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A NOTE ON SPACES WITH A ¢-COMPACT-FINITE
WEAK BASE*

By
Shou LiN, Li YAN

Abstract. In this paper spaces with a o-compact-finite weak base
are discussed, and some characterizations of g-metrizable spaces are
obtained by spaces with o-compact-finite weak base and spaces with
a o-weakly hereditarily closure-preserved weak base.

In this paper all spaces are T,. Readers may refer to [2] and [6] for unstated
definitions.

Let 2 be a family of subsets of a space X. 2 is called compact-finite if any
compact subset of X meets at most finitely many members of #; 2 is called
closure-preserved if (UP') = U{P: Pe ' } for each 2’ = 2#; 2 is called heredi-
tarily closure-preserving if a family {H(P) : P € 2} is closure-preserved for each
H(P)cPe?; 2 is called weakly hereditarily closure-preserving if a family
{{p(P)} : Pe 2} is closure-preserving for each p(P)e Pe 2.

Obviously, a locally finite family for a space is compact-finite and hereditarily
closure-preserving, a hereditarily closure-preserving family is closure-preserving
and weakly hereditarily closure-preserving. In a k-space, a compact-finite family
is a weakly hereditarily closure-preserving family. In certain conditions spaces
determined by hereditarily closure-preserving families have some similar prop-
erties with spaces determined by compact-finite families.

First, we discuss some properties of weakly hereditarily closure-preserving
families. Let xe P < X. P is called a sequential neighborhood of x in X if
whenever {x,} is a sequence converging to the point x, then {xn :n>m} < P for
some me N.
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The following Lemmas can be checked directly.

LeMMA 1. Let P be a weakly hereditarily closure-preserving family of a space
X. If ? is a family of sequential neighborhoods of a point x and there is a non-
trivial sequence converging to x in X, then P is finite. O

LEMMA 2. Every point-finite and weakly hereditarily closure-preserving family
is compact-finite. O

LEMMA 3. Let P be a weakly hereditarily closure-preserving family of a
space X. Put D= {xe X : P is not point-finite at x}. Then {P\D: Pe 2} U
{{x} : x € D} is compact-finite.

Proor. Since {P\D : P € 2} is a point-finite and weakly hereditarily closure-
preserving family of X, it is compact-finite by Lemma 2. If KN D is infinite
for some compact subset K of X, there are an infinite subset {x;:ie N} of
K and a subset {P,:ie N} of # such that each x; e P;, thus {x;:ie N} is
closed discrete in K, a contradiction. Therefore, {P\D : P€ 2} U {{x} : x€ D} is
compact-finite. O

If X is a k-space, then D in is a closed discrete subset of X.

Let 2 = UXE v P« be a cover of a space X such that for each xe X,

(1) 2, is a network of x in X, i.e., x € ()| % and for x € U with U open in X,
P < U for some P e %,.

2 If U,Ve®?, WcUNV for some WeZ,.

P is a weak base for X if whenever G = X satisfying for each x € G there is a
Pe P, with Pc G, then G is open in X. 2 is an sn-network for X if each
member of Z, is a sequential neighborhood of x in X for each xe X.

2, above is called a wn-network and an sn-network of x, respectively. Every
wn-network at x is an sn-network at x [6, Corollary 1.6.18]. A space X is called
a gf-countable space if each point of X has a countable wn-network. A regular
space with a o-locally finite weak base is called a g-metrizable space [10].

Every g-metrizable space is a gf-countable space, every gf-countable space is
a sequential space, and every sequential space is a k-space.

For a space X, denote I = {x e X : x is an isolated point of X}.

THEOREM 1. The following are equivalent for a space X:
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(1) X has a g-compact-finite weak base.

(2) X is a k-space with a o-weakly hereditarily closure-preserving weak base.

(3) X is a gf-countable space with a o-weakly hereditarily closure-preserving
weak base.

Proor. We shall show that (2) = (3) = (1). Let X be a k-space with a
o-weakly hereditarily closure-preserving weak base. X has a o-compact-finite
network by [Cemma 3|, thus any compact subset of X has a countable network,
hence any compact subset of X is metrizable {2, Theorem 3.1.19], and so X is a
sequential space. X is gf-countable space by Lemma 1.

Let # = Un <~ 2. be a g-weakly hereditarily closure-preserving weak base for
a gf-countable space X, here each %, is a weakly hereditarily closure-preserving
family and &, = 2,.,. For each x € X put #, = {P € £ : P is a sequential neigh-
borhood of x in X}. If x e, then {x} is open in X, thus {x} e Z, so 1l is a o-
closed discrete subspace of X. For each ne N, and Pe Z,, put

D, ={xe X : %, is not point-finite at x},
W,(P) = (P\D,)U{xe X\I: Pe s#}.

Then W,(P) = P. And put #, = {W,(P): Pe %,}. Then #,, is point-finite.
In fact, for each x € X we can assume that x € X\I by the point-finiteness of the
family {P\D, : Pe #,}, #, NP, is finite by [Lemma 1, thus #, is point-finite.
And ¥, is compact-finite by Lemma 2.

For each xe X, take %, = {{x}} if xel, take &, ={W,(P):neN,Pe
#,N 2} if x € X\I, we shall show that the subset | ) _, %x of |, .y #nU{{x}:
x €1} is a weak base for X. First, for each x € X and any open neighborhood
G of x in X, suppose that x € X\I, then there are an ne N and a Pe #,NZ,
with P = G, thus x € W,(P) = P = G. Secondly, for each xe X\I, and U,V €
AB,, there are nnme N and Pe #. NP, Qe #. NP, such that U = W,(P),
V = W,,(Q), thus there are a k > max{n,m} and Re # NP, with Rc PNQ,
hence Wi (R) = W,(P)N W,,(Q). Thirdly, %y is an sn-network of x in X. In fact,
for each x € X\I, ne N and P e #,N %, let {x;} be a sequence converging to x
in X, then {x;} is eventually in P, so ({x;:ie N}U{x})N D, is finite by
3, hence {x;} is eventually in (P\D,)U{x} = W,(P), therefore W,(P) is a se-
quential neighborhood of x in X. Thus %, is an sn-network of x in X. Suppose
that a subset G of X satisfies B = G for some B e %, for each x € G, then G is a
sequentially neighborhood of each point in G, then G is open in X because X is
a sequential space, so %, is a wn-network of x in X.
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In a word, |, _, %\ is a o-compact-finite weak base for X. O

The main technique in the proof of is the W,(P) constructed,
which generate directly a weak base for a space X. The J#, in proof of Theorem
is exactly a wm-network 2, of x in X, it is convenient in proof by using the
sequential neighborhoods instead of the usual weak neighborhoods. Next, we give a
direct proof of some properties of g-metrizable spaces by the W,(P).

COROLLARY 1 [3, 6, 11]. The following are equivalent for a regular space X:

(1) X is a g-metrizable space.

(2) X is a k-space with a o-hereditarily closure-preserving weak base.

(3) X is a gf-countable space with a o-hereditarily closure-preserving weak
base.

ProoF. It only needs to show that (3)= (1). Let =) _, % be a o-
hereditarily closure-preserving weak base for a gf-countable space X, here each
Z, is a family of closed subsets of X by the regularity of X [6, Proposition
2.5.2]. For each ne N defined D,, W,(P) and ¥, as in proof of [Theorem 1. To
complete the proof, it suffices to show that #/ is locally finite in X for each
ne N by the proof of Theorem. For each P e %, there is a subset D,(P) of
D, such that W,(P) = (P\D,)UD,(P) because W,(P) = P« (P\D,)UD,. For
each xe X, if x ¢ D,, then &, is locally finite at x, thus #;, is locally finite at
x. If x e D,, there is at most finitely many sets {P;:i <m;} of &, such that
x € W,(P;) for #, is point-finite. Let {Hy : k € N} be a decreasing wn-network
of x in X, there is a k € N such that at most finitely many members Q; (j < my)
of #, with H; N (Qj\{x}) # & as &, is hereditarily closure-preserving. Let U =
X\(U{P\{x} : Pe Z\{Q; : j <m}})U(D,\{x}). If xePeZ\{Q:j<m},
then Hy NP = {x}, thus P\{x} is closed in X by the closeness of P and the
definition of weak bases, and D,\{x} is closed in X by [Cemma 3, so U is an
open neighborhood of x in X. For each Pe %, if UN W,(P) # &, then UN
(P\D,) # &, so UN(P\{x}) # & or xe W,(P), therefore P = Q,; for some
J < my or P = P; for some i < my, and #,, is locally finite in X. Consequently, X
has a o-locally finite weak base. O

Y. Tanaka proved that a Lindelof space with a o-hereditarily closure-
preserving weak base has a countable weak base. The result is true for spaces
with a o-weakly hereditarily closure-preserving weak base.
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COROLLARY 2. FEvery Lindelof space with a o-weakly hereditarily closure-
preserving weak base has a countable weak base.

PrOOF. Let 2 = Un <~ 7 be a o-weakly hereditarily closure-preserving weak
base for a Lindelof space X, here each &, is a weakly hereditarily closure-
preserving family of X. First, we shall show that X is a gf~countable space. For
each x e X\I, put s, = {Pe 2 : P is a sequential neighborhood of x in X}. If
there are an n € N and an uncountable subset {B, : « < w;} of #; N2, then for
each o« < w; and any open neighborhood U of x in X, B,NUN(X\{x}) # &
because X\{x} is not closed in X. By the induction method, there is a subset
{xy:a<w} of X such that each x, e B,N(X\{x5:p8 < a})N(X\{x}), then
{x2:a <1} is an uncountable and closed discrete subspace of X, a contra-
diction with Lindel6fness of X, thus #,NZ, is a countable family for each
neN. Hence X is gf-countable. By [Theorem 1, X has a o-compact-finite weak
base. To complete the proof, it is sufficient to show that every compact-finite
family is countable in X. Let 2 be any compact-finite family of X, if 2 is not
countable, then 2 contains an uncountable subset {Q, : « < w;}. For each a < w,
take a g, € Q,, thus {g, : « < w;} is countable because 2 is weakly hereditarily
closure-preserving, so ¢ is belong to uncountable many members of {Q, : « < w;}
for some g € X, hence 2 is not point-finite, a contradiction. O

Put S} = {0} U{l/n:ne N} with the usual topology. Next, spaces with a
o-compact-finite weak base are characterized by products.

THEOREM 2. The following are equivalent for a space X:

(1) X has a o-compact-finite base.

(2) X x S1 has a o-compact-finite weak base.

(3) X x 81 has a o-weakly hereditarily closure-preserving weak base.

PrROOF. Put Z = X x Sj.

(1) = (2). Suppose that 2 ={) 2, 2= )5 & is a g-compact-finite
weak base of the space X and ), respectively. For each z = (x,s) € Z, put
H,={PxQ:PeP, Qe 9} then H#, is an sn-network of z in Z. Since X is a
k-space and S; is a locally compact space, Z is a k-space. And any compact
subset of Z is metrizable, then Z is a sequential space, thus 4, is a wn-network
of z in Z. Hence Uze - #; is a o-compact-finite weak base of Z.

(2) = (3) is obvious. (3) = (1). Let 2 be a o-weakly hereditarily closure-



90 Shou LN and Li YaN

preserving weak base for a space Z. For each xe X, ne N, put z, = (x,1/n),
then the sequence {z,} converges to (x,0) in Z, thus the family {Pe 2 :Pis a
sequential neighborhood of (x,0) in Z} is countable by Lemma 1, so the point
(x,0) is gf-countable in Z. Since X is homeomorphic to a closed subspaces
X x {0} of Z, X is a gf-countable space with a o-weakly hereditarily closure-
preserving weak base, X has a o-compact-finite weak base by Theorem 1. [

COROLLARY 3. The following are equivalent for a regular space X:
(1) X is a g-metrizable space.

(2) X x S; has a o-locally-finite weak base.

(3) X x Sy has a o-hereditarily closure-preserving weak base. O

ExaMPLE. There is a space X with a g-weakly hereditarily closure-preserving
weak base such that X does not any o-compact-finite weak base or any o-
hereditarily closure-preserving weak base.

Let X be the non-metrizable, paracompact space with a g-weakly hereditarily
closure-preserving base in Example 9 in [1]. Then X has not any o-hereditarily
closure-preserving base by Theorem 5 in [I]. It has been shown that X is not a
k-space in [1], thus X has not any o-compact-finite weak base. By the con-
struction of X, X has a unique non-isolated point 0. If X has a o-hereditarily
closure-preserving weak base 2, for each 0 € P e 2, P is open by the definition
of weak base, and for each x € X\{0}, {x} € 2 because {x} is open in X, thus
X has a o-hereditarily closure-preserving base, a contradiction. Hence X has not
any o-hereditarily closure-preserving weak base. O
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