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The universal sl3–link homology

MARCO MACKAAY

PEDRO VAZ

We define the universal sl3 –link homology, which depends on 3 parameters, following
Khovanov’s approach with foams. We show that this 3–parameter link homology,
when taken with complex coefficients, can be divided into 3 isomorphism classes.
The first class is the one to which Khovanov’s original sl3 –link homology belongs,
the second is the one studied by Gornik in the context of matrix factorizations and
the last one is new. Following an approach similar to Gornik’s we show that this new
link homology can be described in terms of Khovanov’s original sl2 –link homology.

57M27; 57M25, 81R50, 18G60

1 Introduction

In [8], following his own seminal work in [6] and Lee [11], Bar-Natan [2] and Turner’s
[13] subsequent contributions, Khovanov classified all possible Frobenius systems
of dimension two which give rise to link homologies via his construction in [6] and
showed that there is a universal one, given by

ZŒX; a; b�=.X 2
� aX � b/:

Working over C, one can take a and b to be complex numbers and study the cor-
responding homology with coefficients in C. We refer to the latter as the sl2 –link
homologies over C, because they are all deformations of Khovanov’s original link
homology whose Euler characteristic equals the Jones polynomial which is well known
to be related to the Lie algebra sl2 [8]. Using the ideas in [8; 11; 13], the authors
and Turner showed in [12] that there are only two isomorphism classes of sl2 –link
homologies over C. Given a; b 2 C, the isomorphism class of the corresponding link
homology is completely determined by the number of distinct roots of the polynomial
X 2� aX � b . The original Khovanov sl2 –link homology KH.L;C/ corresponds to
the choice aD b D 0.

Bar-Natan [2] obtained the universal sl2 –link homology in a different way, using a
clever setup with cobordisms modulo relations. He shows how Khovanov’s original
construction of the sl2 –link homology [6] can be used to define a universal functor
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U from the category of links, with link cobordisms modulo ambient isotopy as mor-
phisms, to the homotopy category of complexes in the category of 1C 1–dimensional
cobordisms modulo a finite set of universal relations. In the same paper he introduces
the tautological homology construction, which produces an honest homology theory
from U . To obtain a finite dimensional homology one has to impose the extra relations

D a C b and D C � a

on the cobordisms. For this to make sense we have to allow dotted cobordisms in our
theory.

In [7] Khovanov showed how to construct a link homology related to the Lie algebra
sl3 . Instead of 1C 1–dimensional cobordisms, he uses webs and singular cobordisms
modulo a finite set of relations, one of which is X 3 D 0. Gornik [4] studied the
case when X 3 D 1, which is the analogue of Lee’s work for sl3 . To be precise,
Gornik studied a deformation of the Khovanov–Rozansky theory [9] for sln , where n

is arbitrary. Khovanov and Rozansky followed a different approach to link homology
using matrix factorizations which conjecturally yields the same for sl3 as Khovanov’s
approach using singular cobordisms modulo relations [7]. However, in this paper we
restrict to nD 3 and only consider Gornik’s results for this case.

In the first part of this paper we construct the universal sl3 –link homology over
ZŒa; b; c�. For this universal construction we rely heavily on Bar-Natan’s [2] work on
the universal sl2 –link homology and Khovanov’s [7] work on his original sl3 –link
homology. We first impose a finite set of relations on the category of webs and foams,
analogous to Khovanov’s [7] relations for his sl3 –link homology. These relations
enable us to construct a link homology complex which is homotopy invariant under
the Reidemeister moves and functorial, up to a sign, with respect to link cobordisms.
To obtain a finite-dimensional homology from our complex we use the tautological
homology construction like Khovanov did in [7] (the name tautological homology was
coined by Bar-Natan in [2]). We denote this universal sl3 –homology by U �a;b;c.L/,
which by the previous results is an invariant of the link L.

In the second part of this paper we work over C and take a; b; c to be complex
numbers, rather than formal parameters. We show that there are three isomorphism
classes of U �a;b;c.L;C/, depending on the number of distinct roots of the polynomial
f .X /DX 3�aX 2�bX �c , and study them in detail. If f .X / has only one root, with
multiplicity three of course, then U �a;b;c.L;C/ is isomorphic to Khovanov’s original
sl3 –link homology, which in our notation corresponds to U �0;0;0.L;C/. If f .X / has
three distinct roots, then U �a;b;c.L;C/ is isomorphic to Gornik’s sl3 –link homology [4],
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which corresponds to U �0;0;1.L;C/. The case in which f .X / has two distinct roots,
one of which has multiplicity two, is new and had not been studied before to our
knowledge, although Dunfield, Gukov and Rasmussen [3] and Gukov and Walcher [5]
make conjectures which are compatible with our results. We prove that there is a
degree-preserving isomorphism

U �a;b;c.L;C/Š
M

L0�L

KH��j.L0/.L0;C/;

where j .L0/ is a shift of degree 2 lk.L0;LnL0/. This isomorphism does not take into
account the internal grading of the Khovanov homology.

We have tried to make the paper reasonably self-contained, but we do assume familiarity
with the papers by Bar-Natan [1; 2], Gornik [4] and Khovanov [6; 7; 8].

2 The universal sl3–link homology

Let L be an oriented link in S3 and D a diagram of L. In [7] Khovanov constructed
a homological link invariant associated to sl3 . The construction starts by resolving
each crossing of D in two different ways, as in Figure 1.

1

0 1

0

Figure 1: 0 and 1 resolutions of crossings

A diagram � obtained by resolving all crossings of D is an example of a web. A web
is a trivalent planar graph where near each vertex all the edges are oriented “in” or
“out” (see Figure 2). We also allow webs without vertices, which are oriented loops.
Note that by definition our webs are closed; there are no vertices with fewer than 3
edges. Whenever it is necessary to keep track of crossings after their resolution we
mark the corresponding edges as in Figure 3. A foam is a cobordism with singular
arcs between two webs. A singular arc in a foam f is the set of points of f that have
a neighborhood homeomorphic to the letter Y times an interval (see the examples in
Figure 4). Interpreted as morphisms, we read foams from bottom to top by convention,
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Figure 2: “In” and “out” orientations near a vertex

*

Figure 3: Marked edges corresponding to a crossing in D

Figure 4: Basic foams from Q to R (left) and from R to Q (right)

and the orientation of the singular arcs is by convention as in Figure 4. Foams can
have dots that can move freely on the facet to which they belong but are not allowed
to cross singular arcs. Let ZŒa; b; c� be the ring of polynomials in a; b; c with integer
coefficients.

Definition 2.1 Foam is the category whose objects are (closed) webs and whose
morphisms are ZŒa; b; c�–linear combinations of isotopy classes of foams.

Foam is an additive category and, as we will show, each foam can be given a degree
in such a way that Foam becomes a graded additive category, taking also a; b and c

to have degrees 2; 4 and 6 respectively. For further details about this category, see
Khovanov [7].

From all different resolutions of all the crossings in D we form a commutative hyper-
cube of resolutions as in [7]. It has a web in each vertex and to an edge between two
vertices, given by webs that differ only inside a disk D around one of the crossings
of D , we associate the foam that is the identity everywhere except inside the cylinder
D�I , where it looks like one of the basic foams in Figure 4. An appropriate distribution
of minus signs among the edges of the hypercube results in a chain complex of web
diagrams analogous to the one in [2] which we call hDi, with “column vectors” of
webs as “chain objects” and “matrices of foams” as “differentials”. We borrow some of
the notation from [2] and denote by Kom.Foam/ the category of complexes in Foam.
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In Section 2.1–Section 2.3 we first impose a set of local relations on Foam. We call this
set of relations ` and denote by Foam=` the category Foam divided by `. We prove
that these relations guarantee the invariance of hDi under the Reidemeister moves up to
homotopy in Kom.Foam=`/ in a pictorial way, which is analogous to Bar-Natan’s proof
in [2]. Note that the category Kom.Foam=`/ is analogous to Bar-Natan’s category
Kob.∅/DKom.Mat.Cob3

= l
.∅///. Next we show that up to signs h i is functorial

under oriented link cobordisms, ie defines a functor from Link to Kom=˙h.Foam=`/.
Here Link is the category of oriented links in S3 and ambient isotopy classes of
oriented link cobordisms properly embedded in S3 � Œ0; 1� and Kom=˙h.Foam=`/ is
the homotopy category of Kom.Foam=`/ modded out by ˙1. For the functoriality
we need all relations in `, including the ones which involve a; b; and c . In Section
2.4 we define a functor between Foam=` and ZŒa;b; c�–Mod, the category of graded
ZŒa; b; c�–modules. This induces a homology functor

U �a;b;c W Link! ZŒa;b; c�–Modbg;

where ZŒa;b; c�–Modbg is the category of bigraded ZŒa; b; c�–modules.

The principal ideas in this section, as well as most homotopies, are motivated by the
ones in Khovanov’s paper [7] and Bar-Natan’s paper [2].

2.1 Universal local relations

In order to construct the universal theory we divide Foam by the local relations
`D .3D;CN;S; ‚/ below.

D a C b C c (3D)

� D C C � a

0@ C

1A� b (CN)

D D 0; D�1 (S)

Note that the foams in the (S) relations are spheres and not theta-foams which we
discuss next.
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Recall from [7] that theta-foams are obtained by gluing three oriented disks along
their boundaries (their orientations must coincide), as shown in Figure 5. Note the

α
γ

β

Figure 5: A theta foam

orientation of the singular circle. Let ˛ , ˇ , 
 denote the number of dots on each facet.
The .‚/ relation says that for ˛ , ˇ or 
 � 2

�.˛; ˇ; 
 /D

8<:
1 .˛; ˇ; 
 /D .1; 2; 0/ or a cyclic permutation
�1 .˛; ˇ; 
 /D .2; 1; 0/ or a cyclic permutation
0 else

.‚/

Reversing the orientation of the singular circle reverses the sign of �.˛; ˇ; 
 /. Note
that when we have three or more dots on a facet of a foam we can use the (3D) relation
to reduce to the case where it has less than three dots.

A closed foam f can be viewed as a morphism from the empty web to itself which
by the relations (3D, CN, S, ‚) is an element of ZŒa; b; c�. It can be checked, as
in [7], that this set of relations is consistent and determines uniquely the evaluation of
every closed foam f , denoted C.f /. Define a q–grading on ZŒa; b; c� by q.1/D 0,
q.a/ D 2, q.b/ D 4 and q.c/ D 6. As in [7] we define the q–grading of a foam f

with d dots by

q.f /D�2�.f /C�.@f /C 2d;

where � denotes the Euler characteristic.

Definition 2.2 Foam=` is the quotient of the category Foam by the local relations `.
For webs � , � 0 and for families fi 2 HomFoam.�; �

0/ and ci 2 ZŒa; b; c� we imposeP
i cifi D 0 if and only if

P
i ciC.g

0fig/D 0 holds, for all g 2HomFoam.∅; �/ and
g0 2 HomFoam.�

0;∅/.
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Lemma 2.3 We have the following relations in Foam=` :

C D C (4C)

D � (RD)

D � (DR)

D� � (SqR)

Proof Relations (4C) and (RD) are immediate and follow from (CN) and .‚/. Rela-
tions (DR) and (SqR) are proved as in [7] (see also Lemma 2.9)

The following equality, and similar versions, which corresponds to an isotopy, we will
often use in the sequel

(1) ı D

where ı denotes composition of foams.

In Figure 6 we also have a set of useful identities which establish the way we can
exchange dots between faces. These identities can be used for the simplification of
foams and are an immediate consequence of the relations in `.

2.2 Invariance under the Reidemeister moves

In this subsection we prove invariance of h i under the Reidemeister moves. The main
result of this section is the following:
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C C D a

C C D�b

D c

Figure 6: Exchanging dots between faces. The relations are the same regard-
less of which edges are marked and the orientation on the singular arcs.

Theorem 2.4 hDi is invariant under the Reidemeister moves up to homotopy, in other
words it is an invariant in Kom=h.Foam=`/.

Proof To prove invariance under the Reidemeister moves we work diagrammatically.

Reidemeister I Consider diagrams D and D0 that differ only in a circular region as
in the figure below.

D D D0 D

We give the homotopy between complexes hDi and hD0i in Figure 7. By relation (S)

D :

D’ : 0

f 0 D�

2P
iD0

2�i

i
C a

1P
iD0

1�i

i
C b g0 D

hD� C

d D

0

0

Figure 7: Invariance under Reidemeister I

we have g0f 0 D Id.T/. To see that df 0 D 0 holds, one can use the dot exchange
relations in Figure 6. The equality dhD id.U/ follows from (DR) (note the orientations
on the singular circles). To show that f 0g0C hd D IdhDi0 , apply (RD) to hd and
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then cancel all terms which appear twice with opposite signs. What is left is the sum
of 6 terms which is equal to IdhDi0 by (CN). Therefore hD0i is homotopy-equivalent
to hDi.

Reidemeister IIa Consider diagrams D and D0 that differ in a circular region, as in
the figure below.

D D D0 D

We leave to the reader the task of checking that the diagram in Figure 8 defines a
homotopy between the complexes hDi and hD0i:
� g and f are morphisms of complexes (use only isotopies);
� g1f 1 D IdhD0i1 (use (RD));

� f 0g0C hd D IdhDi0 and f 2g2C dhD IdhDi2 (use isotopies);

� f 1g1C dhC hd D IdhDi1 (use (DR)).

−

D’ :

D :

0 0

I

g f
0 0

Figure 8: Invariance under Reidemeister IIa

Reidemeister IIb Consider diagrams D and D0 that differ only in a circular region,
as in the figure below.

D D D0 D
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Again, checking that the diagram in Figure 9 defines a homotopy between the complexes
hDi and hD0i is left to the reader:

� g and f are morphisms of complexes (use only isotopies);
� g1f 1 D IdhD0i1 (use (RD) and (S));

� f 0g0C hd D IdhDi0 and f 2g2C dhD IdhDi2 (use (RD) and (DR));

� f 1g1C dhC hd D IdhDi1 (use (DR), (RD), (4C) and (SqR)).

D :

D’ : 0 0

g f

0 0

Figure 9: Invariance under Reidemeister IIb

Reidemeister III Consider diagrams D and D0 that differ only in a circular region,
as in the figure below.

D D D0 D

We prove that hD0i is homotopy equivalent to hDi by showing that both complexes
are homotopy equivalent to a third complex denoted hQi (the bottom complex in
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−

−

−

D
:

:
Q

−
I

I
−

I
−

I

I

I

Figure 10: First step of invariance under Reidemeister III. A circle attached
to the tail of an arrow indicates that the corresponding morphism has a minus
sign.
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Figure 10). Figure 10 shows that hDi is homotopy equivalent to hQi. By applying
a symmetry relative to a horizontal axis crossing each diagram in hDi we obtain
a homotopy equivalence between hD0i and hQi. It follows that hDi is homotopy
equivalent to hD0i.

By Theorem 2.4 we can use any diagram of L to obtain the invariant in Kom=h.Foam=`/

and justifies the notation hLi.

2.3 Functoriality

The construction and the results of the previous sections can be extended to the category
of tangles, following Bar-Natan’s approach in [2]. One can then prove the functoriality
of h i as Bar-Natan does. Although we will not give the details of this proof some
remarks are in order. In the first place, we have to consider tangle diagrams in a disk and
foams inside a cylinder. To ensure additivity of the q–grading under lateral composition
we need to add an extra term to the q–grading formula. For a foam between open webs
with jbj vertical boundary components and d dots we have

q.f /D�2�.f /C�.@f /C 2d Cjbj:

Lemma 8.6 in [2] is fundamental in Bar-Natan’s proof of the functoriality of the
universal sl2 –link homology. The analogue for sl3 follows from the following two
lemmas.

Lemma 2.5 Let f be a closed foam. If q.f / < 0, then f D 0 holds. If q.f /D 0,
then the evaluation of f gives an integer.

Proof Using (CN) and (RD) we can turn any closed foam into a ZŒa; b; c�–linear
combination of a disjoint union of spheres and theta foams. Since the grading remains
unchanged by (CN) and (RD) it suffices to check the claims for spheres and theta
foams, which is immediate from the (S) and .‚/ relations.

Lemma 2.6 For a crossingless tangle diagram T we have that HomFoam=`.T;T / is
zero in negative degrees and Z in degree zero.

Proof The set of singular points in every foam f from T to itself consists of a
disjoint union of circles. Using (CN) and (RD) we can reduce f to a ZŒa; b; c�–linear
combination of disjoint unions of vertical disks and closed foams. Note that the q–
degree of a dotted disc is always nonnegative. Therefore, if q.f / < 0, then the closed
foams have to have negative q–degree as well and f D 0 has to hold by Lemma 2.5.
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If q.f /D 0, then f is equal to a Z–linear combination of undotted discs and closed
foams of q–degree zero, so Lemma 2.5 shows that f is an integer multiple of the
identity foam on T .

The proofs of the analogues of Lemmas 8.7–8.9 and Theorem 5 in [2] follow the same
reasoning but use the homotopies of our Section 2.2. We illustrate this by showing that
h i respects the movie move MM13 (actually it is the mirror of MM13 in [2]):

� :

Going from left to right in homological degree 0 we find the composition

h i ! h i! h i

in both movies. The map for the movie on the left-hand side consists of the cobordism
f 0 of Figure 7 between the left strand and the circle followed by a saddle cobordism
between the circle and the right strand. For the movie on the right-hand side we have
f 0 between the right strand and the circle followed by a saddle cobordism between
the circle and the left strand. Both sides are equal to

:

Going from right to left and using the cobordism g0 of Figure 7 we obtain the identity
cobordism in both movies.

Without giving more details of this generalization, we state the main result. Let
Kom=˙h.Foam=`/ denote the category Kom=h.Foam=`/ modded out by ˙1.

Proposition 2.7 h i defines a functor Link!Kom=˙h.Foam=`/.

2.4 Universal homology

Following Khovanov [7], we define a functor C W Foam=`! ZŒa;b; c�–Mod, which
extends in a straightforward manner to the category Kom.Foam=`/.

Definition 2.8 For a closed web � , define C.�/ D HomFoam=`.∅; �/. From the
q–grading formula for foams, it follows that C.�/ is graded. For a foam f between
webs � and � 0 we define the ZŒa; b; c�–linear map

C.f /W HomFoam=`.∅; �/! HomFoam=`.∅; �
0/

given by composition, whose degree equals q.f /.
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Note that, if we have a disjoint union of webs � and � 0 , then C.�t� 0/ŠC.�/˝C.� 0/.
Here, as in the sequel, the tensor product is taken over ZŒa; b; c�.

The following relations are a categorified version of Kuperberg’s skein relations [10]
and were used and proved by Khovanov in [7] to relate his sl3 –link homology to the
quantum sl3 –link invariant.

Lemma 2.9 (Khovanov–Kuperberg relations [7; 10]) We have the following decom-
positions under the functor C :

C.S�/Š C.S/˝C.�/ (Circle Removal)

C. /Š C. /f�1g˚C. /f1g (Digon Removal)

C
� �

Š C
� �

˚C
� �

(Square Removal)

where fj g denotes a positive shift in the q–grading by j .

Proof (Circle Removal) is immediate from the definition of C.�/. (Digon Removal)
and (Square Removal) are proved as in [7]. Notice that (Digon Removal) and (Square
Removal) are related to the local relations (DR) and (SqR) of Lemma 2.3.

Let U �a;b;c.D/ denote the bigraded homology of C hDi and ZŒa;b; c�–Modbg the
category of bigraded ZŒa; b; c�–modules. Proposition 2.7 implies the following:

Proposition 2.10 U �a;b;c W Link! ZŒa;b; c�–Modbg is a functor.

We use the notation C.L/ for C hDi and U �a;b;c.L/ for U �a;b;c.D/.

3 Isomorphism classes

In this section we work over C and take a; b; c to be complex numbers. Using
the same construction as in the first part of this paper we can define U �a;b;c.L;C/,
which is the universal sl3 –homology with coefficients in C. We show that there
are three isomorphism classes of U �a;b;c.L;C/. Throughout this section we write
f .X /DX 3�aX 2�bX �c . For a given choice of a; b; c 2C, the isomorphism class
of U �a;b;c.L;C/ is determined by the number of distinct roots of f .X /.
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Remark We could work over Q just as well and obtain the same results, except that
in the proofs we would first have to pass to quadratic or cubic field extensions of Q to
guarantee the existence of the roots of f .X / in the field of coefficients of the homology.
The arguments we present for U �a;b;c.L;C/ remain valid over those quadratic or cubic
extensions. The universal coefficient theorem then shows that our results hold true for
the homology defined over Q.

If f .X /D .X � ˛/3 , then the isomorphism P 7! P� ˛O induces an isomorphism
between U �a;b;c.L;C/ and Khovanov’s original sl3 –link homology, which in our
notation is equal to U �0;0;0.L;C/.

In the following two subsections we study the cases in which f .X / has two or three
distinct roots. We first work out the case for three distinct roots, because this case has
essentially been done by Gornik [4]. Even in this case we define and prove everything
precisely and completely. We have two good reasons for doing this. First of all we
generalize Gornik’s work to the arbitrary case of three distinct roots, whereas he,
strictly speaking, only considers the particular case of the third roots of unity. Given
the definitions and arguments for the general case, one easily recognizes Gornik’s
definitions and arguments for his particular case. Working one’s way back is harder, also
because Gornik followed the approach using matrix factorizations and not cobordisms.
Secondly these general definitions and arguments are necessary for understanding the
last subsection, where we treat the case in which f .X / has only two distinct roots,
which is clearly different from Gornik’s.

3.1 Three distinct roots

In this subsection we assume that the three roots of f .X /, denoted ˛; ˇ; 
 2C, are all
distinct. First we determine Gornik’s idempotents in the algebra CŒX �= .f .X //. By
the Chinese Remainder Theorem we have the following isomorphism of algebras

CŒX �= .f .X //Š CŒX �= .X �˛/˚CŒX �= .X �ˇ/˚CŒX �= .X � 
 /Š C3:

Definition 3.1 Let Q˛.X /, Qˇ.X / and Q
 .X / be the idempotents in CŒX �= .f .X //

corresponding to .1; 0; 0/, .0; 1; 0/ and .0; 0; 1/ in C3 under the isomorphism in the
Chinese Remainder Theorem.

As a matter of fact it is easy to compute the idempotents explicitly:

Q˛.X /D
.X�ˇ/.X�
 /

.˛�ˇ/.˛�
 /
; Qˇ.X /D

.X�˛/.X�
 /

.ˇ�˛/.ˇ�
 /
; Q
 .X /D

.X�˛/.X�ˇ/

.
�˛/.
�ˇ/
:

By definition we get:
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Lemma 3.2

Q˛.X /CQˇ.X /CQ
 .X /D 1;

Q˛.X /Qˇ.X /DQ˛.X /Q
 .X /DQˇ.X /Q
 .X /D 0;

Q˛.X /
2
DQ˛.X /; Qˇ.X /

2
DQˇ.X /; Q
 .X /

2
DQ
 .X /:

Let � be a resolution of a link L and let E.�/ be the set of all edges in � . In [7]
Khovanov defines the following algebra (in his case for aD b D c D 0).

Definition 3.3 Let R.�/ be the commutative C–algebra with generators Xi , for
i 2E.�/, modulo the relations

(2) Xi CXj CXk D a; XiXj CXj Xk CXiXk D�b; XiXj Xk D c;

for any triple of edges i; j ; k which share a trivalent vertex.

The following definitions and results are analogous to Gornik’s results in Sections 2
and 3 of [4]. Let S D f˛; ˇ; 
 g.

Definition 3.4 A coloring of � is defined to be a map �W E.�/! S . Denote the set
of all colorings by S.�/. An admissible coloring is a coloring such that

(3)

aD �.i/C�.j /C�.k/

�b D �.i/�.j /C�.j /�.k/C�.i/�.k/

c D �.i/�.j /�.k/;

for any edges i; j ; k incident to the same trivalent vertex. Denote the set of all
admissible colorings by AS.�/.

Of course admissibility is equivalent to requiring that the three colors �.i/; �.j / and
�.k/ be all distinct.

A simple calculation shows that f .Xi/D 0 in R.�/, for any i 2 E.�/. Therefore,
for any edge i 2E.�/, there exists a homomorphism of algebras from CŒX �=.f .X //

to R.�/ defined by X 7!Xi . Thus, we define the following:

Definition 3.5 For any coloring � ,

Q�.�/D
Y

i2E.�/

Q�.i/.Xi/ 2R.�/:

Lemma 3.2 implies the following corollary.
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Corollary 3.6 Let ı�
 

be the Kronecker delta. ThenX
�2S.�/

Q�.�/D 1; Q�.�/Q .�/D ı
�

 
Q� ;

Note that the definition of Q�.�/ implies that

(4) XiQ�.�/D �.i/Q�.�/:

The following lemma is our analogue of Gornik’s Theorem 3.

Lemma 3.7 For any nonadmissible coloring � , we have

Q�.�/D 0:

For any admissible coloring � , we have

Q�.�/R.�/Š C:

Therefore, we get a direct sum decomposition

R.�/Š
M

�2AS.�/

CQ�.�/:

Proof Let � be any coloring and let i; j ; k 2E.�/ be three edges sharing a trivalent
vertex. By the relations in (2) and equation (4), we get

(5)

aQ�.�/D .�.i/C�.j /C�.k//Q�.�/

�bQ�.�/D .�.i/�.j /C�.j /�.k/C�.i/�.k//Q�.�/

cQ�.�/D �.i/�.j /�.k/Q�.�/:

If � is nonadmissible, then, by comparing (3) and (5), we see that Q�.�/ vanishes.

Now suppose � is admissible. Recall that R�.�/ is a quotient of the algebra

(6)
O

i2E.�/

CŒXi �= .f .Xi// :

Just as in Definition 3.5 we can define the idempotents in the algebra in (6), which we
also denote Q�.�/. By the Chinese Remainder Theorem, there is a projection of the
algebra in (6) onto C, which maps Q�.�/ to 1 and Q .�/ to 0, for any  ¤ � . It is
not hard to see that, since � is admissible, that projection factors through the quotient
R.�/, which implies the second claim in the lemma.
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As in [7], the relations in Figure 6 show that R.�/ acts on C.�/ by the usual action
induced by the cobordism which merges a circle and the relevant edge of � . Let us
write C�.�/DQ�.�/C.�/. By Corollary 3.6 and Lemma 3.7, we have a direct sum
decomposition

(7) C.�/D
M

�2AS.�/

C�.�/:

Note that we have

(8) z 2 C�.�/ ” for all i; Xiz D �.i/z

for any � 2AS.�/.

Let � be a coloring of the arcs of L by ˛; ˇ and 
 . Note that � induces a unique
coloring of the unmarked edges of any resolution of L.

Definition 3.8 We say that a coloring of the arcs of L is admissible if there exists a
resolution of L which admits a compatible admissible coloring. Note that if such a
resolution exists, its coloring is uniquely determined by � , so we use the same notation.
Note also that an admissible coloring of � induces a unique admissible coloring of
L. If � is an admissible coloring, we call the elements in C�.�/ admissible cochains.
We denote the set of all admissible colorings of L by AS.L/.

We say that an admissible coloring of L is a canonical coloring if the arcs belonging
to the same component of L have the same color. If � is a canonical coloring, we call
the elements in C�.�/ canonical cochains. We denote the set of canonical colorings
of L by S.L/.

Note that, for a fixed � 2AS.L/, the admissible cochain groups C�.�/ form a sub-
complex C �a;b;c.L� ;C/�C �a;b;c.L;C/ whose homology we denote by U �a;b;c.L� ;C/.
The following lemma shows that only the canonical cochain groups matter, as Gornik
indicated in his remarks before his Main Theorem 2 in [4].

Theorem 3.9
U �a;b;c.L;C/D

M
�2S.L/

U �a;b;c.L� ;C/:

Proof By (7) we have

U �a;b;c.L;C/D
M

�2AS.L/

U �a;b;c.L� ;C/:

Let us now show that U �a;b;c.L� ;C/ D 0 if � is admissible but noncanonical. Let
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1 2

5

3 4

*

� � 0

1 2

Figure 11: Ordering edges

� and � 0 be the diagrams in Figure 11, which are the boundary of the cobordism
which defines the differential in C �a;b;c.L;C/, and order their edges as indicated. Up
to permutation, the only admissible colorings of � are

α β

γ

α β

* and

α β

γ

β α

* :

�1 �2

Up to permutation, the only admissible colorings of � 0 are

α α and α β :

�0
0

�0
1

Note that only �2 and �0
0

can be canonical. We get

(9)
0  C�0

0
.� 0/;

C�1
.�/ Š C�0

1
.� 0/;

C�2
.�/ ! 0:

Note that the elementary cobordism has to map colorings to compatible colorings.
This explains the first and the third line. Let us explain the second line. Apply the
elementary cobordisms � 0! �! � 0 and use relation (RD) of Lemma 2.3 to obtain
the linear map C�0

1;2
.� 0/! C�0

1;2
.� 0/ given by

z 7! .ˇ�˛/z:

Since ˛ ¤ ˇ , we see that this map is injective. Therefore the map C�0
1;2
.� 0/ !

C�1;2
.�/ is injective too. A similar argument, using the (DR) relation, shows that

C�1;2
.�/! C�0

1;2
.� 0/ is injective. Therefore both maps are isomorphisms.

Next, let � be admissible but noncanonical. Then there exists at least one crossing,
denoted c , in L which has a resolution with a noncanonical coloring. Let C �a;b;c.L

1
�
;C/
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be the subcomplex of C �a;b;c.L� ;C/ defined by the resolutions of L in which c has
been resolved by the 1–resolution. Let C �a;b;c.L

0
�
;C/ be the complex obtained from

C �a;b;c.L� ;C/ by deleting all resolutions which do not belong to C �a;b;c.L
1
�
;C/ and

all arrows which have a source or target which is not one of the remaining resolutions.
Note that we have a short exact sequence of complexes

(10) 0! C �a;b;c.L
1
� ;C/! C �a;b;c.L� ;C/! C �a;b;c.L

0
� ;C/! 0:

The isomorphism in (9) shows that the natural map

C �a;b;c.L
0
� ;C/! C �C1

a;b;c.L
1
� ;C/;

defined by the elementary cobordisms which induce the connecting homomorphism in
the long exact sequence associated to (10), is an isomorphism. By exactness of this
long exact sequence we see that U �a;b;c.L� ;C/D 0.

Lemma 3.10 For any � 2AS.�/, we have C�.�/Š C.

Proof We use induction with respect to v , the number of trivalent vertices in � . The
claim is obviously true for a circle. Suppose � has a digon, with the edges ordered as
in Figure 12. Note that X1DX4 2R.�/ holds as a consequence of the relations in (2).

1

2 3

4

*

*

1

� � 0

Figure 12: Ordering edges in digon

Let � 0 be the web obtained by removing the digon, as in Figure 12. Up to permutation,
the only possible admissible colorings of � and the corresponding admissible coloring
of � 0 are

α

β

α

γ

*

*

α

α

βγ

*

*

α .

�1 �2 �0

The (Digon Removal) isomorphism in Lemma 2.9 yields

C�1
.�/˚C�2

.�/Š C�0.�
0/˚C�0.�

0/:
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By induction, we have C�0.�
0/ŠC, so dim C�1

.�/Cdim C�2
.�/D 2. For symmetry

reasons this implies that dim C�1
.�/D dim C�2

.�/D 1, which proves the claim. To
be a bit more precise, let Bˇ;
 and B
;ˇ be the following two colored cobordisms:

Bˇ;
 D

β

γ
; B
;ˇ D

β

γ

:

Note that we have

Bˇ;
 CB
;ˇ D 0 and 
Bˇ;
 CˇB
;ˇ D idC�0 .�
0/

D 0; and D ;by

respectively. These two identities imply

.
 �ˇ/Bˇ;
 D .ˇ� 
 /B
;ˇ D idC�0 .�
0/:

Therefore we conclude that C�1
.�/ and C�2

.�/ are nonzero, which for dimensional
reasons implies dim C�1

.�/D dim C�2
.�/D 1.

Now, suppose � contains a square, with the edges ordered as in Figure 13 on the left.
Let � 0 and � 00 be the two corresponding webs under the (Square Removal) isomorphism

1

2 3

4

7

8

6

5 **

� � 0 � 00

1 3

1

2

Figure 13: Ordering edges in square

in Lemma 2.9. Up to permutation there is only one admissible noncanonical coloring
and one canonical coloring:

α α

α

γ

β β

γ

β

* *

α α

γ γ

β

* *

α
β

α

.

canonical noncanonical

Let us first consider the canonical coloring. Clearly C�.�/ is isomorphic to C�00.�
00/,

where �00 is the unique compatible canonical coloring, because there is no compatible
coloring of � 0 . Therefore the result follows by induction.
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Now consider the admissible noncanonical coloring. As proved in Theorem 3.9 we
have the following isomorphism:

α α

γ γ

β

* *

α
β

α

Š

α

α

α * γβ :

By induction the right-hand side is one-dimensional, which proves the claim.

Thus we arrive at Gornik’s Main Theorem 2. Note that there are 3n canonical colorings
of L, where n is the number of components of L. Note also that the homological
degrees of the canonical cocycles are easy to compute, because we know that the
canonical cocycles corresponding to the oriented resolution without vertices have
homological degree zero.

Theorem 3.11 The dimension of U �a;b;c.L;C/ is 3n , where n is the number of
components of L.

For any � 2 S.L/, there exists a nonzero element a� 2 U i
a;b;c.L;C/, unique up to a

scalar, where
i D

X
.�1;�2/2S�S; �1¤�2

lk.��1.�1/; �
�1.�2//:

3.2 Two distinct roots

In this section we assume that f .X / D .X � ˛/2.X � ˇ/, with ˛ ¤ ˇ . We follow
an approach similar to the one in the previous section. First we define the relevant
idempotents. By the Chinese Remainder Theorem we have

CŒX �=.f .X //Š CŒX �=..X �˛/2/˚CŒX �=.X �ˇ/:

Definition 3.12 Let Q˛ and Qˇ be the idempotents in CŒX �=.f .X // corresponding
to .1; 0/ and .0; 1/ in CŒX �=..X�˛/2/˚CŒX �=.X�ˇ/ under the above isomorphism.

Again it is easy to compute the idempotents explicitly:

Q˛ D 1�
.X �˛/2

.ˇ�˛/2
; Qˇ D

.X �˛/2

.ˇ�˛/2
:

By definition we get:

Lemma 3.13

Q˛CQˇ D 1; Q˛Qˇ D 0; Q2
˛ DQ˛; Q2

ˇ DQˇ:
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Throughout this subsection let S D f˛; ˇg. We define colorings of webs and admis-
sibility as in Definition 3.4. Note that a coloring is admissible if and only if at each
trivalent vertex the, unordered, incident edges are colored ˛; ˛; ˇ . Let � be a web
and � a coloring. The definition of the idempotents Q�.�/ in R.�/ is the same as in
Definition 3.5. Clearly Corollary 3.6 also holds in this section. However, equation (4)
changes. By the Chinese Remainder Theorem, we get

(11)

(
.Xi �ˇ/Q�.�/D 0; if �.i/D ˇ

.Xi �˛/
2Q�.�/D 0; if �.i/D ˛:

Lemma 3.7 also changes. Its analogue becomes:

Lemma 3.14 For any nonadmissible coloring � , we have

Q�.�/D 0:

Therefore, we have a direct sum decomposition

R.�/Š
M

�2AS.�/

Q�.�/R.�/:

For any � 2AS.�/, we have dim Q�.�/R.�/D 2m , where m is the number of cycles
in ��1.˛/� � .

Proof First we prove that inadmissible colorings yield trivial idempotents. Let � be
any coloring of � and let i; j ; k be three edges sharing a trivalent vertex. First suppose
that all edges are colored by ˇ . By equations (11) we get

aQ�.�/D .Xi CXj CXk/Q�.�/D 3ˇQ�.�/;

which implies that Q�.�/D 0, because aD 2˛Cˇ and ˛ ¤ ˇ .

Next suppose �.i/D �.j /D ˇ and �.k/D ˛ . Then

aQ�.�/D .Xi CXj CXk/Q�.�/D .2ˇCXk/Q�.�/:

Thus XkQ�.�/D .2˛�ˇ/Q�.�/. Therefore we get

0D .Xk �˛/
2Q�.�/D .˛�ˇ/

2Q�.�/;

which again implies that Q�.�/D 0.

Finally, suppose i; j ; k are all colored by ˛ . Then we have�
.Xi �˛/

2
C .Xj �˛/

2
C .Xk �˛/

2
�
Q�.�/D 0:
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Using the relations in (2) we get

.Xi �˛/
2
C .Xj �˛/

2
C .Xk �˛/

2
D .˛�ˇ/2;

so we see that Q�.�/D 0.

Now, let � be an admissible coloring. Note that the admissibility condition implies that
��1.˛/ consists of a disjoint union of cycles. To avoid confusion, let us remark that we
do not take into consideration the orientation of the edges when we speak about cycles,
as one would in algebraic topology. What we mean by a cycle is simply a piecewise
linear closed loop. Recall that R.�/ is a quotient of the algebra

(12)
O

i2E.�/

CŒXi �= .f .Xi//

and that we can define idempotents, also denoted Q�.�/, in the latter. Note that by the
Chinese Remainder Theorem there exists a homomorphism of algebras which projects
the algebra in (12) onto

(13)
O
�.i/D˛

CŒXi �=
�
.Xi �˛/

2
�
˝

O
�.i/Dˇ

CŒXi �= .Xi �ˇ/ ;

which maps Q�.�/ to 1 and Q .�/ to 0, for any  ¤ � . Define R�.�/ to be the
quotient of the algebra in (13) by the relations Xi CXj D 2˛ , for all edges i and j

which share a trivalent vertex and satisfy �.i/D �.j /D ˛ . Note that XiXj D ˛
2 also

holds in R�.�/, for such edges i and j .

Suppose that the edges i; j ; k are incident to a trivalent vertex in � and that they are
colored ˛; ˛; ˇ . It is easy to see that by the projection onto R�.�/ we get

Xi CXj CXk 7! a

XiXj CXiXk CXj Xk 7! �b

XiXj Xk 7! c:

Therefore the projection descends to a projection from R.�/ onto R�.�/. Since
Q�.�/ is mapped to 1 and Q .�/ to 0, for all  ¤ � , we see that the projection
restricts to a surjection of algebras

Q�.�/R.�/!R�.�/:

A simple computation shows that the equality

.Xi CXj /Q�.�/D 2˛Q�.�/

holds in R.�/, which implies that the surjection above is an isomorphism of algebras.
This proves the final claim in the lemma.
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As in (8), for any � 2AS.�/, we get

(14) z 2 C�.�/”

(
.Xi �ˇ/z D 0; for all i such that �.i/D ˇ;

.Xi �˛/
2z D 0; for all i such that �.i/D ˛:

Let � be a coloring of the arcs of L by ˛ and ˇ . Note that � induces a unique coloring
of the unmarked edges of any resolution of L. We define admissible and canonical
colorings of L as in Definition 3.8.

Note, as before, that, for a fixed admissible coloring � of L, the admissible cochain
groups C�.�/ form a subcomplex C �a;b;c.L� ;C/� C �a;b;c.L;C/ whose homology we
denote by U �a;b;c.L� ;C/. The following theorem is the analogue of Theorem 3.9.

Theorem 3.15

U �a;b;c.L;C/D
M

�2S.L/

U �a;b;c.L� ;C/:

Proof By Lemma 3.14 we get

U �a;b;c.L;C/D
M

�2AS.L/

U �a;b;c.L� ;C/:

Let us now show that U �a;b;c.L� ;C/D 0 if � is admissible but noncanonical. Let �
and � 0 be the diagrams in Figure 11, which are the boundary of the cobordism which
induces the differential in C �a;b;c.L;C/, and order their edges as indicated. The only
admissible colorings of � are

α β

α β

α * α

β α

β α

* α

β α

α β

* α

β α

α β

*

α

α

α

α

β * .

�1 �2 �3 �4 �5

The only admissible colorings of � 0 are

β β α β β α α α .

�0
0

�0
1

�0
2

�0
5
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Note that only �3; �4; �5; �
0
0

and �0
5

can be canonical. We get

(15)

0 C�0
0
.� 0/;

C�1
.�/Š C�0

1
.� 0/;

C�2
.�/Š C�0

2
.� 0/;

C�3
.�/! 0;

C�4
.�/! 0;

C�5
.�/$ C�0

5
.� 0/:

Note that the last line in the list above only states that the cobordism induces a map
from one side to the other or vice-versa, but not that it is an isomorphism in general.
The second and third line contain isomorphisms. Let us explain the second line, the
third being similar. Apply the elementary cobordism � 0! �! � 0 and use relation
(RD) of Lemma 2.3 to obtain the linear map C�0

1;2
.� 0/! C�0

1;2
.� 0/ given by

z 7! .ˇ�X1/z:

Suppose .X1�ˇ/z D 0. Then z 2 C�0
0
.� 0/, because X1z DX2z D ˇz . This implies

that z 2 C�0
1;2
.� 0/\C�0

0
.� 0/D f0g. Thus the map above is injective, and therefore the

map C�0
1;2
.� 0/! C�1;2

.�/ is injective. A similar argument, using the relation (DR),
shows that C�1;2

.�/! C�0
1;2
.� 0/ is injective. Therefore both maps are isomorphisms.

The isomorphisms in (15) imply that U �a;b;c.L� ;C/D 0 holds, when � is admissible
but noncanonical, as we explained in the proof of Theorem 3.9.

Let C�.�/ be a canonical cochain group. In this case it does not suffice to compute
the dimensions of C�.�/, for all � and � , because we also need to determine the
differentials. Therefore we first define a canonical cobordism in C�.�/.

Definition 3.16 Let � 2 S.L/. We define a cobordism †�.�/W ∅! � by gluing
together the elementary cobordisms in Figure 14 and multiplying by Q�.�/. We call
†�.�/ the canonical cobordism in C�.�/.

For any canonically colored web, we can find a way to build up the canonical cobordism
using only the above elementary cobordisms with canonical colorings, except when we
have several digons as in Figure 15 where we might have to stick in two digons at a
time to avoid getting webs with admissible noncanonical colorings.

There is a slight ambiguity in the rules above. At some point we may have several
choices which yield different cobordisms, depending on the order in which we build
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α

α α

β β

α α

β

* * :

α

α

α

α

β β

α

α

* * W

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

if α
α belong to different ˛–cycles

if α
α belong to the same ˛–cycle

Figure 14: Elementary cobordisms

Figure 15: Several digons

them up. To remove this ambiguity we order all arcs of the link, which induces an
ordering of all unmarked edges in any of its resolutions, By convention we first build
up the square or digon which contains the lowest order edge.

With these two observations in mind, it is not hard to see that the rules defining
†�.�/ are consistent. One can check that the two different ways of defining it for the
square-digon webs in Figure 16 yield the same cobordism indeed.

α α

αα
β

β

α

αα

α

β β

α

α

* * * *

Figure 16: Square-digons with coloring

Recall that the definition of R�.�/, which appears in the following lemma, can be
found in the proof of Lemma 3.14, where we showed that R�.�/ŠQ�.�/R.�/.
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Lemma 3.17 C�.�/ is a free cyclic R�.�/–module generated by †�.�/, for any
� 2 S.�/.

Proof We use induction with respect to v , the number of trivalent vertices in � . The
claim is obviously true for a circle. Suppose � has a digon, with the edges ordered as
in Figure 12. Note that X1 D X4 2R.�/ holds as a consequence of the relations in
(2). Let � 0 be the web obtained by removing the digon, as in Lemma 2.9. The possible
canonical colorings of � and the corresponding canonical colorings of � 0 are

β

α

β

α

*

*

α

α

β

α

*

*

α

α

αβ

*

*

β α α .

�1 �2 �3 �0
1

�0
2

�0
3

We treat the case of �1 first. Since the (Digon Removal) isomorphism in Lemma 2.9
commutes with the action of X1 DX4 , we see that

C�1
.�/Š C�0

1
.� 0/˚C�0

1
.� 0/:

By induction C�0
1
.� 0/ is a free cyclic R�0

1
.� 0/–module generated by †�0

1
.� 0/. Note

that the isomorphism maps�
†�0

1
.� 0/; 0

�
and

�
0; †�0

1
.� 0/

�
†�1

.�/ and X2†�1
.�/:to

Since dim R�1
.�/D2 dim R�0

1
.� 0/, we conclude that C�1

.�/ is a free cyclic R�1
.�/–

module generated by †�1
.�/.

Now, let us consider the case of �2 and �3 . The (Digon Removal) isomorphism in
Lemma 2.9 yields

C�2
.�/˚C�3

.�/Š C�0
2
.� 0/˚C�0

3
.� 0/:

Note that �0
2
D�0

3
holds and by induction C�0

2
.� 0/DC�0

3
.� 0/ is a free cyclic R�0

2
.� 0/D

R�0
3
.� 0/–module. As in the previous case, by definition of the canonical generators, it

is easy to see that the isomorphism maps

R�0
2
.� 0/†�0

2
.� 0/˚R�0

3
.� 0/†�0

3
.� 0/

R�2
.�/†�2

.�/˚R�3
.�/†�3

.�/:to

Counting the dimensions on both sides of the isomorphism, we see that this proves the
claim in the lemma for C�2

.�/ and C�3
.�/.
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We could also have
α

α

α β* ;

but the same arguments as above apply to this case.

If we have several digons as in Figure 15, similar arguments prove the claim when we
stick in two digons at a time.

Next, suppose � contains a square, with the edges ordered as in Figure 13 left. Let
� 0 and � 00 be the two corresponding webs under the (Square Removal) isomorphism
in Lemma 2.9. There is a number of possible canonical colorings. Note that there is
no canonical coloring which colors all external edges by ˇ . To prove the claim for all
canonical colorings it suffices to consider only two: the one in which all external edges
are colored by ˛ and the coloring

α

αβ

α

β
α

α

β

**

All other cases are similar. Suppose that all external edges are colored by ˛ , then there
are two admissible colorings:

α

α

α

α

α

α

β

β

* * and

α

α

α

α

β β

α

α

* * :

�1 �2

Note that only �2 can be canonical. Clearly there are unique canonical colorings of � 0

and � 00 , with both edges colored by ˛ , which we denote �0 and �00 . The isomorphism
yields

C�1
.�/˚C�2

.�/Š C�0.�
0/˚C�00.�

00/:

Suppose that the two edges in � 0 belong to the same ˛–cycle. We denote the number
of ˛–cycles in � 0 by m. Note that the number of ˛–cycles in � 00 equals mC 1.
By induction C�0.�

0/DR�0.�
0/†�0.�

0/ and C�00.�
00/DR�00.�

00/†�00.�
00/ are free

cyclic modules of dimensions 2m and 2mC1 respectively. Since �1 is noncanonical,
we know that C�1

.�/ŠC�0.�
0/, using the isomorphisms in (15) and the results above

about digon-webs. Therefore, we see that dim C�1
.�/D 2m and dim C�2

.�/D 2mC1 .

Algebraic & Geometric Topology, Volume 7 (2007)
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By construction, we have

†�00.�
00/ 7!

�
�; †�2

.�/
�
:

The isomorphism commutes with the actions on the external edges and R�2
.�/ is

isomorphic to R�00.�
00/, so we get

R�2
.�/†�2

.�/ŠR�00.�
00/†�00.�

00/:

For dimensional reasons, this implies that C�2
.�/ is a free cyclic R�2

.�/–module
generated by †�2

.�/.

Now suppose that the two edges in � 0 belong to different ˛–cycles. This time we
denote the number of ˛–cycles in � 0 and � 00 by 2mC1 and 2m respectively. We still
have C�1

.�/ŠC�0.�
0/, so, by induction, we have dim C�1

.�/D 2mC1 and, therefore,
C�2

.�/ D 2m . Consider the intermediate web � 000 colored by �000 as indicated and
the map between � and � 000 in Figure 17. By induction, C�000.�

000/ is a free cyclic

α

α

α α β*

α

α

α

α

β β

α

α

* *

� � 000

Figure 17

R�000.�
000/–module generated by †�000.� 000/. By construction, we see that †�2

.�/ is
mapped to

X6†�000.�
000/�X1†�000.�

000/;

which is nonzero. Similarly we see that X1†�2
.�/ is mapped to

X1X6†�000.�
000/�X 2

1†�000.�
000/DX1X6†�000.�

000/� .2˛X1�˛
2/†�000.�

000/:

The latter is also nonzero and linearly independent from the first element. Since the
map clearly commutes with the action of all elements not belonging to edges in the
˛–cycle of X1 , the above shows that, for any nonzero element Z 2R�2

.�/, the image
of Z†�2

.�/ in C�000.�
000/ is nonzero. Therefore, we see that

dim R�2
.�/†�2

.�/D dim R�2
.�/D 2m:

For dimensional reasons we conclude that Q�2
.�/C.�/ is a free cyclic R�2

.�/–
module generated by †�2

.�/.
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Finally, let us consider the canonical coloring

α

αβ

α

β
α

α

β

** .

In this case C�.�/ is isomorphic to C�00.�
00/, where �00 is the unique compatible

canonical coloring of � 00 , because there is no compatible coloring of � 0 . Note that
R�.�/ is isomorphic to R�00.�

00/ and †�.�/ is mapped to †�00.� 00/. Therefore the
result follows by induction.

Finally we arrive at our main theorem in this subsection.

Theorem 3.18 Let j .L0/D 2 lk.L0;LnL0/. Then

U i
a;b;c.L;C/Š

M
L0�L

KHi�j.L0/;�.L0;C/:

Proof By Theorem 3.15 we know that

U i
a;b;c.L;C/D

M
�2S.L/

U i
a;b;c.L� ;C/:

Let � 2 S.L/ be fixed and let L˛ be the sublink of L consisting of the components
colored by ˛ . We claim that

(16) U i
a;b;c.L� ;C/Š KHi�j.L0/;�.L˛;C/;

from which the theorem follows. First note that, without loss of generality, we may
assume that ˛ D 0, because we can always apply the isomorphism P 7! P� ˛O.
Let C�.�/ be a canonical cochain group. By Lemma 3.17, we know that C�.�/ is
a free cyclic R�.�/–module generated by †�.�/. Therefore we can identify any
X 2R�.�/ with X†�.�/. There exist isomorphisms

(17) R�.�/Š CŒXi j�.i/D ˛�=
�
Xi CXj ;X

2
i

�
ŠA˝m;

where A D CŒX �=
�
X 2
�
. As before, the relations Xi CXj D 0 hold whenever the

edges i and j share a common trivalent vertex and m is the number of ˛–cycles
in � . Note also that XiXj D 0 holds, if i and j share a trivalent vertex. The first
isomorphism in (17) is immediate, but for the definition of the second isomorphism we
have to make some choices. First of all we have to chose an ordering of the arcs of L.
This ordering induces a unique ordering on all the unmarked edges of � , where we
use Bar-Natan’s [1] convention that, if an edge in � is the fusion of two arcs of L, we
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assign to that edge the smallest of the two numbers. Now delete all edges colored by
ˇ . Consider a fixed ˛–cycle. In this ˛–cycle pick the edge i with the smallest number
in our ordering. This edge has an orientation induced by the orientation of L.

7! , 7! -

7!

7! = -

7! , 7! -

7!

7! �

9>>>>>>>>>>>=>>>>>>>>>>>;

α
α belong to the same

˛–cycle in

α

α

α

α

β β

α

α

* *

7!

7! C

9>>>>>>>>>>>=>>>>>>>>>>>;

α
α belong to different

˛–cycles in

α

α

α

α

β β

α

α

* *

Figure 18: Behavior of canonical generators under elementary cobordisms

We identify the ˛–cycle with a circle, by deleting all vertices in the ˛–cycle, oriented
according to the orientation of the edge i . If the circle is oriented clockwise we say
that it is negatively oriented, otherwise we say that it is positively oriented. The circles
corresponding to the ˛–cycles are ordered according to the order of their minimal
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edges. They can be nested. As in Lee’s paper [11] we say that a circle is positively
nested if any ray from that circle to infinity crosses the other circles in an even number
of points, otherwise we say that it is negatively nested. The isomorphism in (17) is
now defined as follows. Given the r –th ˛–cycle with minimal edge i we define

Xi 7! �1˝ � � �˝X ˝ � � �˝ 1;

where X appears as the r –th tensor factor. If the orientation and the nesting of the
˛–cycle have the same sign, then � DC1, and if the signs are opposite, then � D�1.
The final result, ie the claim of this theorem, holds true no matter which ordering of
the arcs of L we begin with. It is easy to work out the behavior of the canonical
generators with respect to the elementary cobordisms as can be seen in Figure 18. For
the cobordisms shown in Figure 18 having one or more cycles there is also a version
with one cycle inside the other cycle or a cycle inside a digon.

The two bottom maps in Figure 18 require some explanation. Both can only be
understood by considering all possible closures of the bottoms and sides of their
sources and targets. Since, by definition, the canonical generators are constructed step
by step introducing the vertices of the webs in some order, we can assume, without loss
of generality, that the first vertices in this construction are the ones shown. With this
assumption the open webs at the top and bottom of the cobordisms in the figure are to
be closed only by simple curves, without vertices, and the closures of these cobordisms,
outside the bits which are shown, only use cups and identity cobordisms. Bearing this
in mind, the claim implicit in the first map is a consequence of relation (1).

For the second map, recall that α
α belong to different ˛–cycles. Therefore there are

two different ways to close the webs in the target and source: two cycles side-by-side
or one cycle inside another cycle. We notice that from Theorem 3.15 we have the
isomorphism

α

α

α

α

β β

α

α

* * Š

α αα

β
α
:

We apply this isomorphism to the composite of the source foam and the elementary
foam and to the target foam of the last map in Figure 18. Finally use equation (1) and
relation (CN) to the former to see that both foams are isotopic.

Note that in C �a;b;c.L� ;C/ we only have to consider elementary cobordisms at crossings
between two strands which are both colored by ˛ . With the identification of R�.�/

and A˝m as above, it is now easy to see that the differentials in C �a;b;c.L� ;C/ behave
exactly as in Khovanov’s original sl2 –theory for L˛ .

Algebraic & Geometric Topology, Volume 7 (2007)



1168 Marco Mackaay and Pedro Vaz

The degree of the isomorphism in (16) is easily computed using the fact that in both
theories the oriented resolution has homological degree zero. Therefore we get an
isomorphism

U i
a;b;c.L� ;C/Š KHi�j.L0/;�.L˛;C/:
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