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HOPF ALGEBRAS GENERATED BY A COALGEBRA

By

Charles B. RAGOZZINE, Jr.

Abstract. The concept of a free Hopf algebra generated by a coal-
gebra was introduced by Takeuchi to provide an example of a Hopf
algebra with a non-bijective antipode. In general, this free Hopf
algebra is not generated as an algebra by the coalgebra. In this
paper, we construct a class of Hopf algebras, including SL,(2),
which are generated as algebras by a coalgebra and which satisfy a
useful universality condition.

Introduction

The paper is presented in three parts. First, a class of Hopf algebras which
are generated as algebras by a coalgebra is constructed. Next, the universality of
this class of Hopf algebras is addressed. Finally, relevant examples to this discus-
sion are considered, including SL,(2).

Most of the important preliminaries can be found in [I] and [2]. In particular,
following [1], we will use the superscripts “op” and “cop” to refer to the opposite
algebra and opposite coalgebra, respectively. We will also make use of the well-
known fact that the tensor algebra of a coalgebra (C,A,¢), denoted (T(C), A4,
71,A, &), is a bialgebra. For a reference, see [3].

1. The Construction

LemMMa 1.1. Suppose that (C,A,¢) is a coalgebra, (B,ug,ng,Ap,ep) is a
bialgebra, and f : C — B is a coalgebra map. Then, there exists a unique bialgebra
map f:T(C) — B extending f.

PROOF. By the universality of 7(C), we know that f induces a unique
algebra map f : T(C) — B. It remains to show that f is a coalgebra map, which
requires ego f =& and f ® f oA = Ago f. Identify C with its image in T(C),
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and we have (ez o f)(c) = ep(f(c)) = ep(f(c)) = &(c) = &(c) and (Ag f)g ¢) =
Ap(f(0)) = Ap(f(c)) = (f ® /)(A(¢c)) = (f ® /)(A(e)) = (f®NA(C)=(f®
foA)(c). (]

We now proceed with the construction. Let (C,A,¢) be a coalgebra, and let
S : C — C®P be any coalgebra map. In other words, S is a coalgebra antimor-
phism on C. Then, by Lemma 1.1, S induces a bialgebra map S:T(C) —
T(C)?“?, and we have the commutative diagram

c. —— T(C)

CeP —— T(C)P¥.

The effect is that S has been extended to S in such a way that S(xy) = S(»)S(x),
for all x, y e T(C) and with the property that o S =& and S®SoA=A%0S8S.

Next, let 7 = I(S) be the two-sided ideal of T(C) generated by elements of
the form

> X'S(x") —&(x)1 and Y S(x)x" -&x)l Vxei(C).
(x)

LemMma 1.2. 1 is a coideal of T(C) such that S(I) < I.

Proor. First, we prove that I is a coideal of T(C). This requires that
AI) = I®T(C)+ T(C)®I and &1I) =0. Note that (S® S)oA=A%0S &
(S® S)o A% = Ao S. It suffices to show the first coideal condition is true for the
generators of I since A is an algebra morphism. We have

A (Z x'S(x") — é(x)l)
(x)

= A(x"A — &(x)A(1)
()

— S AR)-S@S0A”(x") —g(x)1® 1
(%)

=) X ®@x" - 5(x")®@S(x") - &x)1®1
(x)
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— Zxrg(x////) ®x1/§(x///)'_ é(x)l ®1
(x)

— ZX’S(X"" ® [x"S(x'") ( //)1 +8( //)1] _ B(X)l ® 1
(x)

_ les(xm/) ® [ "S(x’”) s(x")l + ZXIS ////) ®8(x”)1 _ e(x)l ®1

) ~ )

- >

ETFCS@I

= Zx'S(x'"’) R&x"N -&x)I1®1 modIQT(C)+T(C)®I
(x)

=) " X'S(x")@&(x")1-&x)1®1 modI® T(C)+T(C)®1
5

=Y X5(x") ®&(x")1 —&(x)1®1 modI®T(C)+T(C)®I
)

= Zx’é(x”)g(x”) ®1- é(x)l ®1

=S XS @1 -ax)1®1
(%)

®1—8(x)1®1

:[Zx’s x") — &(x)1 + &(x)1
(%)

R@l+ex)I®1-28x)1®1

= [Z x'S(x") — &(x)1

()

g

o~ —

el

~ s
—

eI®T(C)

=0 modI@T(C)+T(C)®I.

The proof uses the coassociative and counitary axioms and is similar for
generators of the form 3, S(x")x” —&(x)1, and thus, A(J) =I®T(C)+
T(C)® I. Using the fact that & is an algebra morphism, it is easy to show
that the second coideal condition holds for the generators of I and so,
&I)=0.

Lastly, since S is an algebra antimorphism, it is enough to show that
S(I) = I for generators of I
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(Zx’S x") — &(x) ) ZS x') — &(x)S(1)

=[Ao (S®id)o (§® §0A¥)(x) - &x)1
=[fio(S®id)o (Aog)](x) —&08(x)1

= 5(8(x — &(S(x))1
(8(x))

—ZS Yy" — &)1, for y=S(x)ei(C)
(»)

=0 modl/.

Thus, 5’(2 x'S(x") — é(x)l) € I, and likewise for generators of the other form.
)
Therefore, S(I) = I. O

We summarize the preceding results in the following theorem.

THEOREM 1.3. Let C be a coalgebra, and S : C — C“ be any coalgebra
map. Then, #(C,S) = T(C)/I(S) is a Hopf algebra with antipode S, the unique
bialgebra morphism S : #(C,S) — #(C,S)”” induced by S.

PrOOF. As a consequence of Lemma 1.2, I(S) can be factored out of T(C),
yielding a nontrivial quotient (#(C, S), i, /i, A, &) with the structure of a bial-
gebra. In fact, the induced S is the antipode for #(C,S). Consider the inter-
section of the kernels of id xS —#o0é and Sxid —foé It is a subalgebra of

H#(C,S) which contains i(C), and since i(C) generates s (C,S) as an algebra,
we have id* S =foé= Sxid. O

2. The Universality of #(C,S)

A natural question to ask is: If we begin with a pair (C,S) and construct
H#(C,S), in what categorical sense is S#(C,S) free? The following result char-
acterizes the universality of #(C,.S).

THEOREM 2.1. Given any pair (H,f), where H is a Hopf algebra and
f:C — H is a coalgebra map satisfying f oS = Sy of, there is a unique Hopf
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algebra morphism f : A (C,S) —» H such that foi1=f. In other words, we have
the commutative diagram

Cc —— #(C,S)

S

H

where 1=moi, with i:C — T(C) denoting the canonical injection and = :
T(C) — #(C,S) denoting the canonical surjection.

ProoF. We have to show that we can lift f to s#(C,S) in the following
diagram:

(2.1) C — s T(C) —Z» #(C,S)

SN

H

Beginning with the left side of (2.1), we use Lemma 1.1 to lift f to a bial-
gebra map f : T(C) — H. The assumption f oS = Sy of liftsto fo S = Syo f,
where S : T(C) — T(C)?“? is the previously constructed bialgebra map. Thus,
f induces a bialgebra map f : T(C) — H satisfying f oS = Sy o f.

Next, consider the right side of (2.1). We have reduced the problem to lifting
the bialgebra map f to a Hopf algebra map f : #(C,S) — H. This requires that
I(S) = ker f and f oS = Syo f. Clearly, the former condition will hold if and
only if £ annihilates the generators of I(S). Identify C with its image in T(C),
and we have

7 (Z *'S(x") - é(xn) = 37 F(x)F 0 5(x") — &(x)F(1)
()

V'Su(y") —en(y)lu, for y=f(x)eH
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Similarly, f (Z S(x")x" — é(x)l) =0, and so, I(S) < ker f. The latter condition
(x)

is immediate. Hence, f induces a Hopf algebra map f:#(C,S) — H, and the
theorem follows. d

3. Examples of Hopf Algebras #(C;,S)

In this section, we present some examples, including SL,(2), obtained from
our construction. The following definition is from [4].

DerINITION 3.1, Let C, = C,(C) be a coalgebra with basis {x;},.; ;<, over
C and structure maps defined by

A(xy) =Y xx @x; and  &(x;) = dy.
k=1

Following Takeuchi, we call C, the n x n matric coalgebra since it is isomorphic
to M}, the dual of the n x n matrices with convolution product.

ExampPLE 3.2. Consider the situation of Theorem 2.1 with C = C, and
H = SL,(2):

C, —— #(Cy,S)

gl

SLy(2)

where f is the coalgebra map defined by f(x11) =a, f(x12) =b, f(xn)=c,
f(x22) =d, and S:C, — C;” is the coalgebra map defined by S(x11) = x2,
S(x12) = —gx12, S(xn) = —¢ 'x21, S(x22) = x11. The hypotheses of Theorem 2.1
are easily seen to be satisfied. Thus, there is a Hopf algebra map f:
#(Cy,S) — SL,(2), which we claim is a Hopf algebra isomorphism. Now,
H(C,,S) = T(Cy)/I(S) where T(C;) = C{x11,X12,%21, %22}, the free associative
algebra on four generators. See for the latter fact. In Kassel’s notation, the
generators of I(S) can be written in abridged matrix form as

X111 X12 s X1 xn2 _ _{ X1 X2
X21 X22 X21 X22 X21 X22

and
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(3.2) g(xu xlz) . (xu x12) _ﬁoé(xn xlz)_

X21  X22 X21  X22 X21  X22
In addition, SL,(2) is defined in [1] as the quotient of the free associative algebra
C{a,b,c,d} by the two-sided ideal with generators given by

o COCE™-GY)

and

o (e ) a)-G)

in abridged matrix form. We will construct a two-sided inverse for f. There exists
an algebra map g: C{a,b,c,d} — #(C,,S) defined by g(a) = x11, g(b) = x12,
g(c) = x21, and g(d) = xy;. Notice that under g, expressions of the form
and [3.4) are mapped to [3.1) and [3.2), respectively, and these images are zero
in %(CZ,S) Thus, g induces a Hopf algebra map g:SL,(2) = #(C,, S) with
fog=idg ,2 and go f idx(c,,s)- Therefore, f is an isomorphism of Hopf
algebras, and we have the following resuit.

THEOREM 3.3. With the coalgebra map S of Example 3.2, #(C,,S) is
isomorphic to SL,(2).

ExampLE 3.4. Now, we will turn our attention to a slightly different ques-
tion involving C,. Example 3.2 suggests a general situation in which we can
ask: Are there other coalgebra maps S: C, — C,” which yield Hopf algebras
#(C,,S) that are not isomorphic to SL,(2)? Since the dimension of C, is
small, we can use Mathematica to search for solutions. Any coalgebra map S :
C, — C;” must be of the form:

S(x11) = anxi + aipxi2 + aizxa + auxzn
S(x12) = a1 x11 + anxi2 + axx21 + auxn
S(x21) = az1x11 + anxi2 + azzx21 + azaxxn

S(x22) = as1x11 + ax12 + as3x1 + asax

where a;; € C for 1 < i, j < 4. Moreover, since S : C; — C,;% is a coalgebra map,
it must satisfy the abridged matrix relations:
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(3.5) S®SoA0p(X11 xlz)zAOS(xu xn)
X X2 X21  X22
and
(3.6) eoS(x“ x12)=8<x11 x12>.
X X2 X221  X22

The equations from [[3.5) can be expanded out and written in terms of a basis
for C; ® C,, namely {x; ® xu},; j1<2 to yield 64 equations upon equating
coefficients. From [3.6), there are 4 additional equations. We use Mathematica to
solve the 68 equations in 16 unknowns a;, 1 < i, j < 4. In particular, this search
found the coalgebra map S of Example 3.2 and Theorem 3.3 among the solu-
tions. It can be expressed as

X1 X X —gx
(3.7) S( 11 12> _ ( _212 q 12>'

X21  X22 —q "X21 X11
In addition, there were several other families of solutions, including a simple one
given in abridged matrix form by

X1 X x X
(3.8) T( 1 12) _ ( _111 q 21).

X1 X2 qg X12 X222
Notice that S is the quantum analogue to the inverse map and that T is the
quantum analogue to the transpose map.

Moreover, #(C,,S) and #(C,, T) are not isomorphic. This can be seen by
computing S and T2. We have

(3.9) Sz()m Xlz) :< S(x2) —qS(xlz)) ___( X11 q2x12>
X21 X22 —g7'S(x21)  S(xn) g 2 xn  x2

and
(3.10) Tz(x“ xlz) =( _T1(x“) qT(le)) _ (xn xlz)‘
X1  X22 g 'T(x12) T(x22) X21 X2

Equations (3.9) and (3.10) imply that S is of infinite order and 7 is of finite
order, respectively. In addition, S? and 72 do not have the same set of eigen-
values because T2 has only real eigenvalues, and S? has some complex eigen-
values. This guarantees that #(C,,S) and #(C,, T) are not isomorphic because
any isomorphism between them would have to preserve the eigenvalues for the

antipodes and their powers. Example 3.4 shows that the construction of # (C,S)
depends on both C and S.
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