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1. Introduction

B. Runge studied a connection between the invariant ring of a certain
finite group and the ring of Siegel modular forms in [3]. The generators of this
finite group are defined to be based on the action of Siegel modular group
on the theta constant. This finite group is the subgroup of the general linear
group GI/(29,C). This group has been studied on several papers, for example,
see [2].

Also, he studied a generalization of the above observation for Siegel-Jacobi
forms in [5]. A certain finite group related to is able to be defined in the
same way of the case of (see also [1]). This finite group is sometimes called
metaplectic group.

On the other hand, in [4], he discribed that the finite group in relates
to the theory of Fourier transformations. Particularly, he proved that the finite
group has a decomposition of Bruhat type (p. 183, theorem 2.2). This decom-
position theorem was efficiently used for the computation of dimension formula
(or Poincaré series) of ring of modular forms in [4].

Furthermore, in [6], he studied a invariant ring of weight polynomials for
a binary linear code. Each of weight polynomials is homogeneous polynomial
which is invariant of action of above finite group. And, he discribed that his
theory in [6] can be generalized for the other codes.

When we consider a generalization of Runge’s theory, as one step, we may
take up the above metaplectic group. In addition, the study of the structure of
this metaplectic group interests in the viewpoint of not only the generalization of
Runge’s theory but also group theory.

The purpose of this paper is to show a decomposition theorem of Bruhat type
for a certain metaplectic group.
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2. Notations and Some Properties of the Finite Group

Throughout in this paper, Z/mZ denotes the ring of integers modulo m.
In accordance with [5], we denote by H, the Siegel upper half space of genus
g defined by

Hy, :={Z e M(g,C)| Z: symmetric,Im(Z) > 0}.

Moreover we introduce for any positive integer m and a e (Z/2mZ)? the fol-
lowing theta functions

fa(m)(T,Z) = x;ge(m‘f [x -l-%] + <x+§,2mz>)

for (z,z) e Hy x C9, where e(-) = exp 2mi(Trace(-)) for matrices and numbers,
t[x] = ‘xtx and {,) denotes the standard scalar product. The functions

S = fim(z,0) = Z e(mr{x—kﬁ])

xeZd

are the corresponding theta constants.
It is well known that the symplectic group (Siegel modular group) Sp(2g, Z)
is generated by

(0 1 y S\ o
(0 (8 ) sesemun

These generators of Sp(2g,Z) acts theta constants fa(m) as follows:

For J = ( 0 19), we define
-1, 0
e 8) \Vv2m 2m ) o bez2mz)s
then

T = Vaet(—r) Y. (T)a ™

be(Z/2mZ)°
for all ae (Z/2mZ)°.

S
For L we have
0 1,
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Sla]

(5 o) o =f$m><r+5> —(Gn )i

where S[a] = ‘aSa.
So, in accordance with [1] and [5], we shall take following (2m)? x (2m)?-
matrices 7, and Dg:

1+ 1 N aw
Tg = \/’2— \/2_m (f , )a,be(Z/ZmZ)g

where £ denotes the 2m-th root of unity, {, > denotes the standard scalar product
and i denotes v/ —1,

Ds := diag(n®* for a e (Z/2mZ)?)

for S runs over all integral symmetric g x g-matrices, # denotes the 4m-th root of
unity, and Sa] = ‘aSa. Let

gg,m = <TgaDS>

be the subgroup of the unitary group U((2m)?,C) = GI((2m)?,C) generated by
T, and Dgs. This finite group is sometimes called metaplectic group of index m,
genus g. As show in [1], this group ¥, ,, is a finite group.
Based on the argument of , we define a mapping ¢ from the above finite
group to symplectic group
¢:%m— Sp(29,Z/2mZ).

This mapping ¢ is a surjective group homomorphism, which corresponds to

0 1 1, S _ ' .
Ty ( 1 dq ) and Dg — < Og 1 ) Further, there is a following diagram
-1, ,

among the group and symplectic group:
Sp(29,Z) % 4, m/{+1} 5 Sp(29,Z/2mZ).

The mapping  is a natural homomorphism. A mapping Sp(2g,Z) — %, » is not
homomorphism in general, so we consider ¥, ,,/{x1} instead of ¥, ,,.

In this paper, we shall restrict the m is a prime p and g =1 on the above
definition. That is,

Y .=%,,=<T,D)
where

141
T=Ti=y (S
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and
D := Dy = diag(n® for a € Z/2pZ).
The center Z(%) of the above group ¥ is generated by i? = (v/—1)? and T2, i.e.
Z(9) = P, T?).
In addition, we shall define the element Q, as following product of T and Dj:
Q, := T*D,-TD,TD,. T
where
D, := diag(n°® for ae Z/2pZ)
for o € (Z/4pZ)*. These elements T,D and Q, have the following relations:
T8 =Dp% =0, =1, T*=DTDTDT = —1,
TQ, = Q, T up to scalar multiple +i.

If c=0"! then Q, and T are always commutative.
Here, we shall consider the following Borel subgroup # of ¥:

B := (P, T?>, T'D¥T,D, Q,> = {i?, DX{T*, T 'D*T){ Q.

All elements of the Borel subgroup # are monomial matrix. The Borel subgroup
2 is a generalization of monomial group H, 4 in or [4].

3. The main results

In this section, let p be odd prime.
We shall recall that the Borel subgroup # = (i?, T2, T-'D*T,D,Q,> and
the center Z(%) = (i?, T*). We shall prove following theorem.

THEOREM 1. There is a decomposition
G =<(B,T)=RBUBTA.
ProoF. Since T2 e %, we may prove that TAT < U BTH. We take an
element b of %, and its express by
b=xi"--xf

where xy € # and g =+1 (k=1,...,r).
We shall consider the following two statements and (S2):

(S1) ThT € ZBURBTH for any be B.
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(S2) TbT =z or TbT =:zTx® for some ze# and xe %, ¢ = +1.

At first, we shall show that the statement (S2) hold on r=0,1 and 2 for each
generators of 4.

(In the case of r=0)
We see that TT = T? € 4.

(In the case of r=1)

About the generator i?, we see that T(i?)" T = T*(i")" € 4.

About the generator T2, we shall remark that 74 = —1. Then we have

T(T?)"T=T*T*" =+1e4.

About the generator T-!D¥* T, we see that

T(T-'D*»T)"T = (D¥)" T? € 4.

About the generator D, we shall remark that DTDTDT = —1.

For the case of &; = 1, it follows that TDT = —D~!T-'D~! = —p~lT-2TD1,
Since —D7!'T2 e % and D! € #, we obtain (S2).

For the case of &y = —1, we have TD™'T =T*(T-'D'T-1)T?=-T*DTD =
DTD.

About the generator Q,, we shall remark that 7Q, = Q,~1T up to scalar
multiple +i, and +ie %. Then we have T(Q,)"T = Q*,T? € 4.

(In the case of r =2)
First, as element b in (S2), we take the product of the generator i” and all
generators of 4.

T(iP)"(iP)*T = T*(i")""* € B.

TP (TH™T = (iP)" T*(TH* = +(i?)* € &.
T(iP)™(T-'D¥T)*T = (i?)" T(T-'D¥T)2T = (i )" (D¥*)*T? ¢ A.
T(EP)*"DeT = (i) TD*T € A.

T(i?)" Q2T = (i?)" TQ:T € AB.

Next, as element b in (S2), we take the product of the generator 72 and all
generators of 4.
T(T*»"(i")2T = +(i*)* € A.
T(TH*(T**T = +T? € &.
T(T>*(T7'D>?T)*T = (T*>)*T(T"'D*T)*T € A.
T(T?* DT = (T** TD*T € A.
T(T?)" Q2T = (T*H" TQ2T € A.

Next, as element b in (S2), we take the product of the generator T-!D¥T
and all generators of 4.
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T(T-'D¥T)* (i")?T = (i?)2(D¥*)" T € A.

T(T'D¥T)"(T*™T = (T*)?(D¥*)"T € A.

T(T—IDZp T)sl (T—IDZp T)ez T = (D2p)€1 TT ! TT—I(DZp)Ez — (DZp)8|+£z.
Since D% =1, we obtain (S2).

T(T'D¥*T)" DT = (D¥*)" TD*T € A.

T(T-'D¥*T)" Q=T = (D¥)"TQ*T € A.

Next, as element b in (S2), we take the product of the generator D and all
generators of 4.

TD® (iP)2T = (iP)*TD* T € 4.

TD*(T?)*T = (T*)?TD*T € &.

TD*(T-'D¥T)*T = TD*TT-(T-'D¥*T)"T ¢ %.

TD* DT = TD*TT'D%T € .

TD% Q2T = TD* TT-1 Q=T € &.

Next, as element b in (S2), we take the product of the generator Q, and all
generators of 4.

TQ: (iP)T = (i?)2TQ T € B.

TQX(TH™T = (T?)*TQ4T € A.

About the TQ: (T-'D¥T)*T.

If & =& =1, then TQ, T~ 'D¥T? = 0, D¥?T? e A.

If & =1 and & = —1, then TQaT-1(D¥)'T2 = TQ,T(D¥)" ¢ B.

In the case of ¢ = —1, we take TQ;! = T?°T-1Q;.

TQD»T = TQYTT'D*T € A.

TO Q2T =TQYTT- Q02T € &.

Further, we shall show that the statement (S1). We use induction on r
(r>2). Since T? € Z(9),

TbT =T(x;' ---x7)T
= T2T(xPx2)TT(x2 - x5)T.
If T(x;'x3?)T = z, then
T6T = T22T(xy - -x¥)T € BUBTA.

If T(x]'x;?)T = zTx?, then we shall put Tx*T = z'Tx" for some z' € # and
x'e B, & =+1. So,

TbT = T 2zz'Tx" (x2 - - x*)T € BU BT A.

This completes the proof of theorem 1. O
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Moreover, the group ¢ is decomposed as the following [Theorem 2| This is
the main theorem of this paper.

THEOREM 2. The group % has the following decomposition:

2p—1 -1
$=%| | D*T#| | D’TD*® | | D'TD’T# (disjoint union)
=0 p=0 y=0,1

where B = {iP,DY{T?, T 'D?TY{Q,>.

ProOF. From the mention of §2, there exists the surjective group homo-
morphism

9:% — Sp(2,Z/2pZ)

-1 0 0
that the symplectic group Sp(2,Z/2pZ) equals to the special linear group
SI(2,Z/2pZ), and SI(2,Z/2pZ) = SI(2,Z/2Z) x SI(2,Z/pZ).
Now, we put ¢(%):=N. Since
NcSI(2,Z/2pZ)=SI(2,Z/2Z) x SI(2,Z/pZ),

there are N' = SI(2,Z/2Z) and N” = SI(2,Z/pZ) such that N = N’ x N”. From
the result of [Theorem 1, we have

1 1
which corresponds to T »——+( 0 ) and Dw— (1 1). We shall remark

G =RBUBTH.

0 1
So,ifwematho( 1 O) and 4 to N we get

0 1
SI1(2,Z./2pZ) DNUN(_1 O)N.

Here, we take hekerg. If he BT#, then ¢(h) € N(_Ol (l))N and ¢(h) ¢ N.
However, since ¢(h) =1, thus ker ¢ = 4.

On the other hand, the cardinal of representative elements of RHS of this
theorem is clearly 3(p + 1). Therefore, the index

9 : B <3(p+1).
And since ¢(#) = 4, thus
[SI2,Z/2pZ) : (%)) < 3(p +1).
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Moreover, we have
SI(2,Z/2pZ)/N ~ SI(2,Z/2Z)/N’ x SI(2,Z/pZ)/N".

The SI(2,Z/2Z)/N’ is isomorphic to the projective space P1(Z/2Z) = {0,0,1}
and the SI(2,Z/pZ)/N" is isomorphic to the projective space P'(Z/pZ) = {0,
0,1,...,p—1}. Thus the index

[SI(2,Z/2pZ) : N] = #(PY(Z/2Z)) x #(P (Z/pZ)) = 3(p + 1).

Hence,
3(p+1) 2 [SI2,Z/2pZ) : 9(#)]
> [SI(2,Z/2pZ) : B) =3(p+1).
Next, we shall show that the RHS of this theorem is left invariant by the action
of T and D. We put ¢ := ( 0 1) and d* := (1 lll) for ue (Z/2pZ)*. We use

-1 0 0
the well known relations:

ar =2 )6 1) D)
(40
SO (G (G [y

o= (% D) D o)
(T

From the above relation, for the action of T' (we use the symbol -; this is the
product of matrix), we get

and

T -(D'T#)=D"'T®
for I=1,3,....,p—1,p+1,...,2p =1, I € (Z/2pZ)",
T .- (D"T®) =D"TD*T#

forn=2,....,2p—2, m=2"1"-n"! (mod p), and
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T -(DTDPT#) = DP*V/2TD>T 4.

Since T?€ Z(%9), so T-(TA) =B, T -(TD’TH) = DT is obvious.
On the other hand, for the action of D (as above, we use the symbol -), we

get
D - (%) =%,
D-(D°T#A)=D""'T# for v=0,...,2p—2,
D-(D¥°'T%)=TA.

And
D-(DYTD*T#) = D"''TD?>T# for w=0,...,p—2,
D .- (DP'TD?*T#) = TD*T4,
D - (DTD’T#) = TD’TA.
This completes the proof of theorem 2. O

4. Some Remarks

For p =2 case (i.e., ae Z/4Z), the group ¥ is as follows:

1 1 1 1 1 0 0 O
1+l 1 i -1 —i 0 0 O
22211 -1 1 -1} 0 0 -1 0
1 —i -1 i 0 0 0 n

where i = v/—1 and 7% = 1. In this case, we have

i 0 0 O
0 0 0 ¢
Z(g)=<_13T2>= il,i . :{QlaQ3’Q5’Q7}’

0 0 i O

0 i 0 O
0 01 0
0 0 0 1

_ _ 2 -1ndp _
B = 1,7, T7'D"T IOOO’D

01 0 0

The order of ¥ is 384, the order of Borel subgroup # of ¢ is 64, and the index
(9 : B = 6.
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For the action of 7, we get
T -(T#) = A,
T-(DT®)=-D'T'D'B=D"'T# =D*D*T# = D*TT™'D*T% = D*T%,
T.(TD?*T%) = D°TA.

For the action of D, we calculate the commutator

0 0 1 0
0 0 0 -1
4 4\—1 -1 4
= T = .
D41 =@y T T= | o e
0 -1 0 0

Then,
D.-(D3T#®) = D*T# = TD*|D*, T|%# = TA.
Further, D - (%) = %,

D - (TD*T®) = DTDDT# =T 'D'T-'T-'D7'T-'%
= TDST# = TD?>TT 'D*T%# = TD*T%.

Hence, we get

3
9 =aRB| |D*T#| |TD*T# (p=2 case).
o=0

In [5], B. Runge determined the kernel of theta representation. By using this
result, it is possible to determine the group structure more in detail, which has
been also indicated in [1]. So, we guess that the result of this paper can be gen-
eralized for the group defined with respect to Z/2mZ, more generally (Z/2mZ)°.
However, there is no direct generalization for the group defined for Z/mZ,
because the action of Siegel modular group Sp(2g,Z) on the theta constant (see
§2) is not well defind in the case that m is odd.

The result of the generalization for Z/2mZ may be more complicate than
the result of this paper. For example, the group ¥’ for Z/16Z (m = 8 case) is
given. In this case, the order of ¥’ is 24576, the order of Borel subgroup #’ of
%4’ is 1024, and the index [¥': #'] =24. In this case, we can take up 1, D*T
(a¢=0,...,15), DETD?*T (f=0,...,3), TD*T,TD3T, TD'’T, as representative
elements of the coset ¥'/#’. Here, the representative element TD?T is not
applied for the theorem of this paper. This fact is easily checked by using a
computer.
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