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Convexity package for momentum maps
on contact manifolds

RIVER CHIANG

YAEL KARSHON

Let a torus T act effectively on a compact connected cooriented contact manifold,
and let ‰ be the natural momentum map on the symplectization. We prove that,
if dim T > 2 , the union of the origin with the image of ‰ is a convex polyhedral
cone, the nonzero level sets of ‰ are connected (while the zero level set can be
disconnected), and the momentum map is open as a map to its image. This answers a
question posed by Eugene Lerman, who proved similar results when the zero level
set is empty. We also analyze examples with dim T � 2 .

53D10, 53D20; 52B99

1 Introduction

One of the fundamental theorems in equivariant symplectic geometry is the convexity
theorem for Hamiltonian torus actions. This theorem is part of the following “convexity
package”. Let ˆW M !Rk be a momentum map for a Hamiltonian torus action on a
compact connected symplectic manifold. Then ˆ has these properties:

(S1) The image ˆ.M / is a convex polytope.

(S2) The level sets of ˆ are connected.

(S3) The map ˆ is open as a map to its image.

See Atiyah [2], Guillemin and Sternberg [17] and Sjamaar [34].

Eugene Lerman [24] gave an analogous theorem in equivariant contact geometry
when the torus orbits are transverse to the contact distribution and asked whether the
transversality condition is necessary (cf Remark 1.2). In this paper we answer Lerman’s
question and give a “convexity package” for momentum maps on contact manifolds.
More precisely, let M be a compact connected cooriented contact manifold, equipped
with an effective action of a torus of dimension k > 2, and let

‰W M �R>0!Rk
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be the momentum map on the symplectization (see below). The momentum cone is

C.‰/ WD f0g[‰.M �R>0/:

Then ‰ has these properties:

(C1) The momentum cone C.‰/ is a convex polyhedral cone.

(C2) The nonzero level sets, ‰�1.�/, for �¤ 0, are connected.

(C3) The map ‰ is open as a map to its image.

See Theorem 9.12.

We now recall relevant definitions.

Let M be a manifold of dimension 2nC 1. A contact form on M is a one-form ˛

such that ˛^ .d˛/n never vanishes, or, equivalently, such that d˛ is nondegenerate on
ker˛ . If ˛ is a contact one-form and f is a positive function, then f ˛ is a contact
one-form and ker˛ D kerf ˛ .

A contact structure � on M is a codimension one distribution (subbundle of the tangent
bundle TM ) that can be locally obtained as the kernel of a contact one-form. If �
is cooriented, there exists a globally defined one-form ˛ such that � D ker˛ and ˛
induces the coorientation of � . Such ˛ is unique up to multiplication by a positive
function.

The symplectization of .M; ˛/ is the symplectic manifold .M �R>0; d.t˛//, where
t is the coordinate on R>0 and where we use the same symbol ˛ to denote the contact
one-form on M and its pullback to M �R>0 . Nondegeneracy of d.t˛/ follows from
the property ˛^ .d˛/n ¤ 0.

Consider the positive connected component of the annihilator of � in the cotangent
bundle T �M :

�0
C WD

˚
.x; ˇ/ j x 2M; ˇ 2 T �x M; ˇ.�jx/D 0; ˇ induces the coorientation of �jx

	
:

The map M �R>0 ! �0
C which sends .x; t/ to t˛x defines a trivialization of �0

C

as a principal R>0 bundle. Also, it pulls back the tautological one-form on T �M

to the one-form t˛ on M �R>0 and the standard symplectic form on T �M to the
symplectic form d.t˛/ on M �R>0 . Thus, to avoid choosing a contact one-form,
one may define the symplectization of .M; �/ to be the symplectic submanifold �0

C of
T �M .

Let a torus T Š .S1/k act on M and preserve the cooriented distribution � . Let XM ,
for X in the Lie algebra t of T , denote the vector fields on M that are induced from the
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action: XM .x/D d
dt
jtD0.exp tX / �x . The action naturally lifts to a Hamiltonian action

on the cotangent bundle T �M which preserves the submanifold �0
C . The standard

momentum map on T �M restricts to a momentum map on �0
C whose X component,

for X 2 t, is given by .x; ˇ/ 7! ˇ.XM .x// for all x 2M and ˇ 2 �0
Cjx � T �x M .

Let ˛ be a T –invariant contact one-form on M . (Such ˛ can be obtained by aver-
aging; see Lemma 2.6 of Lerman’s paper [25].) The ˛–momentum map is the map
‰˛W M ! t� whose X component ‰X

˛ W M !R, for X 2 t, is given by

.1:1/ ‰X
˛ .x/D ˛.XM .x//

for all x 2M . It satisfies d‰X
˛ D��.XM /d˛ on M . Using ˛ to identify �0

C with
M �R>0 , the induced T action on M �R>0 is the given action on the M component
and is trivial on the R>0 component, and the momentum map becomes the map

‰W M �R>0! t�; .x; t/ 7! t‰˛.x/;

which we call the contact momentum map corresponding to ˛ . Thus, the momentum
cone is

C.‰/D f0g[‰.M �R>0/

DR�0 �‰˛.M /:

1.2 Remark The action is said to be transverse if the orbits are transverse to the
contact distribution. By the formula (1.1) for the momentum map, an action is transverse
if and only if its momentum map never takes the value zero. A contact momentum
map ‰W M �R>0 ! t� is never proper as a map to t� : the preimage of a closed
ball centered at the origin is never compact. But if M is compact and the action is
transverse, then the momentum map is proper as a map to t� X f0g. In the case of
transverse torus actions, parts (3) and (4) of Theorem 9.12 were proved by Lerman
in [24].

1.3 Remark The definition of the contact momentum map, as a map on M �R>0 ,
depends on the choice of one-form ˛ . The topological properties of the contact
momentum map are independent of the choice of ˛ , because we can work directly
on �0

C .

1.4 Remark If the image of the contact momentum map is contained in an open
half-space, then the “convexity package” (C1), (C2), (C3) is true without the dimension
assumption on T , and it follows from the “convexity package” for symplectic manifolds
with proper momentum maps:
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Let ˆW Q! t� be a momentum map for a torus action on a connected
symplectic manifold. Suppose that there exists a convex subset T of t�

that contains the image ˆ.Q/ and such that ˆW Q! T is proper. Then
ˆ is open as a map to its image, the image ˆ.Q/ is a convex polyhedral
subset of T , and the level sets of ˆ are connected.

See Condevaux, Dazord and Molino [12], Hilgert, Neeb and Plank [19], Prato [32],
Lerman, Meinrenken, Tolman and Woodward [26, Theorem 4.3] and Bjorndahl and
Karshon [9, Theorem 30].

1.5 Remark Under our assumptions that guarantee (C1), (C2) and (C3) (in particular,
dim T > 2), the zero level set can be disconnected; see Examples 10.3 and 10.4.
Lerman noted, in [24, Remark 1.4] and referring to his construction in [23], that if
dim T � 2, then (C2) may fail, and if dim T D 2, then (C1) may fail. We analyze
Lerman’s examples in more detail in Example 10.6, where dim T D 2 and the zero
level set is empty, and in Example 10.7, where dim T D 1 and the zero level set is
nonempty. If dim T D 1 and the zero level set is empty, (C1), (C2), (C3) all hold, by
Remark 1.4. In fact, (C1) holds trivially if dim T D 1. If dim T D 2 and the zero
level set is nonempty, we are currently unaware of examples where (C1), (C2) and (C3)
don’t all hold.

The “convexity package” (C1), (C2), (C3) says that the momentum map has certain
global topological properties. To prove it, we show that the momentum map has certain
local topological properties, and we show that these local properties imply the required
global properties by means of a point-set-topological “local to global” argument. We
now give some details.

Let X denote a compact connected Hausdorff space.

We define a map 'W X !Rn to be convex if any two points in X can be connected by
a path whose composition with ' is a weakly monotone parametrization of a (possibly
degenerate) segment. See Section 2. Similarly, we define a map ‰W X ! Sn�1 to
be spherically convex if any two points in X whose images are not antipodal can be
connected by a path whose composition with ‰ is a weakly monotone geodesic of
length < � . The image of such a map is spherically convex, and the level sets of such
a map are connected. See Remark 3.1 and Definition 4.1.

In Sections 3–5 we give a “local to global” argument for maps from X to Sn�1 . If
the image is not contained in a great circle, and if every point has a neighborhood on
which the map is spherically convex and open to its image, then the map is spherically
convex and open to its image. This result, together with the analysis of the case that
the image is contained in a great circle, is given in Proposition 5.3.
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In Section 6, we give a “local to global” argument for a map ‰W X �R>0!Rn that is
obtained from a nonvanishing map 'W X !Rn by ‰.x; �/D �'.x/. Suppose that the
image is not contained in a two dimensional subspace, and suppose that every point in
X �R>0 has a neighborhood on which ‰ is convex and ‰=k‰k is open to its image.
Then every two points y0 and y1 in X �R>0 for which the segment Œ‰.y0/; ‰.y1/�

does not contain the origin can be connected by a path whose composition with ‰ is a
weakly monotone parametrization of this segment. Additionally, ‰ is open as a map
to its image. See Proposition 6.8.

In Section 7 we define ‰ as before but we allow ' to sometimes vanish. This is the
case that applies to contact momentum maps for nontransverse actions. The strategy
is to remove from X the '–preimage of an open ball around the origin and to apply
the results of Section 6 to the resulting “excised space”. The precise statement is more
technical than in the nonvanishing case, and the proof is more involved. We formulate
local assumptions on ' and ‰ that guarantee the following global properties. Every
two points in X �R>0 that do not both lie on the zero level set can be connected by a
path whose composition with ‰ is a weakly monotone parametrization of a (possibly
degenerate) segment; additionally, the map ‰ is open as a map to its image. See
Proposition 7.11.

In Section 9 we show that momentum maps on symplectizations have the local openness
and convexity properties that, by the results of Section 7, imply the global properties
that we had set to prove. These local properties are consequences of the local normal
form theorem, which describes the neighborhood of an orbit in a symplectic manifold
with a Hamiltonian action of a compact Lie group. We apply the local normal form
theorem in two different ways:

(1) The symplectization is a symplectic manifold with a Hamiltonian torus action.
We apply the local normal form theorem to neighborhoods of its orbits.

(2) Take the contact manifold itself, with a momentum map associated to some
choice of invariant contact one-form. Consider an orbit that lies on the zero
level set of the momentum map. By formula (1.1), the tangent space to this
orbit is contained in the contact distribution; therefore it is transverse to the
Reeb directions. We find an invariant codimension one submanifold containing
the orbit and transverse to the Reeb directions, on which the differential of the
contact form is a nondegenerate two-form. We apply the local normal form to
this submanifold.

To show the local properties of the momentum map, it remains to examine the local
models that appear in the local normal form theorem. We use the additional fact that
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the momentum map image of the orbit belongs to the annihilator of the stabilizer of the
orbit; it holds because the momentum map comes from a one-form whose differential
is the symplectic form.

By examining the local models, we need to show that the restriction of a linear projection
to a standard simplex with a facet removed is open as a map to its image and has
the weak path lifting property. These properties may be intuitively obvious but their
rigorous proofs are not entirely trivial; we give them in Section 8.

We conclude Section 9 with a proof of the convexity package; see Theorem 9.12. And,
in Section 10, we conclude the paper with examples.

The type of local-to-global technique that we use was initiated by Condevaux, Dazord
and Molino [12] and developed by Hilgert, Neeb and Plank [19; 20], Birtea, Ortega
and Ratiu [8; 7], and Bjorndahl and Karshon [9]; also see Knop [22]. It can be viewed
as a generalization of the Tietze–Nakajima theorem [30; 35].

Convexity results in contact geometry appeared in Banyaga and Molino [3] (toric
case) and in Lerman [24] (transverse case). Torus actions on contact manifolds (or on
symplectic cones, cf Remark 10.1) were also studied by Guillemin and Sternberg [18],
Albert [1], Kamishima and Tsuboi [21], de Moraes and Tomei [29], Boyer and Gal-
icki [10], Loose [28], Lerman [23; 24; 25], Lerman and Willett [27], Willett [36] and
Nozawa [31].

The book [16] by Guillemin and Sjamaar gives an overview of convexity results in
symplectic geometry. The book [15] by Geiges is a general reference for (not necessarily
equivariant) contact geometry. Finally, our notion of convexity is unrelated to “contact
convexity” as in, eg, [15, Chapter 5].

Acknowledgements We are grateful to Eugene Lerman for teaching us about momen-
tum maps for contact manifolds. YK is grateful to Shlomo Sternberg for directing her
to the paper by Condevaux, Dazord and Molino, many years ago.

This research was partially supported by an NSERC Discovery grant, by the NSC grant
96-2115-M-006-010-MY2 and by the NCTS (South).

2 Convex maps

2.1 Definition A path 
 W Œa; b� ! Rn is weakly monotone straight if, for any
t1; t2; t3 2 Œa; b�, if t1 � t2 � t3 , then 
 .t2/ 2 Œ
 .t1/; 
 .t3/�.
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2.2 Definition A map ' from a topological space X to Rn or to a convex subset
of Rn is a convex map if every two points x0 , x1 in X can be connected by a path

 W Œ0; 1�!X with 
 .0/Dx0 and 
 .1/Dx1 , such that the composition 'ı
 W Œ0; 1�!
Rn is weakly monotone straight.

Clearly, if 'W X !Rn is convex, then X is connected, the image of ' is convex, and
the level sets of ' are connected.

Remark Our definition of a convex map, from a topological space to Rn , does not
agree with the notion of a “convex function”, from a convex subset of a vector space
to R, being a function that satisfies f .txC .1� t/y/ � tf .x/C .1� t/f .y/ for all
0� t � 1.

We recall Theorem 15 of [9]:

2.3 Theorem Let X be a connected Hausdorff topological space, let T be a convex
subset of Rn , and let ‰W X ! T be a continuous proper map. Suppose that for
every point x 2 X there exists an open neighborhood U of x such that the map
‰jU W U ! ‰.U / is convex and open. Then the map ‰W X ! ‰.X / is convex and
open.

2.4 Example In each of the following examples, X is a subset of R2 , and ‰W X!R
is the projection to the x–coordinate. In each of these examples, exactly one of the
assumptions of Theorem 2.3 fails, and the map ‰ is not convex.

(1) Let X be the union of the set where x > 0 and jyj � 1 and the set where x D 0

and jyj D 1. The projection to the x–axis is locally convex and locally open to
its image, but it is not proper.

(2) Let X be the union of the negative x–axis, the set where x � 0 and y D x , and
the set where x � 0 and y D�x . The projection to the x–axis is locally open
and is proper, but it is not locally convex.

(3) Let X be the union of the negative x–axis, the portion of the y–axis where
jyj< 1, and the set where x � 0 and jyj D 1. The projection to the x–axis is
locally convex and is proper, but it is not locally open to its image.

3 Spherical geometry

In this section we recall some elementary facts from spherical geometry.
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Let Sn�1 be the unit sphere in Rn . A great circle in Sn�1 is an intersection of Sn�1

with a two dimensional plane through the origin in Rn . A path 
 W Œ0; 1�! Sn�1 is a
weakly monotone geodesic if it is either constant or is equal to a composition

Œ0; 1� ����! Œ�0; �1�
.cos. � /;sin. � //
���������! S1 �

����! Sn�1

where the map Œ0; 1�! Œ�0; �1��R is onto and weakly monotone and where the map �
is an isometric embedding of S1 into Sn�1 as a great circle. The length of the path
is equal to the length of the interval Œ�0; �1�. The path is a weakly monotone short
geodesic if its length is < � . A subset of Sn�1 is spherically convex if every short
geodesic whose endpoints belong to the set is contained in the set. An open hemisphere
is the intersection of Sn�1 with an open half-space whose boundary contains the origin.
An open hemisphere is spherically convex. More generally, let w be a point of Sn�1

and let B.w; "/ denote the open ball of radius " centered at w . If B.w; "/\Sn�1 is
contained in an open hemisphere, then it is spherically convex.

3.1 Remark There are several inequivalent notions of convexity in the literature;
see, eg, Danzer, Grünbaum and Klee [13, Section 9.1]. “Robinson convexity” [33] is
defined for closed subsets of the sphere, and, for these subsets, it coincides with our
notion of spherical convexity. Note that this notion allows a set that consists of exactly
one pair of antipodal points. The definitions of “geodesically convex” are stricter; the
entire sphere is spherically convex according to our definition but it is not geodesically
convex.

3.2 Lemma Let 
 W Œ0; 1�! Rn be a weakly monotone straight path that does not
pass through the origin. Then 
S WD 
=k
kW Œ0; 1�! Sn�1 is a weakly monotone
short geodesic.

The geometric intuition behind the lemma should be clear. We give an algebraic proof.

Proof If 
 . � / is contained in a line through the origin, 
S . � / is constant.

Suppose that 
 . � / is not contained in a line through the origin. By choosing appropriate
coordinates on the plane that contains the set f0g [ f
 .t/g, we may assume that
n D 2 and that there exists c > 0 such that 
 . � / is contained in the horizontal line
f. � ; c/g. Because 
 is weakly monotone straight, there exist real numbers a; b and
a weakly monotone function sW Œ0; 1� ! Œ0; 1� such that s.0/ D 0, s.1/ D 1, and

 .t/D . .1� s.t//aC s.t/b ; c /. Then 
S .t/D .cos �.t/; sin �.t// where

.3:3/ �.t/ D Arctan
c

.1� s.t//aC s.t/b
2 .0; �/:

Because t 7! s.t/ is weakly monotone, so is the denominator of (3.3), as is t 7! �.t/.
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We now give a converse result:

3.4 Lemma Let 
S W Œ0; 1� ! Sn�1 be a weakly monotone short geodesic. Let
�0 and �1 be positive numbers. Then there exists a weakly monotone straight path

 W Œ0; 1�!Rn such that 
 .0/D�0
S .0/, 
 .1/D�1
S .1/, and 
 .t/=k
 .t/kD 
S .t/.

Proof If 
S . � / is constant, set 
 .t/D .1� t/�0
S .0/C t�1
S .1/.

Suppose that 
S . � / is not constant. By choosing appropriate coordinates on the plane
that contains the set f0g[ f
S .t/g, we may assume that nD 2 and that there exists a
positive number c such that �0
S .0/ and �1
S .1/ both belong to the horizontal line
f. � ; c/g.

Because 
S . � / is a weakly monotone geodesic that is contained in the upper half
plane, there exists a weakly monotone function � W Œ0; 1�! .0; �/ such that 
S .t/D

.cos �.t/; sin �.t//. Project along radii to the line f. � ; c/g: set


 .t/D .c cot �.t/; c/ :

Then t 7! 
 .t/ is weakly monotone straight, and 
=k
kD 
S . Also, 
 .0/D �0
S .0/

and 
 .1/D �1
S .1/.

As before, B.w; "/ denotes the open ball of radius " centered at w .

We recall an elementary fact that relates straightness on spheres to straightness in vector
spaces:

3.5 Lemma There exists a homeomorphism A, from the upper hemisphere

Sn�1
C D f.x1;x2; : : : ;xn/ 2 Sn�1

j xn > 0g

onto Rn�1 , with the following properties. Denote the north pole by w0 .

(1) For any "> 0, the map A carries the “cap" B.w0; "/\Sn�1
C onto a ball centered

at the origin in Rn�1 .

(2) Let 
 be a path in Sn�1
C . Then 
 is a weakly monotone geodesic if and only if

Aı
 is a straight line segment in Rn�1 with a weakly monotone parametrization.

Proof We set A to be the projection from Sn�1
C to the hyperplane f. � ; : : : ; � ; 1/g

along rays emanating from the origin, followed by the projection Rn�1�f1g!Rn�1 .
That is, A.x1; : : : ;xn�1;xn/ D .x1=xn; : : : ;xn�1=xn/. This is a homeomorphism
with inverse

.y1; : : : ;yn�1/ 7!
1q

y2
1
C : : :Cy2

n�1
C 1

.y1; : : : ;yn�1; 1/:
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It maps the north pole !0 to the origin, and a cap B.w0; "/\Sn�1
C to a ball centered

at the origin in Rn�1 . If P is a 2–plane through the origin in Rn , the map A carries
the great half-circle P \Sn�1

C to the straight line P \fxn D 1g.

Every weakly monotone geodesic in Sn�1
C has the form

t 7! .˛ cos �.t/; sin �.t//

where ˛ is in Sn�2 and � W Œ0; 1�! .0; �/ is weakly monotone. The map A carries
this geodesic to the path

t 7! ˛ cot �.t/:

Because the function cot. � / is weakly monotone, the path is weakly monotone straight.
Thus, the map A carries a weakly monotone short geodesic in Sn�1

C to a weakly mono-
tone straight path in Rn�1 . Conversely, the inverse map, A�1.x/D .x; 1/=k.x; 1/k,
carries a weakly monotone straight path in Rn�1 ŠRn�1�f1g to a weakly monotone
short geodesic in Sn�1

C , by Lemma 3.2.

We now recall a property of spherical triangles:

3.6 Lemma In a spherical right triangle contained in a half-sphere Sn�1
C , if one leg

has length > �=2, then that leg is longer than the hypotenuse.

Proof Given a spherical triangle in Sn�1
C , its vertices span a three dimensional linear

subspace; the intersection of this subspace with Sn�1
C is a two dimensional hemisphere

that contains the triangle. Hence it suffices to prove the lemma for a spherical triangle
in S2

C .

Let A;B;C denote the vertices of a spherical triangle in S2
C and a; b; c their facing

arc lengths. Then 0< a; b; c <� . Suppose that the angle at C is a right angle and that
a> �=2. The fundamental formula of spherical trigonometry [6, Section 18.6] implies
that cos c D cos a cos b , which implies that c � �=2< a if b � �=2, and �=2< c < a

if b < �=2. Therefore, the leg a> �=2 is always longer than the hypotenuse c .

4 Spherically convex maps

We now consider maps to spheres. In this section, for simplicity, we restrict attention
to the sphere of radius one. In later sections we take the freedom to use the same
terminology and results for spheres of arbitrary radii.

Recall that B.w; "/ denotes the open ball of radius " centered at w . Let B" be a
shorthand for B.0; "/ and @B" be its boundary.
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4.1 Definition A map  from a topological space X to the sphere Sn�1 is a
spherically convex map if for every two points x0 and x1 in X , if  .x1/¤� .x0/,
then there exists a path 
 W Œ0; 1� ! X such that 
 .0/ D x0 , 
 .1/ D x1 , and the
composition  ı 
 W Œ0; 1�! Sn�1 is a weakly monotone short geodesic.

4.2 Remark A subset X of Sn�1 is spherically convex in the sense of Section 3
exactly if the inclusion map  W X ! Sn�1 is a spherically convex map.

4.3 Remark Suppose that  W X !Sn�1 is spherically convex and let A be a subset
of Rn . If A \ Sn�1 is spherically convex, then the map  j �1.A/ is spherically
convex. If, additionally, A\Sn�1 does not consist of a single pair of antipodal points,
then  �1.A/ is connected. In particular, if H is an open half-space whose boundary
contains the origin, then  j �1.H / is spherically convex and  �1.H / is connected.
More generally, if w 2 Sn�1 and if " > 0 is sufficiently small so that B.w; "/\Sn�1

is contained in an open hemisphere, then  j �1.B.w;"// is spherically convex and
 �1.B.w; "// is connected.

We will adjust arguments of [9] to our needs. To start, we have the following variant of
Proposition 17 of [9].

4.4 Lemma Let ' be a continuous map from a Hausdorff topological space to Rn .
Let K be a compact connected subset of the level set '�1.0/. Suppose that each
point x in K has an open neighborhood Ux such that the map 'jUx

W Ux! '.Ux/ is
convex and open. Then there exists an open neighborhood UK of K such that the map
'jUK

W UK ! '.UK / is convex and open.

Moreover, we can choose UK such that the following conditions hold.
� Suppose that for each x in K and each sufficiently small ı > 0, every point in
'�1.@Bı/\Ux has a neighborhood V�Ux such that the restriction 'j'�1.@Bı/\V

is spherically convex. Then we can choose UK so that, for sufficiently small
ı > 0, every point in '�1.@Bı/\UK has a neighborhood U � UK such that
'j'�1.@Bı/\U is also spherically convex.

� Suppose that for each x in K there exists a cone Cx with vertex at the origin
such that '.Ux/ is an open subset of Cx . Then the cones Cx are all equal to
each other, and we can choose UK so that '.UK / is also an open subset of this
common cone.

4.5 Remark A cone with vertex at the origin is a set that is invariant under multipli-
cation by positive numbers; cf [5, Section 11.1.6]. Some authors require a cone to also
contain its vertex; cf [4, II.(8.1)]. We only use this term for sets that already contain
the origin.
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Proof of Lemma 4.4 Let U1; : : : ;UN be open sets such that

Ui \K ¤¿;
K � U1[ � � � [UN

'jUi
W Ui! '.Ui/ is convex and open.and

Suppose Ui \Uj \K ¤¿. Then '.Ui \Uj / contains 0. Since Ui \Uj is open in
Ui and the map 'jUi

W Ui ! '.Ui/ is open, there exists a positive number "ij such
that '.Ui \Uj /\B"ij

D '.Ui/\B"ij
.

Let "Dminf"ij jUi\Uj\K¤¿g. Then '.Ui/\B"D'.Uj /\B"D'.Ui\Uj /\B"
whenever Ui \Uj \K ¤¿.

Because K is connected, every Ui and Uj can be connected by a sequence Ui D

Ui0
;Ui1

; : : : ;Uis
D Uj such that Ui`�1

\ Ui` \K ¤ ¿ for ` D 1; : : : ; s . So the
set '.Ui/ \ B" is the same for all i and is equal to '.Ui \ Uj / \ B" whenever
Ui \Uj \K ¤¿. Call this set W . Let

UK D .U1[ � � � [UN /\'
�1.B"/:

Then '.UK /D '.Ui/\B" for all i

D '.Ui \Uj /\B" if Ui \Uj \K ¤¿
DW .

The level sets of 'jUK
W UK ! W are connected. This follows from the following

facts:

(1) For every Ui , every level set of 'jUK
W UK !W meets Ui .

(2) Whenever Ui\Uj \K¤¿, every level set of 'jUK
W UK !W meets Ui\Uj .

(3) Every Ui and Uj can be connected by a sequence Ui DUi0
;Ui1

; : : : ;Uis
DUj

such that Ui`�1
\Ui` \K ¤¿.

(4) The level sets of each 'jUi
are connected.

We now show that 'jUK
is convex. Let x0 and x1 be points in UK . Then x0 is

contained in some Ui . Because '.Ui/ contains '.UK /, there exists a point xx1 in Ui

with '.xx1/D '.x1/; because 'jUi
is convex, there exists a path in Ui from x0 to xx1

whose composition with ' is weakly monotone straight and whose image in Rn is
Œ'.x0/; '.x1/�. Because the level sets of 'jUK

are connected, there exists a path from
xx1 to x1 that is contained in '�1.'.x1//; the concatenation of the path from x0 to
xx1 with the path from xx1 to x1 is a path from x0 to x1 whose composition with ' is
weakly monotone straight with image Œ'.x0/; '.x1/�. This shows that 'jUK

is convex.

Algebraic & Geometric Topology, Volume 10 (2010)



Convexity package for momentum maps on contact manifolds 937

Since the map 'jUi\'�1.B"/
W Ui \ '

�1.B"/ ! W is open for every i , the map
'jUK

W UK !W is open.

Suppose that ıi > 0 is such that, for all 0< ı < ıi , every point in '�1.@Bı/\Ui has
a neighborhood V � Ui such that the restriction 'j'�1.@Bı/\V is spherically convex.
Then, for every 0< ı <minf"; ı1; : : : ; ıN g, because UK \'

�1.@Bı/ is the union of
the sets Ui\'

�1.@Bı/, every point in UK\'
�1.@Bı/ has a neighborhood U (namely,

U D V \'�1.B"/ for some V � Ui ) such that the restriction of ' to U \'�1.@Bı/

is spherically convex.

Suppose that '.Ui/ is an open subset of a cone with vertex at the origin. Then, because
'.Ui/ \ B" D W , this cone is equal to R>0 �W , and W is open in the cone. In
particular, the cone is independent of i . Then '.UK /, being also equal to W , is an
open subset of this cone.

4.6 Notation Fix a map  W X ! Sn�1 . For x 2X with  .x/D w , we denote by
Œx� the connected component of x in  �1.w/, and we denote by UŒx�;" the connected
component of x in  �1.B.w; "//.

We now give another variant of Proposition 17 of [9], which applies to a spherical map:

4.7 Lemma Let X be a compact Hausdorff topological space, and let  W X ! Sn�1

be a continuous map. Suppose that every point in X is contained in an open set U

such that the map  jU W U !ˆ.U / is open and is spherically convex. Then for every
point x in X and every sufficiently small " > 0, the map  jUŒx�;" W UŒx�;"!  .UŒx�;"/

is open and spherically convex.

Proof Fix x 2 X . Without loss of generality, assume that w WD  .x/ is the north
pole. Let Sn�1

C denote the open upper hemisphere, let AW Sn�1
C ! Rn�1 be the

homeomorphism of Lemma 3.5, and let XC D  
�1.Sn�1

C /. Using Lemma 3.5, and
applying Lemma 4.4 to the composition A ı jXC W XC!Rn�1 and the set K D Œx�,
we find a neighborhood V of Œx� that is contained in XC and such that the map
 W V !  .V / is open and spherically convex.

We now show that there exists " > 0 such that the neighborhood V of Œx� contains the
connected component UŒx�;" of Œx� in  �1.B.w; "//.

Because  is proper, the level set  �1.w/ is compact. Because every point in X has
a neighborhood on which  (is spherically convex, hence) has connected level sets, the
level set  �1.w/ is locally connected. These two properties imply that the level set
 �1.w/ has only finitely many connected components. Because these components are

Algebraic & Geometric Topology, Volume 10 (2010)



938 River Chiang and Yael Karshon

compact and disjoint and X is Hausdorff, there exist disjoint open subsets O1; : : : ;Ok

of X such that every Oj contains exactly one component of  �1.w/. Without loss of
generality, suppose that the component Œx� is contained in the set O1 . Let O0

1
DO1\V .

Because  is proper and O0
1
[O2[� � �Ok is a neighborhood of the level set  �1.w/,

there exists " > 0 such that  �1.B.w; "// is contained in O0
1
[O2[ � � �Ok . Because

the sets O0
1
;O2; : : : ;Ok are open and disjoint and the set UŒx�;" is connected and

meets ( Œx�, hence) O0
1

, the set UŒx�;" is entirely contained in O0
1

. In particular, UŒx�;"
is contained in V . Choosing " sufficiently small, we may assume that B.w; "/\Sn�1

is contained in an open hemisphere.

Because  jV is spherically convex, by Remark 4.3, V \ �1.B.w; "// is connected.
Since V \  �1.B.w; "// is a connected subset of  �1.B.w; "// that contains the
connected component UŒx�;" , it must be equal to this component: V \ �1.B.w; "//D

UŒx�;" . By this and Remark 4.3, since  jV is spherically convex and open to its image,
so is  jUŒx�;" .

4.8 Remark A similar result holds with more general target spaces; one can avoid
Lemma 3.5 and work with an analogue of Lemma 4.4 for more general target spaces.
See Birtea, Ortega and Ratiu [7]. We will not need this level of generality.

We let l.
 / 2 Œ0;1� denote the length of a continuous curve 
 W Œ0; 1�!Rn .

We now have the following variant of Theorem 15 of [9].

4.9 Proposition Let X be a compact connected Hausdorff topological space and let

 W X ! Sn�1

be a continuous map. Suppose that every point of X is contained in an open set U �X

such that the map  jU W U !  .U / is open and is spherically convex. Then every
two points in X can be connected by a path 
 such that  ı 
 is a weakly monotone
geodesic and such that l. ı 
 /� l. ı 
 0/ for every other path 
 0 connecting the two
points.

The following proof of Proposition 4.9 is analogous to those of Theorem 15 and
Lemma 23 of [9], which follow Condevaux, Dazord and Molino [12].

Proof of Proposition 4.9 For two points x and x0 in X , define d .x;x
0/ to be the

infimum of the lengths l. ı 
 / as 
 varies over all paths in X from x to x0 .

Note that if x0 2 UŒx�;"=2 and d .x
0;x00/� "=2, then x00 2 UŒx�;" (cf Notation 4.6).
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Let x0 and x1 be points of X . We show that there exists a “midpoint” x1=2 such that

d .x0;x1=2/D d .x1=2;x1/D
1

2
d .x0;x1/:

Choose paths 
n connecting x0 to x1 such that the sequence of lengths l. ı 
k/

converges to d .x0;x1/. Let tk 2 Œ0; 1� be such that l. ı
k jŒ0;tk �/D l. ı
k jŒtk ;1�/D
1
2
l. ı
k/. Since X is compact, there exists a point x1=2 such that every neighborhood

of x1=2 contains 
k.tk/ for infinitely many values of k . Let "> 0. There exists j such
that 
j .tj / belongs to a neighborhood U of x1=2 on which  is spherically convex,
such that d .
j .tj /;x1=2/ < "=2, and such that l. ı
j / < d .x0;x1/C ". The path

j jŒ0;tj � , followed by a path in U from 
j .tj / to x1=2 whose composition with  is
a weakly monotone geodesic, form a path from x0 to x1=2 whose composition with
 has length < 1

2
d .x0;x1/C ". This implies that d .x0;x1=2/ �

1
2
d .x0;x1/.

Similarly, d .x1=2;x1/�
1
2
d .x0;x1/.

Iterating, we find points xj=2m , for 0� j � 2m , such that

.4:10/ d .xj1=2m ;xj2=2m/D
jj1� j2j

2m
for all j1; j2 2 f0; 1; : : : ; 2

m
g:

By Lemma 4.7, and since X is compact, there exist points xx1; : : : ; xxN and positive
numbers "1; : : : ; "N such that  jUŒxxi �;"i

is open to its image and is spherically convex
and such that the sets UŒxxi �;"i=2 cover X . Let "Dminf"1; : : : ; "N g. Then for every x0

and x00 , if d .x
0;x00/� "=2, then there exists a path from x0 to x00 whose composition

with  is a weakly monotone short geodesic.

Choose m large enough so that .1=2m/d .x0;x1/ <
1
4
". Then each pair among the

three points x.j�1/=2m ;xj=2m ;x.jC1/=2m can be connected by a path whose composi-
tion with  is a weakly monotone short geodesic. Because

d .x.j�1/=2m ;xj=2m/C d .xj=2m ;x.jC1/=2m/D d .x.j�1/=2m ;x.jC1/=2m/;

these paths fit into a path from x0 to x1 whose composition with  is a weakly
monotone geodesic. Because the length of this geodesic is d .x0;x1/, it is shorter
than  ı 
 0 for any other path 
 0 connecting x0 to x1 .

We have this easy consequence of Proposition 4.9:

4.11 Corollary Under the assumptions of Proposition 4.9, let x0 and x1 be points
of X , and suppose that there exists a path z
 in X from x0 to x1 such that l. ı z
 /<� .
Then there exists a path 
 in X from x0 to x1 such that  ı 
 is a short geodesic.
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4.12 Remark Let  W X!Sn�1 be as in Proposition 4.9. As in Condevaux–Dazord–
Molino [12], consider the equivalence relation on X in which x0 � x1 if and only if
there exists a path 
 W Œ0; 1�! X such that 
 .0/D x0 and 
 .1/D x1 and such that
 ı 
 is constant. The function d defined in the proof of Proposition 4.9 descends to
a metric on X=�; this follows from Lemma 4.7. With this metric, X=� is a length
space. (This means that the distance between two points is equal to the infimum of
the lengths of curves that connect them. As usual, the length of a continuous curve
f
 .t/gt2Œ0;1� is the supremum of

Pn
iD1 distance.
 .ti/; 
 .ti�1// over all partitions

0D t0< t1< : : : < tnD 1.) Proposition 4.9 then follows from the Hopf–Rinow theorem
for length spaces. See Bridson and Haefliger [11, Chapter I.3].

5 Shortening a nonminimal monotone geodesic

5.1 Proposition Let X be a compact connected Hausdorff space. Let  W X ! Sn�1

be a continuous map. Suppose that each point in X is contained in an open set U �X

such that  jU W U !  .U / is spherically convex and is open.

Let 
 W Œ0; 1�! X be a path in X such that  ı 
 is a weakly monotone geodesic of
length � < l. ı
 /< 2� . Let E�Sn�1 be the great circle that contains this geodesic;
suppose that the image  .X / is not entirely contained in E . Then there exists a path
z
 W Œ0; 1�!X , with the same endpoints as 
 , such that l. ı z
 / < l. ı 
 /.

Proof Let t1=2 be such that l. ı 
 jŒ0;t1=2�/D l. ı 
 jŒt1=2;1�/D .1=2/l. ı 
 /: Let
x0 D 
 .0/, x1=2 D 
 .t1=2/, x1 D 
 .1/. Because  ı 
 jŒ0;t1=2� and  ı 
 jŒt1=2;1� are
short geodesics, d .x0;x1=2/D d .x1=2;x1/D .1=2/l. ı 
 /.

By Proposition 4.9 and because the image ‰.X / is not contained in E , we can connect
x1=2 to a point outside  �1.E/ by a path y
 whose composition with  is a weakly
monotone geodesic.

For each "> 0 sufficiently small, let yx" be a point on the path y
 so that d .x1=2; yx"/D

", and let xt" be a point on the path 
 such that  .xt"/ is closest to  .yx"/ among
all points on the great circle E . Then there is a path in X from xt" to yx" whose
composition with  is contained in a great circle that is perpendicular to 
 .

We have lim"!0 d .xt1=2
;xt"/D lim"!0 d .xt1=2

; yx"/D 0.

Fix " > 0 sufficiently small so that

d .x0;xt"/ >
�

2
; d .x1;xt"/ >

�

2
and d .x1;xt"/C d .xt" ; yx"/ < �:
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By Lemma 3.6, d .x0; yx"/ < d .x0;xt"/ and d .x1; yx"/ < d .x1;xt"/. Thus, there
exists a path from x0 to yx" whose composition with  has length < d .x0;xt"/, and
there exists a path from yx" to x1 whose composition with  has length < d .xt" ;x1/.
The concatenation of these paths is a path from x0 to x1 whose composition with  
has length < d .x0;xt"/C d .xt" ;x1/D l. ı 
 /.

5.2 Corollary Let X be a compact connected Hausdorff topological space. Let
 W X ! Sn�1 be a continuous map. Suppose that each point in X has an open
neighborhood U such that  jU is spherically convex and is open as a map to its
image,  .U /. Suppose that  .X / is not contained in a great circle. Then the map
 W X !  .X /� Sn�1 is spherically convex and is open as a map to its image.

Proof Let x0 and x1 be points of X such that  .x1/ ¤ � .x0/. By Proposition
4.9, x0 and x1 can be connected by a weakly monotone geodesic that is shortest
among all paths from x0 to x1 . Since  .X / is not contained in a great circle, by
Proposition 5.1, this geodesic cannot have length > � . So it has length � � . Because
 .x1/¤� .x0/, it has length <� . That is, x0 and x1 can be connected by a weakly
monotone short geodesic. This proves that  is spherically convex.

Fix w 2 Sn�1 . Since  is spherically convex, if " is sufficiently small,  �1.B.w; "//

is connected (cf Remark 4.3). So  �1.B.w; "// is equal to UŒx�;" for any x 2 �1.w/

(cf Notation 4.6). By Lemma 4.7, if " is sufficiently small, it follows that  j �1.B.w;"//

is open as a map to its image. Since for every w 2 Sn�1 there exists " > 0 such that
 j �1.B.w;"// is open as a map to its image,  is open as a map to its image.

We now give the ultimate “local to global” result, for maps to spheres:

5.3 Proposition Let X be a compact connected Hausdorff topological space. Let
 W X ! Sn�1 be a continuous map. Suppose that every point in X has an open
neighborhood U such that  jU is spherically convex and is open as a map to its image,
 .U /.

Suppose that  .X / is not contained in a great circle. Then all the following results
hold.

(1) For every x0 and x1 in X there exists a path 
 from x0 to x1 such that  ı 

is a weakly monotone geodesic of length � � .

(2) The set C DR�0 � .X / is a convex cone with vertex at the origin: if w1; w2 2C

and �1; �2 2R�0 , then �1w1C�2w2 2 C .

(3) The level sets of  are connected.

(4) The map  is open as a map to its image.
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Suppose that the image  .X / is contained in a great circle. Let �W S1! Sn�1 be an
isometric parametrization of that great circle. Then exactly one of the following three
possibilities occurs.

(i) There exist an interval Œ�0; �1��R, and a surjective map z W X! Œ�0; �1� which
is convex and open, such that the map  W X !Sn�1 is equal to the composition

X
z 

����! Œ�0; �1�
.cos. � /;sin. � //
���������! S1 �

����! Sn�1:

(ii) There exists a surjective map z W X !S1 , which is spherically convex and open,
and a positive integer m, such that the map  is equal to the composition

X
z 

����! S1
.cos �;sin �/ 7! .cos m�;sin m�/
�������������������! S1 �

����! Sn�1:

(iii)  is constant.

5.4 Remark The case of Proposition 5.3 in which  .X / is not contained in a great
circle follows from Theorem 2.17 of [7] with two slight adjustments. In Definition 2.9
of [7] of local convexity data, replace “for every sufficiently small neighborhood Ux

of x the set f .Ux/ is convex” by “there exist arbitrarily small neighborhoods Ux

of x such that the set f .Ux/ is convex”. In part (ii) of Theorem 2.17 of [7], apply the
“uniquely geodesic” assumption to f .X /, not to Y .

Proof of Proposition 5.3 We first analyze the case that the image  .X / is not
contained in a great circle.

Let x0 and x1 be points of X . If  .x0/¤� .x1/, Part (1) follows from Corollary
5.2. If  .x0/ D � .x1/, take any x0 such that  .x0/ is different from  .x0/ and
 .x1/. By Corollary 5.2, connect x0 to x0 and x0 to x1 by paths whose images are
short geodesics. The concatenation of these paths is a path from x0 to x1 whose
composition with  is a weakly monotone geodesic of length � . This gives part (1).

Part (2) follows from Part (1) and Lemma 3.4.

Part (3) follows from Part (1). For any two points x0;x1 in the same level set, there
exists a path 
 in X connecting them such that  ı 
 is a weakly monotone short
geodesic. Because  .x0/D  .x1/, the composition  ı 
 must be constant.

Part (4) was proved in Corollary 5.2.

We now analyze the case that the image  .X / is contained in a great circle. Without
loss of generality, assume that nD 2 and �Didentity. By the theory of covering spaces,
exactly one of the following possibilities occurs.
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(a) The image of �1.X / in �1.S
1/ is trivial, and there exists a map z W X ! R

such that the map  W X ! S1 is equal to the composition

X
z 

����! R
.cos. � /;sin. � //
���������! S1:

(b) The image of �1.X / in �1.S
1/ Š Z is the subgroup of index m, and there

exists a map  W X ! S1 such that the map  is equal to the composition

X
z 

����! S1
.cos �;sin �/ 7! .cos m�;sin m�/
�������������������! S1

and such that the map z �W �1.X /! �1.S
1/ is onto.

Assume that we are in case (a).

Let x be a point of X . Let U be a neighborhood of x in X such that  jU is spherically
convex and is open to its image.

Let J � S1 be a half-circle that contains  .x/. Then U 0 WD U \ �1.J / is also a
neighborhood of x on which  is spherically convex and is open to its image, and U 0

is connected.

The preimage of J under the map .cos. � /; sin. � // is a disjoint union of segments.
Because U 0 is connected, z .U 0/ is contained in one of these segments; call this
segment zJ .

The map .cos. � /; sin. � // restricts to a homeomorphism from zJ onto J . The map
 jU 0 is the composition of z jU 0 with this homeomorphism. Therefore, because  jU 0
is open to its image, so is z jU 0 .

A lifting to R of a weakly monotone geodesic in S1 is weakly monotone. Therefore,
because  jU 0 is spherically convex, z jU 0 is convex.

We have shown that every point in X has a neighborhood U 0 such that z jU 0 is convex
and is open to its image. By Theorem 2.3 it follows that z W X !R is convex and is
open to its image. Because X is compact, the image of z is either a single point or a
closed segment. This shows that exactly one of the possibilities (i) or (iii) must occur.

Now assume that we are in case (b).

Let x be a point of X . Let U be a neighborhood of x in X such that  jU is spherically
convex and is open to its image.

Let J �S1 be an open arc of the circle that contains  .x/ and that has length <2�=m.
Then U 0 WDU \ �1.J / is also a neighborhood of x on which  is spherically convex
and is open to its image, and U 0 is connected.
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The preimage of J under the map .cos �; sin �/ 7! .cos m�; sin m�/ is a disjoint union
of m arcs of S1 . Because U 0 is connected, z .U 0/ is contained in one of these arcs;
call this arc zJ .

The map .cos. � /; sin. � // restricts to a homeomorphism from zJ onto J . The map
 jU 0 is the composition of z jU 0 with this homeomorphism. Therefore, because  jU 0
is open to its image, so is z jU 0 .

A lifting to zJ of a weakly monotone geodesic in J is a weakly monotone geodesic in
zJ . Therefore, because  jU 0 is spherically convex, so is z jU 0 .

We have shown that every point in X has a neighborhood U 0 such that z jU 0 is
spherically convex and is open to its image. Also, z induces a surjection �1.X /!

�1.S
1/. It remains to show that these assumptions imply that z W X!S1 is spherically

convex and open.

We have a commuting diagram

zX
z 0 //

�

��

R

.cos. � /;sin. � //
��

X
z 

// S1

where zX is the fibered product X �S1 R and � W zX ! X is the covering map. An
argument similar to that of case (a) applied to z ı� show that every point in zX has a
neighborhood on which z 0 is open to its image and is convex. The map z 0W zX !R
is proper; this follows from the fact that X is compact. The space zX is connected;
this follows from the assumptions that the map z �W �1.X /! �1.S

1/ is onto and the
map z W X ! S1 is spherically convex. By Theorem 2.3 it follows that the map z 0

is open to its image and is convex. Because we are in case (b), the map z 0 is onto.
Hence z W X ! S1 is spherically convex and open.

6 Local to global convexity for conification of nonvanishing
functions

6.1 Lemma Let X be a Hausdorff topological space and 'W X !Rn a continuous
map. Define a map ‰W X �R>0!Rn by ‰.x; �/D �'.x/. Suppose that the map '
is convex. Then the map ‰ is convex.
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Proof Let .x0; �0/ and .x1; �1/ be two points in X �R>0 . Because the map '
is convex, there exists a path x.t/ in X from x0 to x1 such that '.x.t// is weakly
monotone straight. That is, there exists a weakly monotone continuous function

sW Œ0; 1�! Œ0; 1�

such that s.0/D 0 and s.1/D 1 and such that

'.x.t//D .1� s.t//'.x0/C s.t/'.x1/:

We rewrite the right hand side as

1� s.t/

�0

�0'.x0/C
s.t/

�1

�1'.x1/;

and then divide both sides of the equation by the sum of the coefficients,

1� s.t/

�0

C
s.t/

�1

;

which is positive. Setting

�.t/D
1

1� s.t/

�0

C
s.t/

�1

;

zs.t/D

s.t/

�1

1� s.t/

�0

C
s.t/

�1

;.6:2/

we get

.6:3/ �.t/'.x.t//D .1�zs.t// �0 '.x0/ C zs.t/ �1 '.x1/ :

Because �.t/ is a path of positive numbers connecting �0 to �1 , the path y.t/ D

.x.t/; �.t// in X�R>0 connects .x0; �0/ to .x1; �1/. It remains to show that ‰.y.t//
is weakly monotone straight. By (6.3), it suffices to show that zs.t/ is a weakly monotone
continuous function from Œ0; 1� to Œ0; 1� such that zs.0/ D 0 and zs.1/ D 1. Because
s. � / is a continuous function from Œ0; 1� to Œ0; 1� such that s.0/ D 0 and s.1/ D 1,
and by (6.2), we see that zs. � / is a continuous function from Œ0; 1� to Œ0; 1� such that
zs.0/D 0 and zs.1/D 1. Monotonicity of zs.t/ follows from that of s.t/ since, whenever
s.t/ > 0,

1

zs.t/
D 1C

�1

�0

�
1

s.t/
� 1

�
:
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6.4 Lemma Let X be a Hausdorff topological space and 'W X !Rn a continuous
nonvanishing map. Define maps ‰W X �R>0! Rn and x‰W X �R>0! Sn�1 by
‰.x; �/D �'.x/ and x‰ D‰=k‰k. Also define  D '=k'kW X ! Sn�1 .

Let U be an open subset of X �R>0 . Let V be the image of U under the projection
X �R>0!X .

The set V is an open subset of X . If the map ‰jU is convex, then the map  jV is
spherically convex. If the map x‰jU is open to its image, so is the map  jV .

Proof Openness of V in X follows from the definition of the product topology on
X �R>0 .

The set x‰.U / is equal to the set  .V /; call this set W . We have a commuting diagram
of continuous maps:

X �R>0 � U

projection
��

x‰jU

!!
X � V

 jV

// W � Sn�1

Suppose that the map ‰jU W U!Rn is convex. By Lemma 3.2, the map x‰jU W U !W

is spherically convex. Because the projection map U ! V is onto, and by the com-
muting diagram, the map  jV W V !W is spherically convex.

Suppose that the map x‰jU W U !W is open. Because the projection map U ! V is
onto, and by the commuting diagram, the map  jV W V !W is open.

6.5 Corollary Let X be a Hausdorff topological space and 'W X !Rn a continuous
nonvanishing map. Define maps ‰W X �R>0! Rn and x‰W X �R>0! Sn�1 by
‰.x; �/D �'.x/ and x‰ D‰=k‰k. Also define  D '=k'kW X ! Sn�1 .

Suppose that each point in X � R>0 has a neighborhood U such that the map
‰jU W U !Rn is convex and such that the map x‰jU W U ! x‰.U /� Sn�1 is open to
its image.

Then each point in X has a neighborhood V such that the map  jV is spherically
convex and is open to its image.

6.6 Remark Let Dr �R2 denote the closed disc of radius r and center .r; 0/. Let

X D f.x;y; 1C r/ 2R3
j .x;y/ 2Dr and 0< r < 1g:

Let 'W X !R3 be the inclusion map and define ‰ and  as in Lemma 6.4. Then ‰
is convex (by Lemma 6.1), but it is not open as a map to its image, and neither is  .
This shows that, in Lemma 6.4, convexity of the map ‰jU does not imply that the map
 jV is open to its image. Compare with Remark 8.2.
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6.7 Lemma Let C be a subset of Rn such that R>0 �C D C . Let U be a Hausdorff
space and ‰W U !C a continuous nonvanishing open map. Then x‰ WD‰=k‰kW U !
C \Sn�1 is an open map.

Proof The map x‰ is the composition of three maps: the map ‰ from U to C X f0g,
the map w 7! .kwk; w=kwk/ from C Xf0g to R>0� .C \Sn�1/, and the projection
map R>0 � .C \Sn�1/! C \Sn�1 . The first of these maps is open by assumption;
the second is open because it is a homeomorphism; the third is open by the definition
of the product topology. Being the composition of three open maps, x‰ is open.

6.8 Proposition Let X be a Hausdorff topological space and 'W X !Rn a nonvan-
ishing continuous map. Define maps ‰W X �R>0! Rn and x‰W X �R>0! Sn�1

by ‰.x; �/D �'.x/ and x‰ D‰=k‰k.

Assume that each point in X�R>0 has a neighborhood U such that the map ‰jU W U!
Rn is convex and such that the map x‰jU W U ! x‰.U /� Sn�1 is open to its image.

Assume that X is compact and connected; assume that the image of the map ' is not
contained in a two dimensional subspace of Rn .

Then, for every two points y0 and y1 in X �R>0 , if the segment Œ‰.y0/; ‰.y1/� does
not contain the origin, there exists a path 
 W Œ0; 1�! X �R>0 such that 
 .0/D y0 ,

 .1/D y1 , and ‰ ı 
 is weakly monotone straight. Also, the map ‰ is open as a map
to its image.

Proof Let
 D '=k'kW X ! Sn�1:

By Corollary 6.5, every point in X has a neighborhood V such that the map  jV is
spherically convex and is open to its image.

Because the image of ' is not contained in a two dimensional subspace of Rn , the
image of  is not contained in a great circle.

Let y0D .x0; �0/ and y1D .x1; �1/ be two points in X �R>0 such that the segment
Œ‰.y0/; ‰.y1/� does not contain the origin. Then x0 and x1 are points in X such that
 .x1/¤� .x0/.

By Corollary 5.2, there exists a path x.t/, 0 � t � 1, such that x.0/ D x0 and
x.1/D x1 , and such that  .x.t// is a weakly monotone short geodesic.

By Lemma 3.4 there exists a weakly monotone straight path

x
 W Œ0; 1�!Rn
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such that x
 .0/ D �0'.x0/, x
 .1/ D �1'.x1/, and x
 .t/=kx
 .t/k D  .x.t//. Then
x
 .t/D �.t/'.x.t//, where �.t/D kx
 .t/k=k'.x.t//k. The path 
 .t/ WD .x.t/; �.t//
in X �R>0 satisfies 
 .0/D y0 , 
 .1/D y1 , and ‰.
 . � //D x
 . � / is weakly monotone
straight.

By Corollary 5.2, the map  W X ! Sn�1 is open as a map to its image. From this it
follows that the map

X �R>0! Sn�1
�R>0; .x; �/ 7! . .x/; �/

is open as a map to its image. From the commuting diagram

.6:9/

X �R>0

.x;�/7!. .x/;�///

.x;�/ 7!.x;�=k'.x/k/

��

Sn�1 �R>0

.˛;�/7!�˛

��
X �R>0

‰ // Rn X f0g;

in which the vertical arrows are homeomorphisms and the top arrow is open to its
image, it follows that ‰ is open to its image.

6.10 Example Let 'W Sn�1!Rn be the inclusion map. Then the map

‰W Sn�1
�R>0!Rn; .x; �/ 7! �x;

satisfies the assumptions and the conclusion of Proposition 6.8. Note that the map ‰
itself is not convex.

6.11 Example Let 'W Œ��; ��!R2 be the map

'.t/D .cos t; sin t/:

Then the map

‰W Œ��; ���R>0!R2; .t; �/ 7! .� cos t; � sin t/

is not open as a map to its image, R2 X f0g, although every point has a neighborhood
on which the map is convex and is open as a map to its image. Also, if Œt0; t1� �
Œ��; �� is a subinterval of length > � , then, for any �0; �1 2 R>0 , the segment
Œ‰.t0; �0/; ‰.t1; �1/� does not contain the origin, but the points .t0; �0/ and .t1; �1/

cannot be connected by a path in Œ��; ���R>0 whose image under ‰ is this segment.
Thus, the conclusions of Proposition 6.8 do not always hold if we allow the image of
' to be contained in a two dimensional space.
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7 Excision of a neighborhood of zero

7.1 Remark We repeatedly use the following properties of a continuous map that is
open as a map to its image:

(1) The restriction of this map to an open subset is open as a map to its image.

(2) The restriction of this map to the preimage of any set is also open to its image.

Thus, given a map 'W U !Rn , if ' is open as a map to its image, then, for any open
subset V � U , the map 'j'�1.@Bı/\V is open as a map to its image.

7.2 Lemma Let X be a Hausdorff topological space and 'W X !Rn a continuous
proper map. Suppose that for every point x of '�1.0/ there exists an open neighbor-
hood Ux of x in X and a closed convex cone Cx in Rn with vertex at the origin such
that:

� The cone Cx is not contained in a two dimensional subspace of Rn .

� The image '.Ux/ is an open subset of Cx .

� The map 'jUx
W Ux ! '.Ux/ is open and convex and, for sufficiently small

ı > 0, every point in '�1.@Bı/\Ux has a neighborhood V � Ux such that the
restriction 'j'�1.@Bı/\V is spherically convex.

Then there exist open subsets W1; : : : ;WN of X and closed convex cones C1; : : : ;CN

with vertex at the origin and there exists " > 0 such that:

� The sets W1; : : : ;WN are disjoint and their union is equal to '�1.B"/.

� For each i , the image '.Wi/ is equal to Ci \B" .

� For each i , the map 'jWi
W Wi! '.Wi/ is open and convex.

� For each i and each 0 < ı < ", the restriction 'j'�1.@Bı/\Wi
is spherically

convex, and its image is not equal to a pair of antipodal points.

Proof Because the level set '�1.0/ is compact and locally connected, it has finitely
many connected components, Œx1�; : : : ; ŒxN �.

For each i D 1; : : : ;N , by applying Lemma 4.4 to the set K D Œxi �, we choose an
open subset Ui of X and a closed convex cone Ci with vertex at the origin such that:

(a) The set Ui contains the component Œxi � of '�1.0/.

(b) The cone Ci is not contained in a two dimensional subspace of Rn .

(c) The image '.Ui/ is an open subset of Ci .
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(d) The map 'jUi
W Ui ! '.Ui/ is open and convex, and, for sufficiently small

ı > 0, every point in '�1.@Bı/\Ui has a neighborhood U � Ui such that
'j'�1.@Bı/\U is spherically convex.

We proceed in analogy with the proofs of Lemma 4.7 and of [9, Proposition 17].

Choose disjoint open subsets O1; : : : ;ON of X such that Oi contains Œxi � and is
contained in Ui ; this is possible because '�1.0/ is compact and X is Hausdorff.

By properties (c) and (d), there exist "i > 0 such that '.Ui/\B"i
D Ci \B"i

and
such that, if 0 < ı < "i , every point in '�1.@Bı/\Ui has a neighborhood U � Ui

such that 'j'�1.@Bı/\U is spherically convex.

Choose ">0 smaller than "1; : : : ; "N and such that the preimage '�1.B"/ is contained
in O1[ � � � [ON ; this is possible because ' is proper. Then every connected set that
meets Œxi � and is contained in '�1.B"/ must be contained in Oi .

Set Wi D Ui \ '
�1.B"/. Because 'jUi

is convex, so is 'jWi
; in particular, Wi is

connected. Because Wi meets Œxi � and is contained in '�1.B"/ it must be contained
in Oi . So W1; : : : ;WN are disjoint, their union is '�1.B"/, and 'jWi

W Wi ! Ci is
convex and open.

Fix ı such that 0 < ı < ". The sets Wi \ '
�1.@Bı/ are open in '�1.@Bı/, disjoint,

and they cover '�1.@Bı/. So each of these sets is closed in '�1.@Bı/, hence compact.
Let Y be a connected component of '�1.@Bı/\Wi . By property (d), every point
in Y has a neighborhood U such that 'jY\U is spherically convex; it is also open as
a map to its image, because 'jWi

is. By properties (b) and (c), the image '.Y / is not
contained in a great circle of @Bı . By Corollary 5.2, it follows that the map 'jY itself
is spherically convex.

Because '.Y / is open and closed in @Bı \Ci , it is equal to @Bı \Ci . Because 'jWi

has connected level sets, it follows that the connected component Y is equal to the
entire space '�1.@Bı/\Wi . Thus, the map 'j'�1.@Bı/\Wi

is spherically convex and
its image is not equal to a pair of antipodal points.

7.3 Lemma Let X be a Hausdorff topological space, n � 2, and 'W X ! Rn a
continuous map. Let " > 0. Suppose that there exist open subsets W1; : : : ;WN of X

such that:
� The sets W1; : : : ;WN are disjoint and their union contains '�1. xB"/.
� For each i , the restriction 'j'�1.@B"/\Wi

is a spherically convex map, and its
image is not equal to a pair of antipodal points.

Suppose that X is path connected. Then the excised space X 0 WDX X'�1.B"/ is also
path connected.
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Proof Denote W0 WD X X '�1. xB"/. Then W0;W1; : : : ;WN is an open covering
of X .

Let x0 and x1 be two points in X 0 . Let 
 W Œ0; 1�!X be a path such that 
 .0/Dx0 and

 .1/D x1 . Every t 2 Œ0; 1� has a neighborhood J in Œ0; 1� such that 
 .J / is entirely
contained in one of the sets W0;W1; : : : ;WN ; we may assume that J is an interval.
Because the interval Œ0; 1� is compact, there exists a partition 0D t0< t1<: : :< tM D1,
and, for each 1� j �M , an integer ij 2 f0; : : : ;N g such that the image 
 .Œtj�1; tj �/

is contained in the set Wij .

After possibly passing to a coarser partition of Œ0; 1�, we assume that no two consecutive
sets in the sequence Wi1

; : : : ;WiM are equal. Also, because any two consecutive sets in
this sequence meet at a division point 
 .tj / whereas the sets W1; : : : ;WN are disjoint,
of any two consecutive sets in the sequence at least one must be W0 . So, because W0

is contained in X 0 , the interior division points 
 .t1/; : : : ; 
 .tM�1/ must all be in X 0 .
By assumption, the endpoints 
 .t0/D x0 and 
 .tM /D x1 are also in X 0 .

We now concentrate on the j –th subinterval, Œtj�1; tj �. If 
 .t/2X 0 for all t 2 Œtj�1; tj �,
then we define 
j W Œtj�1; tj �!X 0 to be the restriction 
 jŒtj�1;tj � .

Otherwise, let a and b to be the infimum and supremum of the set ft 2 Œtj�1; tj � j


 .t/ 62X 0g. So Œa; b�� Œtj�1; tj �, 
 .a/ 2 '�1.@B"/, 
 .b/ 2 '�1.@B"/, and 
 .t/ 2X 0

for tj�1 � t � a and for b � t � tj . Because the image 
 .Œtj�1; tj �/ is not contained
in X 0 , it must be contained in one of the sets W1; : : :WN , say, in Wi . Because the
restriction 'j'�1.@B"/\Wi

is spherically convex and its image is not equal to a pair
of antipodal points, the set '�1.@B"/\Wi is path connected. So there exists a path
z
 W Œa; b�! '�1.@B"/ connecting 
 .a/ and 
 .b/. Define


j .t/D

8̂<̂
:

 .t/ tj�1 � t � a;

z
 .t/ a� t � b;


 .t/ b � t � tj :

The concatenation of the paths 
1; : : : ; 
M lies entirely in X 0 and it connects x0

to x1 .

7.4 Lemma Let W be a Hausdorff topological space. Let C be a subset of Rn

such that R>0 � C D C . Let 'W W ! C be a continuous open map. Define maps
‰W W �R>0! C and x‰W .W X '�1.0//�R>0! Sn�1 \C by ‰.x; �/D �'.x/
and x‰ D‰=k‰k.

Let 0< "< "0 be positive numbers. Suppose that the image of ' contains B"0 \C . Let

W 0 DW X'�1.B"/:
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Then:

� The map ‰jW 0�R>0
W W 0 �R>0! C is open and its image is C X f0g.

� The map x‰jW 0�R>0
W W 0 �R>0! Sn�1\C is open.

Note that, above, C is not necessarily closed.

Proof We begin with three consequences of the condition R>0 �C D C .

First, we identify the image of the map ‰jW 0�R>0
. This image is equal to R>0 �

.'.W /XB"/, which is contained in the set R>0 � .C XB"/ and contains the set
R>0 � .C \ .B"0 XB"//; both of these sets are equal to C X f0g. So the image of
‰jW 0�R>0

is C X f0g as claimed.

Next, we note that if I is an open interval contained in R>0 and O is open in C , then
the sets I �O and I � .O\ @B"/ are open in C .

Finally, suppose that ‰W W 0 �R>0! C is open. Then ‰ is also open as a map to
C Xf0g. Since the central projection � W RnXf0g! Sn�1 given by �.y/D y=kyk is
open, and since ��1.Sn�1\C /D C Xf0g, it follows that x‰ D � ı‰W W 0�R>0!

Sn�1\C is also open, as a composition of two open maps.

It remains to show that the map ‰W W 0 �R>0! C is open.

The sets of the form Y 0� I , where I is an open interval contained in R>0 , and where
Y is an open subset of W and Y 0 D Y X '�1.B"/, form a basis to the topology of
W 0 �R>0 . So we need to show that for every such set the image

‰.Y 0 � I/D I � .'.Y /XB"/

is open in C . Let � be a point in I � .'.Y / X B"/, say, � D � � '.y0/ with y0 2

Y X'�1.B"/ and � 2 I .

If y0 is actually in Y X'�1. xB"/, then '.Y /X xB" is an open neighborhood of '.y0/ in
C , because '.Y / is open in C . It follows that I �.'.Y /X xB"/ is an open neighborhood
of � �'.y0/ in C .

Now suppose that y0 2 '�1.@B"/. Because '.Y / is open in C , its intersection with
@B" is open in C\@B" . It follows that the set I �.'.Y /\ @B"/ is an open neighborhood
of � �'.y0/ in C .

In either case, we found an open neighborhood of � in C that is contained in I �

.'.Y /XB"/. This completes the proof of the lemma.

Algebraic & Geometric Topology, Volume 10 (2010)



Convexity package for momentum maps on contact manifolds 953

7.5 Lemma Let W be a Hausdorff topological space, let C be a closed convex cone
in Rn with vertex at the origin, and let 'W W ! C be a continuous map. Define maps
‰W W �R>0! C and x‰W .W X '�1.0//�R>0! Sn�1 \C by ‰.x; �/D �'.x/
and x‰ D‰=k‰k. Let 0< " < "0 be positive numbers. Let

W 0 DW X'�1.B"/:

Assume that:
� '.W /D B"0 \C .
� The map ' is convex and open to its image.
� The map 'j'�1.@B"/

is spherically convex.

Then every point in W 0�R>0 has a neighborhood U 0 in W 0�R>0 such that the map
‰jU 0 is convex and the map x‰jU 0 is open to its image.

Proof Let H be an open half-space in Rn whose boundary contains the origin, and
let

U 0 D
�
'�1.H /X'�1.B"/

�
�R>0:

We will prove that the map ‰jU 0 is convex and that the map x‰jU 0 is open to its image.
This will be enough, because the sets U 0 , for different choices of H , form an open
covering of W 0 �R>0 .

By Lemma 7.4 applied to 'W '�1.H /!H \C , the map x‰jU 0 is open as a map to
its image. It remains to show that the map ‰jU 0 is convex. This will overlap the proof
of Lemma 7.3, in that we will connect two points of W 0 by a path that lies entirely
in W 0 , but here we must take care to obtain a path whose composition with ' can be
“straightened” by multiplication by a positive function.

Let U D '�1.H /�R>0:

Because ' is a convex map and H is a convex set, the restriction 'j'�1.H / is a convex
map. It follows by Lemma 6.1 that ‰jU is a convex map.

Let y0D .x0; �0/ and y1D .x1; �1/ be two points in U 0 . The segment Œ‰.y0/; ‰.y1/�

is contained in H , so it does not pass through the origin. Because ‰jU is convex,
there exists a path y.t/D .x.t/; �.t// in U connecting y0 and y1 with ‰ ıy weakly
monotone straight. By Lemma 3.2, the path x‰.y. � // is a weakly monotone short
geodesic.

 WD '=k'kW W X'�1.0/! Sn�1:Let

x‰.x; �/D  .x/;Then

and in particular x‰.y.t//D .x.t//. So  .x. � // is a weakly monotone short geodesic.
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Since x0 and x1 are in W 0 , the path '.x. � // starts and ends outside B" . If the path
'.x. � // happens to lie entirely outside B" , then the path y. � / lies entirely in U 0 , and
we are done. Otherwise, let Œa; b�� Œ0; 1� be such that '.x.a// 2 @B" , '.x.b// 2 @B" ,
and '.x.t// 62 B" for 0� t � a and for b � t � 1. For instance, we may take a and
b to be the infimum and supremum of the set of times t at which '.x.t// is in the
ball B" .

Because 'j'�1.@B"\H / is spherically convex (cf Remark 4.3) and its image is not
equal to a pair of antipodal points, there exists a path zx.t/, for a� t � b , connecting
x.a/ and x.b/ and lying in '�1.@B"\H /, such that '.zx.t// is a weakly monotone
short geodesic. Necessarily, zx.t/ is in W 0 . We define zx.t/ to be equal to x.t/ on
the segments Œ0; a� and Œb; 1�. Then  .zx.t// is a path in Sn�1 whose restriction to
each of the segments Œ0; a�, Œa; b�, and Œb; 1� is a weakly monotone short geodesic. But
the value of this path at the points 0, a, b , 1 coincide with the values of  .x.t//,
which is a weakly monotone short geodesic on the entire segment Œ0; 1�. It follows that
 .zx.t// is also a weakly monotone short geodesic on the entire segment Œ0; 1�.

Let �0
0
D k‰.y0/k and �0

1
D k‰.y1/k. Then ‰.y0/ D �0

0
 .zx.0// and ‰.y1/ D

�0
1
 .zx.1//. Lemma 3.4 implies that there exists a weakly monotone straight path
x
 W Œ0; 1�!Rn from ‰.y0/ to ‰.y1/ such that x
=kx
kD .zx. � //. In particular, x
 .t/
is a positive multiple of '.zx.t//. So there exists a continuous function z�W Œ0; 1�!
R>0 such that x
 .t/ D z�.t/'.zx.t//; namely, z�.t/ D kx
 .t/k=k'.zx.t//k. So zy. � / D
.zx. � /; z�. � // is a path in U 0 from y0 to y1 such that ‰ ı y is weakly monotone
straight.

7.6 Lemma Let X be a compact connected Hausdorff topological space and 'W X !
Rn a continuous map. Define maps ‰W X�R>0!Rn and x‰W .XX'�1.0//�R>0!

Sn�1 by ‰.x; �/D �'.x/ and x‰ D‰=k‰k. Assume that:

� The image '.X / contains 0.

� For every point x of X with '.x/D 0 there exists an open neighborhood Ux of
x in X and a closed convex cone Cx in Rn with vertex at the origin such that:
– The cone Cx is not contained in a two dimensional subspace of Rn .
– The image '.Ux/ is an open subset of Cx .
– The map 'jUx

W Ux! '.Ux/ is convex and open, and, for sufficiently small
ı > 0, every point in '�1.@Bı/\Ux has a neighborhood V �Ux such that
the restriction 'j'�1.@Bı/\V is spherically convex.

� For every point .x; �/ of X �R>0 with '.x/¤ 0, every neighborhood of .x; �/
in X �R>0 contains a smaller neighborhood, U , such that the map ‰jU is
convex and such that the map x‰jU is open as a map to its image.
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Then, for every sufficiently small positive number ", the following results hold. Let

.7:7/ X 0 DX X'�1.B"/:

Then:

(1) For every two points y0 and y1 in X 0 �R>0 , if the segment Œ‰.y0/; ‰.y1/�

does not contain the origin, then there exists a path 
 W Œ0; 1�!X 0 �R>0 such
that 
 .0/D y0 , 
 .1/D y1 , and ‰ ı 
 is weakly monotone straight.

(2) The map ‰W X 0 �R>0!‰.X 0 �R>0/ is open as a map to its image.

(3) The image ‰.X 0 �R>0/ is equal to ‰.X �R>0/X f0g.

Proof The space X and the map ' satisfy the assumptions of Lemma 7.2. Let
W1; : : : ;WN be open subsets of X , let C1; : : : ;CN be closed convex cones with
vertex at the origin, and let "0 be a positive number, such that:

� The sets W1; : : : ;WN are disjoint and their union is equal to '�1.B"0/.

� For each i , the image '.Wi/ is equal to Ci \B"0 .

� For each i , the map 'jWi
W Wi ! '.Wi/ is open and convex, and, for each

0< " < "0 , the restriction 'j'�1.@B"/\Wi
is spherically convex and its image is

not equal to a pair of antipodal points.

Let " be any positive number such that 0< " < "0 , and let X 0 DX X'�1.B"/.

Because X is connected and locally path connected, X is path connected. The space X ,
the map ' and the number " satisfy the assumptions of Lemma 7.3. Thus, the excised
space X 0 is path connected.

For each 1 � i � N , the set Wi , the cone Ci , the map 'jWi
W Wi ! Ci , and the

numbers "0 and " satisfy the assumptions of Lemma 7.4. By the first part of that
lemma,

‰..Wi \X 0/�R>0/D‰.Wi �R>0/X f0g:

Because X DX 0[
SN

iD1 Wi , this implies that

.7:8/ ‰.X 0 �R>0/D‰.X �R>0/X f0g;

which is item (3) that we had set to prove.

By the assumptions on '�1.0/, the image '.X / contains a subset (namely, '.Ux/ for
'.x/D 0) that is not contained in any two dimensional subspace of Rn . Rewriting (7.8)
as R>0 �'.X

0/DR>0 �'.X /X f0g, we deduce that '.X 0/ is not contained in a two
dimensional subspace of Rn either.
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Let .x; �/ be a point of X 0 �R>0 . If x belongs to one of the sets W1; : : : ;WN , then
Lemma 7.5 guarantees the existence of a neighborhood U 0 of .x; �/ in X 0�R>0 such
that the map ‰jU 0 is convex and the map x‰jU 0 is open to its image. If x does not belong
to any Wi , then '.x/ is outside B"0 , and .X X'�1. xB"//�R>0 is a neighborhood of
.x; �/ in X �R>0 ; by assumption, it contains a smaller neighborhood, U , such that
‰jU is convex and x‰jU is open to its image.

We have just shown that every point in X 0�R>0 has a neighborhood U 0 in X 0�R>0

such that the map ‰jU 0 is convex and the map x‰jU 0 is open to its image. We have
also shown that X 0 is connected and that '.X 0/ is not contained in a two dimensional
subspace of Rn . Also, being a closed subset of a compact space, X 0 is compact.
Thus, the space X 0 and the map 'jX 0 satisfy the assumptions of Proposition 6.8. The
conclusions of this proposition are exactly the items (1) and (2) that we had set to
prove.

7.9 Definition A continuous map 'W X ! B has the weak path lifting property
if, for any point x in X and path 
 W Œ0; 1�! B with 
 .0/ D '.x/, there exists a
path z
 W Œ0; 1�!X and a weakly monotone reparametrization sW Œ0; 1�! Œ0; 1�, with
s.0/D 0 and s.1/D 1, such that z
 .0/D x and '.z
 .t//D 
 .s.t// for all t 2 Œ0; 1�.

7.10 Lemma Let U be a Hausdorff topological space. Let C be a closed convex
cone in Rn with vertex at the origin. Let " > 0. Let 'W U ! C be a continuous map.

Assume that:

� The image '.U / contains B"\C .

� The map 'W U ! '.U / has the weak path lifting property, and its level sets are
path connected.

Then:

� The map 'j'�1.B"/
is convex.

� For every 0 < ı < ", every point x in '�1.@Bı/ has a neighborhood Vx such
that the map 'j'�1.@Bı/\Vx

is spherically convex.

Proof For any subset E of Rn , the restriction 'j'�1.E/W '
�1.E/!E \'.U / has

the weak path lifting property, and its level sets are path connected. This follows from
the analogous properties of ' . If the set E \'.U / is convex, it follows that the map
'j'�1.E/ is convex. If the set E\'.U / is contained in @Bı and is spherically convex,
it follows that the map 'j'�1.E/W '

�1.E/! @Bı is spherically convex.
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The first part of the lemma follows by setting EDB" and noting that the set E\'.U /D

B"\C is convex.

For the second part of the lemma, fix 0< ı < " and fix x in '�1.@Bı/. Let Hx �Rn

be an open half-space whose boundary contains the origin such that '.x/ 2Hx . Let
E DHx \ @Bı . Then E \ '.U /D @Bı \Hx \C is a spherically convex subset of
@Bı , and '�1.E/ D '�1.@Bı/\ '

�1.Hx/. So Vx WD '
�1.Hx/ is a neighborhood

of x such that the map 'j'�1.@Bı/\Vx
is spherically convex.

7.11 Proposition Let X be a compact connected Hausdorff topological space and
'W X !Rn a continuous map. Define maps

‰W X �R>0!Rn and x‰W .X X'�1.0//�R>0! Sn�1

by ‰.x; �/D �'.x/ and x‰ D‰=k‰k. Assume that:

� The image '.X / contains 0.
� For every point x of X with '.x/D 0, there exists an open neighborhood Ux

of x in X and a closed convex cone Cx in Rn with vertex at the origin such
that:
– The cone Cx is not contained in a two dimensional subspace of Rn .
– The image '.Ux/ is an open subset of Cx .
– The map 'jUx

W Ux ! '.Ux/ is open, has the weak path lifting property,
and its level sets are path connected.

� For every point .x; �/ of X �R>0 with '.x/¤ 0, every neighborhood of .x; �/
in X�R>0 contains a smaller neighborhood U such that the map ‰jU is convex
and such that the map x‰jU is (defined and) open as a map to its image.

Then the following results hold. Let

C D‰.X �R>0/DR>0 �'.X /:

(1) For any two points y0 and y1 in X �R>0 , if ‰.y0/ and ‰.y1/ are not both
zero, there exists a path 
 W Œ0; 1�!X �R>0 such that 
 .0/Dy0 and 
 .1/Dy1

and such that ‰ ı 
 W Œ0; 1�!Rn is weakly monotone straight.

(2) For every x 2 '�1.0/, the cone Cx is equal to C .

(3) The map ‰ is open as a map to C .

Proof For x 2 '�1.0/, that fact that the image '.Ux/ is open in Cx implies that
'.Ux/ contains B"\Cx for some " > 0. Applying Lemma 7.10 to 'W Ux! Cx , and
after replacing Ux by '�1.B"/\Ux (and continuing to denote it by Ux ), we get the
following facts.
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� 'jUx
W Ux! Cx is convex and open.

� For every sufficiently small ı > 0, every point in '�1.@Bı/\Ux has a neigh-
borhood V � Ux such that 'j'�1.@Bı/\V is spherically convex.

The space X and the map ' now satisfy the assumptions of Lemma 7.6. Let "0 be a
positive number that is sufficiently small so that the conclusions of Lemma 7.6 hold
for all " such that 0< " < "0 . Then, for every such ", the following facts are true. Let
X 0" WDX X'�1.B"/.

(a) For every two points y0 and y1 in X 0" �R>0 , if the segment Œ‰.y0/; ‰.y1/�

does not contain the origin, then there exists a path in X 0" �R>0 connecting y0

to y1 whose composition with ‰ is weakly monotone straight.

(b) The image ‰.X 0" �R>0/ is equal to C X f0g.

(c) The map ‰jX 0"�R>0
is open as a map to C .

Because the space X X '�1.0/ is the union of the open subsets X 0" , for 0 < " < "0 ,
and by the fact (c), the map ‰j.XX'�1.0//�R>0

is open as a map to C .

Choose any x 2 '�1.0/. Consider the set ‰..Ux X'
�1.0//�R>0/. This set is equal

to Cx X f0g, because Cx is a cone with vertex at the origin and '.Ux/ is open in Cx

and contains the origin. But this set is also open in C , because ‰j.XX'�1.0//�R>0
is

open as a map to C . So Cx X f0g is open in C . Because Cx is a closed convex cone
and C is connected, it follows that Cx is equal to C . This proves Claim (2).

In particular, since Cx D C , we now know that the restriction of ' to Ux is open as a
map to C . This implies that the restriction of ‰ to Ux �R>0 is also open as a map
to C . This is true for every x 2 '�1.0/. But we also showed that the restriction of ‰
to .X X '�1.0//�R>0 is open as a map to C . Because the space X is the union
of the open subsets Ux for x 2 '�1.0/ and the open subset X X '�1.0/, we obtain
Claim (3).

Claim (1), in the case that 0 62 Œ‰.y0/; ‰.y1/�, follows from the above fact (a) when "
is chosen small enough so that both y0 and y1 lie in X 0" �R>0 .

Suppose that ‰.y0/ and ‰.y1/ are both nonzero but 0 2 Œ‰.y0/; ‰.y1/�. Choose
any y0 2 ‰�1.0/. If we can find paths from y0 to y0 and from y0 to y1 whose
compositions with ‰ are weakly monotone straight paths, their concatenation will give
a path from y0 to y1 whose composition with ‰ is a weakly monotone straight path.

It remains to prove Claim (1) in the case that, say, ‰.y0/ D 0 and ‰.y1/ ¤ 0. Fix
such y0 and y1 . Write y0 D .x; �/; then x is in '�1.0/. By the definition of C
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and because C D Cx , the value ‰.y1/ belongs to Cx . Because '.Ux/ is an open
subset of Cx that contains the origin, if " is a sufficiently small positive number,
then "‰.y1/ belongs to '.Ux/. Fix such an ", and let x0 be a point in Ux such that
'.x0/D "‰.y1/. Because 'jUx

is convex, there exists a path x. � / in Ux from x to
x0 whose composition with ' is a weakly monotone straight path from the origin to
"‰.y1/.

Then .x. � /; 1/ is a path from .x; 1/ to .x0; 1/ whose composition with ‰ is a weakly
monotone straight path from the origin to "‰.y1/. Concatenating with a path from
y0 D .x; �/ to .x; 1/ which is entirely contained in fxg �R>0 , we obtain a path 
 0

from y0 to .x0; 1/ whose composition with ‰ is a weakly monotone straight path from
the origin to "‰.y1/.

By the case of Claim (1) that we already proved, there exists a path 
 00 from .x0; 1/ to
y1 whose composition with ‰ is a weakly monotone straight path from "‰.y1/ to
‰.y1/. The concatenation of 
 0 with 
 00 is a path from y0 to y1 whose composition
with ‰ is weakly monotone straight.

This completes the proof of Claim (1) and of Proposition 7.11.

8 Linear maps on the simplex

We begin by setting some notation:

Rn
C D f.s1; : : : ; sn/ 2Rn

j sj � 0 for j D 1; : : : ; ng;

ƒD f.s1; : : : ; sn/ 2Rn
C j s1C � � �C sn < 1g:

The goal of this section is to prove the following proposition.

8.1 Proposition Let LW Rn!Rk be a linear map, and let ADL.ƒ/. Then the map

LjƒW ƒ!A

is open, has the weak path lifting property (cf Definition 7.9), and its level sets are path
connected.

8.2 Remark The restriction of a linear projection to a convex set is not necessarily
open as a map to its image. For example, let Dr � R2 denote the closed disc of
radius r and center .r; 0/, and let X D f.x;y; r/ 2 R3 j .x;y/ 2 Dr g. Then X is
convex, and the restriction to X of the projection .x;y; z/ 7! .x;y/ is not open as a
map to its image.
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We will need the following variant of Carathéodory’s theorem from convex geometry:

8.3 Lemma Let v1; : : : ; vn be vectors in Rk . Let wD
P

sjvj with .s1; : : : ; sn/2ƒ.
Then there exists .s0

1
; : : : ; s0n/ 2ƒ such that w D

P
s0jvj and such that the vectors vj

for which s0j ¤ 0 are linearly independent.

Proof We prove the lemma by induction on n. If n D 1, the lemma is obvious.
Suppose that the lemma is true for n� 1 vectors, and we will prove it for n vectors.

Suppose that wD
Pn

jD1 sjvj with .s1; : : : ; sn/2ƒ and that v1; : : : ; vn are not linearly
independent. If one or more of s1; : : : ; sn is zero, the required conclusion follows from
the induction hypothesis. Suppose that s1; : : : ; sn are all positive.

Then there exist �1; : : : ; �n not all zero such that
P
�j � 0 and

P
�jvj D 0. At least

one of the �j s is positive. Choose c Dminfsj=�j j �j > 0g D si=�i . Then

w D
X

sjvj � c
X

�jvj D
X

.sj � c�j /vj :

Note that sj � c�j � 0 for all j , and si � c�i D 0. Furthermore, since c > 0 andP
�j � 0, X

.sj � c�j /D
X

sj � c
X

�j �

X
sj < 1:

The required conclusion now follows from the induction hypothesis applied to the
vectors fv1; : : : ; vng X fvig.

8.4 Lemma Let LW Rn!Rk be a linear map, and let C DL.Rn
C/. Then L.ƒ/ is

a relative neighborhood of 0 in C .

Proof Let e1; : : : ; en denote the standard basis of Rn , and let vi D L.ei/ for i D

1; : : : ; n. Let J denote the set of subsets J � f1; : : : ; ng for which the vectors vj , for
j 2 J , are linearly independent.

For each J 2 J , let RJ
C D fs 2 Rn

C j sj D 0 for all j 62 J g, and let CJ D L.RJ
C/.

Also, for " > 0, let B" denote the ball in Rk of radius " centered at the origin.

For every J 2 J , the map L restricts to a homeomorphism from RJ
C to CJ . So

L.ƒ\RJ
C/ is open in CJ and contains the origin. Let "J be a positive number such

that L.ƒ\RJ
C/ contains CJ \B"J

. By Lemma 8.3, the union of the sets CJ , for
J 2 J , is all of C . Let "DminJ2J "J . Then L.ƒ/ contains C \B" .

8.5 Lemma Let LW Rn!Rk be a linear map, let 0� r � n, let Sn
r DRr

C �Rn�r

be a sector, and let C DL.Sn
r / be its image. Let O be a neighborhood of the origin in

Sn
r . Then L.O/ is a relative neighborhood of the origin in C .
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Proof For every oD .o1; : : : ; on/ 2 f1g
r �f�1; 1gn�r , let FoW Rn!Rn be the map

Fo.s1; : : : ; sn/D .o1s1; : : : ; onsn/:

The cone C is the union, over all o 2 f1gr � f�1; 1gn�r , of the sets

Co WDL.Fo.R
n
C//:

Let �o be a positive number such that Fo.�oƒ/ is contained in O . It exists because
FojRn

C
is continuous and carries 0 into the open set O , and because every neighborhood

of 0 in Rn
C contains a set of the form �ƒ for some � > 0.

By Lemma 8.4, applied to the linear map x 7! L.Fo.�0x//, there exists "o > 0

such that L.Fo.�oƒ// contains B"o
\Co . Let "Dmino2O "o . Then L.O/ contains

B"\C .

8.6 Lemma Let LW Rn!Rk be a linear map, and let C DL.Rn
C/. Then the map

LjRn
C
W Rn
C! C

is open.

Proof Let x 2 Rn
C . Without loss of generality we may assume that xj D 0 for all

1� j � r and xj > 0 for all r C 1� j � n.

Let O be a sufficiently small neighborhood of the origin in the sector Sn
r so that the

translation xCO is contained in Rn
C . Then xCO is a neighborhood of x in Rn

C .

By Lemma 8.5, L.O/ is a neighborhood of the origin in L.Sn
r /. This implies that

L.x CO/ is a neighborhood of L.x/ in C . Indeed, let " > 0 be such that L.O/
contains B"\L.Sn

r /. Then L.xCO/ contains the "–neighborhood of L.x/ in C .
This follows from the fact that, for every y 2 C , the difference y �L.x/ is in L.Sn

r /.

This shows that the map LjRn
C
W Rn
C! C is open.

The closure of ƒ in Rn is the simplex

xƒD fs 2Rn
C j s1C � � �C sn � 1g:

8.7 Lemma Let LW Rn!Rk be a linear map, ADL.ƒ/, xADL.xƒ/, and Aext D
xAXA. Then:

(1) For every ˇ 2AX f0g, the intersection RCˇ\Aext contains exactly one point;
call it ˇext .

(2) ˇ 7! ˇext defines a continuous map from AX f0g to Aext .

8.8 Remark The notation “ext” stands for “extremal”.
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Proof of Lemma 8.7 Fix ˇ2AXf0g. Because the subset xA of Rk is closed, bounded,
and contains ˇ , the set

.8:9/
�

t 2 .0; 1�
ˇ̌̌ 1

t
ˇ 2 xA

�
has a positive minimum; call it tˇ . Note that .1=tˇ/ˇ is in RC �ˇ\ xA. So, for (1), it
is enough to show that .1=tˇ/ˇ is not in A. Equivalently, it is enough to show that
if .1=t/ˇ is in A, then t is not minimal in (8.9). Suppose now that .1=t/ˇ is in A.
Write it as

P
sjvj where the coefficients sj are nonnegative and where

P
sj < 1.

Then .
P

sj /t is strictly smaller than t and .1=.
P

sj /t/ˇ is in xA, so t is not minimal
in (8.9). This proves (1).

To prove (2), suppose that ˇn is a sequence of elements of AX f0g, let ˇext
n be their

images in Aext , suppose that the sequence ˇn converges to an element ˇ1 of AXf0g,
and suppose that the sequence ˇext

n converges to an element ˇ0 of Rk .

Lemma 8.6 implies that A is open in L.Rn
C/, and hence in xA. This, in turn, implies

that Aext is closed in xA, and hence in Rk . Thus, ˇ0 must be in Aext . In particular, ˇ0

is nonzero.

Because ˇext
n 2RCˇn and ˇn! ˇ1 as n!1, we have ˇext

n =kˇext
n k! ˇ1=kˇ1k

as n!1. Because ˇext
n !ˇ0 as n!1, we have ˇext

n =kˇext
n k!ˇ0=kˇ0k as n!1.

By uniqueness of the limit, we deduce that ˇ0 2RCˇ1 . Because Aext intersects every
ray in at most one point, we must have ˇ0 D ˇext

1 .

Now suppose that ˇn is any sequence of elements of AX f0g that converges to an
element ˇ1 of AX f0g. The above argument implies that ˇext

1 is the limit of every
converging subsequence of ˇext

n . Because ˇext
n are in Aext and the set Aext is compact,

this implies that the sequence ˇext
n converges to ˇext

1 .

8.10 Lemma Let LW Rn!Rk be a linear map. Then Ljƒ has a continuous section.
That is, there exists a continuous map � W A!ƒ, where ADL.ƒ/, such that Lı� D

idA .

Proof First, we show that the map

LjxƒW
xƒ! xA

has a continuous section:

x� W xA! xƒ; L ı x� D id xA:

We define x� recursively on the faces of xA. First, we define it, arbitrarily, on vertices.
Now, suppose that Q is a face of xA and that we already defined x� on the relative
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boundary @Q of Q. We define x� arbitrarily at a point q in the relative interior of Q,
and we extend it in an affine manner on segments connecting q to @Q.

Next, we restrict this section to the closed subset Aext to obtain a continuous map

� ext
W Aext

! xƒ

such that L ı � ext D idAext .

Finally, suppose that ˇ 2AX f0g and let ˇext be its image in Aext . Then ˇ D tˇˇ
ext .

A priori tˇ 2 .0; 1�, but, because ˇ itself is not in Aext , the number tˇ is strictly less
than one. We then define �.ˇ/D tˇ�

ext.ˇext/.

Because �.ˇ/ is the product of an element of xƒ with a positive number that is strictly
less than one, it is in ƒ. So � is a map from A to ƒ.

By Lemma 8.7, the map ˇ 7! ˇext is continuous; it follows that ˇ 7! tˇ is also
continuous. Thus, � W A!ƒ is continuous.

Finally, L.�.ˇ//DL.tˇ�
ext.ˇext//D tˇˇ

ext D ˇ . So Lı� D idA , and � is a section
of LjƒW ƒ!A, as required.

Proof of Proposition 8.1 By Lemma 8.6, the map LjRn
C

is open as a map to its image.
Because ƒ is open in Rn

C , this implies that the map Ljƒ is also open as a map to its
image.

Because ƒ is convex and L is linear, the level sets of Ljƒ are path connected.

By Lemma 8.10, the map LjƒW ƒ!A has a continuous section. This together with
the connectedness of the level sets implies the weak path lifting property.

8.11 Corollary Let v1; : : : ; vn be vectors in Rk . Let B" be an open "–ball about 0

in R` . Let

ƒD

(
s 2Rn

ˇ̌̌̌
sj � 0 for j D 1; : : : ; n; and

nX
jD1

sj < 1

)
;

AD

(
nX

jD1

sjvj

ˇ̌̌̌
sj � 0 for j D 1; : : : ; n; and

nX
jD1

sj < 1

)
;

Then the map

'W ƒ�B"!A�B" given by ..s1; : : : ; sn/; �/ 7!

 
nX

jD1

sjvj ; �

!
is open, has the weak lifting property, and its level sets are path connected.
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Proof These properties follow from the analogous properties of the map s 7!
P

sjvj
from ƒ to A, which, in turn, were established in Proposition 8.1.

9 Contact momentum maps

An exact symplectic manifold is a symplectic manifold .Q; !/ such that the symplectic
form ! is exact: there exists a one-form ˛ such that ! D d˛ . Let a torus T act on an
exact symplectic manifold .Q; !/ and, for every Lie algebra element X 2 t, let XQ be
the corresponding vector field on Q. Suppose that ! D d˛ and that ˛ is T –invariant.
Then the map ˆW Q! t� given by

.9:1/ ˆX .q/D ˛.XQ.q//

for all X 2 t and q 2Q is a momentum map: dˆX D��.XQ/! . An exact momentum
map is a momentum map that has this form.

We recall from Section 1 that, if a torus T acts on a manifold M and preserves
a contact one-form ˛ , the ˛–momentum map is the map ‰˛W M ! t� defined by
‰X
˛ D �.XM /˛ , and the contact momentum map is the map ‰W M �R>0! t� defined

by ‰.x; t/D t‰˛.x/. The map ‰ is an exact momentum map on the symplectization
.M �R>0; d.t˛//, with the trivial extension of the T action to M �R>0 , and the
map ‰˛ is a momentum map for the closed (degenerate) two-form d˛ on M .

9.2 Lemma Let a torus T act on an exact symplectic manifold .Q; !/ with exact
momentum map ˆW Q! t� . Let q be a point of Q. Then every neighborhood of q

in Q contains a smaller neighborhood U such that:

(1) The map ˆjU W U !ˆ.U / is open, has the weak path lifting property (cf Defi-
nition 7.9), and its level sets are path connected.

(2) There exists a convex polyhedral cone Cq with vertex at the origin, such that the
set ˆ.U / is a relatively open subset of Cq .

Proof Let H denote the stabilizer of q . Let h denote its Lie algebra, h� the dual
space, and h0 the annihilator of h in t� . Fix an inner product on t and use it to
identify h� with a subspace of t� . By the local normal form theorem for Hamiltonian
torus actions, there exists an action of H on Cn , with weights �1; : : : ; �n 2 h

� , there
exists a T –invariant symplectic form on the model Y WD T �H Cn � h0 (with the
left T action), and there exists an equivariant symplectomorphism from an invariant
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neighborhood of q in Q to an open subset of Y that carries the point q to Œ1; 0; 0� and
that carries the momentum map ˆ to the map

.9:3/ ˆY .Œt; z; ��/ D ˆ.q/ C
jz1j

2

2
�1C � � �C

jznj
2

2
�n C �:

The image of ˆY is the translation of the cone

Cq D fs1�1C � � �C sn�nC � j sj � 0 for all j ; and � 2 h0
g

by the element ˆ.q/ of t� . The cone Cq is a convex polyhedral cone in t� , with vertex
at the origin, invariant under translations by elements of h0 . By the formula (9.1) for
the exact momentum map, the element ˆ.q/ of t� belongs to the annihilator h0 of h.
It follows that the image of ˆY is equal to Cq .

We need to show that the restriction of ˆ to arbitrarily small neighborhoods U of q

in Q satisfies (1) and (2). By the local normal form theorem, it is enough to show
these properties for the restriction of ˆY to neighborhoods of Œ1; 0; 0� in Y .

For " > 0, let BT
" be the "–neighborhood of the unit element in T (with respect to

some invariant metric); so BT
" �H is the "–neighborhood of H in T ; let BCn

" be the
"–ball about the origin in Cn ; and let B

h0

" be the "–ball about the origin in h0 . Let

U" WD .B
T
" �H /�H BCn

" �Bh0

" :

Because every neighborhood of Œ1; 0; 0� in Y contains a set of the form U" for some
" > 0, it is enough to show that:

(1 0 ) The map ˆY jU" W U"!ˆY .U"/ is open, has the weak path lifting property, and
its level sets are path connected.

(2 0 ) The set ˆY .U"/ is a neighborhood of ˆ.q/ in the cone Cq .

The map .z1; : : : ; zn/ 7! .s1; : : : ; sn/, where jzj j
2 D "2sj , takes BCn

" onto the set

ƒ WD fs 2Rn
C j s1C � � �C sn < 1g:

By (9.3),

ˆY .U"/D

�
ˆ.q/C

"2

2

X
sj�j C �

ˇ̌̌
.s1; : : : ; sn/ 2ƒ and � 2 Bh0

"

�
:

The affine isomorphism

.ˇ; �/ 7!ˆ.q/C
"2

2
ˇC �
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of h� � h0 with t� carries the cone f
P

sj�j j sj � 0 for all j g � h0 to the cone Cq

and the subset A�B
h0

" , where

A WD

�X
sj�j

ˇ̌̌
.s1; : : : ; sn/ 2ƒ

�
;

to ˆY .U"/. Because, by Lemma 8.4, the set A is open in the cone f
P

sj�j j

sj � 0 for all j g, this gives (2 0 ).

The map
BT
" �ƒ� .S

1/n �B
h0

" ����! U"

given by�
�; .s1; : : : ; sn/; .e

i�1 ; : : : ; ei�n/; �
�
7! Œ�; z; �� where zj D "

p
sj ei�j

is continuous and onto. So, for (1 0 ), it is enough to show that the composition of this
map with ˆY , as a map to ˆY .U"/, is open, has the weak path lifting property, and
its level sets are path connected.

This composition can be expressed as the composition of the map

.9:4/ BT
" �ƒ� .S

1/n �B
h0

"

projection
�����! ƒ�B

h0

"

with the map

.9:5/ ƒ�B
h0

"

.s;�/ 7! .
P

sj�j ;�/
������������! A�B

h0

"

and the map

.9:6/ A�B
h0

"

.ˇ;�/ 7!ˆ.q/C."2=2/ˇC�
�����������������! ˆY .U"/:

So, for (1 0 ), it is enough to check that each of the maps (9.4), (9.5) and (9.6) is
continuous, open, onto, has the weak path lifting property, and its level sets are path
connected. The map (9.4) is a fibration with path connected fibers, and the map (9.6) is
a homeomorphism, so they both have the required properties. The required properties
of the map (9.5) follow from Corollary 8.11.

9.7 Lemma Let a torus T act on a contact manifold .M; � D ker˛/ with ˛–
momentum map ‰˛W M ! t� . Then, for every point x of M with ‰˛.x/ D 0,
there exists an open neighborhood Ux of x in M and a convex polyhedral cone Cx in
t� with vertex at the origin such that:

� The image ‰˛.Ux/ is an open subset of Cx .

� The map ‰˛jUx
W Ux!‰˛.Ux/ is open, has the weak path lifting property, and

its level sets are path connected.
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Proof Let x be a point in M with ‰˛.x/ D 0. Let R˛ be the Reeb vector field
of the contact form ˛ . Recall that it is defined by the conditions �.R˛/d˛ D 0 and
˛.R˛/D 1. The null space of d˛jTxM is RR˛.x/. Because x is in the zero level set
of the ˛–momentum map, the tangent space to its orbit, Tx.T �x/, is contained in the
contact distribution, so RR˛.x/\Tx.T �x/D f0g.

Let H be the stabilizer of x ; it acts linearly on TxM . Let W be an H –invariant
subspace of TxM that is complementary to RR˛.x/˚Tx.T �x/. Then we have an
H –invariant decomposition

TxM DRR˛.x/˚Tx.T �x/˚W;

and d˛ is nondegenerate on Tx.T �x/˚W .

Let  be an H –equivariant diffeomorphism from a neighborhood of the origin in
TxM to a neighborhood of x in M whose differential at x is the identity map on
TxM .

Denote the Reeb trajectory of a point q by q.t/ . Thus, q.0/D q and d
dt

q.t/DR˛.q
.t//.

Then, for the interval I D .�"; "/ with sufficiently small " > 0 and for a sufficiently
small neighborhood D of the origin in W , the formula .t; Œa;u�/ 7! .a �  .u//.t/

defines a diffeomorphism from I � .T �H D/ to an open subset of M , and the image
of f0g� .T �H D/ under this diffeomorphism is a submanifold of M on which d˛ is
nondegenerate.

We denote this submanifold by Q, the inclusion map by i W Q!M , the symplectic
form by !Q WD i�d˛ , and the momentum map by ˆQ WD i�‰˛ .

The map f W I �Q!M , given by .t; q/ 7! q.t/ , is a T –equivariant diffeomorphism
to an invariant open subset of M , and the pullback of d˛ through this diffeomorphism
is equal to the pullback of !Q with respect to the projection map I �Q! Q. It
follows that the pullback f �‰˛ must have the form .t; q/ 7!ˆQ.q/. The properties
of ‰˛ then follow from the corresponding properties of ˆQ , which are guaranteed by
Lemma 9.2.

9.8 Remark For a contact manifold with compact group action, Loose [28, Theo-
rem 3] gives a local normal form that describes the neighborhood of an orbit in the
zero level set, up to equivariant contactomorphism. (Without a contact one-form, he
defines a momentum map with values in g�˝L, where L is the line bundle TM=�

over M .)
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9.9 Lemma Let a torus T act on a contact manifold .M; � D ker˛/ with ˛–
momentum map ‰˛W M ! t� and contact momentum map ‰W M �R>0! t� .

Choose a metric on t� and let S.t�/ denote the unit sphere in t� . Define the map
x‰W .M X‰�1

˛ .0//�R>0! S.t�/ by x‰ D‰=k‰k.

Then, for any .x; �/ 2M �R>0 with ‰˛.x/ ¤ 0, every neighborhood of .x; �/ in
M �R>0 contains a smaller neighborhood U such that:

� The map ‰jU is convex.

� The image ‰.U / is a relatively open subset in a convex polyhedral cone with
vertex at the origin.

� The map x‰jU is (defined and) open as a map to its image.

Proof Let x 2M X‰�1
˛ .0/. Because ‰ is an exact momentum map, by Lemma

9.2, every neighborhood of .x; �/ in M �R>0 contains a smaller neighborhood U 0

such that the map ‰jU 0 W U 0!‰.U 0/ is open, has the weak path lifting property, its
level sets are path connected, and its image has the form O\C.x;�/ where O is an
open neighborhood of ‰.x; �/ and C.x;�/ is a convex polyhedral cone with vertex
at the origin. We may assume O does not contain the origin. Let B be a convex
open neighborhood of ‰.x; �/ that is contained in O , and let U be the intersection
of U 0 with the preimage of B . Then ‰jU W U ! ‰.U / still has the weak path
lifting property and its level sets are path connected, but, additionally, its image, being
equal to B \ C.x;�/ , is convex. These properties imply that ‰jU is convex. Since
‰jU W U ! ‰.U / is still open and the image ‰.U /D B \C.x;�/ is open in C.x;�/ ,
the map ‰jU W U ! C.x;�/ is a continuous nonvanishing open map. By Lemma 6.7,
the map x‰jU W U ! C.x;�/\S.t�/ is open. This implies that x‰jU is open as a map
to its image.

9.10 Lemma Let C be a closed convex cone in Rn with vertex at the origin. Suppose
that for every w in C X f0g there exists a neighborhood Uw in Rn and a convex
polyhedral cone Cw with vertex at the origin such that Uw \C D Uw \Cw . Then C

is a convex polyhedral cone with vertex at the origin.

Proof After possibly shrinking the neighborhoods Uw , we may assume that these
neighborhoods are convex. We may also assume that R>0 �Uw D Uw . Otherwise, we
replace Uw by R>0 �Uw ; it remains an open set that satisfies Uw \C D Uw \Cw .

Recall that a convex polyhedral cone with vertex at the origin is a finite intersection of
closed half-spaces whose boundaries contain the origin.

Algebraic & Geometric Topology, Volume 10 (2010)



Convexity package for momentum maps on contact manifolds 969

For w2C , let H
j
w , for 1�j �Nw , be closed half-spaces whose boundaries contain the

origin and such that CwDH 1
w \ � � � \H

Nw
w . (It is possible that NwD0 and CwDRn .)

Let @H j
w denote the boundary of H

j
w . We may assume that Uw \C \ @H

j
w ¤¿ for

every 1� j �Nw . Otherwise, we replace the polyhedral cone Cw by the intersection
of those H

j
w that do satisfy Uw \C \ @H

j
w ¤¿; this intersection is a (possibly larger)

cone that still satisfies Uw \C D Uw \Cw .

Since C\Sn�1 is compact, we may choose a finite set of points W Dfw1; : : : ; wN g�

C \Sn�1 such that Uw1
[ � � � [UwN

contains C \Sn�1 . We claim that

.9:11/ C D
\
w2W

1�j�Nw

H j
w:

Fix w 2W and 1� j �Nw . Let c be a point in C . Let c0 be a point in Uw\C\@H
j
w .

Because C is convex, the segment Œc; c0� is contained in C . Because Uw is open,
interior points of the segment that are sufficiently close to c0 are in Uw . Let c00 be
such a point. Because c00 is in Uw \ C , it is in H

j
w . Finally, because c0 is on the

boundary of the half-space and c00 is in the half-space, c is also in the half-space. Thus,
C �H

j
w .

Denote the right hand side of (9.11) by CRHS . We have shown that C �CRHS . Because
C is closed in Rn , it is closed in CRHS . Because C is the union of the sets Uw \C

for w 2W , and because Uw \C is open in Cw , hence in CRHS , we deduce that C

is open in CRHS . Because CRHS is convex, hence connected, and C is a nonempty
subset that is both closed and open, C is equal to CRHS .

The “convexity package” for contact momentum maps is given in parts (2), (3), (4) and
(6) of the following theorem.

9.12 Theorem Let a torus T act on a cooriented compact connected contact manifold
M with contact momentum map ‰W M �R>0! t� . Assume that the action is effective
and the torus has dimension greater than 2. Then:

(1) Let y0 and y1 be any two points in M �R>0 .
� If the action is transverse (0 62 image‰ ), assume that the origin is not

contained in the segment Œ‰.y0/; ‰.y1/�.
� If the action is not transverse (0 2 image‰ ), assume that ‰.y0/ and ‰.y1/

are not both zero.

Then there exists a path 
 W Œ0; 1�!M�R>0 such that 
 .0/Dy0 and 
 .1/Dy1

and such that ‰ ı 
 W Œ0; 1�! t� is a weakly monotone parametrization of the
(possibly degenerate) segment Œ‰.y0/; ‰.y1/�.

(2) The momentum map ‰ is open as a map to its image.
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Consequently:

(3) The momentum cone C.‰/ is convex.

(4) The nonzero level sets, ‰�1.�/, for �¤ 0, are connected.

(5) Let A be a convex subset of t� .
� If the action is transverse, suppose that 0 62A.
� If the action is not transverse, suppose that A¤ f0g.

Then the preimage ‰�1.A/ is connected.

Moreover:

(6) The momentum cone C.‰/ is a convex polyhedral cone.

Proof Parts (3), (4) and (5) of the theorem follow easily from Part (1). We proceed to
prove Parts (1), (2) and (6).

Write the contact momentum map ‰W M �R>0! t� as ‰.x; t/D t‰˛.x/ where ˛
is an invariant contact one-form and ‰X

˛ D ˛.XM / is the ˛–momentum map. Choose
a metric on t� , denote the unit sphere by S.t�/, and let

x‰ WD‰=k‰kW .M X‰�1
˛ .0//�R>0! S.t�/:

Because the T action is effective on M , it is effective on M �R>0 . Because M is
connected, so is M �R>0 . Because T is compact and abelian, by the principal orbit
type theorem, there exists an invariant open dense subset of M �R>0 on which the
action is free. Wherever the action is free, the momentum map ‰ is a submersion.
Hence, the ‰–image of any open subset of M �R>0 is not contained in a proper
subspace of t� . Because dim T > 2, and because ‰.x; t/ D t‰˛.x/, this implies
that the ‰˛–image of any open subset of M is not contained in a two dimensional
subspace of t� .

Suppose that the action is transverse (0 62‰˛.M //.

Let .x; �/ be a point in M �R>0 . By Lemma 9.9, there exists a neighborhood U such
that the map ‰jU is convex, ‰.U / is a relatively open subset in a convex polyhedral
cone C.x;�/ , and the map x‰jU is open as a map to its image. Parts (1) and (2) of the
theorem follow from Proposition 6.8, applied to the space M and the map ‰˛ .

Because M is compact and 0 62 image‰˛ , the momentum map ‰ is proper as a map
to t�Xf0g, so its image is closed in t�Xf0g. Part (6) of the theorem then follows from
Lemma 9.10, applied to the momentum cone C.‰/D f0g[ image‰ .

Now suppose that the action is not transverse .0 2 image‰˛/.
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� Let x be a point of M with ‰˛.x/D 0. By Lemma 9.7, there exists a neigh-
borhood Ux of x in M and a convex polyhedral cone Cx in t� with vertex at
the origin such that:
– The image ‰˛.Ux/ is an open subset of Cx .
– The map ‰˛jUx

W Ux!‰˛.Ux/ is open, has the weak path lifting property,
and its level sets are path connected.

Because ‰˛.Ux/ is not contained in a two dimensional subspace of t� but is
contained in Cx :
– The cone Cx is not contained in a two dimensional subspace of t� .

� Let .x; �/ be a point of M �R>0 with ‰˛.x/ ¤ 0. By Lemma 9.9, every
neighborhood of .x; �/ in M �R>0 contains a smaller neighborhood U such
that the map ‰jU is convex and the map x‰jU is (defined and) open as a map to
its image.

Parts (1), (2) and (6) of the theorem then follow from Proposition 7.11.

10 Examples

In the examples further below, we will need to know that a contact manifold is deter-
mined by its symplectization together with the R>0 action on the symplectization. We
will also need to use the “contact cutting” construction. These are summarized in the
following remark.

10.1 Remark Let M be a 2nC 1 dimensional manifold, � W Q!M a principal
R>0 bundle, and ! a symplectic form on the total space Q that is homogeneous
of degree one with respect to the principal R>0 action. This structure is called a
symplectic cone [18].

Let z̨ D �v! , where v is the vector field that generates the principal R>0 action. Then
there exists a unique contact distribution � on M and a unique diffeomorphism from
the symplectization �0

C onto Q that respects the projection maps to M and such that
the pullback of z̨ is the tautological one-form on the subset �0

C of T �M .

A torus T action on Q that commutes with the R>0 action and preserves ! descends to
an action on the contact manifold .M; �/. The pullback to Q of the contact momentum
map is the map ‰W Q! t� given by ‰X D �XQ

z̨ , where XQ , for X 2 t, are the
vector fields on Q that generate the action.

Let i W S1 ,! T be a subcircle and i�W t�! R the projection on the dual of the Lie
algebra. Performing on Q the symplectic cutting construction with respect to this
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circle action yields the symplectization of the contact cut of M ; cf [14, Theorem 6]
and [23, Theorem 2.10]. Its momentum map image is the intersection of image‰ with
the closed half-space fi� � 0g of t� .

10.2 Example Consider R2n X f0g as a principal R>0 bundle over S2n�1 , where
t 2 R>0 acts by x 7!

p
tx and where the map to S2n�1 is x 7! x=kxk, and with

the standard symplectic structure. This is the symplectization of the standard contact
structure on S2n�1 (cf Remark 10.1). The standard (Hopf) circle action has momentum
map x 7! kxk2=2 with image .0;1/. The opposite circle action has momentum map
with image .�1; 0/.

10.3 Example Consider the torus T k D .S1/k ; identify its cotangent bundle with
T k � Rk . Let Q be the complement of the zero section: Q D T k � .Rk X f0g/.
The subtorus T k�1 � f1g acts on Q with momentum map ‰W .a;x/ 7! �.x/ where
� W Rk !Rk�1 is the projection to the first .k � 1/ coordinates. The level sets of this
momentum map are

‰�1.ˇ/D

(
T k � fˇg �R if ˇ ¤ 0 in Rk�1;

T k � f0g � .RX f0g/ if ˇ D 0 in Rk�1:

In particular, the zero level set is not connected. This is an example of a contact
momentum map: Q is the symplectization of the unit sphere bundle in the cotangent
bundle; cf Remark 10.1.

10.4 Example Begin with the symplectic manifold Q of Example 10.3. By perform-
ing the symplectic cutting construction with respect to the circle f1gk�2�S1�f1g, we
obtain a new symplectic manifold, Qcut , still with a .k � 1/ dimensional torus action
and a momentum map ‰cutW Qcut!Rk�1 , but its momentum map image is now the
closed upper half-space in Rk�1 and not all of Rk�1 . This is the contact momentum
map for the contact manifold obtained from the unit sphere bundle in the cotangent
bundle by “contact cutting”; cf Remark 10.1. The zero level set of the momentum map
is still disconnected. (Contrast with Remark 1.4.)

10.5 Example (Circle actions) Suppose that dim T D 1 and the contact manifold M

is connected. If T acts effectively, the momentum map image must be one of the
following sets: .�1; 0/, .�1; 0�, .0;1/, Œ0;1/, or all of R. As seen in Example
10.2, and in Examples 10.3 and 10.4 with k D 2, all these sets occur as images, and
the zero level set need not be connected.
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10.6 Example (dim T D 2) For a two dimensional torus, the momentum cone need
not be convex, and the level sets of the momentum map need not be connected. To see
this, we begin with the noncompact manifold R�.S1/2 , with .S1/2 acting by rotations
of the second component, and with the contact one-form ˛ D cos t d�1 C sin t d�2

and the ˛–momentum map .t; ei�1 ; ei�2/ 7! .cos t; sin t/. For every positive integer n,
this descends to a contact one-form and torus action on the compact manifold Mn D

R=.2�nZ/� .S1/2 . The image of the contact momentum map Mn �R>0!R2 is
R2Xf0g, and every nonempty level set has n connected components. Alternatively,
for every interval Œa; b��R such that tan.a/ and tan.b/ are rational, contact cutting in
neighborhoods of fag� .S1/2 and fbg� .S1/2 produces a contact one-form and torus
action on the lens space MŒa;b� , obtained from the manifold with boundary Œa; b��.S1/2

by collapsing circles in the two components of the boundary by two circle subgroups.
The image of the contact momentum map is f.r cos t; r sin t/ j a� t � b and r > 0g. If
� <b�a<2� , the momentum cone is not convex. If b�a�2� , the contact momentum
map is not open as a map to its image. These examples are due to Lerman [23]. Also
see Example 6.11. We summarize this in Table 1.

convexity (C1) connectedness (C2) openness (C3)

Mn, nD 1 X X X
Mn, n� 2 X � X
MŒa;b�, 0< b� a� � X X X
MŒa;b�, � < b� a< 2� � X X
MŒa;b�, b� a� 2� X � �

Table 1

We currently do not know whether the contact momentum map for a nontransverse T

action on a compact connected contact manifold can have disconnected nonzero level
sets when dim T D 2. But it can have disconnected nonzero level sets when dim T D 1:

10.7 Example (Nonzero level sets and openness for circle actions) For the mani-
folds of Example 10.6, restrict the torus action to an action of the circle S1 � f1g;
the momentum map gets composed with the projection map .x;y/ 7! x . For the
manifold Mn , the contact momentum map is open and its image is R; the number of
connected components of ‰�1.x/ is n if x ¤ 0 and 2n if x D 0. For the manifold
MŒa;b� , where b D b0C 2�k with k a nonnegative integer, the numbers of connected
components of ‰�1.x/ and the images of ‰ when k D 0 are given in Table 2.
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x < 0 x D 0 x > 0 image‰
when k D 0

aD��=2 , ��=2< b0 < �=2 k 1+2k 1+k Œ0;1/

aD��=2 , b0 D �=2 k 2+2k 1+k Œ0;1/

aD��=2 , �=2< b0 < 3�=2 1+k 2+2k 1+k R
aD��=2 , b0 D 3�=2 1+k 3+2k 1+k R

��=2< a< �=2 , a< b0 < �=2 k 2k 1+k .0;1/

��=2< a< �=2 , b0 D �=2 k 1+2k 1+k Œ0;1/

��=2< a< �=2 , �=2< b0 < 3�=2 1+k 1+2k 1+k R
��=2< a< �=2 , b0 D 3�=2 1+k 2+2k 1+k R
��=2< a< �=2 , 3�=2< b0 � aC 2� 1+k 2+2k 2+k R

Table 2

If k � 1, then image‰ D R. When we replace Œa; b� by ŒaC �n; bC �n�, if n is
even, we get the same values, and if n is odd, the number of connected components for
x < 0 is switched with the number for x > 0 and image‰ transforms by x 7! �x .
When the image of the momentum map is R and a or b is equal to �=2 modulo �Z,
the contact momentum map ‰ is not open as a map to its image; in all other cases, the
contact momentum map is open as a map to its image. We summarize this in Tables 3
and 4. (The convexity (C1) is automatic.)

Mn convexity (C1) connectedness of nonzero level sets (C2) openness (C3)

nD 1 X X X
n� 2 X � X

Table 3
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[31] H Nozawa, Five dimensional K–contact manifolds of rank 2 arXiv:0907.0208v1

[32] E Prato, Convexity properties of the moment map for certain non-compact manifolds,
Comm. Anal. Geom. 2 (1994) 267–278 MR1312689

Algebraic & Geometric Topology, Volume 10 (2010)

http://www.ams.org/mathscinet-getitem?mr=0157289
http://dx.doi.org/10.1017/S0305004196001260
http://www.ams.org/mathscinet-getitem?mr=1434654
http://www.ams.org/mathscinet-getitem?mr=2397738
http://www.ams.org/mathscinet-getitem?mr=2175783
http://dx.doi.org/10.1007/BF01398933
http://www.ams.org/mathscinet-getitem?mr=664117
http://dx.doi.org/10.1016/0022-1236(82)90111-2
http://dx.doi.org/10.1016/0022-1236(82)90111-2
http://www.ams.org/mathscinet-getitem?mr=665022
http://www.ams.org/mathscinet-getitem?mr=1270171
http://www.numdam.org/item?id=CM_1994__94_2_129_0
http://www.ams.org/mathscinet-getitem?mr=1302314
http://dx.doi.org/10.1007/BF01245069
http://www.ams.org/mathscinet-getitem?mr=1094049
http://www.heldermann-verlag.de/jlt/jlt12/KNOPPL.PDF
http://www.ams.org/mathscinet-getitem?mr=1923787
http://dx.doi.org/10.1007/BF02772608
http://www.ams.org/mathscinet-getitem?mr=1856505
http://projecteuclid.org/getRecord?id=euclid.ijm/1258136148
http://www.ams.org/mathscinet-getitem?mr=1936083
http://projecteuclid.org/getRecord?id=euclid.jsg/1092749569
http://www.ams.org/mathscinet-getitem?mr=2039164
http://dx.doi.org/10.1016/S0040-9383(97)00030-X
http://dx.doi.org/10.1016/S0040-9383(97)00030-X
http://www.ams.org/mathscinet-getitem?mr=1489203
http://dx.doi.org/10.1155/S1073792801000022
http://www.ams.org/mathscinet-getitem?mr=1809496
http://www.heldermann-verlag.de/jlt/jlt11/LOOSELAT.PDF
http://www.ams.org/mathscinet-getitem?mr=1828281
http://www.ams.org/mathscinet-getitem?mr=1486536
http://arxiv.org/abs/0907.0208v1
http://www.ams.org/mathscinet-getitem?mr=1312689


Convexity package for momentum maps on contact manifolds 977

[33] C V Robinson, Spherical theorems of Helly type and congruence indices of spherical
caps, Amer. J. Math. 64 (1942) 260–272 MR0006420

[34] R Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138
(1998) 46–91 MR1645052
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