0 D .c
s
0
; ct

0
; cu

0
/D 0 since the form !L is exact,

equivalently the vector field VL is in the image of curl. Finally, we express the general
Fourier coefficient cn in terms of its real and imaginary parts,

cn D anC ibn with an and bn real.

Theorem B (continued) Let L be a three-component link in R3 with pairwise linking
numbers all zero. Then Milnor’s �–invariant of L is also given by the formulas

�.L/D
1

2

Z
T 3�T 3

VL.x/�VL.y/�ry'.x�y/ dx dy(2)

D 8�3
X
n¤0

an �bn�
n

jnj2
;(3)

where ' is the fundamental solution of the scalar Laplacian on the 3–torus, VL is the
characteristic vector field of L, and an and bn are the real and imaginary parts of the
Fourier coefficients cn of VL .

In formula (2) above, the difference x�y is taken in the abelian group structure on
T 3 , the expression ry'.x � y/ indicates the gradient with respect to y while x is
held fixed, and dx and dy are volume elements on T 3 .

Formula (2) is just the vector field version of formula (1), in which the integral hidden
in the convolution formula for d�1.!L/ is expressed openly. This formula shows that
the Milnor triple linking number �.L/ is one-half the helicity of the vector field VL
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on the 3–torus T 3 . The integrand in formula (2) is invariant under the group IsomCR3

of orientation-preserving isometries of R3 .

Numerical computation

We used Matlab to calculate an approximation to Milnor’s �–invariant, as given by
formula (3) of Theorem B, for the three-component link L in R3 parametrized by

x.s/D .2 cos s; 7 sin s; 0/;

y.t/D .0; 2 cos t; 7 sin t/;

z.u/D .7 sin u; 0; 2 cos u/;

with s; t;u 2 Œ0; 2��, which is a concrete realization of the Borromean rings with
�D�1 shown in Figure 3.

Figure 3: Borromean rings

In particular, we used Matlab to calculate approximations to the Fourier coefficients
cn of its characteristic form !L . We used subdivisions of the s , t and u intervals into
256 subintervals to approximate the integrals defining the coefficients cn for

�64� ns; nt ; nu � 64:

The approximation of � we obtained in this way was �0:99999997.
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2 Theorem A

Proof plan for Theorem A

We begin with a summary of the spherical theory, and its key map fS W Conf3 S3!S2 .
Next, we discuss inverse stereographic projection h from R3 to S3 , and use it to
define a map H W Conf3 R3! Conf3 S3 . Afterwords, we state and prove the “bridge
lemma”, which asserts the homotopy commutativity of the diagram

Conf3 S3
f

S // S2

Conf3 R3

H

OO

f
E // S2;

where the horizontal maps are the “key maps” of the spherical and Euclidean theories.
Finally, we use the bridge lemma to prove Theorem A.

Recollection of the spherical theory

The key map Conf3 S3! S2 in the spherical setting was defined in Part I as follows.
Let x , y and z be three distinct points on the unit 3–sphere S3 in R4 . They cannot
lie on a straight line in R4 , so must span a 2–plane there. Translate this plane to pass
through the origin, and then orient it so that the vectors x�z and y�z form a positive
basis. The result is an element G.x;y; z/ of the Grassmann manifold G2R4 of all
oriented 2–planes through the origin in 4–space. This procedure defines the Grassmann
map

GW Conf3 S3
�!G2R4;

where Conf3 S3 is the configuration space of ordered triples of distinct points in S3 .
The map G is pictured in Figure 4.

The Grassmann manifold G2R4 with its natural Riemannian metric is, up to scale,
isometric to the product S2 �S2 of two unit 2–spheres. We will express this by the
map � W G2R4! S2 �S2 which takes the oriented 2–plane ha; bi with orthonormal
basis a; b to the point .ba; ab/ in S2�S2 , using quaternion notation and conjugation.
This gives us two projection maps �C and �� from G2R4! S2 ,

�Cha; bi D ba and ��ha; bi D ab:

If the basis a, b is not necessarily orthonormal, then we saw in Part I that

�Cha; bi D
Im.ba/

jIm.ba/j
and ��ha; bi D

Im.ab/

jIm.ab/j
:
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G.x;y; z/

x
y

z

S3
R4

Figure 4: Map from Conf3 S3 to G2R4

We arbitrarily use the first projection �C to define the key map

fS D �C ıGW Conf3 S3
�! S2:

Inverse stereographic projection

The corresponding key map in the Euclidean theory is

fE D FE=jFEjW Conf3 R3
�! S2;

where

FE.x;y; z/D .a=jajC b=jbjC c=jcj/C .sin˛C sinˇC sin 
 /n

was defined earlier, and where we have added the subscripts to fE and FE to signal
“Euclidean”.

The bridge between the two theories will be a map H W Conf3 R3! Conf3 S3 which
makes the diagram

Conf3 S3
f

S // S2

Conf3 R3

H

OO

f
E // S2

commutative up to homotopy. We present two versions of H , the first straightforward
via inverse stereographic projection, and the second homotopic to it but more convenient
for our arguments.

Viewing R4 as the space of quaternions, we regard R3 as the subspace of purely
imaginary quaternions, and then use inverse stereographic projection from �1 to
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provide a diffeomorphism hW R3! S3�f�1g, which preserves the usual orientations
on R3 and S3 .

R3

S3

�1

q

h.q/

ijk–space

Figure 5: Inverse stereographic projection hW R3! S3�f�1g

Let q denote a purely imaginary quaternion, thus a point of R3 . We compute that

h.q/D
1� jqj2

1Cjqj2
C

2q

1Cjqj2
;

with the first term on the right being the real part of h.q/, and the second term its
imaginary part. Indeed, a quick check shows that h.q/ has norm 1, and that h.q/�.�1/

is a real multiple of q� .�1/, and hence that �1, q and h.q/ lie on a straight line.

The first version of the map H W Conf3 R3 ! Conf3 S3 uses inverse stereographic
projection on each of three points,

H.x;y; z/D .h.x/; h.y/; h.z//:

The second version, call it H 0 , is defined as follows. Let .x;y; z/ be a triple of distinct
points in R3 , and use translation by �z there to move this to the triple .x�z;y�z; 0/

of distinct points. Then apply h to each of the three points in this new triple to obtain

H 0.x;y; z/D .h.x� z/; h.y � z/; 1/:

The maps H and H 0W Conf3 R3!Conf3 S3 , shown in Figure 6, are clearly homotopic.

Statement of the bridge lemma

The result below will permit us to transfer the burden of proof for our current Euclidean
version of Theorem A back to its spherical version in Part I.
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S3

R3

1

x
y

zh.x/

h.y/

h.z/

0

x� z
y� z

h.x� z/
h.y� z/H

H
0

Figure 6: The maps H and H 0W Conf3 R3! Conf3 S3

Bridge Lemma The map H W Conf3 R3! Conf3 S3 makes the diagram

Conf3 S3
f

S // S2

Conf3 R3

H

OO

f
E // S2

commutative up to homotopy.

Setup We avoid the nuisance of normalization by using instead the maps

FS W Conf3 S3
�!R3

�f0g and FE W Conf3 R3
�!R3

�f0g

defined by
FS .u; v; w/D Im

�
.v�w/.u�w/

�
and

FE.x;y; z/D .a=jajC b=jbjC c=jcj/C .sin˛C sinˇC sin 
 /n:

At the same time, we replace the map H by the homotopic map H 0 . So now our job
is to show homotopy commutativity of the diagram

Conf3 S3
FS // R3�f0g

Conf3 R3

H 0

OO

FE // R3�f0g:
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Proof of the Bridge Lemma

We start with three distinct points x , y and z in R3 , forming a possibly degenerate
triangle with sides aD z�y , b D x� z and c D y �x . Then we begin to compute,

FS ıH 0.x;y; z/D FS .h.x� z/; h.y � z/; 1/

D FS .h.b/; h.�a/; 1/

D Im..h.�a/� 1/.h.b/� 1//:

We recall the formula

h.q/D
1� jqj2

1Cjqj2
C

2q

1Cjqj2
;

and first substitute �a for q , and then b for q , to get

h.�a/� 1D�
2.jaj2C a/

1Cjaj2

and

h.b/� 1D�
2.jbj2C b/

1Cjbj2
:

Then
Im
�
.h.�a/� 1/.h.b/� 1/

�
D C Im

�
.jaj2C a/.jbj2C b/

�
;

where the positive real number C is given by

C D 4.1Cjaj2/�1.1Cjbj2/�1:

We keep in mind that a and b , since they lie in R3 , are purely imaginary quaternions,
and hence the sums jaj2Ca and jbj2Cb are both quaternions written in terms of their
real and imaginary parts.

We recall the following formula about quaternion multiplication,

Im.q1q2/D Re.q1/ Im.q2/C Im.q1/Re.q2/C Im.q1/� Im.q2/;

using the vector cross product in the 3–space of purely imaginary quaternions.

Applying this formula, we get

Im
�
.jaj2C a/.jbj2C b/

�
D jaj2bC ajbj2C a� b:

Then, stringing together the above computations, we have shown that

FS ıH 0.x;y; z/D C.jaj2bC ajbj2C a� b/
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with
C D 4.1Cjaj2/�1.1Cjbj2/�1:

Since we are focusing on homotopy of maps into R3�f0g, the strictly positive quantity
C is irrelevant, and we hide it from view by recording the homotopy

(i) FS ıH 0.x;y; z/' jaj2bC ajbj2C a� b:

It remains to show that this expression is homotopic in R3�f0g to

(ii) FE.x;y; z/D .a=jajC b=jbjC c=jcj/C .sin˛C sinˇC sin 
 /n:

The right side of (i) can be rewritten as

(i0) .jaj2bC ajbj2/C .jajjbj sin 
 /n

for convenience of comparison with (ii). In each case we have the sum of a vector
parallel to the plane of the triangle xyz and a vector orthogonal to it.

As long as the triangle is nondegenerate, the components in (i 0 ) and (ii) orthogonal to
its plane are both strictly positive multiples of the unit normal vector n. Hence (i 0 )
and (ii) are vectors which both lie in the same open half-space of R3 , and so the line
segment between them misses the origin. Thus FS ıH 0 is homotopic to FE in such
cases.

So the issue now is, what happens when the triangle degenerates? In such a case, (i 0 )
and (ii) reduce to their tangential components,

(i0) jaj2bC ajbj2

and

(ii) a=jajC b=jbjC c=jcj:

Both of these vectors point along the line of the degenerate triangle, and we must check
that they always point the same way, so that the line segment between them again
misses the origin.

There are three cases, according as which vertex is between the other two. They are
shown in Figure 7, in which the line of the degenerate triangle is turned so that the two
shorter sides point to the right.

In each case, the vector a=jaj C b=jbj C c=jcj is a unit vector pointing to the right.
Furthermore, in all three cases, the vector jaj2bCajbj2 points in the same direction as
its rescaling b=jbj2C a=jaj2 , which is a nonzero vector pointing in the same direction
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y z xa b

c

x y zc a

b

z x yb c

a

Figure 7: Degenerate triangles

as the shorter of the two vectors a and b , and this is also to the right. It follows that in
every case, nondegenerate or degenerate, the line segment between the vectors (i 0 ) and
(ii) misses the origin.

Hence the maps FSıH
0 and FE from Conf3 R3!R3�f0g are homotopic, completing

the proof of the Bridge Lemma.

Proof of Theorem A

Let L be a three-component link in R3 , let hW R3!S3�f�1g be inverse-stereographic
projection, and let h.L/ be the resulting three-component link in S3 . Since h is an
orientation-preserving diffeomorphism, the Milnor invariants p , q , r and � for L

match those for h.L/.

The Euclidean generalized Gauss map gLW T
3! S2 for L is given by

gL.s; t;u/D fE.x.s/;y.t/; z.u//;

while the spherical generalized Gauss map gh.L/W T
3! S2 for h.L/ is given by

gh.L/.s; t;u/D fS

�
h.x.s//; h.y.t//; h.z.u//

�
D fS ıH.x.s/;y.t/; z.u//:

According to the Bridge Lemma, the maps fE and fS ıH W Conf3 R3 ! S2 are
homotopic.

It follows that the maps gL and gh.L/W T
3 ! S2 are also homotopic. Hence the

Pontryagin invariants p , q , r and � for gL match those for gh.L/ .

Then the correspondence between the Milnor invariants for L and the Pontryagin
invariants for gL , as asserted in our current Euclidean version of Theorem A, follows
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from the correspondence between these invariants for h.L/ and gh.L/ , as asserted in
the spherical version of Theorem A, which was proved in Part I.

This completes the proof of the Euclidean version of Theorem A.

3 Theorem B

Proof plan for Theorem B

Let L be a three-component link in Euclidean space R3 , with pairwise linking numbers
all zero. Theorem B gives three explicit formulas for the triple linking number (Milnor
�–invariant) of L:

�.L/D
1

2

Z
T 3

d�1.!L/^!L(1)

D
1

2

Z
T 3�T 3

VL.x/�VL.y/�ry'.x�y/ dx dy(2)

D 8�3
X
n¤0

an �bn�
n

jnj2
;(3)

using the notation defined after the two statements of Theorem B.

We saw in Part I that the spherical version of Theorem A implies the spherical version
of Theorem B, and we show below that the same implication holds for the Euclidean
versions here. We will give details only for the proof of formula (1), and refer the
reader to Part I for the derivation of formulas (2) and (3).

The first step will be to give an explicit formula for the characteristic 2–form !L of
the link L.

As mentioned earlier, the geometrically natural choice for d�1.!L/ is the primitive of
least L2 –norm, which can be obtained explicitly by convolving !L with the fundamen-
tal solution ' of the scalar Laplacian on T 3 , and then taking the exterior coderivative
ı of the resulting 2–form: d�1.!L/D ı.' �!L/.

So we will give the expression for this fundamental solution ' , and then show how
formula (1) follows from J H C Whitehead’s integral formula for the Hopf invariant.

An explicit formula for the characteristic 2–form !L

We start with a three-component link L in R3 with components

X D fx.s/ W s 2 S1
g; Y D fy.t/ W t 2 S1

g; Z D fz.u/ W u 2 S1
g;
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and recall Figure 1 with

a.t;u/D z.u/�y.t/; b.s;u/D x.s/� z.u/; c.s; t/D y.t/�x.s/;

and the formula

F.x;y; z/D Œa�C Œb�C Œc�C Œb; c�C Œc; a�C Œa; b�:

x

y

z

a

b

c

˛

ˇ




n

Figure 1

With mild abuse of notation, we write

F.s; t;u/D F.x.s/;y.t/; z.u//:

The generalized Gauss map gLW T
3! S2 of the link L is then given by

gL.s; t;u/D
F.s; t;u/

jF.s; t;u/j
:

Let ! be the Euclidean area 2–form on the unit 2–sphere S2 � R3 , normalized so
that the total area is 1 instead of 4� . If P is a point of S2 , and A and B are tangent
vectors to S2 at P , then

!P .A;B/D
1

4�
.A�B/�P:

This 2–form ! on S2 extends to a closed 2–form ! on R3�f0g given by

!P .A;B/D
.A�B/�P

4�jP j3
;

which is the pullback of ! from S2 to R3�f0g via the map P 7! P=jP j.
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Hence the pullback g�
L
! of ! from S2 to T 3 via gL D F=jF j is the same as the

pullback F�! of ! from R3�f0g to T 3 via F . Write

g�L! D F�! D p.s; t;u/ dt ^ duC q.s; t;u/ du^ dsC r.s; t;u/ ds ^ dt:

Then we have

p.s; t;u/D F�!.@t ; @u/D !.F�@t ;F�@u/D !.Ft ;Fu/D
.Ft �Fu/�F

4�jF j3
;

where the subscripts on F denote partial derivatives, and likewise for q.s; t;u/ and
r.s; t;u/.

Therefore, the characteristic 2–form of the link L is

!L D g�L!

D
1

4�jF j3

�
.Ft �Fu�F /dt^ duC .Fu �Fs�F /du^ dsC .Fs �Ft �F /ds^ dt

�
:

Proof of Theorem B, formula (1)

Let L be a three-component link in Euclidean 3–space R3 with pairwise linking
numbers p , q and r all zero.

By the first part of Theorem A these numbers are the degrees of the Gauss map
gLW T

3! S2 on the two-dimensional coordinate subtori. Since these degrees are all
zero, gL is homotopic to a map gW T 3! S2 which collapses the 2–skeleton of T 3

to a point:

gL ' gW T 3 �
�! S3 f

�! S2;

where � is the collapsing map.

By the second part of Theorem A, Milnor’s �–invariant of L is equal to half of
Pontryagin’s �–invariant of gL , which in turn is just the Hopf invariant of f W S3!S2 ,

�.L/D
1

2
�.gL/D

1

2
Hopf.f /:

We can thus use J H C Whitehead’s integral formula for the Hopf invariant as follows.

Let ! be the area 2–form on S2 , normalized so that
R

S2 ! D 1. Its pullback f �!
is a closed 2–form on S3 , which is exact because H 2.S3IR/ D 0. Let d�1.f �!/

indicate any smooth 1–form on S3 whose exterior derivative is f �! . Then, as noted
earlier, Whitehead showed that the Hopf invariant of f is given by the formula

Hopf.f /D
Z

S3

d�1.f �!/^f �!;
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the value of the integral being independent of the choice of the 1–form d�1.f �!/.

Pulling the integral back to T 3 via the collapsing map � W T 3! S3 yields the formula

�.gL/D

Z
T 3

d�1.!L/^!L;

thanks to the fact that gL is homotopic to g D f ı � , and recalling that !L D g�
L
! .

Since �.L/D 1
2
�.gL/, we get

�.L/D
1

2

Z
T 3

d�1.!L/^!L;

completing the proof of formula (1) of Theorem B.

The geometrically natural choice for d�1.!L/

After stating Theorem B, we indicated that the geometrically natural choice for d�1.!L/

is the primitive of least L2 –norm. It can be obtained explicitly by convolving !L with
the fundamental solution ' of the scalar Laplacian on T 3 , and then taking the exterior
coderivative ı of the resulting 2–form:

d�1.!L/D ı.' �!L/:

If we make this geometrically natural choice for d�1.!L/, then the integrand

d�1.!L/^!L

in the above formula for the triple linking number �.L/ is also geometrically natural
in the sense that it is unchanged if L is moved by an orientation-preserving isometry
of R3 .

We give a hint of the details, extracted from Part I, and refer the reader there for proofs
of Propositions A and B below.

Proposition A The fundamental solution of the scalar Laplacian on the 3–torus
T 3 D .R=2�Z/3 is given by the formula

'.x/D
1

8�3

X
n¤0

ein�x

jnj2
:

The function ' is C1 at all points x 2 T 3 except 0, where it becomes infinite.

In the above formula, n denotes a triple of integers.
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Although this formula for ' is expressed in terms of complex exponentials, the value
of ' is real for real values of x because of the symmetry of the coefficients. Figure 8
shows the graph of the corresponding fundamental solution

'.x/D
1

4�2

X
n¤0

ein�x

jnj2

of the scalar Laplacian on the 2–torus T 2 D S1 � S1 , summed for jnj � 15, and
displayed over the range Œ�3�; 3��� Œ�3�; 3��.

Figure 8: Fundamental solution of the Laplacian

The graph in Figure 8 looks like a “Morse function” with infinite maxes at the lattice
points, saddles in the middle of the “edges”, and mins at the center of the fundamental
domains.

Proposition B If ! is any exact differential form on T 3 with C1 coefficients, then

˛ D ı.' �!/

is a C1 differential form satisfying d˛ D ! . Furthermore, if d˛ D ! as well, then
j˛jL2 � j˛jL2 , with equality if and only if ˛ D ˛ .

Epilogue

Where do the generalized Gauss maps come from?

In the spherical theory, the generalized Gauss map gLW T
3! S2 comes from the key

map

fS W Conf3 S3 Grassmann map G
�����������!G2R4

�
C

�! S2
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via the substitution gL.s; t;u/D fS .x.s/;y.t/; z.u//, while in the Euclidean theory
it comes in the same way from the unit normalization fE of the key map

FE.x;y; z/D Œa�C Œb�C Œc�C Œb; c�C Œc; a�C Œa; b�:

But where do these key maps come from?

In the spherical theory, we saw in Part I that the configuration space Conf3 S3 defor-
mation retracts to a subspace diffeomorphic to S3 �S2 , and the key map fS there is
an SO.4/–equivariant version of this deformation retraction, followed by projection to
the S2 factor.

In the Euclidean theory, we face two complicating features: the configuration space
Conf3 R3 is more challenging – it deformation retracts to a subspace diffeomorphic to a
nontrivial S2_S2 bundle over S2 – and the group IsomCR3 of orientation-preserving
isometries of R3 is noncompact.

If we were not seeking a generalized Gauss map which is geometrically natural in the
sense of being IsomCR3 –equivariant, we could simply define the key map fE to be
the composition

Conf3 R3 H
�! Conf3 S3 fS

�! S2;

where the “inclusion” H W Conf3 R3! Conf3 S3 was defined earlier via inverse stere-
ographic projection. This definition of fE is far from being IsomCR3 –equivariant,
and the resulting generalized Gauss map would suffer from the same defect, and so
lose its applicability to problems in fluid dynamics and plasma physics.

What we did instead was to consider the map H 0W Conf3 R3! Conf3 S3 which first
took a triple .x;y; z/ of distinct points in R3 via translation to the triple .x�z;y�z; 0/

“based” at the origin in R3 , and then via inverse stereographic projection h to the triple
.h.x� z/; h.y � z/; 1/ of distinct points based at the identity in S3 .

Inverse stereographic projection for such based triples is SO.3/–equivariant, and leads
to the map FS ıH 0W Conf3 R3!R3�f0g which up to scale takes

.x;y; z/ 7�! jaj2bC ajbj2C a� b;

thanks to our earlier computation, where a D z � y and b D x � z . This map is
IsomCR3 –equivariant, and so is the resulting projection to S2 , but at the cost of losing
scale-invariance and “sign symmetry” in the three points x , y and z .

A little artful play led to the alternative formula

FE.x;y; z/D Œa�C Œb�C Œc�C Œb; c�C Œc; a�C Œa; b�;
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which is still IsomCR3 –equivariant, but now also scale-invariant and sign symmetric,
and at the same time, thanks to the Bridge Lemma, homotopic to FS ıH 0 .

This is the origin of the key map FE W Conf3 R3!R3�f0g and the resulting Euclidean
version of the generalized Gauss map gLW T

3! S2 .

References
[1] P M Akhmetiev, On a new integral formula for an invariant of 3–component oriented

links, J. Geom. Phys. 53 (2005) 180–196 MR2110831

[2] P Akhmetiev, A Ruzmaikin, A fourth-order topological invariant of magnetic or
vortex lines, J. Geom. Phys. 15 (1995) 95–101 MR1310943

[3] V I Arnold, B A Khesin, Topological methods in hydrodynamics, Applied Mathemati-
cal Sciences 125, Springer, New York (1998) MR1612569

[4] D Auckly, L Kapitanski, Analysis of S2 –valued maps and Faddeev’s model, Comm.
Math. Phys. 256 (2005) 611–620 MR2161273

[5] M A Berger, Third-order link integrals, J. Phys. A 23 (1990) 2787–2793 MR1062985

[6] M A Berger, Third-order braid invariants, J. Physics A 24 (1991) 4027–4036
MR1126646

[7] H v Bodecker, G Hornig, Link invariants of electromagnetic fields, Phys. Rev. Lett. 92
(2004) 030406 MR2068408

[8] P Cromwell, E Beltrami, M Rampichini, The Borromean rings, Math. Intelligencer
20 (1998) 53–62 MR1601839

[9] D DeTurck, H Gluck, R Komendarczyk, P Melvin, C Shonkwiler, D S Vela-Vick,
Triple linking numbers, ambiguous Hopf invariants and integral formulas for three-
component links, Mat. Contemp. 34 (2008) 251–283 MR2588614

[10] D DeTurck, H Gluck, R Komendarczyk, P Melvin, C Shonkwiler, D S Vela-Vick,
Generalized Gauss maps and integrals for three-component links: Toward higher
helicities for magnetic fields and fluid flows, J. Math. Phys. 54 (2013) 013515

[11] N W Evans, M A Berger, A hierarchy of linking integrals, from: “Topological aspects
of the dynamics of fluids and plasmas”, (H K Moffatt, G M Zaslavsky, P Comte, M
Tabor, editors), NATO Adv. Sci. Inst. Ser. E Appl. Sci. 218, Kluwer Acad. Publ.,
Dordrecht (1992) 237–248 MR1232234

[12] C F Gauss, Integral formula for linking number, from: “Werke Ergänzungsreihe, Band
V”, (C A F Peters, editor), Georg Olms Verlag, Hildesheim (1975) 605

[13] E Guadagnini, M Martellini, M Mintchev, Wilson lines in Chern–Simons theory and
link invariants, Nuclear Phys. B 330 (1990) 575–607 MR1043394

Algebraic & Geometric Topology, Volume 13 (2013)

http://dx.doi.org/10.1016/j.geomphys.2004.06.002
http://dx.doi.org/10.1016/j.geomphys.2004.06.002
http://www.ams.org/mathscinet-getitem?mr=2110831
http://dx.doi.org/10.1016/0393-0440(94)00008-R
http://dx.doi.org/10.1016/0393-0440(94)00008-R
http://www.ams.org/mathscinet-getitem?mr=1310943
http://www.ams.org/mathscinet-getitem?mr=1612569
http://dx.doi.org/10.1007/s00220-005-1289-6
http://www.ams.org/mathscinet-getitem?mr=2161273
http://stacks.iop.org/0305-4470/23/2787
http://www.ams.org/mathscinet-getitem?mr=1062985
http://stacks.iop.org/0305-4470/24/4027
http://www.ams.org/mathscinet-getitem?mr=1126646
http://dx.doi.org/10.1103/PhysRevLett.92.030406
http://www.ams.org/mathscinet-getitem?mr=2068408
http://www.ams.org/mathscinet-getitem?mr=1601839
http://www.mat.unb.br/~matcont/34_11.pdf
http://www.mat.unb.br/~matcont/34_11.pdf
http://www.ams.org/mathscinet-getitem?mr=2588614
http://dx.doi.org/10.1063/1.4774172
http://dx.doi.org/10.1063/1.4774172
http://www.ams.org/mathscinet-getitem?mr=1232234
http://dx.doi.org/10.1016/0550-3213(90)90124-V
http://dx.doi.org/10.1016/0550-3213(90)90124-V
http://www.ams.org/mathscinet-getitem?mr=1043394


2922 DeTurck, Gluck, Komendarczyk, Melvin, Nuchi, Shonkwiler and Vela-Vick

[14] H Hopf, Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche,
Math. Ann. 104 (1931) 637–665 MR1512691

[15] G Hornig, C Mayer, Towards a third-order topological invariant for magnetic fields, J.
Phys. A 35 (2002) 3945–3959 MR1910658

[16] B A Khesin, Geometry of higher helicities, Mosc. Math. J. 3 (2003) 989–1011
MR2078570

[17] R Komendarczyk, The third order helicity of magnetic fields via link maps, Comm.
Math. Phys. 292 (2009) 431–456 MR2544738

[18] R Komendarczyk, The third order helicity of magnetic fields via link maps, II, J. Math.
Phys. 51 (2010) 122702 MR2779587

[19] P Laurence, E Stredulinsky, Asymptotic Massey products, induced currents and
Borromean torus links, J. Math. Phys. 41 (2000) 3170–3191 MR1755498

[20] L Leal, Link invariants from classical Chern–Simons theory, Phys. Rev. D 66 (2002)
125007 MR1959509

[21] L Leal, J Pineda, The topological theory of the Milnor invariant �.1; 2; 3/ , Modern
Phys. Lett. A 23 (2008) 205–210 MR2392325

[22] W S Massey, Some higher order cohomology operations, from: “Symposium interna-
cional de topología algebraica”, (N C Flores, editor), Universidad Nacional Autónoma
de México, Mexico City (1958) 145–154 MR0098366

[23] W S Massey, Higher order linking numbers, from: “Conf. on Algebraic Topology”,
Univ. of Illinois at Chicago Circle (1969) 174–205 MR0254832

[24] J Milnor, Link groups, Ann. of Math. 59 (1954) 177–195 MR0071020

[25] H K Moffatt, The degree of knottedness of tangled vortex lines, J. Fluid Mech. 35
(1969) 117–129

[26] M I Monastyrsky, V S Retakh, Topology of linked defects in condensed matter, Comm.
Math. Phys. 103 (1986) 445–459 MR832921

[27] L Pontrjagin, A classification of mappings of the three-dimensional complex into
the two-dimensional sphere, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941) 331–363
MR0004780

[28] T Rivière, High-dimensional helicities and rigidity of linked foliations, Asian J. Math.
6 (2002) 505–533 MR1946345

[29] A Ruzmaikin, P Akhmetiev, Topological invariants of magnetic fields, and the effect
of reconnections, Phys. Plasmas 1 (1994) 331–336 MR1269751

[30] J H C Whitehead, An expression of Hopf’s invariant as an integral, Proc. Nat. Acad.
Sci. USA 33 (1947) 117–123 MR0020255

[31] L Woltjer, A theorem on force-free magnetic fields, Proc. Nat. Acad. Sci. USA 44
(1958) 489–491 MR0096542

Algebraic & Geometric Topology, Volume 13 (2013)

http://dx.doi.org/10.1007/BF01457962
http://www.ams.org/mathscinet-getitem?mr=1512691
http://dx.doi.org/10.1088/0305-4470/35/17/309
http://www.ams.org/mathscinet-getitem?mr=1910658
http://www.ams.org/distribution/mmj/vol3-3-2003/khesin.pdf
http://www.ams.org/mathscinet-getitem?mr=2078570
http://dx.doi.org/10.1007/s00220-009-0896-z
http://www.ams.org/mathscinet-getitem?mr=2544738
http://dx.doi.org/10.1063/1.3516611
http://www.ams.org/mathscinet-getitem?mr=2779587
http://dx.doi.org/10.1063/1.533299
http://dx.doi.org/10.1063/1.533299
http://www.ams.org/mathscinet-getitem?mr=1755498
http://dx.doi.org/10.1103/PhysRevD.66.125007
http://www.ams.org/mathscinet-getitem?mr=1959509
http://dx.doi.org/10.1142/S0217732308023979
http://www.ams.org/mathscinet-getitem?mr=2392325
http://www.ams.org/mathscinet-getitem?mr=0098366
http://www.ams.org/mathscinet-getitem?mr=0254832
http://dx.doi.org/10.2307/1969685
http://www.ams.org/mathscinet-getitem?mr=0071020
http://dx.doi.org/10.1017/S0022112069000991
http://projecteuclid.org/euclid.cmp/1104114794
http://www.ams.org/mathscinet-getitem?mr=832921
http://mi.mathnet.ru/eng/msb6073
http://mi.mathnet.ru/eng/msb6073
http://www.ams.org/mathscinet-getitem?mr=0004780
http://www.ams.org/mathscinet-getitem?mr=1946345
http://dx.doi.org/10.1063/1.870835
http://dx.doi.org/10.1063/1.870835
http://www.ams.org/mathscinet-getitem?mr=1269751
http://dx.doi.org/10.1073/pnas.33.5.117
http://www.ams.org/mathscinet-getitem?mr=0020255
http://dx.doi.org/10.1073/pnas.44.6.489
http://www.ams.org/mathscinet-getitem?mr=0096542


Generalized Gauss maps and integrals for three-component links 2923

DD, HG, HN: Department of Mathematics, University of Pennsylvania
David Rittenhouse Lab, 209 South 33rd Street, Philadelphia, PA 19104-6395, USA

RK: Department of Mathematics, Tulane University
New Orleans, LA 70118, USA

PM: Department of Mathematics, Bryn Mawr College
Bryn Mawr, PA 19010, USA

CS: Department of Mathematics, University of Georgia
Athens, GA 30602, USA

DSVV: Department of Mathematics, Louisiana State University
Baton Rouge, LA 70803, USA

deturck@math.upenn.edu, gluck@math.upenn.edu, rako@tulane.edu,
pmelvin@brynmawr.edu, hnuchi@math.upenn.edu, clayton@math.uga.edu,
shea@math.lsu.edu

http://www.math.upenn.edu/~deturck/
http://dauns.math.tulane.edu/~rako/
http://www.brynmawr.edu/math/people/melvin
http://www.math.upenn.edu/~hnuchi/
http://www.math.uga.edu/~clayton
https://www.math.lsu.edu/~shea/

Received: 18 November 2012

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

mailto:deturck@math.upenn.edu
mailto:gluck@math.upenn.edu
mailto:rako@tulane.edu
mailto:pmelvin@brynmawr.edu
mailto:hnuchi@math.upenn.edu
mailto:clayton@math.uga.edu
mailto:shea@math.lsu.edu
http://www.math.upenn.edu/~deturck/
http://dauns.math.tulane.edu/~rako/
http://www.brynmawr.edu/math/people/melvin
http://www.math.upenn.edu/~hnuchi/
http://www.math.uga.edu/~clayton
https://www.math.lsu.edu/~shea/
http://msp.org
http://msp.org

	1. Introduction
	Setting the stage
	Background and motivation
	The key map from a configuration space to the sphere
	The generalized Gauss map
	Pictures of the generalized Gauss map
	Statement of results
	Numerical computation

	2. Theorem A
	Proof plan for Theorem A
	Recollection of the spherical theory
	Inverse stereographic projection
	Statement of the bridge lemma
	Proof of the Bridge Lemma
	Proof of Theorem A

	3. Theorem B
	Proof plan for Theorem B
	An explicit formula for the characteristic 2--form L
	Proof of Theorem B, formula (1)
	The geometrically natural choice for d-1(L)

	Epilogue
	Where do the generalized Gauss maps come from?

	References

