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THE AUTOMORPHISM GROUP OF A CYCLIC
p-GONAL CURVE

By

Naonori Isann and Katsuaki YoSHIDA

Abstract. Let M be a cyclic p-gonal curve with a positive prime
number p, and let ' be the automorphism of order p satisfying
M/{Vy ~ P! It is well-known that finite subgroups H of Aut(P')
are classified into five types. In this paper, we determine the defining
equation of M with H = Aut(M /{V)) for each type of H, and we
make a list of hyperelliptic curves of genus 2 and cyclic trigonal
curves of genus 5, 7, 9 with H = Aut(M/{V)).

1 Introduction

Let M be a compact Riemann surface defined by
YW=(x—a)" - (x—a;)" =0, (1)

where p is a positive prime integer, a;’s are distinct complex numbers, and
ri’s are integers satisfying 1 <r;<p (i=1,...,s). Put & :={a,...,a,} (resp.
{ai,...,a;,a,1 = 0}) when Y . ,r;=0 (mod p) (resp. >.: ,ri #0 (mod p)).
Then the genus g of M is w. Let C(M) denote the function field C(x, y)
of M. For an automorphism o € Aut(M), o* represents the action on C(M)

induced by o. Let V' be the automorphism on M defined by
Vix=x and V'y={y

with the primitive p-th root {, = exp 2zi/p of unity. The inclusion C(x) = C(M)
corresponds to the cyclic normal covering x : M — P'(x) of degree p, and its
covering group is (V). Then x is (totally) ramified over a point a € P!(x) if and
only if ae .
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In general, a compact Riemann surface of genus ¢ is called a n-gonal curve
when M has a meromorphic function of degree n and does not have any non-
trivial meromorphic functions whose degree is smaller than n. It is known that M
becomes a p-gonal curve provided (p — 1)(p — 2) < g with a prime number p [10].

From now on, we always assume that M is a compact Riemann surface
defined by (1). From the fact mentioned above, M becomes a p-gonal curve
when 2p — 2 < #%.

Let g}, denote a linear system of degree d and dimension 1, then the linear

system |(x)_, | is g,l. Here (x)_, is the pole divisor of x on M. We also assume that

e}
|(x),| is unique as gpl. In fact the uniqueness of g,l is satisfied when (p —1)? < g,
ie., 2p < #% [10]. The uniqueness of g[ﬁ on a cyclic p-gonal curve M implies that
(V) is normal in Aut(M). Moreover we will see that 77 is in the center of
Aut(M). Therefore, for a subgroup G of Aut(M) containing ¥, we have an exact
sequence

1 =<V>—> G5 H -1, (%)
where H = G/{V).

On the other hand, it is well known that a finite subgroup H of Aut(P') is
isomorphic to cyclic C,, dihedral D,,, tetrahedral A4, octahedral S; or icosa-
hedral As. Then it can be said that the group G above is obtained as an extension
of these five groups by a cyclic group {V) of order p. Consequently there exist
special relations among aj,...,a; of (1) depending on H.

First we will give a necessary and sufficient condition that the sequence (x) is
split.

Next, by applying the concrete representations of finite subgroup H of
Aut(P'(x)) given by Klein, we determine a defining equation of M which satisfies
the condition H = Aut(M)/<V ) for a given H.

Finally, as applications, we give a classification of hyperelliptic curves M
of genus 2 and cyclic tigonal curves of genus g = 5,7,9 based on the types of H
contained in Aut(M)/{V>.

2 A Necessary and Sufficient Condition in Which the Exact Sequence (x)
is Split
Let M be a cyclic p-gonal curve defined by the equation (1), and the linear

system |(x),,| is assumed to be unique as g;. The symbols G, H, % etc. are same
as in the previous section. We prepare more notations.

NOTATION 1.  Let denote T the element of H = G/{V> < Aut(P'(x)) induced
by some element T € G. Let FP(H) (resp. FP(G)) denote the set of points on
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MV ~ PY(x) (resp. M) fixed by a non-trivial element of H (resp. G), and let
FG(a) denote the set of automorphisms of P'(x) which fixes a point a € P'(x).
By corresponding A = (‘;‘ g) e SL(2,C) to A(x) := ;;ig, we have an isomorphism
SL(2,C)/{+1} ~ Aut(P'(x)). We use the same symbol “A” for both a matrix and
an element of Aut(P'(x)). Let {AYa denote the orbit of a € P'(x) by the subgroup

{A) generated by A e SL(2,C).

For ae FP(H), FG(a) is a cyclic group and FP(FG(a)) consists of two
points ¢ and o' with a # a’. If FG(a) is generated by an element A of order
n, then, by changing the coordinate x suitably, we may assume A(x) = {,x and
FP({A)) = {0,000}, where {, = exp ().

We start with the following lemma.

LemMa 2.1. (i) The group H acts on &.

(i1) Ijel a; and a; be in &. If there exists an element T € G satisfying
Ta; =a;, then we have r;=r. Here we define ry by ryq=
—> i ri (mod p) and 0 <rey < p when >: r; #0 (mod p).

(i) The automorphism V is contained in the center of G.

Proor. (i) Let T be an arbitrary automorphism on M. From the uniqueness
of g,, we have a diagram

M —— M/{V)~P\(x)

M —— M/{V) ~Pl(x),

and this implies that T acts on S.

(i) Refer to [6], [11].

(iii) Suppose ord T = n. Then we may assume that T is defined by T*x = (,x,
and then FP({T)) = {0, 0}. For ae M/{V) ~ P'(x) with a ¢ {0, 0}, the orbit
(TYa is {a,(a,... 7C,‘ffla}. The set . is decomposed into orbits of (T
depending on the order #% N {0, w0}.

(a) #{7N{0,0}} =2 ¥ ={0}U{0}ULTYhU---ULT )b,

(b) #{¥N{0,00}} =1 (we may assume ¥ N{0,00}={0}), ¥ ={0}U
(TYbiU---ULTHb,

(©) #{N{0,0}} =0 & =LTHbU---ULT)b,
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where by, ..., b, are non-zero elements in & with b; # oo and <T>b; N <T>bj =0
for i # j.
In case (a), from (i) of this lemma, M is defined by

¥ = A B (= B @
with Y[ u; +2=0 (mod p). In case (b), M is also defined by (2) with
n>  ui+1=0 (mod p). In both cases (a) and (b), by acting T* on (2), we
have

(T*p)" = T (x)(T*(x)" = b)) - (T (x)" =) = ("

Then T is defined by T*x ={,x and T*y = ¢y, where ¢ satisfies ¢’ = {,,. Since

V*x=x and V*y={,y, we have V*T*=T"V".
In case (c), we can also prove as above. O

Lemma 2.1 (i) and (ii) imply the following.

LEMMA 2.2. Assume S 3poo. Let & =) Hb§1> (disjoint) be the decom-

1

-1
position of & into orbits Hbl(-1> = {bl(l),...,bl(.m}(c C). Then the equation (1) is
transformed into

o = [T =8y e =0} ()
i=1
with 1 <r; < p and >\ sir; =0 (mod p).
Let 7: P'(x) — P'(u) be a normal covering defined by u = f;(x)/fo(x) with

a Galois group H, where fo(x) and fi(x) are polynomials relatively prime to each

other. We write (b : by) for a point of u-plane P'(u) with u = % Then we have
the following theorem. 0

THEOREM 2.1. Let M be defined by the equation (1). Then the exact sequence
() is split if and only if

(A) FP(H)NY =&, or
(B) for ae FP(H)NY, #FG(a) is not divisible by p.

Proor. Put #H =n. Then #G = pn. We may assume %3 oo. Then M is
defined by (3) in Lemma 2.2. We regard M/G as a u-plane P'(u), and consider
the normal covering



The automorphism group of a cyclic p-gonal curve 5

MV ~ P (x) 5 M/G ~ P'(u),

whose covering group is H. We assume u = fi(x)/fo(x). We can also assume that
the image 7(.#) does not contain oo(e P'(u)).

Now we assume that (%) is split. Then G =<V) x H. We have a com-
mutative diagram and canonical isomorphisms

M —— M/{VY  (Gal(n) ~ Gal(7) ~ H
) ”J J Gal(x) ~ Gal(u) ~ (V)
CM)~C(M/H) ® C(x),
M/H —— M/G, cw

where Gal(y/) means the covering group of a given normal covering  : M} — M,
of compact Riemann surfaces M;. Put #(¥)={(1:b1),...,(1:b,)}, where
b; (i=1---u) are distinct complex numbers. Then we may assume that M/H is
defined by

v = (u—b)" - (u—b,)" with Zti =0and 0 < < p. 4)
i=1

The isomorphism C(M)~ C(M/H) ® C(x) implies that x and y have a re-

lation Clu)
(A > (A9 )
=) ) ®)
By replacing j('fZL‘ti)/ ’y with y, we have
.Vp = (fl(x)_blf()(x))tl (fl(x) _buﬁ)(x))tu7 (6>

and this equation defines M. Let %; = {bl(l), e ,bf‘”} (i=1,...,u) be the set of
points b in P'(x) satisfying 7(h) = b;. Then, by the assumptions oo ¢.% and
oo ¢ (), we have factorizations

fi(x) = bifo(x) = C{(x = b)) - (x = bIN™  with n = mys; and C; # 0.

1

The positive integers m; are ramification indices of 7 over (l:b;) and
m; = #FG(b,@). So the equation (6) may assume to be transformed into

N | (T R @
i=1

and we have ¥ < Ul.tzl . If some my; is divisible by p, we can omit the term
{(x = b[") - (x = b[")}™" of (7) by replacing y with y/{ITi_(x - b{")}""".
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Further we can delete the term (uz — b;)" from the equation (4). Finally we can
get the equation (4) satisfying & = U;:l S and (m;, p) = 1.

Conversely assume that (A) or (B) is satisfied and M is be defined by the
equation (3) in Lemma 2.2. Put b = n(b(l)) (i=1,...,u). Then, for each b;, we
have fi(x) — bifo(x) = C{(x — b,- N (x — bﬁ“)}’”f again. The assumption (A)
or (B) implies (m;, p) = 1. Then, from (r;, p) = 1 and (m;, p) = 1, there exists an
integer s; satisfying 0 < s; < p and s;;; = m; (mod p) for each i. Put s =[]~ s
Then there exist two integers u; and M; satisfying sr; = u;m; + M;p. Raising both
sides of (3) to s-th power and replacing ys/{]_[;‘:]{(x—bgl))---(x—bf-‘v"))}M"}
with y again, we have

=TT ) e b = TR - B
i=1

where C is a non-zero constant. Therefore we may assume that M is defined by

y =TI (fi(x) = bifo(x))"™, and then C(M) = C(M/H) C(>(§) C(x). O

3 Defining Equations of p-gonal Curves M with an Exact Sequence (x)

In this section, we give defining equations of M and representations of G
according to each type of finite subgroups H of Aut(P') classified by Klein [8].

Let 4 = (‘; g ) € SL(2,C). As in the previous section, we also write A4 for the
element {+4} in SL(2,C)/{+1} ~ Aut(P'(x)) as long as there is no confusion.
Although there are p distinct elements of G which induce 4 € H, we also use
the symbol A4 abusively for an element of G which induces 4 € H. In order to
determine the action of A* on the function field C(x,y), it is sufficient to in-
vestigate A*y.

Let 7: P'(x) — P'(u) be a finite normal covering defined by a rational
function ”:28 with (fo,f1) =1, and let H be is its covering group. Put
#H =s. Take (by:b;) e P'(u). Let m>1 be the ramification index of 7 over
(bo : by). Then there are three types of factorizations of the polynomial

Py, 1) = bofi(x) — bifo(x).
That is:
(i) CTI_,(x—a)™ with t>1 and mt = s,

P(bnzbl) =4 (ii) CH;;II (x—a)™ with t—1>1and mzt = s,
(iii) C,
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where C is a non-zero constant. Type (i) (resp. (ii)) happens when 7(o0) # (b : by)
(resp. @(o0) = (bo : b1) and m < ). Type (iii) happens when 7(o0) = (by : b;) and
m =s. Then H must be a cyclic group.

Define a polynomial P, ) and a positive integer d(;.s,) as follows.

() Plpypy)(x) = H,Lll(x —a;), dpypy =1t if I:’(b,);m is of type (i),
(i) Py (X) =TTioy (x— @), dpypy =1 if Pp,p 15 of type (ii),
(iil) Ppyp)(x) =1, dipynyy = if Pp,p,) 1s of type (iii).

1

The following lemma comes form the consideration similar to that of the previous
section.

LemmA 3.1. Let M be a cyclic p-gonal curve defined by (1) with #% > 2p
(therefore M has a unique gpl) Assume Aut(M)/{V) contains the finite subgroup
H above. Then there exists a finite set {(by;: b1 ;)|1 <i <r} of distinct points in
P'(u), and M can be defined by

r

yp = HP(MZ;U,,‘:IJU)’ I<u < p— L (8)
i=

d(bo.iibl,i) > 2p

Zuid(bo,iibl.f) =0 (mod p)a #S =
i=1 1

r
i=

Moreover the number of P, s, ) of type (i) among Py, p, ) (1 <i<r)is at least
(r—1). If there is a Py, ) of type (iii), H is a cyclic group.

Next we introduce the results from F. Klein.

Lemma 3.2 ([8], [4]). Let 7~z:_P1(x)—>Pl(u) be a finite normal covering
defined by a rational function u = f:)Ti) Then the covering group H of 7 is cyclic,
dihedral, tetrahedral, octahedral or icosahedral. And, by choosing coordinates x and
Si(x)

So(x)

u suitably, u = and the generators of H can be represented as in Table 1 of

Appendix.

ProrosITION 3.1. Let H be one of the groups in Table 1. Then the poly-
nomials P, .5, in each type of H are given in Table 2 of Appendix.

(x*=2V3ix2+1)°
(x*4+2v/3ix2+1)*’

Puay(x) = (x* = 2v3ix? + 1) — (x* +2v3ix® +1)° = {x(x* — 1)}°

Proor. For example, when H = A4 and u =
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and 0, +1, +i and oo are points over (1:1) with ramification index 2. Then
Py (x) = x(x* = 1) is of type (ii).

Fi(x) | {—x®—14228(x!5—x5)—494x10}3
When H = As and u = o) 1728x5 (x 104 11x5—1)° ’

we have
Pray = {—x% — 1+ 228(x" — x%) — 494x1)}> — {1728x° (!0 + 11x° — 1)}’
= —(x* 4 522x%5 — 10005x%° — 10005x'" — 522x° 4+ 1)?,

and P,y = x* 4 522x% — 10005x%° — 10005x'" — 522x> + 1 is of type (i). In any
other cases, we can calculate by the same way as above. O

By this proposition and Lemma 3.1, we can get defining equations of M with H
of Table 1, and they are written in Theorem 3.1.

We can get the representation 4*y for the generators 4 of H in Table 1, by
letting A act on both sides of the defining equations of M directly. But, before
practicing the calculation, we will make closer observations on the action of
A.

DEFINITION 1. For A = (% P) e SL(2,C). Define j(A,x):= x—|—5 with a
variable x on C. When Ao = oo (ie., y = 0), define j(A, ) := j(DAD™",0) = a,
where D = (0 ‘Ol). And when Ao # o, define j(A,0):=1. Of course an
automorphism of P'(x) induced by a matrix A is also induced by —A, and

j(—4,x) = —j(A,x) for a variable x.
First we will write down several properties of j(A4,Xx).

LemMmA 3.3. Let A= (f P) and B be in SL(2,C), and let x be a variable
on C. Then
() J(AB,x) = j(4, Bx)j(B,x).
(i) o —pd(x) = j(4,x)""
(i) (4, %) /(A A(x)) = 1.
(iv) Assume that the order of A€ Aut(P') is [ (ie., | is the least positive
integer satisfying A' = £(} V). Take ae P'(x) such that a ¢ FP({A)).

01
(a) Assume oo ¢ {Aya. Then

! . LAl =)
~A717A1 :'A[, _
[ a@n = s =4 7 alm et D)

(b) Assume a= co. Then j(A~', A(a)) =0 and
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! A 1 if A" =),
(A7, A (a)) = —j(A",x) =
11« (a)) = —j(4',x) {1

ial=—(0).

(V) For ae FP({A)), j(A,a) = j(BAB™' B(a)).
(vi) Let FP({A)) ={ai,ar}. Then j(A,a1) and j(A,ay) are primitive [ (resp.
20)-th roots of 1 if A' = (0 1) (resp. 7(0 1)) And j(A,a1)j(A4,ay) = 1.

PrOOF. We can prove (i), (i) and (iii) by simple calculations.

(iv) We will prove only (b). Assume a = o0. As y # 0 and A(a) = %, we have
A2 A(@) = —1 and (A7, A(@) = 0. Since (A, 4i(a)) = j(4"2, A(a))/
(AT A(a)) 2<i<I—1)and j(47', 4'(a)) = j(47', 0) = 1 by the definition,
we have

/ o l—lez ZA(a)) 1
EJ(A LAl g] AT A(a)) — j(A72, A(a))
_ 1 _ 1 _ _-(Al x)
JALATA@) A A@) AL @) -
(v) Since A(a) = a, the assertion comes from (i), (iii) and j(A4, o) = a.

(vi) By (v), we may assume a; =0, @y = o0 and 4 = ({ ) where ¢ is a
primitive / or 2/-th root of 1. Then j(4,0) =¢! and j(4, o) =e. O

Let A= (; g) € H. First we observe the action of 4" on polynomials P .p).

LemMA 3.4. Assume that A € Aut(P'(x)) has an order 1. Let P, ;) be a
polynomial of type (i) or (ii) above. Put U :={ay,...,a,;} (resp. {ai,...,a,_1,0})
when Py is of type (i) (resp. (ii)). Then A* acts on Py, in the following
manner.

() If #NFP({A)) =, then t =0 (mod /) and

A*(P(bozbl)(x)) = P(bo:bl)(A(x)) = j(Avx)itj(Alvx) I/IP(bo:bl)(x)'

(I1) If UNFP({AY) consists of one fixed point ceP'(x) of A, then
t—1=0 (mod/) and

A*(P(bo:bl)<x)) = j(A_] ; c)j(Avx)irj(Alvx)(til)/lp(bgzbl)(x)'

(IIT) If % N FP({A)) consists of two points ¢, ¢’ of A, then t —2 =0 (mod I),
and
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A" (Ppypy) (X)) = ](A,X)ftj(Al;x)<[72>/1P(b0;b1)(x)~

These representations are independent from the choice of matrix A or —A.

PrOOF. (I) Assume % 3 oo (i.e., Py, is of type (ii)). Let
U = {00, A(0), ..., A" (00)} U (U, <ADex)
be the decomposition of % into the orbits of {A4). Then Ir=1¢, y # 0 and
-1
Py (X) = H HH x—A'(ct))
i=1 k=2 i=
By acting A* on both sides of this equation, we have

= +p Al +pB A
A (P (¥ H(Zi-‘ré )HHC);JM "))'

i=1 k=2 i=1

(4) (B)

bl

Since A(o0) =% and —yA(0)+oa=0

the term (4) = j(A4,x)” llH{ —pA'(0) + o)x — (64" (0) — B)}

-1
— ) (5 +ﬂ> {(—pAi () + o)x — (GA'(0) — )}
=2
!
= j(4,x) ( 5V+ﬂ>gj
XH{X <6Af<oo>—ﬁ>}
1§ RS )
o -1 )
:,-(A,x)w(_(s+ﬁ><_,-<A1,x>>H{x_Az1@)}. (%)
4 2

The last equality comes from Lemma 3.1 iv) (b). On the other hand, by Lemma
3.1 iv) (a),

ro 1
the term (B) = j(d4,x)"'""Y j(A’,x)“‘*”HH (x — A" (cx)) (x%)
k=2 i=1
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By multiplying (x) and (%), we have

A (Pl () = (A, ) (—6% n ﬁ) (A" %)")

-1

ro
x [Je—=a™ (o) [T]J(x— 4" (e))-
k=2 i=1

i=2

Moreover, by a0 — fy =1 and (x — 4" "'(c0))™" = 9j(4,x)”", we have

A (Pl () = j (A, %)~ (—5%+/>’> (A1) x = A7 (a0)) !

/

ro
x [T = A= (o) TTTT(x = 4" ()

=2 k=2 i=1
= ](A7 x)_[j(Al7 X) rP(b(]:bl)-

In case oo ¢ %, the calculation is much easier than the case above.

(I1) Let % = {c} U (U;:1<A>ck)(t =Ir+1) be the decomposition of % into
the orbits of (4). There are three cases

)c#ooand ¢ # o0 (k=1,...,r), i) ¢= o0, iii) ¢t¢ = oo for some k, to
be considered respectively. But the calculations can be carried out by the same
way as in (I), and then we omit the details.

(I) Let % = {c}U{c'}U(|J,_,<{4>ck)(t = Ir +2) be the decomposition of
9 into the orbits of {(4). And we have

A (P (%)) = J(A7Y ) (A7 ) j(A,x)75(AL %) D P (%),

By Lemma 3.1 (vi), we have the equality of III. O

The following theorem is from these lemmas above. In this theorem we use the
symbols T[/-! and S/ as

i=m

m—1 m—1
H x:=1 and Z* :=0 for an positive integer m.

i=m i=m

THEOREM 3.1. Let H be one of the groups in Table 1. Let M be a cyclic
p-gonal curve with #% > 2p. Assume Aut(M)/<{V) contains H. Then the de-
fining equation of M and A*y for the generators A € H of Table 1 are given as
follows.
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(Case H=C,). M is defined by
d

d
(u(;:l)PEtIZ:O) HPM' = x" H x"— i’ (9)

i=3 i=

y="p

d d
#Vzal—l—az—i—nZl, u1+u2+nZuiEO(modp),
i=3 i=3

where 0 <uj,up < p, 0<u; < p (i =3), b #0, and put & =1 (resp. & =0) if
g >0 (resp. up =0) (k=1,2). In this case d >3 since #< > 2p > 4.
For the generator S, of C,,
Syy=nsy, where (ng)" = (.
(Case H =Dy,). M is defined by

yp:P(usz(uf ~2) (01 HPu
d
= ("= D"+ )R T = b + 1), (10)

i=4

d d
#S = ney +ney + 2¢3 + 2nz 1, nuy +nuy + 2u; + ZnZu,- =0 (mod p),
i=4 i—4
where d >3 (according to the notation above), 0 <uj,uy,us<p, and
O<u;<p (i=4), b #+2, and put & =1 (resp. e = 0) if ux > 0 (resp. uy = 0)
(k=1,2,3).
For the generators S, and T of Dy,

Sy =15y where (15,)" = §°
T*y = npx~ (may+ruy+2us+2nY. i /py where (77T)p — (_1)u1

(Case H=A4). M is defined by

d
P(MIZI)P(lgl) H le{:bf)

i=4
= (x* = 2V3ix? + 1) {x(x* — D} (x* +2V3ix2 + 1)"

d
1 , :
x Hl _bi{(x4—2\/§lx2+1)3—b,-(x4+2\/§lx2+1)3} . (1

yr P(ul1 0)

d d
#S = de + 66y + de3 + 122 1, 4du; + 6uy +4us + 12Zu,~ =0 (mod p),
i=4 i=4
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where d >3, 0 < uj,up,us < p, 0 <u; < p (i =4), b; #0,1, and put ¢ =1 (resp.
e =0) if ur >0 (resp. e =0) (k=1,2,3).
For the generators U, W of Ay,

« —i —4uy —6uy—4uz;—12 ’.d:u,- D
Uy = {15 (- D) e,

where (1y)" = (—1)""" exp(3mi)"™ exp(3mi)*“.
: o (=i —6u—dus—125 4 s
W*y _ WW{% (x + l)}( 1 53 3 Z,,;; )/Py’
where (ny)" = exp(3ni)™ exp(4ni)".

(Case H=S4). M is defined by

»’ = P Py Pl HP
= (x® + x* + )" (22 = 33x% — 33xt + 1) {x(x* - 1)}

X ﬁ{(x8 + 14x* 4+ 1)° — 108h; (x*(x* — 1))}, (12)

d d
#S =861 + 126 + 663+ 24 Y 1, 8uy + 12uy + 6us +24 > u; =0 (mod p),
i=4 i=4

where d >3, 0 <uj,up,u3 < p, 0<u; <p (i=4), by #0,1 and put g =1 (resp.
e =0) if up >0 (resp. . =0) (k=1,2,3).
For the generators W, R of Sy,

Wiy — ”W{%}(78141712uz*6u3*24z,-:4uz>/[7(x i i)(fgul712u276u3724zi":4u,-)/p

Vs
where ()" = 1.
R*y _ ﬂRxf(Sul+12uz+6u3+242[":4u,-)/py’ where (”R)p — ju3

(Case H = As). M is defined by
»' = Pl Pl Pl HP
= {x® +1-228(x" — x7) + 49450}
x {x% 4 522x% — 10005x%° — 10005x'0 — 522x + 1} {x(x' + 11x° — 1)}
X ﬂ[{xzo +1—228(x" — x%) 4 494x1°}°

i=4

+ 1728 (x10 + 11x° — 1)°], (13)
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d t
#9 =208 + 3062 + 1283+ 60> 1, 20u; +30uy + 12u3 + 60 > _u; =0 (mod p),
i=4 i=4

where d >3, 0 < uj,up,us < p, 0<u; <p (i=4), b #0,1, and put ¢, =1 (resp.
e =0) if ux >0 (resp. up =0) (k=1,2,3).
For the generators K, Z of As,

(—20uy —30u2—12u3—6021": u;)/p
Ky =ng[3{(1 = Dx+ (& - )} 4

where (ng)’ = 1.

Z*y =1y, where (n,)? = (&.

Proor. Here we only deal with several cases as examples.
Case H = A4. Let M be defined by y” = PE‘I]:O)PE‘IZ:UP("&I) Hf‘;‘ Pé‘{:bi>, where

Py are as in Table 2. Let A be U=15(1 ') (resp. W =13(7" 1)). Then

A3 = (‘01 0 (resp. (é ")), Jj(43,x)=—1 (resp. 1),
J(A,x) =5 (x+ 1) (resp. i (x+1)).
Two fixed points a;, a of A =U (resp. W) are
_ (*1+\/2§>(1*i> ( J(A471, ar) = exp (i)
(resp. exp(37i)),
. a = % (resp. w)» J(A7" ) = exp(37i)

a (—17\/5)(1+i))7

resp. >

(resp. exp(3mi)).
and we have P(19)(a;) =0 and P.1)(az) = 0.
In case 4 = U, by Lemma 3.2, we have

U*P(I:O) = j(Uﬁlval)j(Uax)_4j(U37x)P(l:0)

= exp<:1))m'> {1 ; i(x + 1)}_4(—1)1’(1:0)7

. P 1—i -0
U P(l:l) = ](va) 6](U 31x)2P(l:1) = {—(X+ 1)} (_1)21)(1:1)’
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1 " 5 "
UryP = (—1)"Hs exp(gni) exp(yzi)

}(414] 76142741437122;’:414,’)

Then

« {%(x—&- 1) ’, (14)

and
}(4141 —6uy —4uz— 122[.":414,-)/;7

) 1
U }’Zﬂ{T(x+1) »,

s exp(Lni)" exp(3mi)™.

We can calculate W*y by the same way as above.

Case H =S4. H is generated by W and R. The fixed points of W
are zeros of P(j). Then, by Lemma 3.2 (III), we get the representatlon of W+y.

Case H =As. We may assume that M is defined by p?=
P 0)P(“2 P”* Hl 4 Pl gy 20u1 + 30uy + 12u3 + 60 S u; =0 (mod p). Assume
A=K. Then K = (73 %) and j(K? x) = —1. Let a; and a; be fixed points of
K. As deg P(1,) =20 =2 (mod 3), a; and a, are roots of P(;,g). Then we can

apply Lemma 3.2 (III) to P, and we have

where # satisfies 77 = (—1)

(- 1+\/— 1-+i)

K*yp — ](K, x)(—20141—30142—12143—602;1:41,4[)]-([{37x)(6111+10u2+4u3+2021.":4u[)yp

1 (7201417301127121437602;’:414,')
| e

\75((1 —E)x+ (G- 83)

Here we give several examples of defining equations of cyclic p-gonal curves
having a split exact sequence (x).

COROLLARY 3.1.1. Let M be a p-gonal curve defined by

d
yP=(x" -1 "+ 1)2x" H —bix" + 1),
i=4

d
nuy + nuy + 2us +2nZui =0 (mod p),

i=4
where d >3 and 0 <u; <p (1<i<3,b; #12). Then Aut(M)/{V) contains
H = D»,. Moreover the exact sequence () is split if and only if the prime number
p is taken according to the following way. That is; take a prime number p such that
(p,2) =1 in case us #0, (p,n) =1 in case u; # 0 or uy # 0 and any prime p in
case uy =up =u3=0. And a map 1: H — G defined by
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S = {8, x =L, Sy = Gy

) n

T — {T*X _ 1/)(_7 T*y _ (_1)“1x*(mll+'1ll2+2M3+211Z,-d:4Mi)/17y}

gives a section of (x), where r is an integer satisfying rp =1 (mod n).

Proor. The first half of our assertion is from Theorem 3.1 and Theorem
2.1.

Here we only check that the given map 1: H — G is a section in case
(2p,n) =1 and ujupus # 0. In Theorem 3.1 (Case H = Dy,), put y = (—1)" and
ns, = (,° with an integer r satisfying rp =1 (modn). Then (ng )" = ()",
(n7)? = (=1)"". Meanwhile D, is defined by relations S” =1, T>=1 and
TS, T=S;!. But (S))"y= ngy =y and (T*)?y = n%y =y hold. Therefore if

T*S:T *y:S;’ly holds, then i is a group homomorphism. In fact, by the
definiton of 1,

T* Sn* T *y =T S;l‘ (;7Tx—(nu1 +nuz+2u3+2nzl‘i4u,)/py)
=T* (”T”S,, (cnx)f(mu +nup+2u3 *2”25/:4%’)/17)})

(Cn ) —(nuy+mup+2us +2nzl{/:4 u;)/p

2
= (nr) s, y

_ ((_ 1 ) uy )ZC;M (Cn){f(nm +nuz+2u3+2;1Z;i:4ui)/p}p;‘y

— é’;rlgy.

Then T*S'T*y=S*"'y holds. The equation mo:=idy is trivial from the
definiton. (]

COROLLARY 3.1.2. (1) The compact Riemann surface M defined by the fol-
lowing equations (14) or (15) has Aut(M) isomorphic to As x (V).

pP=x" 41 -228(x" —x°) +494x10  (p=2,5). (15)
¥ =x(x""+11x° - 1) (p=2,3). (16)

(2) The compact Riemann surface M defined by
yP = x¥ 4 522x% — 10005x%° — 10005x'° — 522x° +1 (p=2,3,5), (17)

satisfies Aut(M)/{V > ~ As. Moreover Aut(M) ~ As x (V) provided p =3,5.
But when p =2, the exact sequence (x) is not split.
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Proor. The right hand side of (14) is P(j.p of A4s in Table 2. Then, by
Theorem 3.1, Aut(M)/{V> ~ A5 if 20 =0 (mod p). So p =2 or 5. Moreover if
a is a root of P19 =0, then #FG(a) = 3. Therefore the exact sequence (*) is
split by Theorem 2.1. The remains of the assertion can be proved by the same
manner. U

4 Hyperelliptic Curves of Genus 2 with an Exact Sequence (x)

In this section, we assume that M is a hyperelliptic curve (i.e., p =2) of
genus g = 2. By applying the results in the previous sections, we will determine all
possible types of Aut(M)/{V» and their standard defining equations of M. We
start with the following proposition.

PropoSITION 4.1.  Let M be a hyperelliptic curve of genus g = 2. Let H be a
subgroup of Aut(M)/<V, and we consider the exact sequence ().

Then H is isomorphic to C, (n=2,3,4,5,6), Dy, (n=2,3,4,6), A4 or Ss.
And according to each type of H, we can get a standard defining equation of M as
in the following list.

(%) is split (S)

H = {generators) defining equation of M or not split (NS)
Cy =<5 ¥ =(x? —1>( a®)(x* = b?) N
C, =S 2 = x(x? 1)(x2—a ) NS
Dy =<5, T) y? = x(x? — 1)(x* — a?) NS

=S = (0 =1 —ad) N
Ds = (S5, T yr=(x3 = 1)(x? —d?) S
Cy =Sy Py =x(x*-1) NS
Dy =S4, T ¥ =x(x*-1) NS
Ay =<U, W ¥ =x(x*-1) NS
Ss =<{W,R> Py =x(x*-1) NS
Cs = (S5 Py =x(x>—1) y2=x -1 S
Co = <S6> y=x0-1) i S
D, ={S6, T == NS
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In particular

Cy c Aut(M)/KV) if and only if Sqs=Aut(M)/{V),
Co c Aut(M)/KV) if and only if Dy = Aut(M)/{V D,

Cs; c Auwt(M)/KV) if and only if Dg < Aut(M)/{V),
{Cz < Aut(M) /<V>

and (*) is NS if and only if Dy = Aut(M)/<V).

and

Proor. H is isomorphic to C,, Dy, A4, S4 or As. But, for g=2, M
is defined by y?>=(x—ay)---(x—a;) with s=5 or 6, and then H =
S4,A4,D,,C, (n<6) are the only groups which are possibly contained in
Aut(M)/KV .

Assume Aut(M)/<{V) > H = C, with n < 6. We may assume that C, is gen-
erated by the automorphism S, defined by S;x = {,x and the set .% defined in §1
contains 1. For example, assume Aut(M)/{V ) = C,. Then the decomposition of
& into orbits by C, may assume to be ¥ = {+1}U{+a}U{xh} or &¥ = {0} U
{0} U{+1}U{+a}. Therefore M is defined by y? = (x> — 1)(x*> — a?)(x* — b?) or
y? = x(x? — 1)(x> — a®), where a, b, 0, +1 are distinct. For n > 2, by the same
manner as above, we find that M can be defined by one of the following
equations when Aut(M)/{V) contains H = C,.

) H=Cy, y?>=(x*-1)(x>—-a?)(x>—-b%) (0, 1, a®, b* are distinct).

(a

(b) H=0Cy, »?>=x(x>-1)(x>-d?) (a®> #£0,1).
() H=C3, y>=(x>-1)(x*-d? (@ #0,1).
(d H=Cq4, p*=x(x*-1)

() H=Cs, y>=x(x’-1)

(fy H=Cs, y*>=(x0-1)

Assume that M is defined by (f). We can see that M has an automorphism 7°
defined by T*x = 1/x and T*y = ix*y. Then T and Ss generate Dj,. Moreover
since D1y ¢ Ay and Dy ¢ Sy, we have Aut(M)/<{V> =Dyp. As +1 ePl(x) are
fixed points of 7 and the order of 7 is 2, the exact sequence (x) with H =
Aut(M)/<{V) =Dy, is not split by Theorem 2.1.

Assume M is defined by (e). Among four types of groups Ss4, A4, D2y,
C, (n<6), Cs and Djy are the only groups which contain Cs. Therefore
Aut(M)/{V is isomorphic to Cs or Djy. On the other hand the exponent u;
(resp. u3) of (x> — 1) (resp. x) in (e) is equal to 1, and Su; +2u3 =7 # 0 (mod 2).
Then, from Theorem 3.1, Aut(M)/<{V) does not contain Djy and Aut(M)/<{V)
=Cs. As NFP({Ss5y) ={0} and (5,2) =1, (%) is split from Theorem 2.1.

Assume M is defined by (d), then, from (13) in Theorem 3.1, Aut(M)/<{V)
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=S, and H = C4,Ds, A4 or Sy. Moreover the exact sequence () is not split since
H contains S, of order 2 and FP({S;>)N¥ = {0, w0}.

Assume M is defined by (c). Then M has an automorphism 7 defined by
T*x=a/x and T*y =a>3?x3y, and the group H, = (S, T) is isomorphic to
D¢. So we can say that Aut(M)/{V) contains a subgroup D¢ if and only if
Aut(M)/{V contains C;. Since FP(H,)NY = &, (%) is split with H = (S, T.

Assume M is defined by (b). Then M also has an automorphism 7T defined
by T*x =a/x and T*y = a—32x3y. Therefore D, = Aut(M)/<{V if and only if
C; = Aut(M)/{V). Since FP({S;>)N¥ ={0,00} and the order of S, is 2, ()
is not split by Theorem 2.1. O

By this proposition, we can get the list of Aut(M)/{V) as follows.

THEOREM 4.1. Let M be a hyperelliptic curve of genus g = 2. Assume that
Aut(M) <V is non-trivial. Then Aut(M)/{V ) is isomorphic to C,, Cs, Dy, Dg,
Diy or S4. And according to each type of Aut(M)/{V ), we can get a standard
equation of M as follows.

Case Aut(M)/<{V) ~S,.

M is defined by P2 =x(x*-1) (18)
Case Aut(M)/<{V>~Cs. M:y*=x(x>— l)blm:(mly2 =x -1 (19)
Case Aut(M)/<{V> ~Djy. M:y>=(x5-1) (20)
Case Aut(M)/<{V>~Dy. M :y>=x(x>—1)(x>—a>®) with a*> #0,+1. (21)

#-1). The curve (21) has Aut(M)/{V) ~S, if and only if a®> = —1.

Case Aut(M)/<{Vy~Ds. M :y*=(x’—-1)(x*—ad?) (22)

. 3 3 14v3)?
with a° # +1 and a’ # (W?) .

#-2). The curve (22) has Aut(M)/<{V) ~ Dy, if and only if a* = —1.

3
#-3). Aut(M)/<V> ~ S, if and if o = (ﬁﬁ) .

In fact we can give a birational map F from M :y> = (x* - 1)(x* —a?) to

Myt =x(x*—1)

by the following way.
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(148)(=1=V/3) (148)(=1+V/3)
- 2 - 2

Let a; = be fixed points of W =1L< (-1 1),

and a; = 1
If a3 = (%)3 _ (it_ﬁf (resp. a® = (2_1)3 = (%)3), the equalities

% ah X — dy % y
Frx=——, Fy:{az(ag—l)}l/zm (23)
(resp. F*x = hx az,F*y ={a (ai1 — 1)}1/2 %)

-1 (x—1)
define a birational map F from M to M'.

Consequently any birational map from M to M’ has a form Fo¢d = oF
with some ¢ € Aut(M), ¥ € Aut(M’).

Case Aut(M)/<{V)>~Cy. M:y*=(x?—1)(x* —a®)(x> — b?), (24)

where a and b satisfy the following three conditions (I), (II) and (III).

(I) For each {i,j,k} ={—1,0,1}, there is no pair (o,#) which satisfies
o (ﬁm)”/(ﬁw)”
Vo= Va—n) '
2 2%
b2:(\/a+77 ! \/&—’—7] and ;74:1
Vo= Vo= '
(I) For each {i,j, k} ={0,1,2}, there is no pair («,#) which satisfies
N2 N2
22— Ve — G /f—Cé”ﬂ
Vat+ln)/ \va+an)’

o (VE=Gn 2/ Vit and 70— 1
Va+n) I \Va+ .
(1) {1,a%,b2} # {1,353}

#-4). Assume there exists o and x which satisfy (25) for some {i,j, k} =
{—1,0,1}. Then a?> # 0,1, and the equalities

(25)

(26)

* nyo(x +9) * 3/2 2 y
Frx=TVEXTO gy, - 27
e (27)
—2k
with 6% = (%j) define a birational map F from M to

M’y =x(x* = 1)(x* — o).
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Therefore, under the existence of («,#) satisfying (25),

#-4-1) Aut(M)/<{V) ~Dy if and only if o? # —1,
#-4-ii) Aut(M)/<{Vy ~ S, if and only if «®> = —1.

#-5). Assume there exists o« which satisfies (26) for some {i, j,k} = {0, 1,2}.
Then o # 0,1, and the equalities

—X+0 (28)

B oa(x+9 . 3
P =Dy = P+ V)
i\
with 0% = (“—”1) define a birational map F from M to
\/;4"7(3
M y? = (- — ).
Therefore, under the existence of o satisfying (26),

ﬁ)‘
FV3)*’

#-5-1) Aut(M)/{V) ~Dg if and only if o3 # —1 and o? 7é
#-5-i1) Aut(M)/{V) ~ Dy, if and only if «*

1,
#-5-ii) Aut(M)/<V> ~ Sy if and only if o3 = Iy

(1F
#-6). If {1,a% 0%} = {1,{3,(3}, then Aut(M)/{V) ~D

3

é

ProOOF. Let .7 denote Aut(M)/{V ).

Cases of ~S4,Cs and Dj,. The equations (18), (19), (20) come from Propo-
sition 4.1.

Case o/ ~D,. By Proposition 4.1, a curve
M:y?=x(x*—1)(x*—a*®) (a®#0,1)

satisfies Dy = {S», T» = .o/, where T*x = a/x.

If D4 & o7, then, also by Proposition 4.1, .o/ must be isomorphic to S4. Now
take an element D € .o/ of order 4. Then D acts on .% = {0, o0, +1, +a} and has
two fixed points in .

First assume D(a)=a and D(—a) = —a. Put J=(; “). Then JDJ !
fixes x=0 and oo, we have (JDJ ')'x=+v—1x. As JDJ~' acts on

J({0,00,4+1,—1}) = { ’l+a’(l+a) }, we have v—1=1=¢ or (ﬁ)il and

a* = —1. Therefore y? = x(x> — 1)(x*> — a?) coincides with (18).

Next assume D(0) =0 and D(1)=1. Put J= (] °). Then (JDJ')'x=
+v—1x and JDJ! acts on J({o0,~1,a,—a}) = {l,é,a"],aﬂ} This does not
happen.
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By checking any other possibilities of fixed points of D in %, we can see that
o/ =84 if and only if a> = —1.

Case o/ ~D¢. From Proposition 4.1, the curve
My = (x3 - 1)()63 — a3) (a3 #0,1)

satisfies Dg = (S3,TY = .o/. If Dg < .7, then .o/ ~ Dy, or .o/ ~S,.

Assume .o/ ~ Dy;. By the structure of D, there exists an element S’ of
order 6 in .« such that S’ coincides with the element S; € .o/. For Six = {x,
S”x = nx with > ={3. As S" acts on ¥ = {1,(3,(3,a,(3a,(3a}, a must be a
primitive 6-th root of unity and % = {1,,...,1°}. So we arrive at #-2).

Assume .o/ ~ S;. Then there is a birational map F from M to

M’y =x(x* —1).

Let F: M/{VY— M'/{V) be the morphism induced by F. Put D= Fo S;o
F~'e Aut(M’)/{V. From the structure of S,, there are 8 elements of order 3
in S4, and they are represented by matrices R'W*R™" (s=1,2,1=0, 1,2,3) in
Aut(M')/{V) (see Table 1). Assume D = R'W*R~". Then D fixes a -i’, and
a> - i’ with a1 = w and a, = u As F sends fixed points of S3
to those of D, we have F({0,0}) = {a; -i',a>-i'} and then F*x = Ax with a
matrix 4 = (%7 %47} or (47 %41) (5 is a suitable number).

First we assume F*x= Ax="92004  From 2 = x(x*
(F*y)? = F*x((F*x)* —1). By further calculations, we have

1), we have
Frx((Frx)* = 1) = i'ap(ad = 1)(x+0)™°
Al (o) (o229}
oo ) (o) }

On the other hand, by direct calculations, we have

a — 1 a; +1 y ar—i a ay + i
C37 :é37 :_g.’n

a2—1 a ar +1 a—i a a, +i

= (3.

Thus the equation (F*y)*> = F*x((F*x)* —1) is transformed into

3
[Clx+0) (F'y))? = (° +53>(x +6° (1) ) (29)

az

where C? = [(i'ax){(a2)* — 1}]"
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Put Y :=C(x+0)*(F*y), X :=x. Then X,Y e C(M) and (29) becomes

Y2 = (X340 <X3 4o (%>3> (30)

Since ¥ = {1,C3,C§,a, a@,aé%} consists of branch points of the function X =
x e C(M), (30) implies

S = {_57 _5537 _6C§a —0 <al> ) —0 (al) C3a —0 <al> C32}
a a) a

3
Then “5° = —1 and &° (‘”) =—a% or “6° = —a® and &° (%) = —1”. Therefore

a’= (:g) Using (“" @27") for 4, we can get the same result. There-
~ . . 3 1+V3 3
fore .o/ ~ Dy implies a’ # (1%/_)

Conversely, by the same argument as above we can also see that (23) define

1“\;:) Thus we get #-3).

of ~ C,. From Proposition 4.1, the curve

a birational morphism when a? —(

M :y? = (x* = 1)(x? — a®)(x? — b?) (31)

satisfies .7 o ($) ~ C,. If C;, < .7, then o/ = Dy, D¢, D1y or Sy.
Assume .o/ ~ Dy o {S,)>. There is a birational morphism F from M to

M :y? =x(x* = 1D(x*—a?) (2* #0,+1).

By Proposition 4.1, Aut(M')/{Vy = (S,, T) with T*x = a/x. Let F : M/{V) —
M'/{V be the morphism induced by F. Put J := F o S; 0 F~' (e Aut(M")/{V).
Then F(#)={0,00,+1,+a} (¥ = {+1,+a,+b}), and F sends a fixed point
of S, (on M/{V) to a fixed point of J (on M'/{V}). From the fact that S,
(on M /<{V>) has no fixed point in % but S, (on M'/{V)) fixes 0 and oo in
F(¥), we can see J # S, (on M'/{V). Therefore J*x = +a/x, and F({0,0}) =
{+Va} (resp. {+v—1y/a}) provided J*x = a/x (resp. J*x = —a/x). So

. ox + on/o o onyo
P MEERE am (M )

with suitable numbers 6 and 7 satisfying * = 1.
The equation (F*y)* = F*x((F*x)*—1)((F*x)* —«?) is transformed as
follows.
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(F'y)* = A(x)(A(x)* = 1)(A(x)* = o)
= (1Va) (e = n*)*(x = 8)"*(x = 8)(x +9)

(rrolvate) (oo (vas)
(o (Em) b))
= (1Va) (= 1) (x = 0)*(x = %)
(ool (o5
As & consists of the branch points of x, we have

wen-fre(Ge(2))

and the pair (o, 7) satisfies (25). Thus ./ # D4 implies the condition (I).
Conversely assume that there is a pair (o,7) satisfies (25). Since a?, b2, 1 are
distinct, we can see «®> # 0,1. And (27) gives a birational morphism from M to
M’ even if «®> = —1. So we get #-4) from (21) and #-1).
Assume .o/ ~ Dg. There is a birational map F from M to
P2 (3 3_.3 3 1+V3 3
Myt =(x" = 1)(x —a”), (oc;é 1,<1$\/§>).

Let F be as before. Put J := F oS, 0 F~'. On the other hand, as Aut(M')/{V>
= {85, Ty, J*x={jo/x for some 0 <s<2. Since the fixed points of J are

iC%s\/&, we have F({O,oo}) = {c§Sf, —cf‘\/&} and

. ox + on/o o ona
Fx:B(x):%, B:(”_f1 '75[),

where 5 = +(3".
The equation (F*y)? = ((F*x)® — 1)((F*x)® — &%) is transformed as follows.

(Fp)? = (~x+0) pVa (VL (x +6)* = n*(—x + )"}

x {1} (x+6)* = V&' (—x + )%}
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= (—x+0) PV’
2

x [ [{vax +6) = Lin(— x+5}H{ Va(—x+06) + Un(x+6)}

=0 piry

= (—x+0) Ve’

Mmoo ) vl -o(2250))

t=0

= (x+0) PV (" + V)
2(Voe—n 2 Vo — (31
( 5(f+n>><x <\/—+Can>>
52(\[ 53’7)
\/—+§37’/

Then we have
(1,d2, 0%} = 52(\/_ ’7) S5 (\/& C3’7> o Vo C;’? 7
Vatn VERREY VoG
and the pair (o, 7) satisfies (26). Thus &/ # D¢ implies the condition (II).
Conversely if there exists «® satisfying (26) for some {i, j,k} = {0, 1,2}, then

o’ 75 0 1 and the equalities (28) defines a birational map even if «* = —1 or
( . Thus we get #-5) from (22), #-2) and #-3).
Next assume .o/ ~ Dy,. There is a birational map F from M to

-H

M p?=(x—1).

Put J:= Fo S, o F~! as above. Then J*x :% (0<s<5)orJ*x=—xon M.
But when J*x = Cé /x, we can follow the same argument in the case of .«/ ~ Dy,
and we can get the relation (26) with «® = —1. (28) gives a birational map from
M to M’ again.

When J*x = —x, the set of fixed points of J is {0, o0}. Since F sends {0, o0}
(the set of fixed points of S,) to {0, 00} (the fixed points of J), we have F*x = dx
or F*x =49/x for some number 8. At the same time F sends {+1,+a, +b} to
{+1, 45, 83}, so we know that 6 = ¢¥ and {1,4%,h%} = {1,{3,(3}. Thus we get
#-6). Overall, we know that .o/ ~ C; if and only if the three conditions (I), (II)
and (III) are satisfied at the same time. O
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5 Cyclic Trigonal Curves of Genus 5, 7, 9

Let M be a cyclic trigonal curve defined by
P —(x—a)" - (x—a)*=0 (1<r <2, a’s are distinct). (32)
The genus g of M is #% — 2. We also assume g > 5 (i.e., M has unique g}).
In this section we study M with odd g. In particular we will determine all

possible types of Aut(M)/{V) and their standard defining equations of M for
g=>5,7,9. We start with the following lemma.

LemMA 5.1. Assume that the genus g of M is odd. Then
(i) Aut(M)/{V) is isomorphic to a cyclic group or a dihedral group,
(i) If Aut(M)/<V ) ~Dy,, then n is odd.

ProOOF. (i) Assume A4 < Aut(M)/{V). The equation #% = 4de + 6, +
4¢3+ 123" 1 for H = A4 in Theorem 3.1 indicates that #% and g are even. This
is a contradiction. So A4 & Aut(M)/<V ), and then As,Sy & Aut(M)/{V).

(i) The equality #% = ne; + ney + 2e3 + 2n Z;j:4 1 for H =Dy, in Theorem
3.1 implies that odd g does not happen for even n. O

Next we will investigate cyclic trigonal curves with g =5,7,9.

THEOREM 5.1. Let M be a cyclic trigonal curve (32) with g=5,7 or 9.
Assume that o/ = Aut(M)/<V) is non-trivial. Then the type of o/ and a standard
defining equation of M are as follows.

I. g=09.
o ~Ci. M is defined by

y = x(x0 - 1) the exact sequence (x) is split. (33)
g ~Cy. P =x(x*-1) (r=1,2), () is non-split. (34)
oA ~Cs. Y =x(x>—1)(x5—a%? (@5 #0,+1), («) is split. (35)

b-1) The curve (35) has ./ ~ Cyq if and only if ¢° = —1.
o ~Cs. 3 =x(x*-1)"(x3—a*)“ (x> - b*)", (x) is non-split, (36)

where 0, 1, a3, b are distinct, and a, b, u3, us, us satisfy one of the following two
conditions a), b).
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a) u; # u; for some i, j e {3,4,5}.
b) b-i) us =us =us and b-i) {a® b} # {G, ).

b-2) .o/ ~ Cy if and only if {a* b*} = {¢5,¢3} and uz = uy = us hold. In this
case (36) coincides with (34).

o ~C,. M is defined by
P =x(x? = 1) —a®)“(xF = b)) (x = ) (xP —dD)", (%) is split, (37)

where 0, 1, a?, b2, ¢?, d* are distinct, and a, b, c, d, us,...,u; satisfy one of the
following two conditions a), b).

a) a-i) u3 =---=u; =2 and a-ii) {1,a? b% % d*} # {¢510 <k <4}
b) ui =u; =ur =1, uy =u, =2 for some {i,j k,I,m}={3,4,56,7}.

b-3) .o/ ~Cy if and only if us=---=u; =2 and {l,a%b* c* d*} =
{¢¥10 <k <4} hold. In this case (37) coincides with (33).

. g=7.

of ~Djg. M is defined by

P =(x-1), (%) is split. (38)
o ~Cg.  yP=x(x¥-1), (*) is split. (39)
oA ~Dyy. ¥ =x(x7-1), () is split. (40)
oA ~Cyq. Y =x(x* -1 (x*—da*) (a* #0,+1), (%) is split. (41)

b-4) .o/ ~ Cyg if and only if a* = —1. In this case (41) coincides with (39).
oA ~ D6.

Y= - =3+ 1)" (“b# 42" and “u#1 or b# —17), (x) is split.
(42)
b-5) o/ ~ Dyg if and only if u =1 and b = —1 hold. And (42) coincides with
(38).
oA ~Cy. P =(3-1)(-a))"(x*—a3)?, (x)is split. (43)
Here 1, a13, a% are distinct, and a;, a», vy, vy satisfy the following three
conditions a), b) and c) at once.

a) aja3 #1 or vy # vy, b) aj #a§ or v; #1, ¢) a® #a3 or v, # 1.
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b-6) Assume aja3 =1 and v; = vp. Then (43) becomes

y =0 = DX~ (4 +a3)x’ + 13"
Therefore
b-6-1) .o/ ~ Dg if and only if @} + a3 # —1 or v; # 1 (in this case (43)
becomes (42) with b = a3 +a3), and
b-6-ii) .o/ ~ Dyg if and only if aj +a3 = —1 and v; = 1 hold (in this case
(43) coincides with (38)).
b-7) Assume a} = af and v; = 1 for {i, j} = {1,2}. Then there is a birational
morphism F from M to
My ={x" = (@) +a7)x + 1}(x* = 1)".
defined by
F*x = aj’lx, F* = ajfzfv’x.
Therefore
b-7-1) o/ ~ D¢ if and only if aj3 # (' or v #£1 (in this case (43) is
birational to (42) with b =a} +a;°(# 1)), and
b-7-ii) .o/ ~ Dyg if and only if aj3 = (" and v; = 1 hold ((43) is birational
to (38)).

of ~ Cz.
My =x(x? = 1)"(x* = c])"(x* - c52)”5 (x* — cé)”"7 (%) is split, (44)

where 1, ¢f, ¢2, ¢ are distinct, and us, us, us, ug, ca, cs, ¢ satisfy one of the
following conditions a) or b). Here we put c3 := 1.

a-l) uz=us=us =ug =1,

a-ii) there is no number « satisfying

{cﬁ,c%,cé} = {—1,0(2, _‘xz}v (%)

and

a-iii) for each {i,j, k,/} ={3,4,5,6}, there is no number o

satisfying

a—1)\? Lo — 1) Cu—1 2
2020202 2. . .23
i =3 <oc+ 1) : (C3cx+ 1) : <C§a+ 1) . (%x)

) b-i) w; =1, uj = w = w; =2 with {i, j, k, I} = {3,4,5,6}, and
b-ii) there is no number « satisfying (xx) for the same i, j, k,/ in b-i).

b-8) Assume a-i) and there is o satisfying (x). Then
b-8-i) o/ ~ Cy4 if and only if o* # —1,
b-8-ii) .o/ ~ Cg if and only if o* = —1.
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b-9) Assume a-i) and there is « satisfying (xx) for some {i,j k,/} =
{3,4,5,6}. Then (44) is birational to
M3 = (3 = D){x® = (P + o)X+ 1)
In fact the equalities

xX+y

Xty Fry =2V 1+ y(—x+79)7 with y=c;/V=3  (49)

F'x =

give a birational morphism from M to M’. And then
»-9-) .o/ ~ Dy if and only if o3 # (&,
b-9-ii) o7 ~ Dy if and only if o = (§'.

b-10) Assume b-i) for some {i,j, k,/} ={3,4,5,6}.
Then .o = Dy if and only if there is a number o satisfying (xx) for the i, j, k,
/ in b-i). And (44) becomes birational to

p = x(x® = D{x® — (& + 2 3)xP + 112

In fact the equalities

Frx= x;jy’ Fy =221+ y(—x+9)7° with y=¢;/V=3  (46)

give a birational morphism from M to M'.
L. g =5
o ~ Dyy.
My =x*x>—1), (%) is split.
o ~ C,.
My =x(x* = 1) (x* —e})™(x* — )™, () is split,

where u; =2, w;=uc =1 for {i, ).k} = {3,4,5}, and {c},c{} # {c,z (i;—éi)z,
c? G;gi)} Here we denote c¢; = 1. ) 2

b-11) If w; =2, uy = w; = 1 and {2, 2} = {c,?(};gz) ‘z(ilg)} then M is
birational to M’ : y* = x*(x* — 1) and .« ~ Dy;. ’

In fact

X+ ¢

F*y = V2p(— N3 47
o F V2y(=x + ;) (47)

F'x=

give a birational morphism from M to M'.
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PrOOF. Assume .7 > C, with n > 2. Then, from Theorem 3.1, M can be
defined by

d
y3 = l”'x"z (X” — bi)ui, ed o Cn - <Sn>a (48)
i=3

d
48-1) £ =ei+e+ny I,
i=3

d
(48-I1) uy +uy + 1y u; =0 (mod 3),
i=3

where 0 and b; (3 <i<d) are distinct, 0 <uj,up <3, u;=1,2 (i >3), and
e =1 (resp. ¢ =0) if wx >0 (resp. ux =0) (k=1,2).

g=09.

Then #% = 11. For n=8,7,6,4 and n > 12, there are no ¢ (i=1,2) or d,
which satisfy (48-1) with #% = 11. When n =11, ¢, =& =0 and d = 3 satisfy
(48-1) with #% = 11. Therefore u; =u; =0 and u3 =1 or 2. But they do not
satisfy (48-11). Thus a number n satisfying o/ > C, is among 10, 9, 5, 3, 2.

Moreover Lemma 5.1 implies that only D¢, Dy, Dig are candidates for .« among
dihedral groups.

Case .o o Cyp. From (48-1), we have d =3 and ¢ + & = 1. And then (48-1I)
holds if and only if “u; =2, u, =0, us3 =17, “u1 =0, up, =2, us =17, “u; =1,
uy =0, u3 =2" or “u; =0, up = 1, u3 = 2. These solutions define one curve up
to birational morphisms. That is

¥y =x(x""—1)%, o > Cip={Sid.

By Lemma 5.1, we have .o ~ Cy.

Case o/ o Cy. We have d =3 and ¢ =¢ = 1. (48-1I) holds if and only if
“uy=1, up =2" or “uy =2, up =1". Then M is defined by

P =x(x"-1), o >Cy=1(Sy», withr=12 (49)

up to birational morphisms. From Lemma 5.1, we have .o/ ~ Cy or Dis.

Assume .o/ ~ Dyg. Let .« = (S, T'» with T? = 1 and T'SoT'"~! = Sy!'. Then
T'(0) = o0 and T"x = a/x with some number o. But, since 2+ 97 # 0 (mod 3),
there does not exist an automorphism of M which induces T’'. Thus .« > Cyg
means .of ~ Cy.
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Case .o/ © Cs. Then d =4 and ¢ + & = 1. (48-1I) holds if and only if “u; =2
(resp. 0), up =0 (resp. 2) and u3 =ug =17 or “u; =1 (resp. 0), up =0 (resp. 1)
and u3 =ug =2”. Then M is defined by
P =x(x* = 1)*(x° —a)?, o >Cs=(Ss) (50)

up to birational morphisms. If .o/ 2 Cs, then o7 ~ Cjy or Dy.

When .7 ~ Cjy, there is an element S’ € o/ such that S"> = Ss5. Necessarily
S’ x = nx holds with a primitive 10-th root 5 of 1, and then @’ = —1.

When o/ ~Dyg, o/ ={Ss,T'> with T"> =1 and T'SsT'~! = S;!. By the
same argument as in Case ./ > Cy, we can deduce a contradiction from

2:142-542-5#0 (mod 3). So o ~Djy does not happen. Thus we get
b-1).

Case o/ oC;. Then d=5 and & =¢ =1. (48-1) holds if and only if
“u; +uy = 3”. Therefore M is defined by

y3:x(x3—1)”3(x3—a3)““(x3—b3)”5, &fDC3:<S3>. (51)

If o 2 C;s, then .o/ ~Cy,D¢ or Djg. The case .o/ ~Dg has already been
eliminated when we considered the case .o/ > Cy.
Assume .o/ ~ Dg. Let .o/ = (83, T') with T"? =1, and T'S;T'~! = S3. Then,
by the same argument as in Case .&# > Cy, we can deduce a contradiction.
Assume o/ ~ Cy. There exists S’ € .o/ such that S = S;. Then S"x = yx
with a primitive 9-th root of 1, and we can see that w3 =uy =us and
{a® b3} = {{5,3}. Then (51) coincides with (34). Thus we get b-2).

Case o/ > C,. Then d =7 and ¢ + & = 1. (48-1I) holds if and only if

1) uy =0 (resp. 1), up =1 (resp. 0), u3 =--- =u; =2,
2) up =0 (resp. 2),up =2 (resp. 0),us =---=u; =1,
3) up =0 (resp. 1), up =1 (resp. 0), u; = uj = uy = 1, uy = u,, = 2 with

or
4) uy =0 (resp. 2), up =2 (resp. 0), u; = u; = u =2, uj = u,, = 1 with
{isj, k. l,m} = {3,4,5,6,7}.

Therefore, up to birational isomorphisms, we have two types of equations with
o o Cy = (). That is:
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¥ =x(x2 = 1)’ (x* —a)*(x* = b)*(x* — ¢)*(x* — d)? (from 1) and 2))
P = x(x = 1) (x? — @) (x? — b1 (x? — ) (x2 — )"
with w; =uwj =ur =1, uy =u, =2 for {i,j,k,I,m}={3,4,56,7}.
(from 3) and 4)).

Assume .7 2 C,. The possibility of .« ~ Dg, D19 or D;g has already been elim-
inated when we considered .« 22 C3,Cs. Then .o/ ~ Cjy. By the same way as in
Case .« > Cy, we know {1,a?b% c* d*} ={C5|1<k<5} and u3=--- = uy.
Thus we get b-3).
g=17

Then #% =9. For n = 6,5 and n > 10, there are no ¢; (i = 1,2) or d, which
satisfy (48-1) with #% = 9. Thus a number » satisfying o/ > C, is among 9, 8, 7,
4, 3, 2. Moreover, by Lemma 5.1, only Dg, D14, Dg, among dihedral groups, are
candidates for .«7.

Case o/ > Cy. Then M:y*=(x"—1) and o/ ~ Dys.
Case o/ > Cg. Then M :y*=x(x®—-1) and &/ ~ Cs.
Case .o/ > C;. Then M :y3 =x(x" —1) and .o/ ~ Dy4.

Case o7 > C4. Then M : y* = x(x* — 1)(x* — a*). If .o/ 2 C4, we have .« ~ Cg.

By the same way as in Case ./ > Cs of ¢ =9, we have a*

b-4).

= —1. Then we get

Case o/ > Dg. Then, from (10) in Theorem 3.1, M can be defined by
Y= D)=+ 1) (b #42), o >Dg={S3,T).

If o/ 2Ds, o/ ~Djg. There is an element S’ e .o/ satisfying S”* = S;. Then
S”x = nx with a primitive 9-th root # of 1. Thus & = {{&|0 <k <8}, b= —1
and u = 1. Then we get b-5).

Case o7 o C5. We have
Y= -} -a)" (P - @), o 5 C3=(S3). (52)

If o7 2 Cs, then &/ ~ D¢ or o/ ~ Dys.

Assume o7 > Dg = (S5, T') with T? =1 and T'S;T'"! = S3.

Put H={10<k<2}, Hi={al§|0<k <2}, Hy={a(¥|0<k <2}
and # = {H,H,,H,}. Then T’ acts on #, and T’ fixes exactly one element in
A because T’ is of order 2 and it has just two fixed points. For example,
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T'H = H; and T'H; = H; with {i, j} = {1,2}. From T'H = H; and T'(0) = oo,
T"x = ((§a;)/x (0<k<2) and v; = 1. T'H; = H; implies that 7’ has a fixed
point in H;, and then we need a = af. Thus (52) becomes

M:y ={x*— (@ +1)x* +a}(x' - aj3)”f with @’ = a;’. (53)

Moreover F*x = aj’lx and F*y = aj_z_vf y define a birational morphism from M

to
My ={x® - (a/3 —&-aj_3)x3 + 1} = 1)

From (42) and b-5), we get b-7).
In case T'H = H we obtain b-6).

Case o/ o C;. M is defined by

P =x(? = D)0 =) (P =) (P - )", A 2 Cr=(85)
. a-i) us =ug =us =ug =1, or
with . ..
bi) uy=1,u;=w =u; =2 for {i,j k,1} ={3,4,5,6}.

If o/ 2 C;, then .o/ ~ C4,Cs, D¢, D14 or Dig. But the possibility of D;g has been
eliminated.

Assume that o/ ~ C4 (resp. Cg). By the same argument as in Case ./ > Cs of
g=9, we can see .7 = {(Ss» (resp. {Sg»). Thus we get b-8).

Assume of ~ Dg. From (42), there exists a birational map F from M to

My =D =bx* 1" (b#+2 and “u#1 or b#—-17). (54)

Let F denote the induced morphism as before, and put 7/ =Fo S,oF e
Aut(M")/{V) =<(T,S3). Then T"x ={5/x for some 0 <e <2. Let

S = {1,06,G 00l 00,07 a7 G 0 G

with a root « of the equation x® —hx3+1=0. As b # +2 and then o’ # +1,
T’ has only one fixed point {3 (0 <e <2) in &’. On the other hand S, has
only one fixed point 0 in % on M. Since F sends {0, w0} (fixed points of S,) and
& to {+(3¥} (fixed points of T') and &’ respectively, we have F(0)= (3,
F(o0) = =3 and

2e

2e
F*x=Ax with 4 :< 3 | %5 ) (y: a suitable number).
- y

Since F also sends the orbit decomposition of & by {S,> to that of %’ by (T,
we have



34 Naonori Isan and Katsuaki YOSHIDA

(471G, a7GNY = {ei—e}, {47 A (07} = {g, ¢},
{A_l(é3“)aA_l(C§a_l)} = {Cka _Ck}v {A(C3a),A(C32a_1)} = {617 _01}7
where {f,g9} ={0,1,2} —{e}, {i,j.k, 1} ={3,4,5,6}, and we denote c¢; = 1.

2
, g4

From these relations, we have y? = (ﬁ ¢} = —c?/3 and
=

2 2 2
T L T S A A T LS L
g g =3:— S ) | =]
0(+C3 §3“+€3 C3O(+C3

By permuting j, k, / suitably, we get the relation (xx).

Conversely we assume that there exists o satisfying (xx) for some
{i7j7k7 I} = {1727 374}
When a-i) is satisfied, o® # (¥' or o> = (', we can see that (45) defines

birational morphism from M to
My = (= D{x® = (P + o)+ 1}

by direct calculations. Then, from (42) and b-5), o/ ~Ds (resp. &/ ~ Dig)
provided o # (' (resp. o« = ('), Thus we get b-9).

When b-i) is satisfied with the same i, j, k, / in the relation (%), we can
check that (46) gives a birational morphism from M to

My =3 = D{x® = (o) + 1}
Thus we get b-10).
g=>5.
Then #&% =7. For n=4,3 and n > 6, there are no & (i=1,2) and d
satisfying (48-1, II) with #% = 7. Thus non-trivial ./ is possibly isomorphic to
C2, C5 or D10~

Case ./ o Cs = {(Ss5>. Then M is defined by y* = x?>(x> — 1). Moreover we can
see o/ =Dy ={Ss,T}.

Case of o Cy; =<S,)». Then M is defined by
My = a6 = D) (3 = ) (2 = )",

where u; =2, u; =u, =1 for {i,j k} ={3,4,5}.
Assume .7 2 C,. Then ./ ~ Dyy. Let F be a birational morphism from M to

M’ yd=x*(x° - 1).
Put J := Fo Sy o F~! as before. Then J*x = (¥/x (0 <k <4) and J fixes +¢3*.
Only 0 is fixed by S in & = {0, +c3, +ca4, +¢s}, and only Cgk is fixed by J in
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" ={0,00,1,¢3,...,(3}. Therefore F(0) = (3, F(oo) = —¢3* and

3k
F*x = i (with a suitable number ).
—x+0

By the same calculations as before, we have

(F*x)*(F*x)° = 1) = 205 (—x + 0) "x(x> = 6%)*
2
X {xz _52<i +gz)2} 2 _52<1 +§> . (59)

Then {c3,¢3,c3} = {52 (52(1 CS) 52<1 {5) . As u; =2 and u; = u; = 1, we can

1+(s 142 5
2 2
see 0% = ¢; and {c},c}} —{ Z(LZ) , (;EZ) } from (55).
Conversely we can check that (47) defines a birational morphism from M to
M’. Overall we proved b-11). O

Appendix

Here S,, T, U, W, R, K, Z are elements of SL,(C) defined by S, = (% Ci’)‘)’

) il o ©
T:(? (l))> U=4%(7) W:%(ll ﬁ>’ R:({)5 l\/’)’ Z = 510(0 (1)) K=
ﬁ(é?—é? C?‘Z)_ And the symbol {m ny .-

G GG o
o; with ramification index n;.

means that 7 is ramified over

Table 1: Finite subgroups of Aut(P').

generators
)

ramification indeces
(e SL(2,C)/{#1})

group H [#H] J1(x)/fo(x), branch points

cyclic C,, [n X . S
y ] T {0

2n
dihedral Dy, [21] || 1 o

xn -2 2 o6}

}
.}
} Si T
)
}
}

4_ .2 3
tetrahedral A4, [12] w {3 2 3 vw
(x4 +2V/3ix2 4+ 1) 01 o
8 4 3 4
octahedral 8y, [24] || &I DT {3 3 -
108+ (x* — 1) 01 o
20 _ 15 _ .5y _ 1013
icosahedral As, [60] {=x 1+228(x x*) 4594X } ’ {3 25 K z
1728x3(x10 4 11x5 — 1) 01 ow
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Table 2: Types of Pp,.p,).

ramification
index over type of
group | (bo:b1)eP'(u) | (bo:bi) Poyt) Ployib)
c, | 0:1) n Py =1 (ii)
(1:0) n Py =X (ii)
(1:b) (b+#0) 1 Py =x"—b (i)
Dy, | (1:2) 2 Pagy =x"-1 (i)
(1:-2) 2 Pa =x"+1 @)
0:1) n Py =x (i)
(1:8) (b# £2) 1 Py = x> —bx" + 1 (i)
Ay | (1:0) 3 Puoy = (x* =2V3ix + 1) ()
(I:1) 2 Py =x(x*—1) (i1)
(0:1) 3 Py = (x* +23ix? + 1) (i)
(1:b) (b#0,1) 1 Pay = ﬁ{(_xz(;zﬁ%;zl): 1% (i)
Sy (1:0) 3 Puoy=x%+14x* +1 (i)
(1:1) 2 Py =x'2—33x% —33x% + 1 (i)
0:1) 4 Py = x(x* 1) (i)
(1:b) (b#0,1) 1 Pugy = (x% + Mt +1)° = 108b{x(x* — )}* | (0)
As | (1:0) 3 Prrgy = X% + 1 +228(x'% — x%) + 494x10 ()
— 430 25 20 10
(1:1) ) Paayy = i 52723522-:1 10005x 10005x ()
(0:1) 5 Py = x(x""+ 11x° — 1) (ii)
en rony | 1| e =Ll B R
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