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ON DOUBLE COVERINGS OF A POINTED
NON-SINGULAR CURVE WITH ANY WEIERSTRASS
SEMIGROUP

By

Jiryo KoMEDA* and Akira OHBUCHI**

Abstract. Let H be a Weierstrass semigroup, i.e., the set H(P) of
integers which are pole orders at P of regular functions on C\{P}
for some pointed non-singular curve (C,P). In this paper for any
Weierstrass semigroup H we construct a double covering 7: C — C
with a ramification point P such that H(n(P)) = H. We also de-

termine the semigroup H(P). Moreover, in the case where H starts
with 3 we investigate the relation between the semigroup H (13) and
the Weierstrass semigroup of a total ramification point on a cyclic

covering of the projective line with degree 6.

1 Introduction

Let C be a complete nonsingular irreducible curve of genus g > 2 over an
algebraically closed field k of characteristic 0, which is called a curve in this
paper. Let K(C) be the field of rational functions on C. For a point P of C, we
set

H(P) := {0 € Ny |there exists f € K(C) with (f), = aP},
which is called the Weierstrass semigroup of the point P where N, denotes the

additive semigroup of non-negative integers. A numerical semigroup means a
subsemigroup of Ny whose complement in Ny is a finite set. For a numerical
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semigroup H the cardinality of N¢\H is called the genus of H, which is denoted
by g(H). We note that H(P) is a numerical semigroup of genus g. A numerical
semigroup H is said to be Weierstrass if there exists a pointed curve (C, P) such
that H = H(P).

Let (C, P) be a pointed curve of genus §. Let us take a positive integer g with
g = 6g + 4. Using the property of the semigroup H(P) Torres [7] characterized
the condition under which C is a double covering of some curve C of genus g
with ramification point P. In this paper when a pointed curve (C, P) of genus ¢ is
given we construct many examples of H which is the semigroup of a ramification
point of a double covering of C over the point P even if g(H ) < 6g + 4. In fact,
in Section 2 when H is any Weierstrass semigroup, i.e., there exists a pointed
curve (C,P) with H(P) = H we construct a double covering of a curve C with
ramification point P over P such that g(H(P)) =2g(H)+ c¢(H)— 1 where we
denote by ¢(H) the minimum of non-negative integers ¢ satisfying ¢ + Ny = H.
We note that ¢(H) < 2g(H). We can also describe the semigroup H = H(P).
For any positive integer m a numerical semigroup H is called an m-semigroup if
the least positive integer in H is m. An m-semigroup is said to be cyclic if it is
the Weierstrass semigroup of a total ramification point on a cyclic covering of the
projective line with degree m. If p is prime, Kim-Komeda [1] gives a computable
necessary and sufficient condition for a p-semigroup to be cyclic. In Section 3 we
describe a necessary and sufficient condition for a 6-semigroup to be cyclic.
Moreover, for a 3-semigroup H we find the condition for the semigroup
H = H, =2H +nN, in Theorem 2.2 to be cyclic.

2  Weierstrass Points on a Double Covering of a Curve

In this section when a Weierstrass semigroup H is given we construct a
double covering 7: C — C with a ramification point P such that H(z(P)) = H.
Moreover, we determine the Weierstrass semigroup of the ramification point P.
For a numerical semigroup H we use the following notation. For an m-semigroup
H we set

S(H) = {SO :m,sl,sz,...7s,,1,1}

where s; is the minimum element 4 in H such that 2 =i mod m. The set S(H) is
called the standard basis for H.

Lemma 2.1. Let H be an m-semigroup and n an odd integer larger than
2¢(H) — 2. We set H, =2H + nN,. Assume that n # 2m — 1.
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1) H, is a 2m-semigroup with the standard basis
S(Hn) = {2”’!,25‘1, cee azsmflan;n + 2Sla Loy n +23m71}~

ii) The genus of H, is 2g(H) + (n—1)/2.

PrOOF. i) Since
Max{s;—ml|i=1,....m—1} =c¢(H) - 1,
we get s;, —m < ¢(H) — 1 for all i. Hence, we have
25 < 2(c(H)—14+m) <4c¢(H)—2=<2n

because of m < ¢(H) and the assumption n = 2¢(H) — 1. Therefore, we obtain
the standard basis

S(H,) = {2m,2s1, ..., 28y 1,n,n~+2s1,....,.0n+ 28,1}
for H,, because
{se S(H,)|s is even} = {2m,2s1,...,28,1}

and

{se S(H,)|s is odd} = {n,n+2s1,...,n+ 28,1}

ii) If we set
n=r mod2m with 1 <r<2m—1,

then we get
g(H,) =" 2s) /@) + Inf @m)] + 3 (0 + 25/ (2m)]
= g(H) + (n—1r)/@m) + (m — 1) - (n =)/ @m) + 3" V[(r + 250)/(2m)
= g(H) + (n—r)/2+ Z,.Zlm —i)/m+ Z;i]‘ ((r +20)/ (2m)]
=2g(H) + n—r/2+z (r+2i)/(2m)].

By the way we have r+2i<4m—3, and r+2i=2m if and only if i=>
m — (r—1)/2. Hence, we obtain

9(Hn) =29(H) + (n =1)/2+ (r=1)/2=29(H) + (n = 1)/2. O

We construct a desired double covering 7: C — C as follows:
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THEOREM 2.2. Let H be a Weierstrass m-semigroup of genus r = 0, i.e., there
exists a pointed curve (C, P) such that H(P) = H. For any odd n =2 2c¢(H) — 1 we
set H, = 2H + nN,. Assume that n # 2m — 1. Then there exists a double covering
n: C — C with a ramification point P over P such that H(P) = H,.

ProorF. We consider the divisor D = ((n+ 1)/2)P. Let £ be an invertible
sheaf on C such that ¥ ~ Oc(—D). Then we have
2D ~ P + (some effective divisor) = R

where R is a reduced divisor. Here for any two divisors Dy and D, on C Dy ~ D,
means that D; and D, are linearly equivalent. In fact, we have

deg2D—-P)=2-n+1)/2—1=n=2c¢(H)—122r+1

because of ¢(H) = r+ 1. Hence, the divisor 2D — P is very ample. We set A =
|2D — P| where for a divisor £ on C we denote by |E| the set of effective divisors
on C which are linearly equivalent to E. By Bertini’s Theorem there exists a non-
empty open subset U in A which is contained in the set

Ay ={E e A|E is reduced}.
We consider the non-empty open subset
U ={EeA|P¢E}.

Then UNU, is non-empty open. Take a divisor R’ in UNU;. We may set
R =P+ R'. Now we have isomorphisms

FO2 ~ 0(-2D) ~ Oc(—R) < Oc.

Using the composition of the above two isomorphisms we can construct a double
covering

n:C=Spec(Oc® L) — C

whose branch locus is R (See Mumford [6]). By Riemann-Hurwitz formula the
genus of C is

2r+(n—1)/2=29(H) + (n—1)/2.

Let P e C be the ramification point of 7 over P. By Proposition 2.1 in Komeda-
Ohbuchi [4] we obtain

h(C, Oc((n = 1)P)) = h°(C, Oc(((n = 1)/2)P)) + h°(C, % ® Oc(((n — 1)/2)P))
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and

BO(C,0s5((n+ 1)P)) = h°(C, Oc(((n+1)/2)P)) + h°(C, £ ® Oc(((n+1)/2)P)).
Since & ~ Oc(—((n+1)/2)P), we get

h(C,Oc((n—1)P)) = h*(C, 0c(((n = 1)/2)P))
and
BO(C, 0s((n+ 1)P)) = h°(C, Oc(((n+1)/2)P)) + 1.
The assumption n > 2¢(H) — 1 implies that
h(C, Oc(((n+1)/2)P)) = h°(C, Oc(((n — 1)/2)P)) + 1.
Thus, we get
h°(C,0a(nP)) = h°(C,0a((n — 1)P)) + 1,

which implies that ne H(P). Moreover, we have H(P)>2H. Thus, we get

H(P)22H +nNy=H, By Lemma 2.1 ii) we have ¢(H,)=g(H(P)),
which implies that H(P) = H,,. O

Since for any m <5 every m-semigroup is Weierstrass (Maclachlan [5],
Komeda [2], [3]), we get the following:

COROLLARY 2.3. Let H be an m-semigroup for some 2 <m < 5. For any odd
n=2c(H)—1 with n#2m — 1 there exists a double covering with a ramification
point whose Weierstrass semigroup is 2H + niNy.

If we take H as the semigroup generated by 3, 4 and 5, we get the following
examples:

ExaMpLE 2.4. For any g = 7 there exists a double covering with a rami-
fication point whose Weierstrass semigroup is generated by 6, 8, 10 and 2g — 7.

3 Cyclic 6-semigroups

First, we describe the condition for a 6-semigroup to be cyclic in tems of the
standard basis. Using the description we determine the condition on n under
which the semigroup H, in Theorem 2.2 is cyclic when H is a 3-semigroup.
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LeEMMA 3.1. Let H be a cyclic 6-semigroup. Then there exists a pointed curve
(C, P) satisfying H(P) = H such that the curve C is defined by an equation of the
form

5 I
6 q
Z—qun (= ¢g7)"

with 23:1 qiy=1 or 5mod 6 and that f(P)=(0:1) where f:C — P is the
surjective morphism defined by f(Q) = (1:x(Q)). Here c,’s are distinct elements
of k.

Proor. Since H is a cyclic 6-semigroup, there is a pointed curve (C, P) such
that C is a cyclic covering of P! of degree 6 with its total ramification point P
satisfying H(P) = H. Hence, C is defined by an equation of the form

iy
=L I e

where iy, ...,is are non-negative integers. If f : C — P! is the morphism sending
Qto (1:x(Q)), then f(P)=(0:1) or (1:¢,) for g=1 or 5 and some j. Even if
f(P)=(1:cy), we may assume that f(P) = (0:1) by transforming the variable
x into X =1/(x —c¢y). In this case, we get ijl gi, =1 or 5mod 6. O

ProposITION 3.2.  Let (C,P) be a pointed curve as in Lemma 3.1. Then we
have

S(H(P)) = {6, S i 200+ 2ia g+ 20s), 3001 + i3+ is),
5
2021 +ir +2is +1i5), y (6 q)iq}.

ProoF. We set
S eq)) = {Py} for g=1,5,
f_l((l :Cq./>> = {Pq/7P }’ for q= 2,4,
FH (1 eg)) = {Py;, P, P} for ¢=3.

Let H be the semigroup generated by 6, b = Z,-Szl qiq, by = 2(iy + 2ir + ig + 2is),
by =3(iy + i3 +1is), by =2(2i +ir+2is+is) and bs=3" (6—q)i, Since
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Z;Zlqiq =1 or 5mod6, H is a numerical semigroup. First, we show that
H < H(P). We have

divz=—bP+3 " Py+5Y " P+ > " (Py+PY)
i4 i3
+2) 0 Py + Py + D (Py o+ Py + P,
div(x — ¢;) = —6P+ 6P, for g=1,5,
div(x — ¢y;) = —6P +3P,; +3P,; for q=2,4,

div(x — ¢g) = —6P + 2P;; + 2P}, + 2P/, for q =3.

For any me {1,2,3,4,5} we set

Ym = Hq 1H x =)

where [r] denotes the largest integer less than or equal to r for any real number r.
Then we get

div(y/z") = =3 (—mg — 6]-mq/6])iyP+ (6 —m) 3" Py
+ (=6[=5m/6] = 5m) > " | Py
+(=3[-2m/6] = m) > " (Py+ P)
+ (=3[=4m/6] = 2m) S (Pys+ Py)
+(=2[=3m/6] — m) Z}il (Py + P+ PY).

Hence we obtain
div(ym/z™),, = be—mP

for any m e {1,2,3,4,5}. Thus, we have H < H(P), which implies that g(H) =
g(H(P)). By Hurwitz’s theorem we get

g(H(P)) = (Sil + 4iy + 3iz + 4i4 + Si5 — 5)/2.

But we have
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ottt = 323 bu/6) = | (S50 i) /6] + 120 + 20 14+ 209) /6

+[(3(i1 + 13 +1is)) /6] + i1 + io +ia + is

+ [(=2(i1 + 2i2 + iy + 2i5)) /6]

3 i+ [(— > qiq)/ﬂ
= (5i) + 4iy + 3i3 + 4iy + 5is — 5)/2 = g(H(P)),

because 23:1 giy = 1 or 5 mod 6. Therefore, we get the equality g(H) = g(H(P)),
which implies that H(P) = H. Moreover, by the above equality the standard basis
for H(P) must be the desired one. O

Using the above description of a cyclic 6-semigroup in terms of the standard
basis we get a computable necessary and sufficient condition for a 6-semigroup to
be cyclic.

THEOREM 3.3. Let H be a 6-semigroup with
S(H) = {6,6m; + 1,6my + 2,6ms3 + 3,6my + 4,6ms + 5}.
Then it is cyclic if and only if we have

my+ms Zm3+my, my+msZmy+my and my+mg Z my +m3.

Proor. First, assume that H is cyclic. By Lemma 3.1 and Proposition 3.2
there are non-negative integers i, i», i3, i4 and is such that

iy + 2ip + 3i3 + 4iy + 5is = 6my + 1 (resp. 6ms + 5)
2i) + 4iy + 2is + 4is = 6my + 2 (resp. 6mg +4)

3i + 3i3 + 3is = 6m3 + 3

41y + 20y + 4ig + 2is = 6mg + 4 (resp. 6my +2)

S50y + 4ip + 3i3 + 2i4 +is = 6ms + 5 (resp. 6m; + 1)

Considering iy, i, i3, i4, Is to be variables the determinant of the coefficient
matrix is 1296. By calculation the above system of linear equations has a unique
solution

i =ms+mg+1—my (resp. my + mz —ms),

Iy =my +ms —ms —my (resp. my + mg — my —m3),
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i3 = my +ms — my — My,
ig =my +my —mp —ms (resp. m2+m5—rn3—rn4),
is =my +ms3 —ms (resp. mz +myg + 1 —my).

Since all i,’s must be non-negative, we get the desired result.

We shall show the “only if ’-part. Let i,’s be as in the above, which are non-
negative by the assumption. Then we get the pointed curve (C, P) as in Lemma
3.1. Using Proposition 3.2 we get H = H(P), which implies that H is cyclic.

]

When H is a 3-semigroup, we give a criterion for the 6-semigroup H, as in

Lemma 2.1 to be non-cyclic.

PROPOSITION 3.4. Let H be a 3-semigroup with S(H) = {3,3l; + 1,35 + 2}
and n an odd integer larger than 2c¢(H) —2 and distinct from 5. We set H, =
2H + nNy.
1) If n=3 mod 6, then the 6-semigroup H, is cyclic.
i) Let n=1 mod 6. If 2I; = b, then the 6-semigroup H, is cyclic. Otherwise,
H, is not cyclic.

i) Let n=5 mod6. If Iy =2hL+1, then the 6-semigroup H, is cyclic.
Otherwise, H, is not cyclic.

ProoF. By Lemma 2.1 i) we have

S(H,) = {6,6l, +2,6h +4,n,n+ 6l +2,n+ 6], + 4}.

For any i=1,...,5, let s;€ S(H,) such that 5; =i mod 6. We set m; = [s;/6].
First, we consider the case where n = 3 mod 6. Then we have

my=h+[n/6]+1, m3=[n/6] and ms=1[ + [n/6].
Thus, we get m; + ms > my + my. Since 2/ =, and 2, + 1 =1}, we have
my+ms =>msz+my and  my +my = my + ms.

By Theorem 3.3 the 6-semigroup H, is cyclic.
Second, we consider the case where n =1 mod 6. Then we have

my = [n/6], m3=1+[n/6] and ms =15+ [n/6].

Thus, we get my + ms = m3 +my. If 2I; > L, then we have
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my +my = [n/6]+ h < 2l + [n/6] = my + ms,
which implies that H, is not cyclic. Let 2/; =,. Then we have
my + myg = my + ms.
Moreover, we see that ¢(H) = 6/; +2 — 3+ 1 = 6/,. By the assumption we have
n = 12/} — 1, which implies that [z/6] = 2/; — 1. Hence we obtain
my+ms=h+2n/6l=hL+4L —2>5L+ 5L =m+ my.
Thus, if 2/ =L, then H, is cyclic.

Last, let n =5 mod 6. The method similar to the case » =1 mod 6 works
well. O

Using the above result we get a criterion for the 6-semigroup in Example 2.4
to be cyclic.

ExampLE 3.5. For any g = 7 let H(g) be the semigroup generated by 6, 8,
10 and 2g — 7. The 6-semigroup H(g) is cyclic if and only if g =2 mod 3.
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