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Complexity of PL. manifolds

BRUNO MARTELLI

We extend Matveev’s complexity of 3—manifolds to PL. compact manifolds of arbi-
trary dimension, and we study its properties. The complexity of a manifold is the
minimum number of vertices in a simple spine. We study how this quantity changes
under the most common topological operations (handle additions, finite coverings,
drilling and surgery of spheres, products, connected sums) and its relations with
some geometric invariants (Gromov norm, spherical volume, volume entropy, systolic
constant).

Complexity distinguishes some homotopically equivalent manifolds and is positive
on all closed aspherical manifolds (in particular, on manifolds with nonpositive
sectional curvature). There are finitely many closed hyperbolic manifolds of any given
complexity. On the other hand, there are many closed 4-manifolds of complexity zero
(manifolds without 3-handles, doubles of 2—handlebodies, infinitely many exotic K3
surfaces, symplectic manifolds with arbitrary fundamental group).

57Q99; 57TM99

Introduction

The complexity ¢(M) of a compact 3—manifold M (possibly with boundary) was
defined in a nice paper of Matveev [29] as the minimum number of vertices of an
almost simple spine of M . In that paper he proved the following properties:

Additivity ¢(M #M') = c¢(M) + ¢(M’) for any (boundary-)connected sum.

Finiteness There are finitely many closed irreducible (or cusped hyperbolic) 3—mani-
folds of bounded complexity.

Monotonicity If Mg is obtained by cutting M along an incompressible surface S,
then c(Mg) < c(M).

Thanks to the combinatorial nature of spines, it is not hard to classify all manifolds hav-

ing increasing complexity 0, 1,2, . ... Tables have been produced in various contexts;
see Burton [8], Callahan, Hildebrand and Weeks [9], Frigerio, Martelli and Petronio [14],
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Martelli [25], Martelli and Petronio [26], Matveev [30; 31] and the references therein
(and Table 1 below). Some of these classifications were actually done using the dual
viewpoint of singular triangulations, which turns out to be equivalent to Matveev’s for
the most interesting 3—manifolds.

We extend here Matveev’s complexity from dimension 3 to arbitrary dimension. To do
this, we need to choose an appropriate notion of spine. In another paper [27] written in
1973, Matveev defined and studied simple spines of manifolds in arbitrary dimension.
A simple spine of a compact manifold is a (locally flat) codimension—1 subpolyhedron
with generic singularities, onto which the manifold collapses. If the manifold is closed
there cannot be any collapse at all and we therefore need to priorly remove one ball.

Simple spines are actually not flexible enough for defining a good complexity. In
dimension 3, as an example, any simple spine for S3 (or, equivalently, D?) is a
complicated and unnatural object, such as Bing’s house or the abalone. Every simple
spine of D? has at least one vertex. However, a reasonable complexity must be zero
on discs and spheres.

To gain more flexibility, Matveev defined in 1988 the more general class of almost
simple spines [28; 29] of 3—manifolds. An almost simple polyhedron is a compact
polyhedron that can be locally embedded in a simple one. This more general definition
allows one to use very natural objects as spines, such as a point for D3 or a circle for
D? x S': a point is not a vertex by definition, and hence ¢(D3) = 0, as required. We
show here that the notion of almost simple spine extends naturally to all dimensions.

This is in fact not the only way to gain more flexibility. A different possibility consists
in enlarging the notion of spine by admitting an arbitrary number of open balls in its
complement. Following that road, a 2—sphere is a simple spine of S3 (or D3) without
vertices, and hence ¢(D?) = 0 again. One might also allow simultaneously almost
simple polyhedra and more balls in their complement.

In our attempt to define a suitable complexity in any dimension n, we are apparently
forced to choose among three different definitions of complexity, and the choice seems
only a matter of taste: as a spine for S”, do we allow a point, an equator (n— 1)—sphere,
or both?

Luckily, these three definitions are actually equivalent and lead to the same complexity
c¢(M™), in every dimension 7. This nontrivial fact shows that ¢(M") is indeed a very
natural quantity to associate to a compact manifold M". For the sake of clarity, we
choose in Section 3 the simplest definition, which takes simple polyhedra and admits
more balls in their complement. The other definitions and the proof of their equivalence
are deferred to Section 7.
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Having settled the problem of defining ¢, we turn to studying its properties. Three-
dimensional complexity is already widely studied, and 1— and 2—dimensional ones are
quite boring, so in this introduction we focus mainly on dimension 4.

We start by studying how ¢ varies when a handle is added. Quite surprisingly, the
complexity can always be controlled. If a 4-manifold N is obtained from M by
adding a handle of index i > 0, we have ¢(N) < c¢(M), except when i = 3: in that
case we get the opposite inequality ¢(N) = c¢(M). When i = 4 we actually have
c(N)=c(M).

These simple inequalities already allow to prove many things, including that plenty of
4-manifolds have complexity zero, in contrast with the 3—dimensional case. These
include all 4-manifolds (with or without boundary) having a handle-decomposition
without 3-handles, and all the doubles of 2—-handlebodies (ie manifolds decomposing
without 3— and 4-handles). The first set includes many simply connected manifolds
(maybe all), the second set contains closed manifolds with arbitrary (finitely presented)
fundamental group.

We can find more. It is easy to see that a nontrivial product M ks N with boundary
has a spine without vertices. Therefore every closed 4—manifold obtained from a
nontrivial product by adding handles of index # 3 has complexity zero. Among
manifolds that may constructed in this way, we find the infinitely many exotic K3
surfaces discovered by Fintushel and Stern in [13] and the closed symplectic manifolds
with arbitrary fundamental group exhibited by Gompf in [15] (both types of manifolds
are built by attaching handles of index # 3 to a product M3 x S1).

As we have seen, there are plenty of 4-manifolds of complexity zero, although in many
cases describing explicitly their spines is not obvious. One could guess that complexity
is just zero on all 4—manifolds. Luckily, this is not the case. Various nontriviality
results (in all dimensions n) are proved in this paper.

A closed n—manifold M with complexity zero must indeed fulfill some strict require-
ments. First of all, it cannot be aspherical. Moreover, its Gromov norm || M || vanishes.
If 71 (M) is infinite and (virtually) torsion-free, some other geometric invariants of M
also vanish: the spherical volume 7 (M) defined by Besson, Courtois and Gallot [7],
the volume entropy A(M ), and the systolic constant o (M), defined by Gromov [18].

Concerning Gromov norm, we actually have ¢(M) = | M || for every closed aspherical
manifold. This shows in particular that there are closed manifolds of arbitrarily high
complexity in all dimensions. It also implies that there are finitely many closed hyper-
bolic n—manifolds of bounded complexity: this is a mild extension of the 3—dimensional
finiteness property, proved by Matveev for all closed irreducible 3—manifolds.
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The triviality and nontriviality results just stated suggest that c(M) is a well-balanced
quantity which could reasonably measure how “complicate” a manifold is. We hope that
this new invariant will help to understand better the enormous set of PL (equivalently,
smooth) compact 4—manifolds.

Another kind of complexity for 4—manifolds (defined by Costantino and the author
[10; 24]) makes use of 2—dimensional shadows instead of 3—dimensional spines: the
two complexities are qualitatively different (see the end of Section 1).

Structure of the paper

In Section 1 we list all the properties of ¢ that are proved in this paper. Some basic
notions of piecewise-linear topology are collected in Section 2. Simple spines and
complexity are then introduced in Section 3. Some of our definitions are somehow
different from the ones given by Matveev: in Sections 4 and 7 we prove that they are
equivalent.

In Section 5 we construct simple spines as objects dual to triangulations. In Section 6
we show how to modify correspondingly a spine when the manifold is drilled along
some subpolyhedron. This basic operation will be used at many stages in the rest of
the paper.

In Section 8 we study how complexity changes under handle addition, sphere drilling,
and connected sum. In Section 9 we study the complexity of products and of finite
coverings. In Section 10 we introduce a generalization of normal surfaces to arbitrary
dimension and show how to “cut” a simple spine along a normal hypersurface.

In Section 11 we study the nerve of a simple spine P: the nerve is a simplicial complex
determined by the stratification of P, which contains a lot of information on the
topology of the manifold. The nerve is the key tool to prove various nontriviality results
for ¢. The relations between complexity and homotopy invariants, Gromov norm, and
Riemannian geometry are then studied in Sections 12, 13, and 14. Finally, Section 15
is devoted to four-manifolds.

Acknowledgements We would like to thank Katya Pervova and the anonymous ref-
eree for suggesting improvements on earlier versions of the manuscript. We also
thank Roberto Frigerio and Roman Sauer for many helpful conversations on bounded
cohomology and Gromov norm.

1 Main results

We define the complexity ¢(M) of any compact PL manifold M in Section 3. The
definition is of course also applicable to every smooth compact manifold by taking its
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unique PL structure (see Whitehead [39]). In this section we collect all the properties
of ¢ proved in this paper.

Topological operations

Simple spines are flexible. Most topological operations on manifolds can be translated
into some corresponding modifications of their spines. Various estimates on the com-
plexity are therefore proved by examining how the number of vertices may vary along
these modifications.

We collect here some estimates. We start with products.

Product with boundary A product N = M x M’ with nonempty boundary has
c(N)=0.

In other words, if either M or M’ is bounded, then ¢(M x M') = 0. If both M and
M’ are closed, we may have ¢(M x M') > 0: this holds for instance if both M and
M’ are aspherical (and so N is), for instance if M = M’ = S 1" On the other hand,
we have the following.

Sphere product We have ¢(M x S")=0ifn = 2.

Note that | M x S"| = 0 for any n = 1. We are not aware of any general inequality
relating ¢(M), ¢(M’), and ¢(M x M’) when both manifolds are closed. We turn to
coverings.

Covering If M —> M isa degree—d covering, then c(ﬂ )< dc(M).

In contrast with Gromov norm, this inequality is far from being an equality in gen-
eral. For instance, lens spaces have arbitrarily high complexity while their universal
covering S has complexity zero.

We investigate the effect of adding a i —handle to a n—manifold M . Quite surprisingly,
we always get a one-side estimate when 7 > 4, which depends only on the codimension
n—i.

Handles Let N be obtained from M by adding a handle of index i . We have
o ¢c(N)seM)ifi<n—1,
e ¢c(N)yzc(M)ifi=n—1andn =4,
e ¢c(N)y=c(M)ifi=nandn = 3.
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These estimates imply a series of inequalities concerning connected sums and drilling
along spheres of any dimension.

Connected sum We have c(M" # N"*) < ¢(M") 4+ ¢(N") for every (boundary)
connected sum in dimension n = 3.

Matveev proved that an equality holds in dimension three [29]. We do not know if it
still holds in dimension #n = 4.

We turn to sphere drilling. If S C M is a submanifold, we denote by Mg the manifold
obtained by removing from M an open regular neighborhood of S. As for handle
addition, if S is a k—sphere and n > 4 we get a one-side estimate which depends only
on the dimension k.

Sphere drilling Let S C M be a k—sphere. We have

e ¢c(Mg)<c(M)ifk=1andn=4,

e ¢c(Mg)=c(M) ifk>1.
The (PL-)sphere S does not need to be locally flat. If S has a product regular
neighborhood D" % xS we can perform a surgery by substituting this neighborhood

with §"k=1 x pk+1 along some map. If k = 1, the previous result implies the
following.

Surgery If N is obtained from M by surgery along a simple closed curve and n = 4,
then ¢c(N) < c(M).

A strict inequality holds in some cases.

Strict inequality If M is closed with ¢(M) > 0 and n = 4, there is a simple closed
curve y C M such that c(N) < c(M) if N is obtained by drilling or surgery along y .

This implies the following result. Very often in dimension 4 a complicate manifold
becomes “simpler” after summing it with S% x S2 or S2 X S2 =~ CP?#CP2. The

complexity might estimate this phenomenon as follows.

Stabilization If M is a simply connected closed 4—manifold with c(M') > 0 then
c(M#(S?x S?)) <c(M) and c(M #(S? X S?)) < c(M).

However, we do not know if there exists any simply connected 4—manifold of positive
complexity!
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Finally, an important result of 3—dimensional complexity, due to Matveev [29], says
that ¢(Mg) < c¢(M) whenever S is an incompressible surface. Unfortunately, the
notion of incompressibility does not extend appropriately to higher dimensions. Having
in mind that every class in H,(M3,7Z) is represented by an incompressible surface,
we extend a weaker version of Matveev’s result as follows.

Hypersurfaces Every class in H,_1(M",7Z,) is represented by a hypersurtace S
such that c(Mg) < c(M).

This result is proved by extending the 3—dimensional notion of normal surface to any
dimension: this extension might be of independent interest.

The results just stated are proved in Sections 8, 9 and 10.

Gromov norm and triangulations

Let ||M| and z(M) be respectively the Gromov norm [17] and the minimum number
of simplices in a triangulation of M .

Gromov norm (1) If M is closed with virtually torsion-free w1 (M), then

IM]| < c(M) < t(M).

Note that if M is aspherical then 71 (M) is torsion-free and hence the inequalities
hold for any aspherical manifold M . Actually, only the left inequality requires this
hypothesis on 71 (M), and we do not know if it is really necessary. Both inequalities
might be justified informally by saying that simples spines are more flexible than
triangulations, but not as flexible as real homology cycles.

The above result can be strengthened in complexity zero, by dropping the hypothesis
on 71(M) and admitting amenable boundary. The boundary dM is amenable if the
image of every connected component of dM in 7;(M) is an amenable group.

Gromov norm (2) Let M be a manifold with (possibly empty) amenable boundary.
If c(M) =0 then | M| = 0.

The amenability hypothesis is necessary, since a genus—2 handlebody has complexity
zero and positive Gromov norm.

The results just stated are proved in Sections 5 and 13.
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Homotopy type

It might be that every simply connected manifold has complexity zero. This question
is open only in dimension 4.

Simply connected Every simply connected compact manifold of dimension # 4 has
complexity zero.

On the other hand, we have the following.

Arbitrary fundamental group Every finitely presented group is the fundamental
group of a closed 4—manifold with complexity zero.

Complexity detects aspherical manifolds, in some sense.
Aspherical manifolds If M is closed aspherical, then c(M) > 0.

This shows in particular that complexity behaves quite differently from Gromov norm.
For instance, complexity detects nonpositive curvature, while Gromov norm detects
negative curvature: the n—torus 7" has ¢(7) > 0 and ||T|| = 0.

We also note that complexity is not a homotopy invariant, since it distinguishes some
homotopically equivalent lens spaces: we have ¢(L7,1) =4 and c¢(L72) =2 [29]. We
do not know if it distinguishes different PL. manifolds sharing the same topological
structure.

The results just stated are proved in Section 12.

Riemannian geometry

We compare the complexity of a smooth manifold M with other invariants coming
from Riemannian geometry. A relation between the volume of a Riemannian manifold
and its complexity can be given by bounding both the sectional curvature and the
injectivity radius. The second inequality in the following result is due to Gromov [17].

Volume Let M" be a Riemannian manifold with everywhere bounded sectional
curvature | K(M)| < 1. Then

Vol(M
c(M)<t(M) < constn,,()#.
inj, (M)"
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Here inj(M) is the injectivity radius, inj,(M) = min{inj(M), 1}, and const, is a
constant depending on 7. The same formula holds for Gromov norm || | : in that case
however the factor inj, (M )™" can be removed when 71 (M) is residually finite [17].
It is not possible to remove this factor here, since there are infinitely many hyperbolic 3—
manifolds with bounded volume, while only finitely many can have bounded complexity.
This holds in fact in all dimensions.

Finiteness There are finitely many closed hyperbolic n—manifolds of bounded com-
plexity, for every n.

We do not know if the finiteness property can be extended to manifolds of nonnegative
curvature, or more generally to aspherical manifolds. As far as we know, it might
also hold for elliptic manifolds. The results on Gromov norm allow to prove also the
following.

Cusped hyperbolic manifolds Let M be a compact manifold whose interior admits
a complete hyperbolic metric of finite volume. Then ¢(M) > 0.

This result is sharp since the Gieseking 3-manifold has complexity 1 [9]. Complexity
is also related to other geometric invariants. A nice chain of inequalities, taken from
[20; 35], holds for every closed orientable manifold M :

n/2
M| <2"n"2T (M) < M(M)" < h(M)" < (n—1)MinVol(M).

n!
From left to right, we find Gromov norm || M ||, the spherical volume 7' (M) defined by
Besson, Courtois and Gallot in [7], the volume entropy A(M ), the topological entropy
h(M), and the minimum volume MinVol(M) defined by Gromov in [17]. Another
interesting invariant is the systolic constant o (M ), defined by Gromov in [18].

Geometric invariants Let M be a closed orientable manifold with virtually torsion-
free infinite fundamental group. If ¢(M) = 0 then

TM)=A(M)=0(M)=0.
We do not know if the same hypothesis implies also (M) = 0. It does not imply

MinVol(M) = 0 (for instance, if M = (T? x §?) #CP? we have ¢(M) = 0 and
MinVol(M) = const- |x(M)| > 0 [17]).

Finally, we quote a result of Alexander and Bishop [2; 3] relating the complexity and
the width of a Riemannian manifold with boundary.
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Thin manifolds There are some constants a, < az < --- such that if a Riemannian
manifold M™ with boundary has (curvature-normalized) inradius less than ay, then
c(M™) =0.

The results just stated are proved in Section 14.

Low dimensions

The complexity of manifolds of dimension 1 and 2 is easily calculated. Concerning
1-manifolds, we have ¢(S!) = ¢(D!) = 1. Turning to dimension 2, the complexity
of a (compact) surface X turns out to be as follows:

e ¢(X)=max{2—-2x(X),0} if X is closed.
e ¢(X) =max{—2x(X), 0} if ¥ has boundary.

The compact surfaces having complexity zero are S%, RP2, D2, the annulus and the
Mobius strip. The torus and the pair-of-pants have complexity 2.

The complexity of 3—manifolds has been widely studied. Manifolds of low complexity
have been listed via computer by various authors [8; 9; 14; 25; 26; 30; 31]: the closed
orientable irreducible ones are collected in Table 1 according to their geometry. The
closed irreducible manifolds having complexity zero are S3, RP3 and Lj;.

c 01 23 4 5 6 7 8 9 10 11
lens spaces 3 2 3 6 10 20 36 72 136 272 528 1056

otherelliptic - - 1 1 4 11 25 45 78 142 270 526

flat - - - . . . 6 . . . . .

NiL - - - - - - 7 10 14 15 15 15
SLLR -« v« v .39 162 513 1416 3696

Sol - - - - - . . 5 9 23 39 83

H2xR - - - - . . . . 2 . 8 4
hyperbolic - - - - . . . . . 4 25 120
not geometric - - - - - . . 4 35 185 777 2921

total 3 2 4 7 14 31 74 175 436 1154 3078 8421

Table 1: The number of irreducible orientable 3—manifolds of complexity
¢ < 11 in each geometry. The nongeometric manifolds decompose into
geometric pieces according to their JSJ decomposition along tori (they are all
graph manifolds when ¢ < 10).
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We now devote our attention to dimension 4. We start by studying the set of 4—
manifolds of complexity zero. We describe here some interesting classes of such
manifolds. These classes seem however far to exhaust the set of all 4-manifolds with
complexity zero.

The various results stated above show that the set of all 4—manifolds of complexity
zero contains all products N x N’ with nonempty boundary or N € {S?, S3}, and is
closed under connected sums, finite coverings, addition of handles of index # 3, and
drilling (or surgery) along simple closed curves. All the examples presented here are
of this kind. We concentrate on closed manifolds for simplicity.

No 3-handles Every closed 4—manifold that has a handle decomposition without
3—handles has complexity zero.

Every such manifold is necessarily simply connected. However, for many simply
connected manifolds a decomposition without 3—handles does not seem to be known.
Among these, we find the exotic K3 surfaces constructed by Fintushel and Stern in [13].
In fact, these manifolds are constructed by attaching handles of index # 3 to a product
M3 x S1. Therefore we have the following.

Exotic K3 The (infinitely many) exotic K3 surfaces Xk constructed via Fintushel
and Stern’s knot construction [13] from a knot K C S3 have complexity zero.

We now introduce two different classes of closed 4—-manifolds with arbitrary (finitely
presented) fundamental group. Let a 2—handlebody be a 4—manifold which has a
decomposition with 0—, 1—and 2-handles.

Doubles of 2-handlebodies The double of any orientable 2—handlebody has com-
plexity zero.

These manifolds have complexity zero since they are obtained by surgering (S! x S3)#
.- #(S! x S?) along some curves. Every finitely presented group is the fundamental
group of a 2—-handlebody, which is in turn isomorphic to the fundamental group of its
double. It is not true that any double has complexity zero, because a double can be
aspherical (for instance, a product of surfaces).

Another class was constructed by Gompf in [15], in order to show that symplectic
4-manifolds may have arbitrary fundamental group. As above, these manifolds are
constructed by attaching handles of index # 3 to a product M3 x S, so we have the
following.
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Symplectic manifolds The closed symplectic manifolds with arbitrary fundamental
group constructed by Gompf in [15] have complexity zero.

The results just stated are proved in Section 15.

Relation with shadow-complexity

There is another natural way to extend Matveev’s complexity to dimension 4: instead
of taking 3—dimensional spines, one may take 2—dimensional shadows.! A shadow-
complexity was introduced by Costantino [10] and the author [24]. The resulting
function ¢*P°V 5 quite different from the complexity ¢*P"® = ¢ defined here.

The closed 4-manifolds having shadow-complexity zero were described in [23]. A
closed orientable M* has ¢*hd°%(Af4) = 0 if and only if M = N*#, CP? for
some “graph manifold” N4 and some / € Z. These graph manifolds are doubles of
2-handlebodies (of a particular simple form), and thus we get the following:

Shadow-complexity If ¢*do%(M#4) = 0 then cP"(M*) = 0.

The converse does not hold: as shown in [23], the only closed simply connected 4—
manifolds M with ¢shadow (M)=0are S 4 CP2,S? x S? and their connected sums,
50 in particular we have ¢S"™4°V(K3) > 0.

2 Piecewise-linear topology

We collect here the information on piecewise-linear topology that we will need. The
basic definitions and tools are listed in Section 2.1 and Section 2.2. More material
can be found in Rourke and Sanderson [37]. The notion of intrinsic stratification is
taken from Akin [1], Armstrong [4], McCrory [32] and Stone [38] and described in
Section 2.3. Stein factorization (which we take from Costantino and Thurston [11]) is
introduced in Section 2.4. Finally, in Section 2.5 we define the nerve of a pair (X, Y)
of polyhedra: this definition is original and might be of independent interest.

The material contained in Sections 2.4 and 2.5 is used only in Section 11 to define the
nerve of a pair (M, P) when P is a simple spine of M .

T As defined by Turaev, a shadow P2 C M* is a simple polyhedron such that M* is a regular
neighborhood of P plus some 3— and 4-handles.

Algebraic & Geometric Topology, Volume 10 (2010)



Complexity of PL manifolds 1119

2.1 Basic definitions

2.1.1 Simplicial complexes A (finite and abstract) simplicial complex K is a set of
nonempty subsets of a given finite set V(K) (the vertices of K), such that {v} € K
forall ve V(K) andif 0 € K and t C o then 7 € K. An element of K is a face. A
subcomplex is a subset of K which is a complex. If K and L are simplicial complexes,
a simplicial map f: K — L is a function f: V(K)— V(L) such that if o € K then

fo)eL.

2.1.2 Triangulations A (finite) simplicial complex K induces a compact topological
space | K|, defined by taking a standard Euclidean simplex for each element of K and
identifying them according to the face relations. A triangulation of a compact topologi-
cal space X is a simplicial complex K and a homeomorphism f: |K| — X . Another
triangulation (L, g) of X is a subdivision of (K, f) if the image of every simplex
of L is contained as a straight simplex in some simplex of K. Two triangulations of X
are related if they have a common subdivision.

We will use the letter 7" to indicate a triangulation, ie a pair (K, f).

2.1.3 Polyhedra A compact polyhedron is a compact topological space X equipped
with a maximal family of related triangulations. A subpolyhedron X' C X is a subset
which is the image of a subcomplex of some triangulation of X . If X is a polyhedron
containing compact polyhedra X7,..., X, a triangulation K of (X, Xy,..., X)
is a triangulation of X where each X; is represented by some subcomplex; such
a triangulation can be found by taking a common subdivision of the triangulations
realizing X; as a subcomplex.

The standard n—simplex A” is a polyhedron. We define the n—disc D" and (n —1)-
sphere S~ respectively as A” and A",

2.1.4 Manifolds and maps A simplicial map f: K — L induces a continuous map
f:|K| — |L|. A map between polyhedra is piecewise-linear (shortly, PL) if it is
induced by a simplicial map on some triangulations. A polyhedron is a PL—manifold
(with boundary) if it is locally PL-homeomorphic to some point in S” (D"). Every
manifold and map mentioned in this paper is tacitly assumed to be PL.

2.2 Basic tools

2.2.1 Derived complexes A simplicial complex K defines a partially ordered set
(briefly, a poser) i (K) = (K, ©), the set of faces with their face relations. Conversely,
a poset (A4, <) defines a simplicial complex 1(A, <), whose vertices are the elements
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of A, and whose faces are all finite subsets {aq,...,a;} such that ag <--- <a;. The
simplicial complex n(A, <) is the nerve of (A, <).

The simplicial complex K’ = noi(K) is the derived simplicial complex of K. Vertices
of K’ correspond to faces of K. A simplicial map f: K — L induces an order-
preserving map i (K) — i (L) and hence a derived simplicial map f’: K' — L’.

A triangulation T = (K, /') of a space X determines a barycentric subdivision T’ =
(K’, f7) of X, obtained by composing f with the homeomorphism |K’| — | K| which
sends every vertex of K’ to the barycenter of the corresponding face of K (and is
extended linearly on the rest of |K'|).

2.2.2 Join, cone and suspension The join K * L of two simplicial complexes K
and L (with disjoint vertices) is the complex with vertices V(K x L) = V(K) U V(L)
and with faces KU LU{o Ut|o € K, t € L}. The polyhedron |K * L| depends only
on | K| and |L| (up to homeomorphism) and can thus be denoted by | K| |L]|.

The cone and suspension of a polyhedron P are respectively C(P) = P % D° and
Y (P) =P % S°. We have S%(P) =~ P« Sk—1.

2.2.3 Link, star and regular neighborhood Let K be a simplicial complex and
L C K asubcomplex. The star st(L, K) of L in K is the minimal subcomplex of K
containing all faces that intersect some face of L. The link 1Ik(L, K) is the subcomplex
of st(L, K) consisting of all faces not intersecting any face of L.

When Y C X are polyhedra and 7 is a triangulation of (X, Y), we indicate by 1k(Y, T")
and st(Y, T') the corresponding subpolyhedra of X. When Y = {y} is a point, these
polyhedra depend (up to homeomorphism) only on y and noton 7.

In general, if T is sufficiently subdivided, the star st(Y, 7) does not depend on 7'
up to an isotopy in X keeping Y fixed: for instance, this holds after two barycentric
subdivisions. In that case, the polyhedron st(Y, T') is the regular neighborhood of Y
in X', which we denote by R(Y).

When X is a manifold, the regular neighborhood R(Y) is a manifold with boundary.
2.2.4 Collapse Let K be asimplicial complex. Let o € K be a face which is properly

contained in a unique face 7. The subcomplex L = K \ {0, n} is obtained from L by
an elementary collapse.

Let Y C X be any polyhedra. The polyhedron Y is obtained from X via a elementary
collapse if it is so on some triangulation. More generally, a collapse of X onto a
subpolyhedron Z is a combination of finitely many simplicial collapses.
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2.3 Intrinsic strata

We recall the notions of intrinsic dimension and strata of polyhedra; see Akin [1],
Armstrong [4], McCrory [32] and Stone [38].

Let Y C X be any polyhedra and x € X a point. The intrinsic dimension d(x; X,Y)
of the pair (X, Y) at x is the maximum number ¢ such that the following holds:

(1) There is a triangulation of (X, Y') with x contained in the interior of a #—simplex.

If x € Y, this is equivalent to each of the following conditions:
(2) The link of x in (X, Y) is the #—th suspension X! (W, Z) of some pair (W, Z).

(3) The star of x in (X,Y) is homeomorphic to C(W, Z) x D' with x sent to
v X ¢, where v is the vertex of the cone C(W, Z) and ¢ € int(D?).

The absolute notion of intrinsic dimension of a point x in a polyhedron Y is defined as
dx;Y)=d(x;Y,Y). If x Y wehave d(x; X,Y) =d(x; X). If x €Y we have
dx; X,Y)<{d(x,X),d(x,Y)}.

A subpolyhedron Y C X in a manifold X is locally unknotted at x if d(x; X,Y) =
d(x;Y). When Y is a manifold, this is equivalent to the standard notion of local
flatness. The subpolyhedron Y C X is locally unknotted if it is so at every x € Y.

The intrinsic dimension can be easily calculated using the following nice result of
Armstrong [4] and Morton [34]:

Proposition 2.1 (Armstrong—Morton) If the link of x in (X,Y) is the t —th suspen-
sion of some pair (W, Z), and (W, Z) is not itself a suspension, thent = d(x; X, Y)
and (W, Z) is uniquely determined by x .

This easily implies the following.

Exercise 2.2 If Y C X is locally unknotted, then lk(x,Y) C lk(x, X) is locally
unknotted for every x € Y.

The intrinsic dimension induces an intrinsic stratification of any pair (X, Y). The
points of intrinsic dimension k in Y form the k—stratum of Y . The k—stratum is an
(open) k—dimensional manifold made of finitely many connected components, called
k—components (or simply components). Points in a k—component are all homogeneous,
ie there is an ambient isotopy of Y sending a point to any other. In particular, they
have the same link.

The union of all points of intrinsic dimension < k is the k—skeleton: it is a k-
dimensional polyhedron.
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2.4 Stein factorization

A Stein factorization of a (piecewise-linear) map f: X — Y between (compact)
polyhedra is a decomposition f = g o/ into two maps

x ",z %,y

such that & has connected fibers and g is finite-to-one. Every f has a unique Stein
factorization: the map / is the quotient onto the space Z of connected components of
the fibers of f; see Figure 1. We learned about this notion from [11].

X Z Y

Figure 1: The Stein factorization of a map

We define the Stein factorization in the category of simplicial complexes. Let f: K — L
be a simplicial map. Let f”: K’ — L’ be its derived map. We define an intermediate
simplicial complex H as follows. Consider the map f’: |K’| — |L’|. The vertices
of H are the connected components of (//)~!(v) when v varies among the vertices
of L’. The map f’: V(K') — V(L’) naturally splits along two maps

VK'Y —' v(H) —5— V().

We now define a simplex in H to be the image of any simplex in K’ along /. The

resulting maps

K —"g £,

are simplicial and f’ = goh. Since we used the derived map f”, the map h: |K’'| — |H|
has indeed connected fibers everywhere (not only at the vertices of H). The map
g: |H|— |L’] is finite-to-one: this is equivalent to the condition that dim g(0) = dim o
for every simplex o of H.

2.5 Nerve
The nerve of a polyhedron is a simplicial complex which encodes the incidences
between its components; see Section 2.3. We define it for pairs (X, Y).

Let Y C X be any polyhedra. The components of (X, Y) form a partially ordered set
C,):weset C<C'if CCC’.If C <’ then dim C < dim C’. The prenerve of
(X,Y) is the nerve Ny = n(C, <) of this partially ordered set; see Section 2.2.1 above.
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Let T be a triangulation of (X, Y). If T is sufficiently subdivided, by sending every
vertex of 7' to the component to which it belongs we get a surjective simplicial
map ¢o: T — Ny, called the prenerve map. It induces a surjective continuous map
9o: X — [Nol.

The prenerve map does not necessarily have connected fibers, so we prefer to consider
its Stein factorization; see Section 2.4. The nerve of (X, Y) is the complex N obtained
via the Stein factorization

@ g
T’ N N
of the prenerve map (p(’) = gog. The map ¢: T’ — N is the nerve map. More

generally, a nerve map is a map ¢: X — |N/| induced by some (sufficiently subdivided)
triangulation of (X, Y).

Exercise 2.3 The prenerve of (X,Y) = (S, {pt}) is a segment, while the nerve is a
circle.

3 Simple polyhedra

The definition of simple polyhedra in arbitrary dimensions is due to Matveev [27]. We
use it in Section 3.3 to define the complexity of a n—manifold. This definition extends
Matveev’s complexity of 3—manifolds [29].

3.1 The local model

Let A = A"*! be the (n+ 1)—simplex. Let IT” be the cone over the (7 — 1)—skeleton
of A. The base of the cone is its boundary oT1", while int(IT") = 1" \ 0T1" is its
interior. Some examples are shown in Figure 2.

" D
x &p ?

Figure 2: The (n — 1)—skeleton of the (n + 1)—simplex and the cone I1"

over it. The three-dimensional TT? is not drawn.
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Figure 3: The standard and dual representation of I1” inside A. They are
both subcomplexes of A’. Here, n = 1.

There are two representations of I1” inside A, shown in Figure 3: the standard and
dual representation. They both describe I1" as a subcomplex of the barycentric subdi-
vision A’. See also Figure 4. Both representations induce the same pair (D"*1, T1")

Figure 4: The dual representation of I1? inside the tetrahedron A3

up to homeomorphism. The dual representation is investigated below in Section 5.1.

We define TT7 as [T} = I1"~% x DK The pair (D", I1?) = D¥ x (D"=*+1, T1"k)
is well-defined up to homeomorphism. The boundary 9I1j = I1} N S" is homeo-
morphic to the k—th suspension =¥ (3T1"¥). Following Matveev, a point x in a
polyhedron P is of type k if its link is homeomorphic to dI1} (and hence its star is
homeomorphic to IT} ). See Figure 5.

The polyhedron TT1” has a natural triangulation induced by that of A.

Proposition 3.1 A point x € int(I1") has intrinsic dimension k if and only if it is of
type k.

Proof Since dT1” ¥ is not a suspension, a point of type k has intrinsic dimension k
by Proposition 2.1. m|

2 Actually, our HZ corresponds to Matveev’s HZ_ « - We prefer to define the type of a point coherently
with Armstrong’s general notion of intrinsic dimension.
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D & =

2 2
Figure 5: The local models of a simple polyhedron of dimension 2

The polyhedron IT"” may be constructed recursively. In the following, we see both
I"~! and S™~! inside D". See Figure 6.

D L-C

Figure 6: We have 911" = I1"~! U §"~!. Here n = 2.

Proposition 3.2 We have 9I1" = 1"~ U "1,

Proof Take a vertex v and the opposite face f in A"T!. The (n — 1)—skeleton of
A"+ is the union of df and a cone over the (n — 2)—skeleton of f with base v. O

Corollary 3.3 We have IT" = (IT"~! x [0, 1]) U (D" x {0}).

Figure 7: We have IT" = (I1"~! x[0, 1]) U (D" x {0}). Here n = 2: the disc
D? x {0} is horizontal and I1! x [0, 1] is vertical.

See Figure 7. The following is an easy corollary of Proposition 2.1.

Exercise 3.4 If X is a polyhedron such that X x [—1, 1]# =~ [Ty then X =TI} _,.
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3.2 Simple polyhedron

Definition 3.5 A compact polyhedron P”" is simple if every point of P is of some
type k (that is, its link is homeomorphic to 9T17).

See some examples in Figure 8. A point of type 0 is called a vertex. In this paper,

O% S

Figure 8: Simple polyhedra of dimension » = 1 (a circle and a trivalent
graph) and n = 2 (a sphere and a torus with two discs attached)

every simple polyhedron P C int(M") contained in some manifold M " will be tacitly
assumed to have codimension 1 and to be locally unknotted; see Section 2.3. This
is equivalent to require that P is properly embedded in Matveev’s sense [27]: the
equivalence is proved in Section 4.1. Local unknottedness is actually automatic in
dimension n < 4; see Remark 4.3 below.

Exercise 3.6 The polyhedron dI1” is simple with n 4 2 vertices.

The exercise is also proved as Corollary 5.7 below.

3.3 Complexity

A spine of a manifold is usually defined as a subpolyhedron onto which the manifold
collapses. This definition however applies only to manifolds with boundary: in order
to extend it to closed manifolds, we allow the removal of an arbitrary number of open
balls.

Definition 3.7 Let M be a compact manifold. A subpolyhedron P C int(M) is
a spine of M if there are some disjoint discs Dy,..., Di C int(M), disjoint also
from P, such that M \int(D; U---U Dy) collapses onto P.

See some examples in Figure 9. We are now ready to define the complexity of a
manifold.

Definition 3.8 The complexity ¢(M') of a compact manifold M is the minimum
number of vertices in a simple spine of M .
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Figure 9: A spine of the torus (left and center) and of the pair-of-pants (right)

Every compact manifold admits a simple spine (see Matveev [27] or Corollary 5.5
below) and hence this quantity is indeed finite. A simple spine P C M is minimal if it
has ¢(M) vertices.

3.4 Examples

The equator (n — 1)—sphere is a simple spine of S”: the n—sphere collapses to it after
removing two small balls centered at the poles. Analogously, a hyperplane is a simple
spine of RIP" (the manifold RIP” collapses to it after removing one ball). When n > 2
these spines have no vertices and therefore ¢(S”) = ¢(RP") = 0. When n = 1, the
circle S' has a point as a simple spine, which is indeed a vertex, and hence ¢(S!) =1.

Figure 9 shows a spine with 2 vertices of the 2—torus 7 : hence ¢(7") < 2. It is easy to
see that 7T has no spine with lower number of vertices, and hence ¢(7) = 2. A similar
argument shows the following.

Exercise 3.9 The complexity c(X) of a closed surface X is

e ¢(X) =max{2—-2x(X),0} if X is closed,
e ¢(X) =max{—2x(X), 0} if ¥ has boundary.

The surfaces having complexity zero are S2, RIP2, the annulus, and the Mdbius strip.
They all have a circle as a spine without vertices.

Many examples in dimension 3 can be found in the literature (see Burton [8], Martelli
and Petronio [26], Martelli [25] and Matveev [29; 31]), so we turn to higher-dimensional
manifolds. A nice spine for CP” can be described by using a technique which was
inspired to us by tropical geometry as in Mikhalkin [33]. Consider the projection

p: CP" — A"

|zol 1Zn |
0. zn) > (- o)
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Consider T1"~! dually embedded in A”. The counterimage p~!(I1"!) is a simple
spine of CIP" without vertices (its complement consists of 7 + 1 open balls “centered”
at the points [0,...,0,1,0,...,0]). Therefore ¢(CP") =0.

The spine of CIP? fibers over IT'. It consists of three solid tori attached to one 2—torus.
We find such a spine also from a different construction. Let M * be a closed 4-manifold
which decomposes with 0—, 2— and 4-handles only. The attaching of the 2—handles
is encoded by a framed link L C S3. Let P be the union of the boundaries of all
the handles involved. It consists of a 3—sphere S3 plus one solid torus attached to
(a regular neighborhood of) each component of L. When L is the 1—-framed unknot
we find M* = CP? and we get the same spine as above. In general, we get a simple
spine of M without vertices (all points are of type 3 or 2). Therefore c(M*) = 0.

4 Collars

As proved by Matveev [27], a locally unknotted simple polyhedron P C M has a kind
of collar, similar to a collar of the boundary of a manifold. We introduce the collar by
defining the cut map in Section 4.2. To do this, we first need to prove that Matveev’s
notion of local flatness (which is more useful in the context of simple spines) coincides
with the general one introduced in Section 2.3.

4.1 Matveev’s definition

Matveev introduced in [27] a different definition of local unknottedness for simple
polyhedra, which is more useful here. We show that it coincides with the general one
introduced in Section 2.3. The proof is not strictly necessary (we could use Matveev’s
notion and forget about the general one), but we include it for completeness.

We defined the pair (D", Hz_l) in Section 3.1. The following definition is due to
Matveev [27].

Definition 4.1 A simple polyhedron P"~! C M" in a manifold M" is properly
embedded if the link of every point in (M, P) is homeomorphic to (S"~!, 91}~ 1)
for some k.

Proposition 4.2 A simple polyhedron P C int(M) of codimension 1 is locally un-
knotted if and only if it is properly embedded.

Proof It is easy to see that a properly embedded P"~! C M™ is locally unknotted. We
prove the converse by induction on n. The case n =1 is trivial, so we assume n = 2.
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Let x be a point of P, of some type k. The link of x in (M, P) is homeomorphic to
(S"~1,Y"=2) with Y"72 =~ BHZ_I . We must show that the homeomorphism extend

to pairs, ie that ("1, Y"72) = (§" 1, 3HZ_1)-

Since P is locally unknotted, the pair (S”~!, ¥"2) is also locally unknotted by
Exercise 2.2. The polyhedron Y is simple by Exercise 3.6, and is hence properly
embedded by our induction hypothesis. Since Y = BHZ_I is a special polyhedron
(ie a simple polyhedron whose (n —2)—components are discs), [27, Theorem 3] ensures
that the homeomorphism Y =~ 81'[%‘1 indeed extends to a regular neighborhood and
hence to the whole of $”~!, as required. O

Remark 4.3 Local unknottedness is automatic in dimension # < 4: in these dimen-
sions, every embedding of 81'[’]1_1 in $”~! is in fact easily seen to be standard. In
dimension 5, a nonstandard pair (S*, S?), if it exists, could lead to nonstandard
embeddings of 17 in S*.

4.2 Cut map

As noted by Matveev [27], the locally unknotted embedding of a simple polyhedron
allows us to define a collar, similar to the collar of a boundary in a manifold.

Let P Cint(M) be a simple polyhedron in a compact manifold. By cutting M along
P as suggested in Figure 10, we get a manifold Mp with boundary and a surjective
map f: Mp—> M.

w/

Figure 10: The cutmap f: Mp — M cuts the manifold M along the simple
polyhedron P. The dotted boundary is do Mp.

The set f~'(P) C Mp consists of some components of dM p, which we denote by
doMp. The map f is alocal embedding. Itis (n —k + 1)—to—1 over a point of type k
in (M, P). In particular, it restricts to a homeomorphism of Mp \ dgMp onto M \ P.

Regular neighborhoods R(P) of P in M correspond via f to collars of dgMp. The
function f, restricted to one such collar, gives a collar dR(P) x [0, 1] - R(P) of P,
as shown in [27]. This discussion implies in particular the following.
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Proposition 4.4 Let P C int(M) be a simple polyhedron. It is a spine of M if and
only if

Mp =N x[0,1]UuD;U---U Dy
where D1, ..., Dy are discs, N is a possibly disconnected (n — 1)-manifold, and
aoMp =N x0.

In other words, a simple polyhedron P C int(M) is a spine if and only if Mp consists
of a collar and some discs.

S Triangulations

We describe here a construction which builds a simple polyhedron P C M from
a triangulation of M and a partition of its vertices. From this we will deduce that
c(M) <t(M) for any compact M .

5.1 Dual models

We generalize the dual representation of I1” inside the simplex A = A"*! to the
polyhedra IT} . Let P = {V, ..., Vi} be a partition of the set V' of vertices of A.
Every V; spans a face f; of A.

Definition 5.1 The polyhedron dual to (A, P) is

k
Z = Ulk(f,-,A/).

i=0
When P = {V} we have Z = &. For the other cases, we have the following.
Proposition 5.2 We have Z = I}, k-

Proof If each f; consists of one vertex we get the dual representation of I1” and we
are done. Otherwise, let AX be a k—dimensional simplex, with vertices wy, ..., Wg.
By sending V; to w; we get a simplicial map ¢: A"T! — A¥_ This induces another
simplicial map ¢’: (A"t1) — (A¥)’ between the derived complexes. Let Zy be the
polyhedron dual to (AX, {wy, ..., wx}). We have f~1(Z4) = Z and Z, = II¥.

On a small neighborhood of the center C of (A1)’ the map f is isomorphic to the
projection D¥ x D"~k+1 _ DK Therefore the star of C in Z is homeomorphic to
k=1 x prk+1 o 7 _, .- Such a star is homeomorphic to Z and we are done. O

See a couple of examples in Figure 11.
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Figure 11: Models dual to some partitions of the vertices. Here we find H%
and H%.

5.2 Simple polyhedra dual to triangulations

Let M be a closed manifold and 7" a triangulation of M . Let P be a partition of the
vertices of 7. In each simplex o of 7" we have an induced partition of its vertices and
hence a dual polyhedron P, C 0.

Definition 5.3 The polyhedron dual to (T, P) is

P=UPC,.

oeT

The dual polyhedron is a subcomplex of the barycentric subdivision 7". For every set
V' €P of the partition, we define the submanifold My C M as the regular neighborhood
in T” of the union of all simplices in 7" whose vertices lie in V. See Figure 12.

3¢ 4 4

Figure 12: A triangulation 7" and a partition of the vertices induce a simple
polyhedron realized as a subcomplex of T’ and some submanifolds My
realized as subcomplexes of 7.
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Proposition 5.4 Let P be a partition and P be the polyhedron dual to (T, P). Then
P is simple and the following holds.

(1) The vertices of P are the barycenters of the simplices in T whose vertices lie in
n + 1 distinct sets of P.

(2) The regular neighborhood of P in T" is M \int(Jyep My).

Proof The proof is straightforward. |
Let #(M) be the minimum number of simplices arising in a triangulation of M .
Corollary 5.5 We have c(M) <t(M) for every closed M .

Proof Let T be a triangulation with ¢ = ¢(M) simplices. Let P be the discrete
partition: distinct vertices belong to distinct sets. The polyhedron dual to (7, P) is
a spine of M by Proposition 5.4 (2), since My consists of discs (stars of the inner
vertices). It has ¢ vertices by Proposition 5.4 (1). O
Remark 5.6 The term “triangulation” is sometimes used for short in dimensions 2
and 3 to indicate a singular triangulation, ie the realization of a manifold M" as the
union of some n—simplices whose faces are identified in pairs via some simplicial

maps. This is not the case here: in this paper we employ the word “triangulation” only
in its original PL. meaning.

5.3 Simple subpolyhedra of 911"
Proposition 5.4 yields the following.
Corollary 5.7 The polyhedron 0I1} is simple.

Proof Represent I} as the dual of some partition (A, P). The boundary is the simple
polyhedron dual to the same partition (dA, P). O

Proposition 5.2 shows that dI1} is homeomorphic to some simple subpolyhedron of
dT1". Conversely, we have the following result (which will be used in Section 7).

Proposition 5.8 See 01" dually contained in 0A. If n = 2, every simple sub-

polyhedron of dI1" is dual to some partition P of the vertices of A and is hence
homeomorphic to 91} for some k.
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Proof Let X be asimple subpolyhedron of dT1”. A simple subpolyhedron of a simple
polyhedron of the same dimension # — 1 is necessarily the closure of the union of some
(n — 1)—components.

The (n— 1)—components of dT1” are dual to the edges of A. We define an equivalence
relation on the vertices of A as follows: v ~ v’ if and only if the (n — 1)—component
dual to the edge vv’ is not contained in X. We check the transitive property: let
v, v, v” be vertices with v ~ v" and v’ ~ v”, and suppose that v £ v”. The triangle
vv’v” is thus dual to a (n — 2) component which is adjacent to a unique (n — 1)—
component contained in X : this is impossible since X is simple (and does not contain

points with link homeomorphic to D"~2).

The polyhedron X is dual to the partition induced by this equivalence relation. O

6 Drilling

Generic soap bubbles in R3 form a simple polyhedron. Moreover, if a new bubble
appears generically somewhere, the polyhedron remains simple. This fact can be
generalized to any dimension, as follows.

Let O C int(M) be a simple polyhedron in a manifold. Let K C int(M) be any
compact subpolyhedron. The operation of drilling Q along K consists of removing
from Q a small regular neighborhood of K and adding its boundary as in Figures 13
and 14. More precisely, let 7' be a triangulation of (M, K, Q). Let R= R(K,T") be
the regular neighborhood of K in the twice subdivided 7. The result of this operation
is the polyhedron

P=(0\ R)UJR.

J

>I

P
—>
K /T/ K
Figure 13: The simple polyhedron P is obtained from Q by drilling along K

Lemma 6.1 The polyhedron P is simple. If K does not intersect the 1—skeleton
of Q, then P has the same vertices as Q.
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Figure 14: The simple polyhedron P is obtained from Q by drilling along K

Proof We have P = (Q \ R) UdR. We have to check that every point x € P is of
some type k. If x € Q \ R we are done because Q is simple. Suppose x € dR. Let
k =1 be the type of x in (M, Q). We show that x is of type k — 1 in (M, P): in
particular, P is simple.

If k =mn,ie x ¢ Q, then x is of type (n — 1) in P because dR is a (n — 1)—
manifold. If £ <n, the polyhedra dR and Q intersect transversely at x (in the sense of
Armstrong [4]). See an example in Figure 15: locally, dR is a horizontal disc D"~!x0
and Q is a vertical product Y x[—1, 1]. Exercise 3.4 implies that ¥ =~ HZ:II .

0 P

Figure 15: At x the polyhedra Q and dR intersect transversely, so dR cuts
Q into two halves. Then P is obtained by discarding the half of Q lying
inside R and adding dR.

The star of x in P is thus homeomorphic to

(IT7=1 x[0. 1]) U (D" x 0) 2 DF~1 x ((H”_k x[0.1]) U (D" +1 x o)).
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By Corollary 3.3, this is homeomorphic to D¥—1 x TT"—k+1 ~ [T} _, . Therefore x is
of type k —1 in P.

Finally note that if K does not intersect the 1—skeleton of Q neither does R. Therefore
every point in Q N dR is of type k > 1 in Q, and hence of type k —1 >0 in P: no
new vertices are added to Q. a

7 Alternative definitions

Matveev’s original definition of complexity ¢(M *) for a 3—manifold M3 was slightly
different from ours. We prove here that the two definitions coincide.

A couple of natural variations might be done in our definition of complexity. The
definition of “simple polyhedron” can be weakened by allowing the presence of lower-
dimensional material. This choice is natural, since it allows to consider a point as a
spine of D" or S™. Matveev called such polyhedra almost simple. On the other hand,
the definition of “spine” can be strengthened, by allowing the removal of one ball only
when strictly necessary, ie when the manifold is closed. We call this more restricted
notion a strict spine.

We therefore get 2 x 2 = 4 possible definitions of the complexity of a manifold. Luckily,
it turns out that three of them coincide. These include ours and Matveev’s definition
(in dimension 3).

7.1 Almost simple polyhedra

Matveev employed in dimension 3 a more relaxed notion of polyhedron, called almost
simple [29]. We propose the following generalization to all dimensions.

Definition 7.1 Let M" be a compact manifold. A compact subpolyhedron P C
int(M) is almost simple if the link of every point in (M, P) is homeomorphic to
(S"~1, L) for some subpolyhedron L C 9I1"~! c §"~1.

See an example in Figure 16. A vertex of P is a point whose link is homeomorphic to
(S"~1,9T1"~1). We now define ¢*™ (M) as the minimum number of vertices of an
almost simple spine of M .

Example 7.2 A point {pt} C S” is an almost simple spine of the n—sphere. Note

that a point is not a vertex when n > 2, and hence c™(S”) =0 forall n > 2. A
hyperplane H C CP" is an almost simple spine of complex projective space without
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Nl Nl

Figure 16: An almost simple spine of the boundary-connected sum
(T?*x DY) #(T? x D). Tt consists of two tori joined by an arc. It has
no vertices.

vertices, and hence ¢*™(CP") = 0. This spine is not simple (it has codimension 2):
note that the construction of a simple spine of CP" without vertices is less immediate;
see Section 3.4.

We show below that ¢ = ¢®™: to prove this, we need a couple of preliminary lemmas,
which show how to construct a simple spine from an almost simple one without
increasing the number of vertices. This is done first by collapsing (Lemma 7.3) and
then by drilling along a triangulation of the low-dimensional part K of the spine
(Lemma 7.4).

Lemma 7.3 Every almost simple polyhedron P C int(M") collapses onto Q U K
where Q is simple and dim K < n — 1. Every vertex of Q is also a vertex of P.

Proof We prove this by induction on » = dim M . If n = 2 it is easy, so we turn to
the case n = 3. Take a triangulation of (M, P) and collapse P as more as possible.
The resulting polyhedron is some Q U K C P, where Q (resp. K) is the closure of
the set of all points whose link has dimension n — 2 (resp. <n —2).

We now prove that Q is simple. Since P is almost simple, the link of x in (M, Q, K)
is homeomorphic to (S~ !, Q’, K’) for some Q’UK’ C dT1" C S”~!. The polyhedron
Q' U K’ cannot be co