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Cohomological rigidity of real Bott manifolds

YOSHINOBU KAMISHIMA

MIKIYA MASUDA

A real Bott manifold is the total space of an iterated RP 1 –bundle over a point, where
each RP 1 –bundle is the projectivization of a Whitney sum of two real line bundles.
We prove that two real Bott manifolds are diffeomorphic if their cohomology rings
with Z=2–coefficients are isomorphic.

A real Bott manifold is a real toric manifold and admits a flat Riemannian metric
invariant under the natural action of an elementary abelian 2–group. We also prove
that the converse is true, namely a real toric manifold which admits a flat Riemannian
metric invariant under the action of an elementary abelian 2–group is a real Bott
manifold.

57R91; 53C25, 14M25

1 Introduction

A fundamental result in the theory of toric varieties says that the categories of toric
varieties (over the complex numbers C ) and fans are equivalent (see Oda [20]). This
reduces the classification of toric varieties to that of fans. Among toric varieties,
compact smooth toric varieties which we call toric manifolds are well studied and
the classification as varieties is completed for some classes of toric manifolds (see
Kleinschmidt [11], Oda [20], Sato [22] for example).

However, not much is known for the topological classification of toric manifolds, and
the following problem is addressed by Masuda and Suh in [17] (see also Choi, Masuda
and Suh [6], Masuda and Panov [16]).

Cohomological rigidity problem for toric manifolds Are two toric manifolds dif-
feomorphic (or homeomorphic) if their cohomology rings with integer coefficients are
isomorphic as graded rings?

As is well-known, there are many closed smooth manifolds which are not homeomorphic
but have isomorphic cohomology rings. So the problem above seems unlikely to have a

Published: 13 December 2009 DOI: 10.2140/agt.2009.9.2479

http://www.ams.org/mathscinet/search/mscdoc.html?code=57R91,(53C25, 14M25)
http://dx.doi.org/10.2140/agt.2009.9.2479


2480 Y Kamishima and M Masuda

positive answer, but no counterexample is known and there are some partial affirmative
solutions to the problem (see [6; 16; 17]).

The set X.R/ of real points in a toric manifold X is called a real toric manifold. It
appears as the fixed point set of complex conjugation on X . For example, when X is
a complex projective space CPn , the subspace X.R/ is a real projective space RPn .
It is known that

H�.X.R/IZ=2/ŠH 2�.X IZ/˝Z=2 as graded rings;

for any toric manifold X where Z denotes the integers and Z=2 D f0; 1g, and one
may ask the same question as the rigidity problem above for real toric manifolds with
Z=2–coefficients, namely:

Cohomological rigidity problem for real toric manifolds Are two real toric mani-
folds diffeomorphic (or homeomorphic) if their cohomology rings with Z=2–coeff-
icients are isomorphic as graded rings?

In this paper we are concerned with a sequence of RP1 –bundles

(1-1) Mn
RP1

�!Mn�1
RP1

�! � � �
RP1

�!M1
RP1

�!M0 D fa pointg

such that Mi !Mi�1 for i D 1; : : : ; n is the projective bundle of a Whitney sum of
two real line bundles over Mi�1 , where one of the two line bundles may be assumed to
be trivial without loss of generality because projectivizations P .E/ and P .E˝L/ are
diffeomorphic for any real vector bundle E and line bundle L over a smooth manifold.
Grossberg and Karshon [9] considered the sequence above in the complex case and
named it a Bott tower of height n. Following them, we call the sequence above a real
Bott tower of height n. Each Mi in the tower (1-1) is a real toric manifold. We call
Mi a real Bott manifold. There are many choices of line bundles in the tower (1-1)
so that real Bott towers produce many real Bott manifolds. We note that even if real
Bott towers of height n are different, their top manifolds of dimension n might be
diffeomorphic.

The main purpose of this paper is to prove the following which answers the cohomo-
logical rigidity problem affirmatively for real Bott manifolds.

Theorem 1.1 Two real Bott manifolds are diffeomorphic if their cohomology rings
with Z=2–coefficients are isomorphic as graded rings.

Although real toric manifolds have similar properties to toric manifolds, there is one
major difference, which is that a real toric manifold is not simply connected while a

Algebraic & Geometric Topology, Volume 9 (2009)



Cohomological rigidity of real Bott manifolds 2481

toric manifold is simply connected. The universal cover of a real Bott manifold is a
Euclidean space so that a real Bott manifold is aspherical. In fact, we will see that real
Bott manifolds are flat Riemannian manifolds.

Any real toric manifold of dimension n supports an action of an elementary abelian 2–
group T n.R/ of rank n and real Bott manifolds of dimension n admit a flat Riemannian
metric invariant under the action of T n.R/. The following shows that these are the
only examples among real toric manifolds.

Theorem 1.2 A real toric manifold of dimension n which admits a flat Riemannian
metric invariant under the action of T n.R/ is a real Bott manifold.

This paper is organized as follows. We describe the cohomology ring and the funda-
mental group of a real Bott manifold in Sections 2 and 3. In Section 4 we find necessary
and sufficient conditions for an isomorphism between cohomology rings of real Bott
manifolds to satisfy in terms of matrices. Using these conditions, we construct in
Section 5 a monomorphism between the fundamental groups of the real Bott manifolds.
It may not be an isomorphism but the existence of the monomorphism implies that the
fundamental groups are isomorphic, which is proved in Section 6 by studying group
extensions. Since real Bott manifolds are flat Riemannian manifolds, the isomorphism
of the fundamental groups implies Theorem 1.1 by the Bieberbach theorem. In Section
7 we enumerate diffeomorphism classes in real Bott manifolds of dimension up to 4.
This result is obtained by Nazra in [19] independently by a different method. Theorem
1.2 is proved in Section 8. In Section 9 we view real Bott manifolds from the viewpoint
of small covers introduced by Davis and Januszkiewic in [7]. In the Appendix, we give
a proof of a (probably known) fact used in Section 6.

Throughout the paper we write Z=2 for the additive group f0; 1g and Z2 for the
multiplicative group f˙1g.

2 Cohomology rings

We shall describe the cohomology ring of the real Bott manifold Mn in the tower (1-1).

We recall certain well-known facts from Borel and Hirzebruch [1, 15.4]. Let E!X

be a real vector bundle of rank m over a topological space X and let P .E/ be the
projectivization of E . Then H�.P .E/IZ=2/ is an algebra over H�.X / through the
projection map from P .E/ to X and the algebra structure is described as

(2-1) H�.P .E/IZ=2/DH�.X IZ=2/Œx�
.
.

mX
iD0

wi.E/x
m�i/
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where wi.E/ denotes the i th Stiefel–Whitney class of E and x is given by the first
Stiefel–Whitney class of the canonical line bundle over P .E/. Moreover, the total
Stiefel–Whitney class of TfP .E/ the tangent bundle along the fibers of P .E/ is given
by

w.Tf .P .E///D

mX
iD0

wi.E/.1Cx/m�i
I

in particular,

(2-2) w1.Tf .P .E///D w1.E/

when m is even.

Now we return to the tower (1-1). By definition Mj D P .Lj�1˚R/ for some line
bundle Lj�1 over Mj�1 for j D 1; : : : ; n , where R denotes the trivial line bundle.
Let 
j be the canonical line bundle over Mj and set xj D w1.
j /. We use the same
notation 
j (resp. xj ) for the pullback of 
j (resp. xj ) by compositions of projections
Mk !Mk�1! � � � !Mj where k > j . Then repeated use of (2-1) shows

(2-3) H�.Mk IZ=2/D Z=2Œx1; : : : ;xk �
ı�

xj .xj Cw1.Lj�1// j j D 1; : : : ; k
�
:

Since H 1.Mj�1IZ=2/ is additively generated by x1; : : : ;xj�1 and Lj�1 is a line
bundle over Mj�1 , one can uniquely write

(2-4) w1.Lj�1/D

j�1X
iD1

Ai
j xi with Ai

j 2 Z=2

where j D 2; : : : ; n. Line bundles are classified by their first Stiefel–Whitney classes
and the first Stiefel–Whitney class behaves additively for tensor products of line bundles;
so it follows from (2-4) that

(2-5) Lj�1 D 

A1

j

1
˝ � � �˝ 


A
j�1

j

j�1
:

For convenience, we set Ai
j D 0 unless i < j and form a square matrix A of size n

with Ai
j as the .i; j / entry. So A is an upper triangular matrix with zero diagonal

entries.

Observation (2-5) implies that the tower (1-1) is completely determined by the matrix
A. So we may denote Mn by M.A/. For later use we record the ring structure of
H�.M.A/IZ=2/ as a lemma which follows from (2-3) and (2-4).
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Lemma 2.1 Let A and M.A/ be as above. Then H�.M.A/IZ=2/ is generated by
degree one elements x1; : : : ;xn as a graded ring with n relations

x2
j D xj

nX
iD1

Ai
j xi for j D 1; : : : ; n:

We conclude this section with the following lemma.

Lemma 2.2 The real Bott manifold M.A/ is orientable if and only if the sum of
entries is zero in Z=2 for each row of A.

Proof The repeated use of (2-2) together with (2-4) shows that

w1.M.A//D

nX
jD1

w1.Lj�1˚R/D
nX

jD1

w1.Lj�1/

D

nX
jD1

j�1X
iD1

Ai
j xi D

nX
iD1

.

nX
jD1

Ai
j /xi :

Since M.A/ is orientable if and only if w1.M.A//D 0, the lemma follows from the
identity above.

An analogous statement to Lemma 2.2 holds for any real toric manifold and for SU–
structures of toric manifolds (see Buchstaber [2, page 23]).

3 Fundamental groups

A general description of the fundamental group of an arbitrary real toric manifold is
given by Uma in [23] motivated by the work of Davis and Januszkiewic [7]. In this
section, we shall describe the fundamental group of M.A/ in a direct way.

Let si .i D 1; : : : ; n/ be a Euclidean motion on Rn defined by

si.u1; : : : ;un/D .u1; : : : ;ui�1;ui C
1

2
; .�1/A

i
iC1uiC1; : : : ; .�1/A

i
nun/

D ..�1/A
i
1u1; : : : ; .�1/A

i
nun/C

1

2
ei

(3-1)

where e1; : : : ; en denote the standard basis of Rn . The group �.A/ generated by
s1; : : : ; sn contains all translations by Zn which are generated by s2

1
; : : : ; s2

n . The
action of �.A/ on Rn is free and the orbit space Rn=�.A/ is compact. Since the
action of �.A/ on Rn preserves the Euclidean metric on Rn which is flat, the orbit
space Rn=�.A/ inherits the flat metric.
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Lemma 3.1 Rn=�.A/ is diffeomorphic to M.A/. Therefore M.A/ is a Riemannian
flat manifold with �.A/ as the fundamental group.

Proof Let �k .k D 1; : : : ; n/ be a subgroup of �.A/ generated by s1; : : : ; sk . It acts
on the coordinate subspace Rk of Rn with ukC1 D � � � D un D 0 by restricting the
action of �.A/ on Rn . We claim that a sequence of projections

Rn=�n!Rn�1=�n�1! � � � !R1=�1! f0g

agrees with the real Bott tower (1-1). The lemma follows from the claim.

We shall prove the claim by induction on height. It is obviously true up to height one.
Suppose it is true up to height j � 1. We note that the line bundle 
i over Mj�1 for
i � j � 1 is obtained as the quotient of Rj�1 �R by the diagonal action of �j�1

where the action of �j�1 on the second factor R is given through a homomorphism
�j�1!Z2 Df˙1g sending si to �1 and the others s` (` 6D i ) to 1. This together with
(2-5) shows that the line bundle Lj�1 in (2-5) is obtained as the quotient of Rj�1�R
by the diagonal action of �j�1 where the action of �j�1 on the second factor R is

given through a homomorphism �j�1 ! Z2 sending si to .�1/A
i
j for i � j � 1.

Therefore the action of �j�1 on Rj�1 �R D Rj is nothing but the restriction of
the action of �j to �j�1 while the action of sj on Rj is trivial on the first .j � 1/

coordinates and translation by 1=2 on the last coordinate.

We consider the map

Rj
DRj�1

�R ! .Rj�1
�R/=�j�1˚RDLj�1˚RI

.x; �/ 7!
�
Œx; sin 2���; cos 2��

�
:

Since si.x; �/D .six; .�1/A
i
j �/ for i � j�1 and s2

j .x; �/D .x; �C1/, the map above
is invariant under the action of �j�1 and s2

j and factors through a diffeomorphism from
the orbit space Rj=h�j�1; s

2
j i onto the unit circle bundle of Lj�1˚R. Furthermore,

since �j D h�j�1; sj i and sj .x; �/D .x; � C
1
2
/, the map induces a diffeomorphism

from Rj=�j onto the projectivization P .Lj�1 ˚ R/ D Mj . This shows that the
projection Rj=�j!Rj�1=�j�1 agrees with the projection Mj!Mj�1 , completing
the induction step.

We shall investigate the structure of �.A/.

Lemma 3.2 For i < `, s`si D sis
.�1/

Ai
`

`
, ie

s`si D

(
sis
�1
`

if Ai
`
D 1,

sis` if Ai
`
D 0.
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Proof The proof is by direct calculation and left to the reader.

Lemma 3.3 Let G.A/ be the group generated by �1; : : : ; �n and relations given
by Lemma 3.2 for �j ’s instead of sj ’s. Then the homomorphism  W G.A/! �.A/

defined by  .�j /D sj for j D 1; : : : ; n is an isomorphism.

Proof Using the relations, one can express an element � of G.A/ as �a1

1
�

a2

2
: : : �

an
n

with a1; : : : ; an 2 Z. Suppose  .�/ D s
a1

1
s

a2

2
: : : s

an
n is the identity element. Then

 .�/ fixes any element of Rn . But it maps the origin of Rn to 1
2

Pn
jD1 �j aj ej , where

�j D˙1, and the image must again be the origin, so we have aj D 0 for any j . This
shows that � is the identity and  is injective. The surjectivity of  is trivial.

The Euclidean motion s2
j is a translation of Rn by ej so that s2

1
; : : : ; s2

n commute with
each other and generate a free abelian subgroup N of rank n. The images of the sj ’s
in the quotient �.A/=N commute with each other, which easily follows from Lemma
3.2, so that �.A/=N is an elementary abelian 2–group. We identify N with Zn and
�.A/=N with .Z2/

n in a natural way and obtain a short exact sequence:

(3-2) 0! Zn
! �.A/! .Z2/

n
! 1:

One may think of M.A/D Rn=�.A/ as the orbit space of the torus Rn=Zn by the
induced action of �.A/=Zn D .Z2/

n . We shall explicitly describe the action using
complex numbers C . Let S1 denote the unit circle of C . We identify R=Z with
S1 (and hence Rn=Zn with .S1/n ) through the exponential map sending u 2 R to
exp.2�

p
�1u/ 2C . For z 2 S1 and a 2 Z=2D f0; 1g we define

z.a/ WD

(
z if aD 0,

xz if aD 1.

Then the induced action of si defined in (3-1) on .S1/n is given by

.z1; : : : ; zn/! .z1; : : : ; zi�1;�zi ; ziC1.A
i
iC1/; : : : ; zn.A

i
n//:

4 Isomorphisms of cohomology rings

As is described in Lemma 2.1, H�.M.A/IZ=2/DR1 is a graded algebra over Z=2
generated by degree one elements x1; : : : ;xn with n relations

(4-1) x2
j D xj

nX
iD1

Ai
j xi .j D 1; : : : ; n/:

Algebraic & Geometric Topology, Volume 9 (2009)



2486 Y Kamishima and M Masuda

The set V1 of degree one elements in R1 with vanishing squares forms a vector
space over Z=2 of positive dimension. Set n1 D dim V1 . Permuting the suffices of
x1; : : : ;xn , we may assume that the first n1 elements x1; : : : ;xn1

form a basis of
V1 . We consider the quotient graded ring R2 D R1=.V1/ where .V1/ denotes the
ideal in R1 generated by V1 . Similarly, the set V2 of degree one elements in R2

with vanishing squares forms a vector space over Z=2 of positive dimension. Set
n2D dim V2 . Permuting the suffices of xn1C1; : : : ;xn , we may assume that the image
of xn1C1; : : : ;xn1Cn2

in the quotient ring R2 forms a basis of V2 . Then consider the
quotient graded ring R3 DR2=.V2/ and repeat the same argument, and so on. This
procedure will terminate after a finite number, say q , of steps, so that we obtain a
sequence of natural numbers .n1; : : : ; nq/.

Definition We call the sequence .n1; : : : ; nq/ the type of A or of H�.M.A/IZ=2/.
We note that type is invariant under graded ring isomorphism of cohomology rings.

The argument above shows that through a suitable permutation of the suffices of
x1; : : : ;xn we may assume that the upper triangular matrix A decomposed into q � q

blocks according to the type .n1; : : : ; nq/ has zero matrices of sizes n1; : : : ; nq as the
diagonal q blocks, ie:

(4-2) AD

0BBB@
On1

�

On2

: : :

0 Onq

1CCCA
where Om denotes the zero matrix of size m and every column vector in the .i; iC1/–
block is non-zero for each i D 1; : : : ; q � 1. We note that permuting the suffices of
x1; : : : ;xn corresponds to conjugating the matrix A by a permutation matrix. We call
the form (4-2) a normal form.

Let B be an upper triangular matrix of the same normal form as (4-2) and let

'W H�.M.A/IZ=2/!H�.M.B/IZ=2/

be an isomorphism as graded rings. We denote by y1; : : : ;yn the generators of
H�.M.B/IZ=2/. Since '.xi/

2 D '.xi
2/ D 0 for 1 � i � n1 , '.xi/ is a linear

combination of y1; : : : ;yn1
. In general, one easily sees that '.xi/ for nj�1C1� i �nj

is a linear combination of y1; : : : ;ynj
. This means that if we view P 2 GL.nIZ=2/

defined by

(4-3) .'.x1/; : : : ; '.xn//D .y1; : : : ;yn/P
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as a q�q block matrix of type .n1; : : : ; nq/, then P is an upper triangular block matrix.
Since P is non-singular, every diagonal block of P is also non-singular. Therefore,
we may assume that the diagonal entries of P are all 1 if necessary by permuting the
suffices of the generators yi ’s in each block. With this understood, we have

Lemma 4.1 B D PA and

P `
j Bi

` D P i
j B`j CP `

j Bi
j CP `

j B`j Bi
` for 1� i < `� n and 1� j � n.

Proof It follows from (4-3) that

(4-4) '.xk/D

nX
iD1

P i
kyi for k D 1; : : : ; n:

We plug this in (4-1) mapped by ' to obtain

� nX
iD1

P i
j yi

�2
D
� nX

iD1

P i
j yi

�� nX
kD1

nX
iD1

Ak
j P i

kyi

�
D
� nX

iD1

P i
j yi

�� nX
iD1

.PA/ij yi

�
:

(4-5)

Comparing the coefficients of yiyj for i < j in both sides above and noting that
P

j
j D 1 and .PA/

j
j D 0, we obtain

(4-6) Bi
j D .PA/ij for i < j :

(Note that the term yiyj may appear in yj
2 but not in yi

2 because B is assumed to
be upper triangular.) The identity (4-6) holds even for i � j because the both sides
then vanish. Therefore B D PA.

Replacing PA by B and comparing the coefficients of yiy` for i < ` in both sides of
(4-5), we obtain the latter identity in the lemma. (Note that .P `

j /
2 D P `

j since we are
working over Z=2.)

5 A monomorphism between fundamental groups

Let A;B and P be as in Section 4. In this section we construct a monomorphism
between the fundamental groups �.B/ and �.A/ using P .

Any element s 2 �.A/ can be expressed uniquely as s D s
a1

1
s

a2

2
: : : s

an
n with integers

ai by Lemma 3.2. We denote the exponent aj of sj by Ej .s/.
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Lemma 5.1 If pi ; qi 2 Z for i D 1; : : : ; n, then

Ej ..s
p1

1
s

p2

2
: : : spn

n /.s
q1

1
s

q2

2
: : : sqn

n //D .�1/
Pj�1

kD1
qkBk

j pj C qj

Ej ..s
p1

1
s

p2

2
: : : spn

n /.s�qn
n : : : s

�q2

2
s
�q1

1
//D .�1/

Pj�1

kD1
qkBk

j .pj � qj /

Proof Using Lemma 3.2, we see

(5-1) s
p

`
s

q

k
D s

q

k
s

p.�1/
qBk

`

`
for ` > k , and p; q 2 Z

and repeated use of this identity implies the lemma.

We use the notation ti in �.B/ for the analogues of the si in �.A/. We regard P as
an integer matrix and define

(5-2) �.tr /D s
P r

1

1
s

P r
2

2
: : : s

P r
n

n .r D 1; : : : ; n/:

We shall check that � preserves the relations in Lemma 3.2 for �.B/ so that � induces
a homomorphism from �.B/ to �.A/ by Lemma 3.3. It follows from Lemma 5.1 that

(5-3) Ej .�.t`ti//D .�1/
Pj�1

kD1
P i

k
Ak

j P `
j CP i

j D .�1/B
i
j P `

j CP i
j 2 Z

where we used the fact PADB and Ak
j D 0 for k � j in the latter identity. Similarly

we have

(5-4) Ej .�.ti t`//D .�1/B
`
j P i

j CP `
j 2 Z

and

(5-5) Ej .�.ti t
�1
` //D .�1/B

`
j .P i

j �P `
j / 2 Z:

Now suppose i < `. When Bi
`
D 0, we have t`ti D ti t` by Lemma 3.2 for �.B/ and

(5-6) P `
j Bi

j D P i
j B`j 2 Z=2

by Lemma 4.1. An elementary case-by-case check (according to the values of Bi
j

and B`j ) shows that (5-6) ensures that the right hand sides at (5-3) and (5-4) coincide.
When Bi

`
D 1, we have t`ti D ti t

�1
`

by Lemma 3.2 for �.B/ and

(5-7) P `
j D P i

j B`j CP `
j Bi

j CP `
j B`j 2 Z=2 for i < `

by Lemma 4.1. A similar elementary case-by-case check shows that (5-7) ensures
that the right hand sides at (5-3) and (5-5) coincide. In any case the map � preserves
the relations for �.B/ and �.A/ and hence induces a homomorphism from �.B/ to
�.A/.
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Lemma 5.2 The homomorphism �W �.B/! �.A/ satisfies

(1) �.Zn/� Zn and Zn=�.Zn/ is of order det P (which is odd),

(2) � induces an isomorphism from �.B/=Zn onto �.A/=Zn .

Therefore � is injective, and is an isomorphism if and only if det P D˙1.

Proof It follows from (5-3) with `D i that

(5-8) Ej .�.t
2
i //D

(
2P i

j if Bi
j D 0,

0 if Bi
j D 1.

Therefore � maps the normal subgroup Zn of �.B/ to that of �.A/, so that � maps
the short exact sequence (3-2) for �.B/ to that for �.A/. The above fact (5-8) also
shows that the map � restricted to Zn agrees with P for i; j with Bi

j D 0, in particular,
if we view the restricted map as a block matrix as before, then it is an upper triangular
block matrix and the diagonal blocks agree with those of P . Therefore the determinant
of the restricted map is equal to det P . This proves (1).

On the other hand, it follows from the definition (5-2) of � that the map induced from
� on �.B/=ZnŠ.Z=2/n is nothing but P , so it is an isomorphism, proving (2). These
imply that � is always injective and an isomorphism if and only if det P D˙1.

The abelianization of the fundamental group �.A/ of M.A/ composed with the natu-
ral homomorphism H1.M.A/IZ/!H1.M.A/IZ=2/ agrees with the epimorphism
�.A/! .Z2/

n Š .Z=2/n in (3-2). Therefore, the homomorphism �W �.B/! �.A/

always induces an isomorphism H1.M.B/IZ=2/! H1.M.A/IZ=2/. However, �
may not induce an isomorphism of the first homology groups with Z–coefficients.

6 Group extensions

It is easy to see that a square .0; 1/–matrix of size m is in GL.mIZ/ if and only if it
is in GL.mIZ=2/ when m� 3. Therefore, if ni � 3 for all i , where .n1; : : : ; nq/ is
the type of A and B , then det P D˙1 and � in Lemma 5.2 is an isomorphism. In
general � may not be an isomorphism, but we prove the following using the existence
of � .

Lemma 6.1 If H�.M.A/IZ=2/ is isomorphic to H�.M.B/IZ=2/ as graded rings,
then �.A/ is isomorphic to �.B/.
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Remark The reader will find that the proof of this lemma actually shows that any
subgroup of �.A/ with odd index is isomorphic to �.A/.

We admit the lemma above for the moment and complete the proof of Theorem 1.1 in
the Introduction.

Proof of Theorem 1.1 Real Bott manifolds are compact Riemannian flat manifolds
by Lemma 3.1, hence they are diffeomorphic if and only if their fundamental groups
are isomorphic by the Bieberbach theorem (see Wolf [24, Theorem 3.3.1 page 105]).
Therefore, Theorem 1.1 follows from Lemma 6.1.

The rest of this section is devoted to the proof of Lemma 6.1. Remember the group
extension (3-2).

�AW .Z2/
n
! Aut.Zn/:

We remark that the .Z2/
n –module Zn via �A decomposes into sum of rank one

.Z2/
n –modules, which follows from (3-1). There is a 2–cocycle

fAW .Z2/
n
� .Z2/

n
! Zn

whose cohomology class ŒfA� 2H 2
�A
..Z2/

nIZn/ represents the group extension (3-2),
that is, �.A/ is the set Zn � .Z2/

n with group law:

(6-1) .`; ˛/.m; ˇ/D .`C�A.˛/.m/CfA.˛; ˇ/; ˛ˇ/:

Similarly we have �B and fB for the group �.B/.

Lemma 5.2 shows that there is a commutative diagram:

(6-2)

0 ����! Zn ����! �.B/ ����! .Z2/
n ����! 1

�

??y �

??y x�

??y
0 ����! Zn ����! �.A/ ����! .Z2/

n ����! 1:

where x� is an isomorphism. We write

�.0; ˛/D .�.˛/; x�.˛//:

Then, for .`; ˛/ 2 �.B/ we have

�.`; ˛/D �..`; 1/.0; ˛//D �.`; 1/�.0; ˛/

D .�.`/; 1/.�.˛/; x�.˛//

D .�.`/C�.˛/; x�.˛//:

(6-3)
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Therefore, applying � to the both sides of the equation

.0; ˛/.0; ˇ/D .fB.˛; ˇ/; ˛ˇ/;

we have

�..0; ˛/.0; ˇ//D .�.˛/; x�.˛//.�.ˇ/; x�.ˇ//

D .�.˛/C�A.x�.˛//.�.ˇ//CfA.x�.˛/; x�.ˇ//; x�.˛ˇ//;

and
�.fB.˛; ˇ/; ˛ˇ/D .�.fB.˛; ˇ//C�.˛ˇ/; x�.˛ˇ//

by (6-3). It follows that

(6-4) �.fB.˛; ˇ//D �.˛/C�A.x�.˛//.�.ˇ//��.˛ˇ/C x�
�fA.˛; ˇ/:

Similarly, applying � to the both sides of the equation

.0; ˛/.`; 1/D .�B.˛/.`/; ˛/;

we have

�..0; ˛/.`; 1//D .�.˛/; x�.˛//.�.`/; 1/

D .�.˛/C�A.x�.˛//.�.`//; x�.˛//;

and
�.�B.˛/.`/; ˛/D .�.�B.˛/.`//C�.˛/; x�.˛//:

It follows that

(6-5) �.�B.˛/.`//D �A.x�.˛//.�.`//:

We regard elements in Zn as column vectors and represent the homomorphism
�W Zn!Zn by an integral matrix Q. Then (6-5) is equivalent to

(6-6) Q ��B.˛/D �A.x�.˛// �Q:

We note that zQD .det Q/Q�1 is an integral matrix where det Q is odd, and equal to
the order of Zn=�.Zn/ by Lemma 5.2. It follows from (6-6) that

(6-7) �B.˛/ � zQD zQ ��A.x�.˛//:

Applying zQ to the both sides of (6-4) and using (6-7), we have

zQQfB.˛; ˇ/D zQ�.˛/C�B.˛/. zQ�.ˇ//� zQ�.˛ˇ/C zQx�
�fA.˛; ˇ/

D ıB. zQ�/.˛; ˇ/C zQx�
�fA.˛; ˇ/

(6-8)
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where we used the definition of the coboundary for the latter identity. Since zQQ is
det Q times the identity matrix, (6-8) implies that

Œdet Q �fB �D Œ zQx�
�fA� 2H 2

�B
..Z2/

n; zQZn/:(6-9)

Here zQZn is viewed as a .Z2/
n –module via �B . It decomposes into the direct sum

of rank one .Z2/
n –modules because we have (6-7) and the .Z2/

n –module Zn via �A

decomposes into the direct sum of rank one .Z2/
n –modules. Therefore

(6-10) H 2
�B
..Z2/

n; zQZn/Š

nM
iD1

H 2
�i
..Z2/

n
IZ/

where �i W .Z2/
n! Aut.Z/D f˙1g is a homomorphism.

Fact H 2
�
..Z2/

nIZ/ is an elementary abelian 2–group for any homomorphism
�W .Z2/

n! Aut.Z/.

(This fact is probably known but since we do not know the literature, we will give a proof
in the Appendix.) It follows from (6-10) and the fact above that H 2

�B
..Z2/

n; zQZn/ is
an elementary abelian 2–group. Since det Q is odd, (6-9) implies that

ŒfB �D Œ zQx�
�fA� 2H 2

�B
..Z2/

n; zQZn/:

Then �.B/ is isomorphic to the group � defined by the cocycle zQx��fA . Using (6-7),
� is the set zQZn � .Z2/

n with group law:

. zQ`; ˛/. zQm; ˇ/D . zQ`C�B.˛/. zQm/C zQfA.x�.˛/; x�.ˇ//; ˛ˇ/

D
�
zQ.`C�A.x�.˛//.m/CfA.x�.˛/; x�.ˇ///; ˛ˇ

�(6-11)

It suffices to prove that �.A/ is isomorphic to � . Let x�W .Z2/
n ! .Z2/

n be the
isomorphism from (6-2). Define a map T W �.A/!� by

T .`; ˛/D . zQ`; x��1.˛//:

This is clearly a bijection. Using (6-11) and (6-1), we have

T .`; ˛/T .m; ˇ/D . zQ`; x��1.˛//. zQm; x��1.ˇ//

D . zQ
�
`C�A.˛/.m/CfA.˛; ˇ/

�
; x��1.˛ˇ//

D T .`C�A.˛/.m/CfA.˛; ˇ/; ˛ˇ/

D T ..`; ˛/.m; ˇ//:

Hence T is an isomorphism of �.A/ onto � . This completes the proof of Lemma 6.1.
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7 Classification of real Bott manifolds of low dimension

Real Bott manifolds are determined by upper triangular square .0; 1/–matrices with zero
diagonal entries, and the diffeomorphism classification of real Bott manifolds reduces to
the isomorphism classification of associated cohomology rings with Z=2–coefficients
by our main Theorem 1.1. As observed in Section 4, we may assume that our matrices
are of the normal form (4-2). Therefore, it suffices to check which matrices of normal
form produce isomorphic cohomology rings and this can be done by case-by-case
check when the size n of matrices, that is the dimension of real Bott manifolds, is no
greater than 4. We remember that permuting the suffices of the cohomology generators
x1; : : : ;xn in Section 4 corresponds to conjugating our matrices by a permutation
matrix. So the cohomology rings associated with conjugate matrices by permutation
matrices are isomorphic. This decreases the necessary computations. Below are the
results. The same results are obtained by Nazra in [19] independently by studying
Seifert fiber structures of real Bott manifolds.

The case nD 2 Real Bott manifolds of dimension 2 are the torus .S1/2 or the Klein
bottle and the corresponding matrices of normal form are respectively the zero matrix
of size 2 and

�
0 1
0 0

�
.

The case n D 3 There are four diffeomorphism classes of real Bott manifolds of
dimension 3, and the corresponding matrices of normal form are distinguished by their
types as seen below. Numbers with the superscript ? indicate that the corresponding
real Bott manifold is orientable (see Lemma 2.2).

1? Type .3/
The zero matrix of size 3. The real Bott manifold is .S1/3 .

2 Type .2; 1/ 0@0 0 0
0 0 1
0 0 0

1A ;
0@0 0 1

0 0 0
0 0 0

1A ;
0@0 0 1

0 0 1
0 0 0

1A

where the first and second matrices are conjugate. The real Bott manifold is
S1 � (Klein bottle).

3? Type .1; 2/ 0@0 1 1
0 0 0
0 0 0

1A
4 Type .1; 1; 1/ 0@0 1 0

0 0 1
0 0 0

1A ;
0@0 1 1

0 0 1
0 0 0

1A
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Remark Compact Riemannian flat manifolds of dimension 3 are classified. There
are ten diffeomorphism classes and six of them are orientable (Wolf [24, pages 117
and 120]). One can easily check that the real Bott manifolds in 1? and 3? above are
respectively of types G1 and G2 in [24, Theorem 3.5.5] and those in 2 and 4 above are
respectively of types B1 and B3 in [24, Theorem 3.5.9].

The case nD 4 There are twelve diffeomorphism classes of real Bott manifolds of
dimension 4, and the corresponding matrices of normal form are as described below.
We list representatives of conjugacy classes in matrices of normal form by permutation
matrices. The suffix of a matrix below denotes the number of elements in the conjugacy
class represented by the matrix. Numbers with the superscript ? indicate orientability,
as above.

1? Type .4/
The zero matrix of size 4. The real Bott manifold is .S1/4 .

2 Type .3; 1/ 0BB@
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

1CCA
3

0BB@
0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0

1CCA
3

0BB@
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 0

1CCA
1

The real Bott manifold is .S1/2 � (Klein bottle).

3? Type .2; 2/ 0BB@
0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 0

1CCA
2

0BB@
0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0

1CCA
1

The real Bott manifold is the product of S1 and the 3–dimensional real Bott
manifold of Type .1; 2/.

4 Type .2; 2/ 0BB@
0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

1CCA
2

0BB@
0 0 1 0
0 0 1 1
0 0 0 0
0 0 0 0

1CCA
4

The real Bott manifold is (Klein bottle)�(Klein bottle).

5 Type .2; 1; 1/0BB@
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA
2

0BB@
0 0 0 0
0 0 1 1
0 0 0 1
0 0 0 0

1CCA
2

0BB@
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA
1

0BB@
0 0 1 1
0 0 1 1
0 0 0 1
0 0 0 0

1CCA
1

The real Bott manifold is the product of S1 and the 3–dimensional real Bott
manifold of Type .1; 1; 1/.
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6 Type .2; 1; 1/ 0BB@
0 0 0 1
0 0 1 0
0 0 0 1
0 0 0 0

1CCA
2

0BB@
0 0 1 0
0 0 1 1
0 0 0 1
0 0 0 0

1CCA
2

0BB@
0 0 0 1
0 0 1 1
0 0 0 1
0 0 0 0

1CCA
2

7 Type .1; 3/ 0BB@
0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

1CCA
1

8 Type .1; 2; 1/0BB@
0 1 1 0
0 0 0 0
0 0 0 1
0 0 0 0

1CCA
2

0BB@
0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

1CCA
1

0BB@
0 1 1 1
0 0 0 0
0 0 0 1
0 0 0 0

1CCA
2

0BB@
0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 0

1CCA
1

9? Type .1; 1; 2/ 0BB@
0 1 1 0
0 0 1 1
0 0 0 0
0 0 0 0

1CCA
2

10 Type .1; 1; 2/ 0BB@
0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

1CCA
1

0BB@
0 1 1 1
0 0 1 1
0 0 0 0
0 0 0 0

1CCA
1

11 Type .1; 1; 1; 1/ 0BB@
0 1 0 1
0 0 1 0
0 0 0 1
0 0 0 0

1CCA
1

0BB@
0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

1CCA
1

0BB@
0 1 1 1
0 0 1 0
0 0 0 1
0 0 0 0

1CCA
1

12 Type .1; 1; 1; 1/0BB@
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA
1

0BB@
0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA
1

0BB@
0 1 0 0
0 0 1 1
0 0 0 1
0 0 0 0

1CCA
1

0BB@
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

1CCA
1

8 Riemannian flat real toric manifolds

A toric manifold X of complex dimension n supports an action of .C�/n and its
real part X.R/ supports an action of .R�/n , where C� D Cnf0g and R� D Rnf0g.
Let T be the maximal compact toral subgroup of .C�/n and T n.R/ be the maximal
elementary abelian 2–subgroup of .R�/n . The orbit space X.R/=T n.R/ can naturally
be identified with X=T . When X is projective, the orbit space can be identified with
a simple n–polytope via a moment map.
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The action of T n.R/ on the real Bott manifold M.A/DRn=�.A/ is given as follows.
Let rj .j D 1; : : : ; n/ be the involution on Rn defined by

(8-1) rj .x
1; : : : ;xn/D .x1; : : : ;xj�1;�xj ;xjC1; : : : ;xn/:

Direct computation shows that

rj si D

(
sirj if i 6D j ,

s�1
i rj if i D j ,

where si is the Euclidean motion on Rn defined in (3-1), so rj induces an involution
xrj on M.A/ D Rn=�.A/. Obviously the xrj commute with each other so that they
generate an elementary abelian 2–group of rank n and this gives the action of T n.R/.

We remark that the action of T n.R/ on M.A/ D Rn=�.A/ preserves the flat Rie-
mannian metric on it. The group generated by si ’s and rj ’s agrees with the group
generated by rj ’s and translations by 1

2
e1; : : : ; 1

2
en , where e1; : : : ; en are the standard

basis of Rn as before. It follows that the orbit space M.A/=T n.R/ can be identified
with the n–cube

f.x1; : : : ;xn/ 2Rn
j 0� x1

� 1=2; : : : ; 0� xn
� 1=2g:

The purpose of this section is to prove Theorem 1.2 in the Introduction, that is

Theorem 8.1 A real toric manifold of dimension n which admits a flat Riemannian
metric invariant under the action of T n.R/ is a real Bott manifold.

We recall some results for the proof of Theorem 8.1. Let X be a toric manifold and let
Xi .1� i �m/ be a connected complex codimension–1 closed submanifold of X fixed
pointwise under some circle subgroup Ti of the torus T . We call Xi a characteristic
submanifold of X . Then

KX WD fI � f1; : : : ;mg j
\
i2I

Xi 6D∅g

is the underlying abstract simplicial complex of the fan of X .

Let X.R/ be the real part of X . The intersection Xi \ X.R/ is a connected real
codimension–1 closed submanifold of X.R/ fixed pointwise under the order 2 subgroup
Ti.R/ WDTi\T n.R/ of T n.R/. Conversely any connected real codimension–1 closed
submanifold of X.R/ fixed pointwise under an order 2 subgroup of T n.R/ is the
intersection of X.R/ with some Xi . We call those closed submanifolds characteristic
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submanifolds of X.R/ as well. These observations say that there is a bijective corre-
spondence between characteristic submanifolds of X and those of X.R/. Hence one
can also define KX using the characteristic submanifolds of X.R/.

We say that a simplicial complex is a crosscomplex of dimension n� 1 if it is the
boundary complex of a crosspolytope of dimension n, where a crosspolytope of
dimension n is the dual (or polar) of an n–cube. We recall two facts from Masuda and
Panov [16]. The first lemma below is stated in [16, Corollary 3.5] in the complex case
but it also holds in the real case as stated because of the observation above.

Lemma 8.2 [16, Corollary 3.5] A real toric manifold X.R/ is a real Bott manifold
if and only if the simplicial complex KX associated with X.R/ is a crosscomplex.

Lemma 8.3 [16, Lemma 4.7] Let K be a connected simplicial complex of dimension
k � 2. If the link of each vertex of K is a crosscomplex of dimension k �1, then K is
a crosscomplex.

Proof of Theorem 8.1 We shall prove the theorem by induction on the dimension n.
The theorem is obvious when nD 1. A closed surface which admits a flat Riemannian
metric is a torus or a Klein bottle and they are real Bott manifolds, so the theorem also
holds when nD 2.

Now suppose the theorem holds for n�1� 2 and let X.R/ be a real toric manifold of
dimension n which satisfies the assumption in the theorem. Let X.R/1; : : : ;X.R/m
be the characteristic submanifolds of X.R/. A vertex of the simplicial complex KX

associated with X.R/ corresponds to some X.R/i and the link of this vertex is the
simplicial complex associated with X.R/i . Since X.R/ admits a Riemannian flat
metric invariant under the action of T n.R/ and X.R/i is fixed pointwise under the
order 2 subgroup Ti.R/ of T n.R/, the metric on X.R/i induced from X.R/ is again
flat and invariant under the induced action of T n.R/=Ti.R/ which is an elementary
abelian 2–group of rank n�1. Therefore X.R/i is a real Bott manifold by the inductive
assumption and hence the link of the vertex of KX is a crosscomplex by Lemma 8.2.
Since dim KX D n� 1� 2, KX is a crosscomplex by Lemma 8.3 and hence X is a
real Bott manifold by Lemma 8.2. This completes the induction step and the proof of
the theorem.

9 Small covers

Let T n.R/ be an elementary abelian 2–group of rank n as before. A closed smooth
manifold M of dimension n with a smooth action of T n.R/ is called locally standard
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if each point of M has an invariant open neighborhood equivariantly diffeomorphic to
an invariant open subset of a faithful real T n.R/–module of dimension n. The orbit
space of a locally standard T n.R/–manifold M is a manifold with corners because
the orbit space of a faithful T n.R/–module of dimension n is homeomorphic to the
product of n half lines. A convex polytope of dimension n is called simple if there
are exactly n edges meeting at each vertex, and a simple convex polytope is a typical
example of a manifold with corners. If M is locally standard and the orbit space is
identified with a simple convex polytope P , then M is called a small cover over P

(Davis and Januszkiewic [7]). Associated to P , there is a closed smooth manifold
RZP called the real moment-angle manifold (see [3, Section 6]). It admits an action
of T m.R/ with P as the orbit space, where m is the number of codimension–1 faces
of P , and every small cover over P is obtained as the orbit space of RZP by some
subgroup of T m.R/ of rank m� n acting freely on RZP .

A real toric manifold X.R/ with the natural T n.R/–action is locally standard and
its orbit space is often a simple convex polytope. In fact, this is the case when X

is projective, so a real toric manifold X.R/ is a small cover when X is projective.
However there are many small covers which do not arise this way. For example,
every closed surface becomes a small cover but only the torus S1 � S1 is a real
toric manifold among orientable closed surfaces (Payne [21]). We may think of
small covers as topological counterparts of real toric manifolds and may ask the
cohomological rigidity problem in the Introduction for small covers. We remark
that equivariant homeomorphism types of small covers can be distinguished by their
equivariant cohomology algebras with Z=2–coefficients (Masuda [13]).

When X.R/ is a real Bott manifold, the orbit space is an n–cube as observed in Section
8; so a real Bott manifold of dimension n becomes a small cover over an n–cube and
the converse is known to be true up to homeomorphism.

Theorem 9.1 (Masuda and Panov [16], Choi, Masuda and Suh [5]) A small cover
over an n–cube is homeomorphic to a real Bott manifold of dimension n.

The real moment-angle manifold RZI n associated to an n–cube In is the torus Rn=Zn .
The n–cube has 2n codimension–1 faces (so mD 2n) and the action of T 2n.R/ on
RZI n DRn=Zn is induced from the involutions rj ’s in (8-1) and the translations by
1
2
ej ’s on Rn .

The number Qn of equivariant homeomorphism classes of small covers over an n–cube
is computed by Choi in [4] for any n, eg

Q1 D 1; Q2 D 6; Q3 D 259; Q4 D 87360; Q5 D 236240088; : : : :
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However, the number Hn of (non-equivariant) homeomorphism classes of small covers
over an n–cube is unknown although

H1 D 1; H2 D 2; H3 D 4; H4 D 12

as described in Section 7. (Note that the homeomorphism classification is same as the
diffeomorphism classification for real Bott manifolds by Theorem 1.1.)

As is well-known, the dodecahedron in dimension 3, the 120–cell in dimension 4, and
the n–cube and n–simplex in any dimension n, are regular simple polytopes. The
homeomorphism type of a small cover over an n–simplex is unique, being that of
real projective n–space. Small covers over the dodecahedron and the 120–cell admit
hyperbolic metrics and are studied in by Garrison and Scott [8] from this point of view.
In particular, it is proved that there are exactly 25 small covers over the dodecahedron
up to isometry (equivalently up to homeomorphism by Mostow rigidity [18]).

Appendix

In this appendix we give a proof of the Fact used in Section 6. In fact we will prove a
more precise statement. It is well-known that H 2

�
..Z2/

nIZ/ is isomorphic to .Z=2/n

when � is trivial. We prove

Theorem If � is non-trivial, H 2
�
..Z2/

nIZ/ is isomorphic to .Z=2/n�1 .

We recall the following Hochschild–Serre spectral sequence, see Mac Lane [12, page
355] or Hochschild and Serre [10].

Proposition Let 1! �!…!…=�! 1 be a group extension and let A be a …–
module through a homomorphism �W …!Aut.A/. Suppose m� 1 and H

q

�
.�;A/D 0

for 1< q <m. For 0< q <m, there is the exact sequence

0!H 1
� .…=�;A

�/!H 1
� .…;A/!H 0

� .…=�;H
1
� .�;A//!

� � � !H
q

�
.…=�;A�/!H

q

�
.…;A/!H

q�1

�
.…=�;H 1

� .�;A//

!H
qC1

�
.…=�;A�/!H

qC1

�
.…;A/! � � �

(A-1)

We take …D .Z2/
n .n� 2/ and AD Z as a …–module through �W …! Aut.Z/D

f˙1g. Choose an order two subgroup � � .Z2/
n such that �.�/D f˙1g. Clearly

…D � �Ker�:
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It is known and easy to check that H 2
�
.�;A/D 0, so the assumption in the proposition

above is satisfied for mD 3. As A� D 0 by our condition, H r
�
.…=�;A�/D 0 for

any r � 0. Then the exact sequence A-1 becomes

(A-2) 0!H 2
� .…;A/!H 1

� .…=�;H
1
� .�;A//! 0:

On the other hand, it is also known and easy to check that H 1
�
.�;A/Š Z=2, so the

action of …=� on H 1
�
.�;A/ must be trivial. It follows that

H 1
� .…=�;H

1
� .�;A//ŠH 1.…=�;Z=2/

ŠH 1..Z2/
n�1;Z=2/

Š .Z=2/n�1:

This together with (A-2) implies the theorem.
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diffeomorphism classification of real Bott manifolds in terms of matrices [14] and a
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