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REAL HYPERSURFACES OF A COMPLEX PROJECTIVE
SPACE SATISFYING A POINTWISE NULLITY

CONDITION

By

Jong Taek CHO* and U-Hang KI**

Abstract. In this paper, we give a classification of real hypersurfaces
of a complex projective space $CP^{n}$ satisfying a pointwise nullity
condition for the structure vector field $\xi$ i.e., $R(X, Y)\xi=k\{\eta(Y)X-$

$\eta(X)Y\},$ $k$ is a function, and further we prove a local structure
theorem of real hypersurfaces of $CP^{n}$ which satisfies $R(X, A\xi)\xi=$

$k\{\eta(A\xi)X-\eta(X)A\xi\}$ . The motivation of the present paper is a well-
known fact that $CP^{n}$ does not admit a real hypersurface of constant
curvature.

0. Introduction

Let $CP^{n}=(CP^{n}, J,\tilde{g})$ be an n-dimensional complex projective space with
Fubinistudy metric $\tilde{g}$ of constant holomorphic sectional curvature 4, and let $M$ be
an orientable real hypersurface of $CP^{n}$ and $N$ be a unit normal vector field on $M$.
Then $M$ has an almost contact metric structure $(\phi, \xi, \eta, g)$ induced from the
K\"ahlerian structure $(J,\tilde{g})$ of $CP^{n}$ (see Section 1). One of the typical examples of
$M$ is a geodesic hypersphere. R. Takagi ([8]) classified homogeneous hyper-
surfaces of $CP^{n}$ into six types. T. E. Cecil and P. J. Ryan ([1]) extensively
investigated hypersurfaces which are realized as tubes of constant radius $r$ over a
complex submanifold of $CP^{n}$ on which the structure vector field $\xi$ is a principal
curvature vector field with principal curvature $\alpha_{1}=2\cot 2r$ and corresponding
focal map $\varphi_{r}$ : $M\rightarrow CP^{n}$ (defined by $\varphi_{r}(p)=\exp_{p}(rN)$ ) has constant rank. We
denote by $\nabla$ the Levi-Civita connection with respect to $g$ . The curvature tensor
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field $R$ on $M$ is defined by $R(X, Y)=[\nabla_{X}, \nabla_{Y}]-\nabla_{|X.Y|}$ where $X$ and $Y$ are vector
fields on $M$ . It is well-known that $CP^{n}$ does not admit a real hypersurface with
constant sectional curvature (cf. [2]).

On the other hand, S. Tanno ([10]) defined for $k\in R$ the k-nullity distribution
$N(k)$ of a Riemannian manifold by $N(k):p\rightarrow N_{p}(k)=\{z\in T_{p}M:R(x, y)z=$

$k(g(y, z)x-g(x, z)y)$ for any $x,$ $y\in T_{p}M$ }. If $T_{p}M=N_{p}(k)$ for any point $p\in M$ ,
then we see that $M$ is of constant curvature $k$ . In the present paper, we consider a
real hypersurface of $CP^{n}$ whose stmcture vector field $\xi$ satisfies a pointwise
nullity condition, namely, in Section 2, we give a classification of a real
hypersurface $M$ of $CP^{n}$ which satisfies $R(X, Y)\xi=k\{\eta(Y)X-\eta(X)Y\}$ , where $k$

is a function on $M$. Moreover in Section 3, we investigate a real hypersurface of
$CP^{n}$ which satisfies $R(X, A\xi)\xi=k\{\eta(A\xi)X-\eta(X)A\xi\}$ , where $k$ is a function on
$M$ . In Section 4, we determine real hypersurfaces of $CP^{n}$ which satisfies
$ A^{2}\xi=\lambda A\xi$ and $(\phi\cdot R)(X, A\xi)\xi=0$ , where $\phi\cdot R$ means $\phi$ operates on $R$ as a
derivation. In this paper, all manifolds are assumed to be connected and of class
$C^{\infty}$ and the real hypersurfaces are supposed to be oriented.

The author thanks to the referee for useful comments and advices on
preparing the revised version.

1. Preliminaries

At first, we review the fundamental facts on a real hypersurface of $CP^{n}$ . Let
$M$ be a real hypersurface of $CP^{n}$ and $N$ be a unit normal vector field on $M$ . By $\tilde{\nabla}$

we denote the Levi-Civita connection with respect to the Fubini-Study metric of
$CP^{n}$ . Then the Gauss and Weingarten formulas are given respectively by

$\tilde{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)N$ , $\tilde{\nabla}_{X}N=-AX$

for any vector fields $X$ and $Y$ on $M$, where $g$ denotes the Riemannian metric of
$M$ induced from $\overline{g}$ . An eigenvector (resp. eigenvalue) of the shape operator $A$ is
called a principal curvature vector (resp. principal curvature). For any vector field
$X$ tangent to $M$, we put

(1.1) $JX=\phi X+\eta(X)N$ , $ JN=-\xi$ .

Then we may see that the structure $(\phi, \xi, \eta, g)$ is an almost contact metric
structure on $M$, that is, we have

$\phi^{2}X=-X+\eta(X)\xi$ , $\eta(\xi)=1$ ,
(1.2)

$g(\phi X, \phi Y)=g(X, Y)-\eta(X)\eta(Y)$ .
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From (1.2), we get

(1.3) $\phi\xi=0$ , $\eta\circ\phi=0$ , $\eta(X)=g(X, \xi)$ .

From the fact $\tilde{\nabla}J=0$ and (1.1), making use of the Gauss and Weingarten
formulas, we have

(1.4) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ ,

(1.5) $\nabla_{X}\xi=\phi AX$ .

Since the ambient space is of constant holomorphic sectional curvature 4, we
have the following Gauss and Codazzi equations:

(1.6) $R(X, Y)Z=g(Y, Z)X-g(X, Z)Y$

$+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z$

$+g(AY, Z)AX-g(AX, Z)AY$ ,

(1.7) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi$ .

From (1.6), using (1.2), (1.3), then the Ricci tensor $S$ is given by

(1.8) $SX=(2n+1)X-3\eta(X)\xi+hAX-A^{2}X$ ,

where $h=the$ trace of $A$ . We recall the following

PROPOSITION 1 ([6]). If $\xi$ is a principal curvature vector field, then the
corresponding principal curvature $\alpha \mathfrak{l}$ is constant.

PROPOSITION 2 ([1]). Let $M$ be a real hypersurface of $CP^{n}$ on which $\xi$ is
principal with principal curvature $\alpha_{1}=2\cot 2r$ and the focal map $\varphi_{r}$ has constant
rank on M. Then the following hold:

(i) $M$ lies on a tube (in the direction of $C=\gamma^{\prime}(r)$ where $\gamma(r)=\exp_{p}(rN)$ and $p$

is a base point of the normal vector $N$ ) of radius $r$ over a certain Kahlerian
submanifold in $CP^{n}$ .

(ii) Let $\cot\theta$ be a principal curvature of the shape operafor $A_{C}$ at $q=\gamma(r)$ of
the Kahlerian submanifold. Then the real hypersurface $M$ has a principal curvature
$\cot(r-\theta)$ at $p=\gamma(0)$ .

THEOREM 1 ([7]). Let $M$ be a real hypersurface of $CP^{n}$ . Then the followings
are equivalent:
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(i) $M$ is locafly congruent to a homogeneous real hypersurface which lies on a
tube of radius $r$ over totally geodesic $CP^{k}(0\leq k\leq n-1)$ , where $0<r<\pi/2$

(ii) $\phi A=A\phi$ .

A ruled real hypersurface of $CP^{n}$ is defined by a foliated one by complex
hyperplanes $CP^{n-1}$ and its shape operator is written down in [3]. Namely,

$A\xi=\alpha_{1}\xi+\mu W$ $(\mu\neq 0)$ ,

(1.9) A $ W=\mu\xi$ ,

$AZ=0$

for any $Z\perp\xi,$ $W$, where $W$ is unit vector orthogonal to $\xi,$
$\alpha_{1}$ and $\mu$ are functions

on $M$. For more details about a mled real hypersurface of $CP^{n}$ , we refer to [4].
The $\phi$-holomorphic sectional curvature is defined by a sectional curvature of
$span\{X, \phi X\}$ . In [3] it was proved that

THEOREM 2. Let $M$ be a real hypersurface of $CP^{n}(n\geq 3)$ with constant $\phi-$

holomorphic sectional curvature. Then $M$ is locally congruent to the following
spaces:

(1) a geodesic hypersphere (that is, a homogeneous real hypersurface which lies
on a tube of radius $r$ over a hyperplane $CP^{n-1}$ , where $0<r<\pi/2$);

(2) a ruled real hypersurface;
(3) a real hypersurface on which there is a foliation of codimension two such

that each leaf of the foliation is contained in some complex hyperplane $CP^{n-1}$ as a
ruled hypersurface.

We define a vector field $U$ on $M$ by $ U=\nabla_{\xi}\xi$ and denote $\alpha_{m}=\eta(A^{m}\xi)$ . Then
from (1.2) and (1.5) we easily observe that

$g(U, \xi)=0$ , $g(U, A\xi)=0$ ,
(1.10)

$\Vert U\Vert^{2}=g(U, U)=\alpha_{2}-\alpha_{1}^{2}$ .

From (1.2), (1.5) and (1.10) we have at once

LEMMA 1. Let $M$ be a real hypersurface of $CP^{n}$ . Then $\xi$ is a principal
curvature vector field $lf$ and only $\iota fM$ satisfies $\alpha_{2}-\alpha_{1}^{2}=0$ .

Now we recall that ([10]) the k-nullity distribution of a Riemannian manifold,
for a real number $k$ , is a distribution



Real hypersurfaces of a complex 283

$N(k)$ : $p\rightarrow N_{p}(k)=\{z\in T_{p}M$ : $R(x, y)z=k\{g(y, z)x-g(x, z)y\}$

for any $x,$ $y\in T_{p}M$ }.

If $T_{p}M=N_{p}(k)$ for any point $p\in M$ , then we see that $M$ is of constant curvature
$k$ . In Section 2, we consider a pointwise nullity condition for the structure vector
field $\xi$ .

2. Real Hypersurfaces Satisfying a Pointwise Nullity Condition

In this section, we give a classification of a real hypersurface whose structure
vector field $\xi$ satisfying

(2.1) $R(X, Y)\xi=k\{\eta(Y)X-\eta(X)Y\}$

for a function $k$ , where $X,$ $Y$ are any vector fields tangent to $M$. First we prove

LEMMA 2. Let $M$ be a real hypersurface of $CP^{n}$ . If $M$ satisfies (2.1), then $\xi$ is
principal.

PROOF. From (1.6) and (2.1) we have

(2.2) $(k-1)\{\eta(Y)X-\eta(X)Y\}=\eta(AY)AX-\eta(AX)AY$

for any vector field $X$ and $Y$. We may put

$A\xi=\alpha_{1}\xi+Z$

where $Z$ is orthogonal to $\xi$ . For any vector field $X$ orthogonal to $\xi$ , let $X_{1}$ be the
component of $AX$ orthogonal to $\xi$ , that is, $ X_{1}=AX-g(AX, \xi)\xi$ . Putting $ Y=\xi$

in (2.2), then for $X$ orthogonal to $\xi$ we have

(2.3) $(k-1)X=\alpha_{1}X_{1}-g(X, Z)Z$ .

First we consider where $\alpha_{I}=0$ . Then by taking $X(\neq 0)$ orthogonal to $Z$ in (2.3),
we have $k=1$ , and hence, we have $Z=0$ (by putting $X=Z$), that is, $\xi$ is
principal. If there exist a point $p$ such that $\alpha_{1}(p)\neq 0$ , by the continuity of $\alpha_{1}$ we
see that $\alpha_{1}\neq 0$ sufficiently small neighborhood of $p$ . Next we discuss on the
neighborhood. If we put $X=Z$ , then we see that $span\{\xi, Z\}$ is A-invariant. Here,
if we put $Y=Z$ in (2.2) and we take $X(\neq 0)$ orthogonal to $\xi$ and $Z$, then we
have

(2.4) $\eta(AZ)AX=\eta(AX)AZ$ .
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Since $span\{\xi, Z\}$ is A-invariant, from (2.4) we have

$g(Z, Z)X=0$ ,

and hence $Z=0$ , that is, $\xi$ is principal. At last, we conclude that $\xi$ is principal on
M. (Q.E.D.)

Since $ A\xi=\alpha_{1}\xi$ , taking account of Proposition 1 we may set $\alpha_{1}=2\cot 2r$ for
some constant $0<r<\pi/2$ . Thus we have

THEOREM 3. Under the same assumption as that of Lemma 2 and in addition
that $n\geq 3$ and the rank of the focal map $\varphi_{r}$ is constant, then $M$ is locally congruent
to one of the following spaces:

(1) a geodesic hypersphere (that is, a homogeneous real hypersurface which lies
on a tube of radius $r$ over a hyperplane $CP^{n-1}(0<r<\pi/2)$ ;

(2) a homogeneous real hypersurface which lies on a tube of radius $\pi/4$ over a
totally geodesic $CP^{l}(1\leq l\leq n-2)$ ;

(3) a non-homogeneous real hypersurface which lies on a tube of radius $\pi/4$

over a Kahlerian submanifold with non-zero principal curvatures $\neq\pm 1$ .

PROOF. It follows from $ A\xi=\alpha_{1}\xi$ and (2.2) that

(2.8) $(k-1)\{\eta(Y)X-\eta(X)Y\}=\alpha_{1}\{\eta(Y)AX-\eta(X)AY\}$ .

Since $\alpha_{1}$ is constant (by Proposition 1) we divide our arguments into two cases, (i)
$\alpha_{1}=0$ , (ii) $\alpha_{1}\neq 0$ :

(i) $\alpha \mathfrak{l}=0$ . From (2.8) we see that $k=1$ , and from (1.6) we see that $M$

satisfies $R(X, Y)\xi=\eta(Y)X-\eta(X)Y$ . Since the rank of corresponding focal map
$\varphi_{\pi/4}$ is constant, by virtue of Proposition 2 we see that $M$ is locally congruent to
(2) or (3).

(ii) $\alpha_{1}\neq 0$ . Assume $Y=\xi,$ $ X\perp\xi$ in (2.8). Then we get

(2.9) $AX=(k-1)/\alpha_{1}\cdot X$

for any vector field $X$ orthogonal to $\xi$ , hence from (2.9) we see that $M$ has at
most two distinct principal curvatures. So, Theorem 3 in [1] implies that $M$ is
locally congment to a geodesic hypersphere. (Q.E.D.)

REMARK 1. In the case (3) in Theorem 3, the condition “K\"ahlerian sub-
manifold with principal curvatures $\neq\pm 1$

’ is necessary. In general, Proposition 2
(ii) shows that the point $p(=\gamma(0))$ is a singular point of $M$ when $ r=\theta$ .
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REMARK 2. In particular, for $k\in R$ , if $\xi$ belongs to the k-nullity distribution,
then in the case (ii) in the proof of Theorem 3, from (2.9) by using the result in
[8], we conclude that $M$ is locally congruent to geodesic hypersphere when the
dimension $n=2$ , and thus we have same result as Theorem 3 when $n\geq 2$ .

We denote $h^{(m)}=trace$ A, then in particular $h^{(1)}=h$ in (1.8). We also prove

PROPOSITION 3. Let $M$ be a real hypersurface of $CP^{n}$ . Then $M$ always
satisfies

$H_{1}^{2}\leq 2(n-1)H_{2}$ ,

where we put $H_{m}=h^{(m)}\alpha_{m}-\alpha_{2m}$ . If the equality holds, then $\xi$ is principal
$(\alpha_{1}=2\cot 2r)$ . Moreover, $\iota f$ we suppose that $n\geq 3$ and the rank of the focal map
$\varphi_{r}$ is constant, then $M$ is locally congruent to one of (1), (2), (3) in Theorem 3.

PROOF. We put

$T(X, Y)=R(X, Y)\xi-k\{\eta(Y)X-\eta(X)Y\}$

for any vector fields $X$ and $Y$ on $M$, where $k$ is a function. Then $T$ is a $(1, 2)-$

tensor field on $M$. We calculate $\Vert T\Vert^{2}$ , then we have

(2.10)
$\Vert T\Vert^{2}=\sum_{i,j}g(R(e_{l}, e_{j})\xi-k\{\eta(e_{j})e_{i}-\eta(e_{j})e_{j}\},$

$R(e_{i}, e_{j})\xi-k\{\eta(e_{j})e_{j}-\eta(e_{j})e_{j}\})$

$=\Vert R(\cdot, \cdot)\xi\Vert^{2}-4k\eta(S\xi)+4(n-1)k^{2}$ ,

where $\{e_{j}\}(i=1,2, \ldots, 2n-1)$ is an orthonormal basis of the tangent space.
From (1.6) and (1.8) a direct calculation yields

(2.11) $\Vert R(\cdot, \cdot)\xi\Vert^{2}=4(n-1)+4H_{1}+2H_{2}$ ,

(2.12) $\eta(S\xi)=(2n-2)+H_{1}$ .

From (2. 10), (2. 11) and (2. 12) we have

(2.13) $\Vert T\Vert^{2}=4(n-1)(1-k)^{2}+4H_{1}(1-k)+2H_{2}\geq 0$ .

Since (2.13) holds for any $k$ at any point on $M$, we see that

(2.14) $H_{1}^{2}\leq 2(n-1)H_{2}$ .

Further we see that the equality holds in (2.14) if and only if $\Vert T\Vert^{2}=0$ . Thus
by using Theorem 3, we have our conclusion. (Q.E.D.)
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3. Real Hypersurfaces of $CP^{n}$ Satisfying $R(X, A\xi)\xi=k\{\eta(A\xi)X-\eta(X)A\xi\}$

In [2] we investigate a real hypersurface of $CP^{n}$ which satisfies $R(X, \xi)\xi=$

$k\{X-\eta(X)\xi\}$ , where $k$ is a function on $M$. In this section, we prove

THEOREM 4. Let $M$ be a real hypersurface of $CP^{n}(n\geq 3)$ . Suppose that $M$

satisfies
(3.1) $R(X, A\xi)\xi=k\{\eta(A\xi)X-\eta(X)A\xi\}$ ,

where $k$ is a function on M. If $\xi$ is principal with the associated principal curvature
$\alpha_{1}=2\cot 2r$ and the rank of corresponding focal map $\varphi_{r}$ is constant, then $M$ is
locally congruent to one of the following spaces:

(1) a geodesic hypersphere;
(2) a homogeneous real hypersurface which lies on a tube of radius $\pi/4$ over a

totally geodesic $CP^{/}(1\leq l\leq n-2)$ ;
(3) a non-homogeneous real hypersurface which lies on a tube of radius $\pi/4$

over a Kahlerian submamfold with non-zero principal curvatures $\neq\pm 1$ .

PROOF. From (1.6) and (3.1) we have

(3.2) $(k-1)\{\eta(X)A\xi-\alpha_{1}X\}=\eta(AX)A^{2}\xi-\alpha_{2}AX$ .

Taking the transpose of $A$ , then we have

(3.3) $(k-1)\{\eta(AX)\xi-\alpha_{1}X\}=\eta(A^{2}X)A\xi-\alpha_{2}AX$ ,

for any vector field $X$ on $M$. Since $\xi$ is principal, that is, $ A\xi=\alpha_{1}\xi$ , for any vector
field $Y$ orthogonal to $\xi(3.3)$ yields

(3.4) $\alpha_{2}AY=(k-1)\alpha_{1}Y$ .

Since $\alpha_{2}=\alpha_{1}^{2}$ is constant (cf. Proposition 1), we divide our arguments into two
cases, (i) $\alpha_{2}=0$ , (ii) $\alpha_{2}\neq 0$ :

(i) $\alpha_{2}=0$ . We see that $A\xi=0$ and $M$ satisfies $R(X, \xi)A\xi=k\{\eta(A\xi)X-$

$\eta(AX)\xi\}=0$ . Since the rank of the corresponding focal map $\varphi_{\pi/4}$ is constant, by
the same arguments in the proof of the Theorem 3 in Section 2, we see that $M$ is
locally congruent to (2) or (3).

(ii) $\alpha_{2}\neq 0$ . From (3.4) we see that $M$ has at most two distinct principal
curvatures. So, Theorem 3 in [1] implies that $M$ is locally congruent to a geodesic
hypersphere of $CP^{n}$ . (Q.E.D.)
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Here, we consider the case that $\xi$ is not principal and $M$ satisfies (3.1). Then
we may assume that

(3.5) $A\xi=\alpha_{1}\xi+\mu W$ , $\mu\neq 0$

and

(3.6) A $W=\mu\xi+vW+\delta Z_{1}$ ,

where $Z_{1}\perp\xi,$ $W,$ $W$ is a unit vector orthogonal to $\xi$ , and $\mu,$
$ v,\delta$ are functions on

$M$. Then from (3.3) we have

(3.7) $\alpha_{2}AW=\{\alpha_{1}\mu(\alpha_{1}+v)-\mu(k-1)\}\xi+\{\mu^{2}(\alpha_{1}+v)+\alpha_{1}(k-1)\}W$ .

So from (3.6) and (3.7) we get

(3.8) $\alpha_{2}\mu=\alpha_{1}\mu(\alpha_{1}+v)-\mu(k-1)$ , $\alpha_{2}v=\mu^{2}(\alpha_{1}+v)+\alpha_{1}(k-1)$ and $\alpha_{2}\delta=0$ .

Further from (3.2) we have

(3.9) $\alpha_{2}AZ=\alpha_{1}(k-1)Z$ .

for any vector field $Z$ orthogonal to $\xi$ and $W$. Therefore from (3.5), (3.7), (3.8)
and (3.9) we have

$A\xi=\alpha_{1}\xi+\mu W$

A $W=\mu\xi+vW$

$AZ=\alpha_{1}/\alpha_{2}\cdot(k-1)Z$ ,

$\alpha_{2}=\alpha_{1}(\alpha_{1}+v)-(k-1)$ and $\alpha_{2}v=\mu^{2}(\alpha_{1}+v)+\alpha_{1}(k-1)$ for any $Z\perp\xi,$ $W$ ,
where $W$ is a unit vector orthogonal to $\xi,\mu(\neq 0),$ $\alpha_{2}$ and $v$ are functions on $M$.

Let $M$ be a real hypersurface of $CP^{n}$ which satisfies $R(X, A\xi)\xi=\eta(A\xi)X-$

$\eta(X)A\xi$ , i.e., $k=1$ . Then from (3.3) it follows that

(3.10) $\alpha_{2}AX=\eta(A^{2}X)A\xi$

for any vector field $X$ on $M$. If there exist a point $p$ in $M$ such that $\alpha_{2}(p)\neq 0$ ,
then (3.10) implies that the rank of $A$ at $p$ is at most 1. However it is seen (cf.
[11]) that the point $p$ is geodesic. So it is contradictory to the assumption that
$\alpha_{2}(p)\neq 0$ . Thus $\alpha_{2}=0$ on $M$ . Therefore by Lemma 1, we see that $A\xi=0$ on $M$.

REMARK 3. The above arguments together with (1.9) and (20) in [3] imply
that neither ruled real hypersurface nor the case (3) in Theorem 3 satisfy the
condition (3. 1).
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It is well-known that a geodesic hypersphere in $CP^{n}$ is $\eta$-umbilical, that
is, $A=aI+b\eta\otimes\xi$ , where $a,$

$b$ are constants (cf. [1], [9], etc.). Thus, due to
Theorems 2, 4 and Remark 3, we characterize a geodesic hypersphere of $CP^{n}$ by
following

THEOREM 5. Let $M$ be a real hypersurface of $CP^{n}(n\geq 3)$ . Then $M$ is

of constant $\phi$-holomorphic sectional curvature and $M$ satisfies $R(X, A\xi)\xi=$

$k\{\eta(A\xi)X-\eta(X)A\xi\}$ , where $k$ is a constant along $M$ if and only if $M$ is locafly
congruent to a geodesic hypersphere.

REMARK 4. The above Theorem 5 is a slight improvement of Theorem 4 in
[2].

4. Real Hypersurfaces of $CP^{\hslash}$ Satisfying $\phi\cdot R=0$

In [6], Y. Maeda investigated a real hypersurface $M$ of $CP^{n}$ which satisfies

$(C_{1})$ $ A\xi=\alpha_{1}\xi$ ,

$(C_{2})$ $\phi\cdot R=0$ ,

where . means that a $(1,1)$ -tensor field $\phi$ operates on $R$ as a derivation, i.e., for
any vector fields $X,$ $Y$ and $Z$ on $M$

$(\phi\cdot R)(X, Y)Z=\phi R(X, Y)Z-R(\phi X, Y)Z-R(X, \phi Y)Z-R(X, Y)\phi Z$ .

Under the conditions $(C_{1}),$ $(C_{2})$ and $n\geq 3$ , he proved that $M$ is locally congment
to a homogeneous real hypersurface which lies on a tube of radius $r$ over totally
geodesic $CP^{k}(0\leq k\leq n-1)$ , where $0<r<\pi/2$ (Theorem 5.4 in [6]).

In this section, we consider the following two conditions (4.1) and (4.2)
weaker than $(C_{1})$ and $(C_{2})$ , respectively:

(4.1) A $\xi=\lambda A\xi$ ,

(4.2) $(\phi\cdot R)(X, A\xi)\xi=0$

for a function $\lambda$ and for any vector field $X$ on $M$. We prove

THEOREM 6. Let $M$ be a real hypersurface of $CP^{n}$ , and suppose that $M$

satisfies (4.1) and (4.2). Then $\xi$ is a principal curvature vector field on M. Further
assume that $\alpha_{1}=2\cot 2r$ and the rank of the focal map $\varphi_{r}$ is constant, then $M$

is locally congruent to a homogeneous real hypersurface which lies on a tube of
radius $r$ over totally geodesic $CP^{k}(0\leq k\leq n-1)$ , where $0<r<\pi/2$ , or a non-
homogeneous tube of radius $\pi/4$ of the case (3) in Theorem 4.
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PROOF. From the assumption (4.2), we get

(4.3) $\phi R(X, A\xi)\xi-R(\phi X, A\xi)\xi-R(X, U)\xi=0$ .

From (1.6), (4.1) and (4.3), we have

(4.4) $\alpha_{2}(\phi A-A\phi)X-\lambda g(X, U)A\xi-\lambda g(X, A\xi)U+g(X, A\xi)AU=0$ .

If we put $ X=\xi$ in (4.4), then, since $\alpha_{2}=\lambda\alpha_{1}$ , we have

(4.5) $\alpha_{1}$ A $U=0$ .

If there exists a point $p\in M$ such that $\alpha_{1}(p)=0$ , then we see that $\alpha_{2}=0$ , and
hence by Lemma 1, we have $\xi$ is principal at $p$ . So, from now we discuss on open
subset where $\alpha_{1}\neq 0$ . Then from (4.5) it follows that

(4.6) A $U=0$ .

With (4.6) we easily obtain

$g((\nabla_{X}A)\xi, \xi)=d\alpha_{1}(X)$ ,

where $d$ denotes the exterior differential. Since $ U=\phi A\xi$ , from (1.4), (1.7) and
(4.6) we have

(4.7) $\nabla_{\xi}U=\alpha_{1}A\xi-\alpha_{2}\xi+\phi\nabla\alpha_{1}$ ,

where $\nabla\alpha_{1}$ denotes the gradient vector field of $\alpha \mathfrak{l}$ . Differentiating (4.6) covariantly
along $M$, then by using (1.7) and (4.7) we have

(4.8) $(\nabla_{U}A)\xi=-\phi U-\alpha_{1}A^{2}\xi+\alpha_{2}A\xi-A\phi\nabla\alpha_{1}$ .

Also, if we differentiate $ A^{2}\xi=\lambda A\xi$ covariantly along $M$, then together with (1.5)
we have

(4.9) $g(A\xi, (\nabla_{X}A)Y)+g$ ( $(\nabla_{X}A)\xi,$ A $Y$ ) $+g$ ( $\phi AX,$ A $Y$ )

$=d\lambda(X)g(A\xi, Y)+\lambda g((\nabla_{X}A)\xi, Y)+\lambda g$ ( $\phi AX,$ A $Y$).

From (1.7) and (4.9) we have

$\eta(X)g(A\xi, \phi Y)-\eta(Y)g(A\xi, \phi X)-2\alpha g(\phi X, Y)$

$+g$ ( $(\nabla_{X}A)\xi,$ A $Y$ ) $-g((\nabla_{Y}A)\xi, AX)+g(\phi AX, A^{2}Y)-g(\phi AY, A^{2}X)$

$=d\lambda(X)g(A\xi, Y)-d\lambda(Y)g(A\xi, X)+\lambda g((\nabla_{X}A)\xi, Y)$

$-\lambda g((\nabla_{Y}A)\xi, X)+2\lambda g$ ( $\phi AX,$ A $Y$ )
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for any vector fields $X$ and $Y$ on $M$ . We put $X=U$ and making use of (1.7),
(4.6) and (4.8), then we have

(4.10) $g$ ( $(\nabla_{U}A)\xi,$ A $Y$ ) $=2(\alpha-\lambda)g(\phi U, Y)-\eta(Y)g(U, U)+d\lambda(U)g(A\xi, Y)$ .

Thus, from (4.8) and (4.10) we have

(4.11) $2(\alpha-\lambda)g(\phi U, Y)-\eta(Y)g(U, U)+d\lambda(U)g(A\xi, Y)$

$=-g$ ( $\phi U,$ A $Y$ ) $-\alpha_{1}g$ ( $A^{2}\xi,$ A $Y$ ) $+\alpha_{2}g$ ( $A\xi,$ A $Y$ ) $+d\alpha_{1}(\phi A^{2}Y)$ .

Putting $ Y=\xi$ in (4.11), then together with (4.1) we get

$\alpha_{1}d\lambda(U)-\lambda d\alpha_{1}(U)=2(\alpha_{2}-\alpha_{1}^{2})$ .

Further we put $ Y=A\xi$ in (4.11), then we get

$\lambda\{\alpha_{1}d\lambda(U)-\lambda d\alpha_{1}(U)\}=(\alpha_{2}-\alpha_{1}^{2})(3\alpha_{1}-\lambda)$ .

Thus, we have $\alpha_{2}-\alpha_{1}^{2}=\alpha_{1}(\lambda-\alpha_{1})=0$ , from which using Lemma 1 we see that
$ A\xi=\alpha_{1}\xi$ on $M$. From (4.4) and Lemma 1, it follows that

$\alpha_{1}(\phi A-A\phi)X=0$ .

Since $\alpha_{1}$ is constant, by a similar way as in the proof of Theorem 4 and using
Theorem 1, we have our assertions. (Q.E.D.)
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