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ON DOUBLE COVERINGS OF A POINTED

NON-SINGULAR CURVE WITH ANY WEIERSTRASS

SEMIGROUP

By

Jiryo Komeda* and Akira Ohbuchi**

Abstract. Let H be a Weierstrass semigroup, i.e., the set HðPÞ of

integers which are pole orders at P of regular functions on CnfPg
for some pointed non-singular curve ðC;PÞ. In this paper for any

Weierstrass semigroup H we construct a double covering p : ~CC ! C

with a ramification point ~PP such that Hðpð ~PPÞÞ ¼ H. We also de-

termine the semigroup Hð ~PPÞ. Moreover, in the case where H starts

with 3 we investigate the relation between the semigroup Hð ~PPÞ and

the Weierstrass semigroup of a total ramification point on a cyclic

covering of the projective line with degree 6.

1 Introduction

Let C be a complete nonsingular irreducible curve of genus gb 2 over an

algebraically closed field k of characteristic 0, which is called a curve in this

paper. Let KðCÞ be the field of rational functions on C. For a point P of C, we

set

HðPÞ :¼ fa A N0 j there exists f A KðCÞ with ð f Þy ¼ aPg;

which is called the Weierstrass semigroup of the point P where N0 denotes the

additive semigroup of non-negative integers. A numerical semigroup means a

subsemigroup of N0 whose complement in N0 is a finite set. For a numerical

* Partially supported by Grant-in-Aid for Scientific Research (17540046), Japan Society for the

Promotion of Science.

**Partially supported by Grant-in-Aid for Scientific Research (17540030), Japan Society for the

Promotion of Science.

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14C20.

Key words and phrase: Weierstrass semigroup of a point, Double covering of a curve, Cyclic covering

of the projective line with degree 6.

Received December 8, 2005.

Revised March 6, 2006.



semigroup H the cardinality of N0nH is called the genus of H, which is denoted

by gðHÞ. We note that HðPÞ is a numerical semigroup of genus g. A numerical

semigroup H is said to be Weierstrass if there exists a pointed curve ðC;PÞ such

that H ¼ HðPÞ.
Let ð ~CC; ~PPÞ be a pointed curve of genus ~gg. Let us take a positive integer g with

~ggf 6gþ 4. Using the property of the semigroup Hð ~PPÞ Torres [7] characterized

the condition under which ~CC is a double covering of some curve C of genus g

with ramification point ~PP. In this paper when a pointed curve ðC;PÞ of genus g is

given we construct many examples of ~HH which is the semigroup of a ramification

point of a double covering of C over the point P even if gð ~HHÞ < 6gþ 4. In fact,

in Section 2 when H is any Weierstrass semigroup, i.e., there exists a pointed

curve ðC;PÞ with HðPÞ ¼ H we construct a double covering of a curve C with

ramification point ~PP over P such that gðHð ~PPÞÞf 2gðHÞ þ cðHÞ � 1 where we

denote by cðHÞ the minimum of non-negative integers c satisfying cþN0 OH.

We note that cðHÞe 2gðHÞ. We can also describe the semigroup ~HH ¼ Hð ~PPÞ.
For any positive integer m a numerical semigroup H is called an m-semigroup if

the least positive integer in H is m. An m-semigroup is said to be cyclic if it is

the Weierstrass semigroup of a total ramification point on a cyclic covering of the

projective line with degree m. If p is prime, Kim-Komeda [1] gives a computable

necessary and su‰cient condition for a p-semigroup to be cyclic. In Section 3 we

describe a necessary and su‰cient condition for a 6-semigroup to be cyclic.

Moreover, for a 3-semigroup H we find the condition for the semigroup
~HH ¼ Hn ¼ 2H þ nN0 in Theorem 2.2 to be cyclic.

2 Weierstrass Points on a Double Covering of a Curve

In this section when a Weierstrass semigroup H is given we construct a

double covering p : ~CC ! C with a ramification point ~PP such that Hðpð ~PPÞÞ ¼ H.

Moreover, we determine the Weierstrass semigroup of the ramification point ~PP.

For a numerical semigroup H we use the following notation. For an m-semigroup

H we set

SðHÞ ¼ fs0 ¼ m; s1; s2; . . . ; sm�1g

where si is the minimum element h in H such that h1 i mod m. The set SðHÞ is

called the standard basis for H.

Lemma 2.1. Let H be an m-semigroup and n an odd integer larger than

2cðHÞ � 2. We set Hn ¼ 2H þ nN0. Assume that n0 2m� 1.
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i) Hn is a 2m-semigroup with the standard basis

SðHnÞ ¼ f2m; 2s1; . . . ; 2sm�1; n; nþ 2s1; . . . ; nþ 2sm�1g:

ii) The genus of Hn is 2gðHÞ þ ðn� 1Þ=2.

Proof. i) Since

Maxfsi �m j i ¼ 1; . . . ;m� 1g ¼ cðHÞ � 1;

we get si �me cðHÞ � 1 for all i. Hence, we have

2si e 2ðcðHÞ � 1 þmÞe 4cðHÞ � 2e 2n

because of me cðHÞ and the assumption nf 2cðHÞ � 1. Therefore, we obtain

the standard basis

SðHnÞ ¼ f2m; 2s1; . . . ; 2sm�1; n; nþ 2s1; . . . ; nþ 2sm�1g

for Hn, because

fs A SðHnÞ j s is eveng ¼ f2m; 2s1; . . . ; 2sm�1g

and

fs A SðHnÞ j s is oddg ¼ fn; nþ 2s1; . . . ; nþ 2sm�1g:

ii) If we set

n1 r mod 2m with 1e re 2m� 1;

then we get

gðHnÞ ¼
Xm�1

i¼1
½ð2siÞ=ð2mÞ� þ ½n=ð2mÞ� þ

Xm�1

i¼1
½ðnþ 2siÞ=ð2mÞ�

¼ gðHÞ þ ðn� rÞ=ð2mÞ þ ðm� 1Þ � ðn� rÞ=ð2mÞ þ
Xm�1

i¼1
½ðrþ 2siÞ=ð2mÞ�

¼ gðHÞ þ ðn� rÞ=2 þ
Xm�1

i¼1
ðsi � iÞ=mþ

Xm�1

i¼1
½ðrþ 2iÞ=ð2mÞ�

¼ 2gðHÞ þ ðn� rÞ=2 þ
Xm�1

i¼1
½ðrþ 2iÞ=ð2mÞ�:

By the way we have rþ 2ie 4m� 3, and rþ 2if 2m if and only if if

m� ðr� 1Þ=2. Hence, we obtain

gðHnÞ ¼ 2gðHÞ þ ðn� rÞ=2 þ ðr� 1Þ=2 ¼ 2gðHÞ þ ðn� 1Þ=2: r

We construct a desired double covering p : ~CC ! C as follows:
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Theorem 2.2. Let H be a Weierstrass m-semigroup of genus rf 0, i.e., there

exists a pointed curve ðC;PÞ such that HðPÞ ¼ H. For any odd nf 2cðHÞ � 1 we

set Hn ¼ 2H þ nN0. Assume that n0 2m� 1. Then there exists a double covering

p : ~CC ! C with a ramification point ~PP over P such that Hð ~PPÞ ¼ Hn.

Proof. We consider the divisor D ¼ ððnþ 1Þ=2ÞP. Let L be an invertible

sheaf on C such that LFOCð�DÞ. Then we have

2D@Pþ ðsome e¤ective divisorÞ ¼ R

where R is a reduced divisor. Here for any two divisors D1 and D2 on C D1 @D2

means that D1 and D2 are linearly equivalent. In fact, we have

degð2D� PÞ ¼ 2 � ðnþ 1Þ=2 � 1 ¼ nf 2cðHÞ � 1f 2rþ 1

because of cðHÞf rþ 1. Hence, the divisor 2D� P is very ample. We set D ¼
j2D� Pj where for a divisor E on C we denote by jEj the set of e¤ective divisors

on C which are linearly equivalent to E. By Bertini’s Theorem there exists a non-

empty open subset U in D which is contained in the set

D0 ¼ fE A D jE is reducedg:

We consider the non-empty open subset

U1 ¼ fE A D jP B Eg:

Then U VU1 is non-empty open. Take a divisor R 0 in U VU1. We may set

R ¼ Pþ R 0. Now we have isomorphisms

Ln2 FOCð�2DÞFOCð�RÞHOC :

Using the composition of the above two isomorphisms we can construct a double

covering

p : ~CC ¼ SpecðOC lLÞ ! C

whose branch locus is R (See Mumford [6]). By Riemann-Hurwitz formula the

genus of ~CC is

2rþ ðn� 1Þ=2 ¼ 2gðHÞ þ ðn� 1Þ=2:

Let ~PP A ~CC be the ramification point of p over P. By Proposition 2.1 in Komeda-

Ohbuchi [4] we obtain

h0ð ~CC;O ~CCððn� 1Þ ~PPÞÞ ¼ h0ðC;OCðððn� 1Þ=2ÞPÞÞ þ h0ðC;LnOCðððn� 1Þ=2ÞPÞÞ
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and

h0ð ~CC;O ~CCððnþ 1Þ ~PPÞÞ ¼ h0ðC;OCðððnþ 1Þ=2ÞPÞÞ þ h0ðC;LnOCðððnþ 1Þ=2ÞPÞÞ:

Since LFOCð�ððnþ 1Þ=2ÞPÞ, we get

h0ð ~CC;O ~CCððn� 1Þ ~PPÞÞ ¼ h0ðC;OCðððn� 1Þ=2ÞPÞÞ

and

h0ð ~CC;O ~CCððnþ 1Þ ~PPÞÞ ¼ h0ðC;OCðððnþ 1Þ=2ÞPÞÞ þ 1:

The assumption nf 2cðHÞ � 1 implies that

h0ðC;OCðððnþ 1Þ=2ÞPÞÞ ¼ h0ðC;OCðððn� 1Þ=2ÞPÞÞ þ 1:

Thus, we get

h0ð ~CC;O ~CCðn ~PPÞÞ ¼ h0ð ~CC;O ~CCððn� 1Þ ~PPÞÞ þ 1;

which implies that n A Hð ~PPÞ. Moreover, we have Hð ~PPÞI 2H. Thus, we get

Hð ~PPÞP 2H þ nN0 ¼ Hn. By Lemma 2.1 ii) we have gðHnÞ ¼ gðHð ~PPÞÞ,
which implies that Hð ~PPÞ ¼ Hn. r

Since for any me 5 every m-semigroup is Weierstrass (Maclachlan [5],

Komeda [2], [3]), we get the following:

Corollary 2.3. Let H be an m-semigroup for some 2eme 5. For any odd

nf 2cðHÞ � 1 with n0 2m� 1 there exists a double covering with a ramification

point whose Weierstrass semigroup is 2H þ nN0.

If we take H as the semigroup generated by 3, 4 and 5, we get the following

examples:

Example 2.4. For any gf 7 there exists a double covering with a rami-

fication point whose Weierstrass semigroup is generated by 6, 8, 10 and 2g� 7.

3 Cyclic 6-semigroups

First, we describe the condition for a 6-semigroup to be cyclic in tems of the

standard basis. Using the description we determine the condition on n under

which the semigroup Hn in Theorem 2.2 is cyclic when H is a 3-semigroup.
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Lemma 3.1. Let H be a cyclic 6-semigroup. Then there exists a pointed curve

ðC;PÞ satisfying HðPÞ ¼ H such that the curve C is defined by an equation of the

form

z6 ¼
Y5

q¼1

Y iq

j¼1
ðx� cqjÞq

with
P5

q¼1 qiq 1 1 or 5 mod 6 and that f ðPÞ ¼ ð0 : 1Þ where f : C ! P1 is the

surjective morphism defined by f ðQÞ ¼ ð1 : xðQÞÞ. Here cqj’s are distinct elements

of k.

Proof. Since H is a cyclic 6-semigroup, there is a pointed curve ðC;PÞ such

that C is a cyclic covering of P1 of degree 6 with its total ramification point P

satisfying HðPÞ ¼ H. Hence, C is defined by an equation of the form

z6 ¼
Y5

q¼1

Y iq

j¼1
ðx� cqjÞq

where i1; . . . ; i5 are non-negative integers. If f : C ! P1 is the morphism sending

Q to ð1 : xðQÞÞ, then f ðPÞ ¼ ð0 : 1Þ or ð1 : cqjÞ for q ¼ 1 or 5 and some j. Even if

f ðPÞ ¼ ð1 : cqjÞ, we may assume that f ðPÞ ¼ ð0 : 1Þ by transforming the variable

x into X ¼ 1=ðx� cqjÞ. In this case, we get
P5

q¼1 qiq 1 1 or 5 mod 6. r

Proposition 3.2. Let ðC;PÞ be a pointed curve as in Lemma 3.1. Then we

have

SðHðPÞÞ ¼
�

6;
X5

i¼1
qiq; 2ði1 þ 2i2 þ i4 þ 2i5Þ; 3ði1 þ i3 þ i5Þ;

2ð2i1 þ i2 þ 2i4 þ i5Þ;
X5

i¼1
ð6 � qÞiq

�
:

Proof. We set

f �1ðð1 : cqjÞÞ ¼ fPqjg for q ¼ 1; 5;

f �1ðð1 : cqjÞÞ ¼ fPqj;P
0
qjg for q ¼ 2; 4;

f �1ðð1 : cqjÞÞ ¼ fPqj;P
0
qj;P

00
qjg for q ¼ 3:

Let H be the semigroup generated by 6, b1 ¼
P5

i¼1 qiq, b2 ¼ 2ði1 þ 2i2 þ i4 þ 2i5Þ,
b3 ¼ 3ði1 þ i3 þ i5Þ, b4 ¼ 2ð2i1 þ i2 þ 2i4 þ i5Þ and b5 ¼

P5
i¼1ð6 � qÞiq. Since
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P5
q¼1 qiq 1 1 or 5 mod 6, H is a numerical semigroup. First, we show that

HOHðPÞ. We have

div z ¼ �b1Pþ
X i1

j¼1
P1j þ 5

X i5

j¼1
P5j þ

X i2

j¼1
ðP2j þ P 0

2jÞ

þ 2
X i4

j¼1
ðP4j þ P 0

4jÞ þ
X i3

j¼1
ðP3j þ P 0

3j þ P 00
3jÞ;

divðx� cqjÞ ¼ �6Pþ 6Pqj for q ¼ 1; 5;

divðx� cqjÞ ¼ �6Pþ 3Pqj þ 3P 0
qj for q ¼ 2; 4;

divðx� cqjÞ ¼ �6Pþ 2Pqj þ 2P 0
qj þ 2P 00

qj for q ¼ 3:

For any m A f1; 2; 3; 4; 5g we set

ym ¼
Y5

q¼1

Y iq

j¼1
ðx� cqjÞ�½�mq=6�

where ½r� denotes the largest integer less than or equal to r for any real number r.

Then we get

divðym=zmÞ ¼ �
X5

q¼1
ð�mq� 6½�mq=6�ÞiqPþ ð6 �mÞ

X i1

j¼1
P1j

þ ð�6½�5m=6� � 5mÞ
X i5

j¼1
P5j

þ ð�3½�2m=6� �mÞ
X i2

j¼1
ðP2j þ P 0

2jÞ

þ ð�3½�4m=6� � 2mÞ
X i4

j¼1
ðP4j þ P 0

4jÞ

þ ð�2½�3m=6� �mÞ
X i3

j¼1
ðP3j þ P 0

3j þ P 00
3jÞ:

Hence we obtain

divðym=zmÞy ¼ b6�mP

for any m A f1; 2; 3; 4; 5g. Thus, we have HOHðPÞ, which implies that gðHÞf
gðHðPÞÞ. By Hurwitz’s theorem we get

gðHðPÞÞ ¼ ð5i1 þ 4i2 þ 3i3 þ 4i4 þ 5i5 � 5Þ=2:

But we have
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gðHÞe
X5

q¼1
½bq=6� ¼

X5

i¼1
qiq

� ��
6

� �
þ ½ð2ði1 þ 2i2 þ i4 þ 2i5ÞÞ=6�

þ ½ð3ði1 þ i3 þ i5ÞÞ=6� þ i1 þ i2 þ i4 þ i5

þ ½ð�2ði1 þ 2i2 þ i4 þ 2i5ÞÞ=6�

þ
X5

q¼1
iq þ �

X5

i¼1
qiq

� ��
6

� �

¼ ð5i1 þ 4i2 þ 3i3 þ 4i4 þ 5i5 � 5Þ=2 ¼ gðHðPÞÞ;

because
P5

q¼1 qiq 1 1 or 5 mod 6. Therefore, we get the equality gðHÞ ¼ gðHðPÞÞ,
which implies that HðPÞ ¼ H. Moreover, by the above equality the standard basis

for HðPÞ must be the desired one. r

Using the above description of a cyclic 6-semigroup in terms of the standard

basis we get a computable necessary and su‰cient condition for a 6-semigroup to

be cyclic.

Theorem 3.3. Let H be a 6-semigroup with

SðHÞ ¼ f6; 6m1 þ 1; 6m2 þ 2; 6m3 þ 3; 6m4 þ 4; 6m5 þ 5g:

Then it is cyclic if and only if we have

m2 þm5 fm3 þm4; m1 þm5 fm2 þm4 and m1 þm4 fm2 þm3:

Proof. First, assume that H is cyclic. By Lemma 3.1 and Proposition 3.2

there are non-negative integers i1, i2, i3, i4 and i5 such that

i1 þ 2i2 þ 3i3 þ 4i4 þ 5i5 ¼ 6m1 þ 1 ðresp: 6m5 þ 5Þ
2i1 þ 4i2 þ 2i4 þ 4i5 ¼ 6m2 þ 2 ðresp: 6m4 þ 4Þ
3i1 þ 3i3 þ 3i5 ¼ 6m3 þ 3

4i1 þ 2i2 þ 4i4 þ 2i5 ¼ 6m4 þ 4 ðresp: 6m2 þ 2Þ
5i1 þ 4i2 þ 3i3 þ 2i4 þ i5 ¼ 6m5 þ 5 ðresp: 6m1 þ 1Þ:

8>>>>><
>>>>>:

Considering i1, i2, i3, i4, i5 to be variables the determinant of the coe‰cient

matrix is 1296. By calculation the above system of linear equations has a unique

solution

i1 ¼ m3 þm4 þ 1 �m1 ðresp: m2 þm3 �m5Þ;

i2 ¼ m2 þm5 �m3 �m4 ðresp: m1 þm4 �m2 �m3Þ;
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i3 ¼ m1 þm5 �m2 �m4;

i4 ¼ m1 þm4 �m2 �m3 ðresp: m2 þm5 �m3 �m4Þ;

i5 ¼ m2 þm3 �m5 ðresp: m3 þm4 þ 1 �m1Þ:

Since all iq’s must be non-negative, we get the desired result.

We shall show the ‘‘only if ’’-part. Let iq’s be as in the above, which are non-

negative by the assumption. Then we get the pointed curve ðC;PÞ as in Lemma

3.1. Using Proposition 3.2 we get H ¼ HðPÞ, which implies that H is cyclic.

r

When H is a 3-semigroup, we give a criterion for the 6-semigroup Hn as in

Lemma 2.1 to be non-cyclic.

Proposition 3.4. Let H be a 3-semigroup with SðHÞ ¼ f3; 3l1 þ 1; 3l2 þ 2g
and n an odd integer larger than 2cðHÞ � 2 and distinct from 5. We set Hn ¼
2H þ nN0.

i) If n1 3 mod 6, then the 6-semigroup Hn is cyclic.

ii) Let n1 1 mod 6. If 2l1 ¼ l2, then the 6-semigroup Hn is cyclic. Otherwise,

Hn is not cyclic.

iii) Let n1 5 mod 6. If l1 ¼ 2l2 þ 1, then the 6-semigroup Hn is cyclic.

Otherwise, Hn is not cyclic.

Proof. By Lemma 2.1 i) we have

SðHnÞ ¼ f6; 6l1 þ 2; 6l2 þ 4; n; nþ 6l1 þ 2; nþ 6l2 þ 4g:

For any i ¼ 1; . . . ; 5, let si A SðHnÞ such that si 1 i mod 6. We set mi ¼ ½si=6�.
First, we consider the case where n1 3 mod 6. Then we have

m1 ¼ l2 þ ½n=6� þ 1; m3 ¼ ½n=6� and m5 ¼ l1 þ ½n=6�:

Thus, we get m1 þm5 > m2 þm4. Since 2l1 f l2 and 2l2 þ 1f l1, we have

m2 þm5 fm3 þm4 and m1 þm4 fm2 þm3:

By Theorem 3.3 the 6-semigroup Hn is cyclic.

Second, we consider the case where n1 1 mod 6. Then we have

m1 ¼ ½n=6�; m3 ¼ l1 þ ½n=6� and m5 ¼ l2 þ ½n=6�:

Thus, we get m2 þm5 ¼ m3 þm4. If 2l1 > l2, then we have
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m1 þm4 ¼ ½n=6� þ l2 < 2l1 þ ½n=6� ¼ m2 þm3;

which implies that Hn is not cyclic. Let 2l1 ¼ l2. Then we have

m1 þm4 ¼ m2 þm3:

Moreover, we see that cðHÞ ¼ 6l1 þ 2 � 3 þ 1 ¼ 6l1. By the assumption we have

nf 12l1 � 1, which implies that ½n=6�f 2l1 � 1. Hence we obtain

m1 þm5 ¼ l2 þ 2½n=6�f l2 þ 4l1 � 2 > l1 þ l2 ¼ m2 þm4:

Thus, if 2l1 ¼ l2, then Hn is cyclic.

Last, let n1 5 mod 6. The method similar to the case n1 1 mod 6 works

well. r

Using the above result we get a criterion for the 6-semigroup in Example 2.4

to be cyclic.

Example 3.5. For any gf 7 let HðgÞ be the semigroup generated by 6, 8,

10 and 2g� 7. The 6-semigroup HðgÞ is cyclic if and only if g1 2 mod 3.
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