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ZERO-DIMENSIONAL SUBSETS OF HYPERSPACES

By

Alejandro ILLANES

Abstract. Let X be a metric continuum, let 2% be the hyperspace of
all the nonempty closed subsets of X and let C(X) be the hyperspace
of subcontinua of X. In this paper we prove:

"THEOREM 1. If # is a O-dimensional subset of 2%, then 2% — #
is connected.

THEOREM 2. If # is a closed O-dimensional subset of C(X)
such that C(X)— {A} is arcwise connected for each A e #, then
C(X) — A is arcwise connected.

Theorem 2 answers a question by Sam B. Nadler, Jr.

Introduction

Throughout this paper X denotes a nondegenerate continuum, i.e., a compact
connected metric space, with metric d. Let 2¥ be the hyperspace of nonempty
closed subsets of X, with the Hausdorff metric H, and let C(X) be the hyperspace
of subcontinua of X.

J. Krazinkiewicz proved in that if J# is a 0-dimensional subset of C(X),
then C(X) — # is connected. In this paper we use Krasinkiewicz’ result to prove
the following theorem:

THEOREM 1. If A is a O-dimensional subset of 2%, then 2% — A is connected.

On the other hand, in Krasinkiewicz’ Theorem the word “connected” can not
be replaced by “arcwise connected”. Even if X is the sin(1/x)-continuum and A4 is
the limit segment, then C(X) — {4} is not arcwise connected. In [7, Question
11.17], Nadler asked the following question: if J# is a compact 0-dimensional

1991 Mathematics Subject Classification. Primary: 54B20
Key Words and Phrases: Arcwise connected, Hyperspace, 0-dimensional
Received August 3, 1999



250 Alejandro ILLANES

subset of C(X) and if C(X) — {4} is arcwise connected for each 4 € #, does it
follow that C(X) — s# is arcwise connected? This question has been affirmatively
answered for the following particular cases:

— if s has two elements (Nadler and Quinn, [§, Lemma 2.4]),

— if # is finite (Ward, [9])

— if # is numerable (Illanes, [3], this result was rediscovered by Hosokawa
in [I]).

Furthermore, in [3], the author showed that any two elements of C(X) — #
can be joined by an arc which intersects # only a finite number of times.

In this paper we finally solve the general question by proving the following
theorem.

THEOREM 2. If # is a closed 0-dimensional subset of C(X) such that
C(X) — {A} is arcwise connected for each A e #, then C(X)— H is arcwise
connected.

Proof of [Theorem 1

Throughout this section # will denote a 0-dimensional subset of 2¥. By
Krasinkiewicz’ result in [5], C(X) — 5 is connected. Let £ be the component of
2% — # which contains C(X) — #.

In order to prove that 2¥ — 5 is connected, it is enough to prove that % is
dense in 2¥. Since the subset of 2X¥ which consists of all the nonempty finite
subsets of X is dense in 2%, we only need to prove the following claim:

Claim. For each finite subset F = {p;,...,pn} of X and for each &> 0,
there exists an element L € ¥ such that H(F,L) < e.

Let F={p1,...,pm} and ¢ > 0.

Take an order arc y from a fixed one-point set { po} to X (see [7, 1.2] for the
definition of order arc). Since J# is 0-dimensional, there exists an element
Mey—# < C(X)— s such that H(M,X) <¢/2 and M is nondegenerate.
Choose points gi,...,9» € M such that d(p;,q;) <e/2 for each ie {l,...,m}.
Let {U,},-, be a sequence of proper open subsets of M such that ¢, € U, for
every n>1, U > cl(Uy)oU; > cl(Us) > Us > ...,cl(U,) — {q:1} (conver-
gence in 2X) and M # cl(U)) = {qe X : d(q,q1) < &/2}.

Let Ly = {ql,...,qm}U(BdM(Ul)UBdM(Uz)UBdM(Ug,)U ) Clearly,
Lo e2¥. Fix a nondegenerate subcontinuum D of Uj —cl(U;). Then the set
{LoU{x} €2¥ : xe D} is a nondegenerate subcontinuum of 2¥. Since # is
0-dimensional, there exists a point xo € D such that LoU {x¢} ¢ .
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Define L = LyU{xp}. Then Le2¥ — # and H(F,L) < e.

We will show that L e &Z.

Foreachn > 1, let 4, =M — U, « M — cl(U,4,). Take an order arc 7, from
A, to M. Since M —cl(U,1) is an open subset of M, there exists a (non-
degenerate) subarc o, of y, such that each of its elements is contained in
M — cl(U,41) and A4, € 6,. Consider the set 8, = {LUK : K € g,}. It is easy to
show that 6, is a (nondegenerate) order arc from LU 4, to some element in 2.
Since  is O-dimensional, we can choose an element B, = LUK, €0, — #,
where K, € g,. Notice that 4, = K, = 4,,;.

Next, we will check that every component of B, intersects L. Let C be a
component of B,. Since the subarc of 6, which joins LU A4, and B, is an order
arc, then (see [7, 1.8]), CN(LUA4,) # &. If CNL = ¥, we can take an element
xe CNA,. Let C; be the component of 4, which contains x. Thus C; < C, and
by ([7, 20.2]), & # CiNBdy(U,) = CNL. This contradiction completes the
proof that CNL # .

As a consequence of the claim of the paragraph above, we obtain that every
component of B,,; intersects B,.

Let By = L. Notice that B,_; is a proper subset of B, for every n > 1. By
[7, 1,8], there exists a map S, :[0,1] — 2 such that B8,(0) = B,_1, B,(1) = B,
and if 0 <s<t¢<1, then B,(s) is a proper subset of f,(¢).

For each n > 1, let a, : [0,1] — 2% be a map such that a,(0) = Bdy(U,2),
a,(1) =M and if 0 <s<r<1, then a,(s) is a proper subset of a,(z). Since
Bday(Uny2) < Upyy — cl(Upnys), there exists £, >0 such that o,(z,) = U,y —
Cl(Un+3).

Let ¢, :[0,1] x [0,1] — 2™ be given by ¢,(s,t) = a,(st,) UB,(¢). It is easy
to check that ¢, is continuous, one-to-one, ¢,(0,1) = B, and ¢,(0,0) = B,_;. Let
%, =¢,(10,1] x [0,1]). Then %, is a 2-cell. By [2, Theorem IV 4], 4, — # is
connected and contains B,_; and B,.

Let 4= U{%,:n>1}. Then ¥ is a connected subset of 2¥ — # and
contains the element By = L. On the other hand, since 4, — M, and
An = B, = M for each n > 1, we conclude that B, — M and M € cl,x(%). This
implies that ¥ = #. Therefore, L € #. This completes the proof of the claim and
thus the proof of [Theorem 1. n

Proof of

Throughout this section s# will denote a closed 0-dimensional subset of C(X)
such that C(X) — {4} is arcwise connected for each 4 € J#.
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Lemva 1. If A, BeC(X)—#, ANB#F, A—B#Q and B— A # &,
then A and B can be joined by an arc in C(X) — #.

PrOOF. Fix a component C of AN B. Then C is a proper subcontinuum of
both 4 and B. Let «,f:[0,1] > AUB be maps such that «(0) = C = B(0),
a(l) = A4, f(1) =B and s <t implies that o(s) (resp., B(s)) is a proper sub-
continuum of «(f) (resp., B(t)) (see [Nd78, 1.8]). Let ¥ = [0, 1] x [0, 1]. Define
p:% — C(AUB) by:

9(s,1) = a(s) U B(1).

Clearly, ¢ is continuous, ¢(1,0) = 4 and ¢(0,1) = B. If D is a component of
9 '(#), then ¢(D) is a connected subset of #. Thus (D) has exactly one
element. Therefore, D is a component of ¢~ !(E) for some E € #.

Since ¢(1,0) and ¢(0,1) ¢ # and # is compact, there exists 0 <r < 1/2
such that {([1 —r,1] x [0,r)U([0,7] x [1 = r, 1)} Ne~ (#) = &.

Let G =(0,1-r]x{0})U({0} x[0,1—r]) and G,= ({1} x][r,1])U
([r,1] x {1}). Let G=G,UG,Up ' (#). Then G is a compact subset of %.

We will see that no component of ¢~!(3#) intersects both G, and Gb.
Suppose, to the contrary, that there exists a component D of ¢~!(3#) such that
DN Gy # & and DN G, # . Then there exists an element E € # such that D is
a component of ¢ !(E). Let z= (s,t) e DNG, and w = (4,v) e DN G,. Then
a(s) UB(2) = ¢(z) = p(w) = a(u) UB(v). Notice that s =0 or t = 0. If s =0, then
¢(z) = B. This implies that a(u) = AN B. Hence a(u) = C. Thus u = 0. This is a
contradiction since w € G,. A similar contradiction can be obtained assuming that
t = 0. Therefore, no component of ¢~!(#) intersects both G; and G-.

We are ready to apply the Cut Wire Theorem ([7,20.6]) to the compact space
¢~ !(#) and the closed sets p~!(#)N Gy and ¢~ (#) N G,. Thus there exist two
disjoint closed sets H,, H, in % such that ¢~ (#) = HiUH,, ¢~ (#)N G, c H;
and ¢~ (#)N G, « H,. Define L, = GiUH, and L, = GoUH,. Then L; and L,
are disjoint closed subsets of €. Thus there exist two disjoint open subsets U; and
U, of € such that Ly < Uy and L, < U,.

Let U be the component of U; which contains G; and let M be the com-
ponent of ¥ — U which contains G,. It is easy to prove that € — M is connected.
Since % is locally connected M is closed in ¥ and Bdg (M) = Bd¢(U) = Bdg(U)).
Let L = Bdy(M). Then LN(LUL,;) = &. Since Gy =« ¥ — M, L separates G
and G, in %. Since ¥ is unicoherent ([6, Thm. 2 II, §57, Ch. VIII]), L is a
subcontinuum of %.

Since [0,7] x [1 —r, 1] is a connected subset of % that intersects both G
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and G,, we obtain this set intersects L. Similarly L intersects [1 —r, 1] x [0,r].
Then the set Lo = LU ([1 —r, 1] x [0,7]) U ([0,7] x [1 —r,1]) is a subcontinuum of
% — ¢~ (#). Since ¥ is locally connected, there exists an open connected (and
then arcwise connected) subset V of € such that Lo = V = € — ¢! (#). Let A be
an arc in V joining (1,0) and (0,1). Therefore, ¢(4) is a path in C(X)— #
joining A and B. |

LEMMA 2. If A,Be C(X)— # and A = B # A, then A and B can be joined
by an arc in C(X) — #.

ProoF. By [7, 1.8], there is an order arc from 4 to B. That is, there is a
map « : [0,1] — C(B) such that a(0) = 4, a(1) = B and if s < ¢, then a(s) is a
proper subcontinuum of «(z). Let 4 = o~} (#).

First, we will show that for any re %, there exists & >0 such that
(t—ent+¢&) <= (0,1) and for every se (t —&,t) — % and every re (t,t +¢&) — %,
a(s) and «(r) can be joined by an arc in C(X) — #.

Since «(t) e #, C(X)— {a(?)} is arcwise connected. Then there exists a
one-to-one map f:1[0,1] — C(X) — {a(z)} such that f(0) = 4 and B(1) = B. Let
u=max{vel0,1];8(w) ca(t) for eachwe[0,v]}. Then pS(u) is a proper
subcontinuum of «(z). Since f is continuous, there exists z € (u,1) such that
the continuum C = U{f(w):u <w <z} does not contain «(f). Since # is
0-dimensional, we may assume that C ¢ #. By the definition of u, C is not
contained in «(?).

We consider two cases:

Case 1. «afr) is indecomposable.

By [7, 1.52.1 (2)], p(u) is contained in the composant of «(¢#) which con-
tains 4. Then there exists a proper subcontinuum D of «(¢) such that
DNA # & # DNP(u). Growing D by using an order arc from D to «(¢), we may
assume that D is not contained in C and D¢ #. Let ¢ >0 be such that
(t—ent+¢&) < (0,1), a(t — &) is not contained in D, a(z — ¢ is not contained in
C and ot +¢,) does not contain C.

In order to show that ¢ has the required properties, let s € (t — &,¢) — % and
re(t,t+¢&)—%. Then a(s)ND # & and a(s) — D # &.

If D— a(s) # ¢, then we may apply to the pairs «(s) and D; D
and C; C and o(r), and conclude that «(s) and «(r) can be joined by an arc in
C(X)— .
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If D < a(s), then we may apply to the pairs afs) and C;, C
and a(r), and conclude that «(s) and a(r) can be joined by an arc in
C(X)—#.

Case 2. oft) is decomposable.

In this case a(¢) = EUF, where E and F are proper subcontinua of (7). We
may assume that £, F¢ # and E—C# g # F — C.

Let & > 0 be such that ( —¢&,t+¢&) < (0,1), a(t — &) is not contained in any
of the sets C, F and F, and C is not contained in «(?+ &).

Let se (1t —é&,t) —% and re (t,t+¢&) — %. Then a(s) is not contained in any
of the sets E, F and C. Since a(s) is a proper subcontinuum of «(¢), E — a(s) # &
or F —a(s) # &. Suppose, for example, that E is not contained in a(s).

If ENC # (&, then we may apply to the pairs a(s) and E; E and
C; C and o(r), and conclude that o(s) and o«(r) can be joined by an arc in
CX)— .

If FNC # (&, then we may apply to the pairs a(s) and E; F and F;
F and C; C and «(r), and conclude that «(s) and «(r) can be joined by an arc in
c(X) - .

This completes the proof of the existence of e,.

Now we are ready to prove Lemma 2|

Let t € 4 and let ¢, > 0 be as before. We claim that if s,r € (t — &,t+ &) — %,
then «(s) and a(r) can be joined by an arc in C(X) — #. Indeed, if ¢ is between s
and r, this claim follows from the choice of ¢, and if, for example, s,r < ¢, then
fix r) € (1,1 + &) — 4. By the choice of &, both pairs a(s), «(r)) and a(r), a(r;) can
be joined by an arc in C(X) — #. Thus, a(r), a(s) can be joined by an arc in
C(X)—#.

Given a number € [0,1] — ¥4, there exists ¢ > 0 such that (1 —¢,t+¢)N
% = (¥. In this case, if s,r € (t — &,t+ &) N[0, 1], then a(s) and «(r) can be joined
by an arc in C(X) — #.

For the open cover {(t —¢&,t+¢) : t€|0,1]}, there exists d > 0 such that if
s,re[0,1] and |s—r| <9, then s,re (¢t —&,t+¢) for some 7€ |0,1].

Choose a partition 0=t <t;, <---<t,=1 such that ¢, —¢_, <J and
ti¢ % for each i=1,2,...,m.

Thus, for each ie1,2,...,m, a(t;-;) and «(¢;) can be joined by an arc in
C(X) — #. Therefore, A and B can be joined by an arc in C(X) — #. [

Proor oF THEOREM 2. We consider two cases:
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Case 1. X is indecomposable.
In this case C(X)—{X} is not arcwise connected (see [7, 1.51]). Then
X ¢ #. Given an element 4 € C(X) — (#U{X}), by Lemma 2, 4 and X can be

connected by an arc in C(X) — .

CasE 2. X is decomposable.

Let X = FUF, where E and F are proper subcontinua of X. Since 5 is
0-dimensional, we may assume that E, F ¢ #. Given an element 4 € C(X) —
(#U{X}), taking an order arc from A to X, we can find an element
Be C(X) — o, such that 4 is a proper subcontinuum of B, B# X, B— E #
and B— F # (. Notice that E — B # (§ or F — B # (. Suppose, for example,
that £ — B # . By [Lemma 1|, the pairs E, B and E, F can be joined by an arc
in C(X) — #, and by [Lemma 2, 4 and B can be joined by an arc in C(X) — #.
Then A4 can be joined to both E and F in C(X) — 5. In the case that X ¢ #, by
[Cemma 2, X can be joined to both E and F in C(X) — . This completes the
proof that C(X) — s is arcwise connected. |
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