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GENERALIZED HELICAL IMMERSIONS OF A
RIEMANNIAN MANIFOLD ALL OF WHOSE

GEODESICS ARE CLOSED INTO
A EUCLIDEAN SPACE

By

Naoyuki KOIKE

Abstract. In this paper, we investigate an isometric immersion of a
compact connected Riemannian manifold $M$ into a Euclidean space
and a sphere such that every geodesic in $M$ is closed and viewed as a
helix (of general order) in the ambient space.

Introduction

Let $f$ be an isometric immersion of a Riemannian manifold $M$ into a
Riemannian manifold $\tilde{M}$ . If geodesics in $M$ are viewed as specific curves in $\tilde{M}$ ,
what are the shape of $f(M)$ ? Several geometricians studied this problem. K.
Sakamoto investigated an isometric immersion $f$ of a complete connected Rie-
mannian manifold $M$ into a Euclidean space and a sphere such that every
geodesic in $M$ is viewed as a helix in the ambient space and that the order and
the Frenet curvatures of the helix are independent of the choice of the geodesic
(cf. [13], [14]). Such a immersion is called a helical immersion. On the other hand,
we recently investigated an isometric immersion of a compact connected Rie-
mannian manifold $M$ into a Euclidean space and a sphere such that every
geodesic in $M$ is viewed as a helix in the ambient space, where the order and the
Frenet curvatures of the helix may depend on the choice of the geodesic. We
called such a immersion a generalized helical immersion and the maximal order of
those helices the order of $f$ It is easy to show that $f$ is of even order if $M$ is
compact and the ambient space is a Euclidean space. In [9], we obtained the
following characterizing theorem:
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Let $f$ be a generalized helical immersion of order $2d$ of a compact connected
Riemannian manifold $M$ into $a$ Euclidean space. Assume that the following
condition holds: $(*)$ for each $p\in M$ , there is at least one geodesic $\sigma$ in $M$ through $p$

such that $ f\circ\sigma$ is a generic helix of order $2d$ in the ambient space. Then the second
fundamental form of$f$ is parallel and hence $f$ is congruent to the standard isometric
embedding of a symmetric R-space of rank $d$.

Here a generic helix of order $2d$ is a helix in a Euclidean space whose closure
is a d-dimensional Clifford torus. In case of $d\geq 2$ , the above condition $(*)$

assures the existence of a non-closed geodesic in $M$ because a generic helix of
order $2d(d\geq 2)$ is non-closed. In this paper, we investigate a generalized helical
immersion $f$ of a compact connected Riemannian manifold $M$ all of whose
geodesics are closed into a Euclidean space or a sphere. Concretely, we show
that, if such an immersion $f$ is an embedding, then $M$ is a SC-manifold (see

Theorem 3.2) and, under certain additional conditions, $f$ is helical, where $f$ may
not be an embedding (see Theorem 3.6). Here a SC-manifold is a Riemannian
manifold all of whose geodesics are simply closed geodesics with the same length.

In Sect. 1 and 2, we prepare basic notations, definitions and lemmas. In Sect.
3 and 4, we prove main results in terms of basic lemmas prepared in Sect. 2.

Throughout this paper, unless otherwise mentioned, we assume that all
geometric objects are of class $C^{\infty}$ and all manifolds are connected ones without
boundary.

1. Notations and definitions

In this section, we shall state basic notations and definitions. Let $\sigma:I\rightarrow M$

be a curve in a Riemannian manifold $M$ parametrized by the arclength $s$ , where $I$

is an open interval of the real line $R$ . Denote by $v_{0}$ the velocity vector field $\dot{\sigma}$ of
$\sigma$ . Let $\nabla$ be the Levi-Civita connection of $M$. If there exist an orthonormal system
field $(v_{1}, \ldots, v_{d-1})$ along $\sigma$ and positive constants $\lambda_{1},$

$\ldots,$
$\lambda_{d-1}$ satisfying the

following relations

(1.1) $\left\{\begin{array}{l}\nabla_{v_{0}}v_{0}=\lambda_{l}v_{1}\\\nabla_{v_{0}}v_{1}=-\lambda_{l}v_{0}+\lambda_{2}v_{2}\\.\\.\\.\\\nabla_{v_{0}}v_{d-2}=-\lambda_{d-2}v_{d-3}+\lambda_{d-l}v_{d-l}\\\nabla_{v_{0}}v_{d-1}=-\lambda_{d-1}v_{d-2},\end{array}\right.$

then $\sigma$ is called a helix of order $d$. The relation (1.1), $\lambda_{j},$ $v_{i}(1\leq i\leq d-1)$ and
$(v_{0}, \ldots, v_{d-1})$ are called the Frenet formula, the i-th Frenet curvature, the i-th
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Frenet normal vector field and the Frenet frame field of $\sigma$ , respectively. In
particular, a helix $\sigma$ of order $2d$ in an m-dimensional Euclidean space $R^{m}$ is
expressed as follows:

(1.2) $\sigma(s)=c_{0}+\sum_{i=1}^{d}r_{j}(\cos(a_{i}s)e_{2i-1}+\sin(a_{i}s)e_{2i})$ ,

where $c_{0}$ is a constant vector of $R^{m},$ $(e_{1}, \ldots, e_{2d})$ is an orthonormal system of $R^{m}$ ,
$r_{j}(1\leq i\leq d)$ are positive constants and $a_{l}(1\leq i\leq d)$ are mutually distinct
positive constants. Note that the image ${\rm Im}\sigma$ of $\sigma$ is contained in the d-
dimensional Clifford torus

$T$ $:=\{c_{0}+\sum_{i=1}^{d}r_{i}(\cos\theta_{i}\cdot e_{2i-1}+\sin\theta_{i}\cdot e_{2i})0\leq\theta_{j}<2\pi(i=1, \ldots, d)\}$ .

Also, helices in an m-dimensional sphere $S^{m}$ are as follows. Let $\sigma$ be a helix in
$S^{m}$ and $\iota$ the totally umbilic embedding of $S^{m}$ into $R^{m+1}$ . Then we see that $\iota 0\sigma$ is
a helix of even order in $R^{m+1}$ . Let $2d$ be the order of $\iota\circ\sigma$ . It is shown that the
order of $\sigma$ is $2d-1$ (resp. $2d$ ) if the centroid of the d-dimensional Clifford torus
containing ${\rm Im}(l\circ\sigma)$ coincides (resp. does not coincide) with the center of $S^{m}$ .

Let $f$ be an isometric immersion of an n-dimensional Riemannian manifold
$M^{n}$ into an m-dimensional Riemannian manifold $\tilde{M}^{m}$ . Denote by $T_{p}M$ (resp.
$S_{p}M)$ the tangent space (resp. the unit tangent sphere) of $M$ at $p$ and $SM$ the unit
tangent bundle of $M$. We shall identify $T_{p}M$ with $f_{*}(T_{p}M)$ , where $f_{*}$ is the
differential of $f$ Denote by $\nabla$ (resp. $\tilde{\nabla}$ ) the Levi-Civita connection on $M$ (resp. $\tilde{M}$ )

and $A,$ $h$ and $\nabla^{\perp}$ the shape operator, the second fundamental form and the
normal connection of $f$, respectively. Denote by the same symbol V both
$\nabla^{*}\otimes\cdots\otimes\nabla^{*}\otimes\nabla^{\perp}$ and $\nabla^{\perp}*\otimes\nabla^{*}\otimes\cdots\otimes\nabla^{*}\otimes\nabla$ , where $\nabla^{*}$ is the dual con-
nection of $\nabla$ . Also, we shall denote the i-th order derivative of $h$ (resp. $A$ ) with
respect to V by $\overline{\nabla}^{l}h$ (resp. $\overline{\nabla}^{j}A$ ). If, for every geodesic $\sigma$ in $M,$ $ f\circ\sigma$ is a helix of
order $d$ and the Frenet curvatures of $ fo\sigma$ do not depend on the choice of $\sigma$ , then
$f$ is called a helical immersion of order $d$. Also, if, for every geodesic $\sigma$ in $M,$ $ f\circ\sigma$

is a helix of order at most $d$ and there is at least one geodesic $\sigma_{0}$ in $M$ such that
$f\circ\sigma_{0}$ is a helix of order $d$, then we shall call $f$ a generalized helical immersion of
order $d$.

2. Basic lemmas

In this section, we prepare basic lemmas which will be used in the next
section. Let $f$ be a generalized helical immersion of an n-dimensional complete
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Riemannian manifold $M^{n}$ into an m-dimensional Euclidean space $R^{m}$ . For each
$v\in SM$ , denote by $\sigma_{v}$ the maximal geodesic in $M$ parametrized by the arc-length
$s$ whose velocity vector at $s=0$ is equal to $v$ . For $p\in M$ , we set $V_{p,l}:=$

{ $v\in S_{p}M|f\circ\sigma_{v}$ : helix of order $i$ } $(i\geq 1)$ and define a function $\hat{\lambda}_{j}(i\geq 1)$ on $SM$

by

$\hat{\lambda}_{j}(v)$ $:=\left\{\begin{array}{l}\lambda_{i} (v\in\bigcup_{i+l\leq j}\bigcup_{p\in M}V_{p,j})\\0 (v\in\bigcup_{l\leq j\leq i}\bigcup_{p\in M}V_{p,j}),\end{array}\right.$

where $\lambda_{i}$ is the i-th Frenet curvature of $f\circ\sigma_{v}$ . It is easy to show that $\hat{\lambda}_{j}$ is
continuous on

$\bigcup_{i\leq jp}\bigcup_{\in M}V_{p,j}(i\geq 1)$
. In [9], we proved the following lemma.

LEMMA 2.1. Assume that $ V_{p,d}\neq\emptyset$ and $V_{p,i}=\emptyset(i\geq d+1)$ for $p\in M$ .
Then the set $V_{p,i}(1\leq i\leq d-1)$ are closed sets of measure zero in $S_{p}M$ and $V_{p,d}$

is a dense open set in $S_{p}M$ .

In the sequel, assume that $ V_{p,2d}\neq\emptyset$ and $V_{p,i}=\emptyset(i\geq 2d+1)$ for some
$p\in M$ . For each $v\in V_{p,2d},$ $f\circ\sigma_{v}$ is uniquely expressed as

$(f\circ\sigma_{v})(s)=c(v)+\sum_{i=1}^{d}r_{j}(v)(\cos(a_{i}(v)s)e_{2i-1}(v)+\sin(a_{i}(v)s)e_{2i}(v))$ ,

where $c(v)$ is a constant vector of $R^{m},$ $(e_{1}(v), \ldots, e_{2d}(v))$ is an orthonormal system
of $R^{m},$ $r_{i}(v)(1\leq i\leq d)$ are positive constants and $a_{j}(v)(1\leq i\leq d)$ are positive
constants with $a_{1}(v)<\cdots<a_{d}(v)$ . We regard $r_{j}$ and $a_{i}(1\leq i\leq d)$ as functions
on $V_{p,2d}$ . In [9], we proved the following lemma.

LEMMA 2.2. The functions $a_{i}(1\leq i\leq d)$ are analytic.

Also, we prepare the following lemma.

LEMMA 2.3 On $V_{p,2d}$ , the following relation holds:

$\left(\begin{array}{ll}a_{l}^{2} & a_{d}^{2}\\a_{l}^{4} & a_{d}^{4}\\| & |\\a_{1}^{2d} & a_{d}^{2d}\end{array}\right)\left(\begin{array}{l}r_{l}^{2}\\|\\r_{d}^{2}\end{array}\right)=\left(\begin{array}{lll}1 & & \\F_{l}(\hat{\lambda}_{l}) & & \\| & & \\F_{d-l}(\hat{\lambda}_{l} & \cdots & \hat{\lambda}_{d-l})\end{array}\right)$ ,

where $F_{i}$ is a polynomial of i-variables $(1 \leq i\leq d-1)$ .
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PROOF. Fix $v\in V_{p,2d}$ . Let $(v_{0}, v_{1}, \ldots, v_{2d-1})$ be the Frenet frame field of
$f\circ\sigma_{v}$ . Then we have

(2. 1) $v_{0}=\sum_{i=1}^{d}r_{j}(v)a_{j}(v)(-\sin(a_{j}(v)s)e_{2i-1}(v)+\cos(a_{i}(v)s)e_{2i}(v))$

and hence $\sum_{i=1}^{d}r_{j}(v)^{2}a_{j}(v)^{2}=1$ . Thus, if $d=1$ , then the proof is completed. In the

sequel, assume $d\geq 2$ . By operating $\tilde{\nabla}_{v_{0}}$ to (2.1), we have

(2.2) $\hat{\lambda}_{1}(v)v_{1}=-\sum_{i=1}^{d}r_{j}(v)a_{j}(v)^{2}(\cos(a_{j}(v)s)e_{2i-1}(v)+\sin(a_{j}(v)s)e_{2i}(v))$

and hence $\sum_{i=1}^{d}r_{i}(v)^{2}a_{j}(v)^{4}=\hat{\lambda}_{1}(v)^{2}$ . Thus, if $d=2$ , then the proof is completed.

In the sequel, assume $d\geq 3$ . Furthermore, by operating $\tilde{\nabla}_{v_{0}}$ to (2.2), we have
$\hat{\lambda}_{1}(v)(-\hat{\lambda}_{1}(v)v_{0}+\hat{\lambda}_{2}(v)v_{2})$

$=\sum_{i=1}^{d}r_{j}(v)a_{j}(v)^{3}(\sin(a_{l}(v)s)e_{2i-1}(v)-\cos(a_{i}(v)s)e_{2i}(v))$

and hence $\sum_{i=1}^{d}r_{j}(v)^{2}a_{j}(v)^{6}=\hat{\lambda}_{1}(v)^{4}+\hat{\lambda}_{1}(v)^{2}\hat{\lambda}_{2}(v)^{2}$ . Thus, if $d=3$ , then the proof

is completed. In case of $d\geq 4$ , by repeating the same process, we can obtain

$\sum_{i=1}^{d}r_{j}(v)^{2}a_{j}(v)^{2j}=F_{j-1}(\hat{\lambda}_{1}(v), \ldots,\hat{\lambda}_{j-1}(v))$ $(4\leq j\leq d)$ ,

where $F_{j-1}$ is a polynomial of $(j-1)$ -variables $(4\leq j\leq d)$ . This completes the
proof. $\square $

3. Generalized helical immersions into a Euclidean space

In this section, we shall investigate a generalized helical immersion $f$ of an n-
dimensional compact Riemannian manifold $M$ all of whose geodesics are closed
into an m-dimensional Euclidean space $R^{m}$ . Since $M$ is compact, $f$ is of even
order. Let $2d$ be the order of $f$ Take $p\in M$ with $ V_{p,2d}\neq\emptyset$ . Since all of
geodesics in $M$ are closed, they admit a common period by Lemma 7.11 of [1,
P182]. Let $\mu:=\max_{v\in S_{p}M}l(\sigma_{v})$ , where $l(\sigma_{v})$ is the length of $\sigma_{v}$ (i.e., the minimal

period of $\sigma_{v}$ ). Let $W:=\{v\in V_{p,2d}|l(\sigma_{v})=\mu\}$ . Since $l(\sigma_{v})(v\in V_{p,2d})$ are divisors
of the common period, $\{l(\sigma_{v})|v\in V_{p,2d}\}$ is a discrete set. The function $\phi$ on $V_{p,2d}$

defined by $\phi(v)=l(\sigma_{v})$ is lower semi-continuous. These facts deduce that $W=$
$\phi^{-1}(\mu)$ is an open set in $V_{p,2d}$ . Let $a_{i}(1\leq i\leq d)$ be functions on $V_{p,2d}$ stated in
Sect. 2. First we shall show the following lemma.
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LEMMA 3.1. The set $V_{p,2d}$ coincides with $S_{p}M$ and $a_{j}(1\leq i\leq d)$ are constant

on $S_{p}M$ .

PROOF. (Step I) First we shall show that the functions $a_{i}(1\leq i\leq d)$ are
constant on each component of $V_{p,2d}$ which intersects with $W$. Let $W_{0}$ be a
component of $W$. For each $v\in W_{0}$ , set $s_{v}:=\min\{s|a_{i}(v)s\in N(1\leq i\leq d)\}$ .
Clearly $l(f\circ\sigma_{v})=2\pi s_{v}$ holds. Also, we can show $l(\sigma_{v})/l(f\circ\sigma_{v})\in N$ . Hence
we have $\mu/2\pi s_{v}\in N$ , which together with $a_{j}(v)s_{v}\in N$ implies $a_{i}(v)\mu/2\pi\in N$ .
Therefore, it follows from the continuity of $a_{j}$ that $a_{i}$ is constant on $W_{0}$ . Thus $a_{i}$

is constant on each component of $W$. This together with the analyticity of $a_{j}$ (by

Lemma 2.2) implies that $a_{j}$ is constant on each component of $V_{p,2d}$ which
intersects with $W$.

(Step II) Next we shall show $V_{p,2d}=S_{p}M$ . Let $V_{0}$ be a component of $V_{p,2d}$

which intersects with $W$. We showed that $a_{j}(1\leq l\leq d)$ are constant on $V_{0}$ .
Denote by $\overline{V}_{0}$ the closure of $V_{0}$ in $S_{p}M$ . Take $v\in\overline{V}_{0}$ and a sequence $\{w_{k}\}_{k=1}^{\infty}$ in
$V_{0}$ with $\lim_{k\rightarrow\infty}w_{k}=v$ . The helix $f\circ\sigma_{w_{k}}$ is uniquely expressed as

(3.1)

$(f\circ\sigma_{w_{k}})(s)=c(w_{k})+\sum_{i=1}^{d}r_{j}(w_{k})(\cos(a_{j}(w_{k})s)e_{2i-1}(w_{k})+\sin(a_{j}(w_{k})s)e_{2i}(w_{k}))$ .

Since helices $f\circ\sigma_{w_{k}}(k\in N)$ are contained in a compact set $f(M)$ , we have

$\sup_{k}\Vert c(w_{k})\Vert<\infty$ and $\sup r_{i}(w_{k})<\infty(1\leq l\leq d)$ . Set $ C:=\sup\Vert c(w_{k})\Vert$ and $R_{i}$ $:=$

$\sup_{k}r_{j}(w_{k})(1\leq i\leq d)$ . $kSince$
$\{(e_{1}(w_{k}),$

$\ldots,$
$e_{2d}(w_{k}),$ $c(w_{k}),$

$r_{1(w_{k}),\ldots,r_{d}(w_{k}))\}_{k=1}^{\infty}}^{k}$

is a sequence in a compact set $S_{m,2d}\times B^{m}(C)\times[0, R_{1}]\times\cdots\times[0, R_{d}]$ , its con-
vergent subsequence $\{(e_{1}(w_{\alpha(k)}), \ldots, e_{2d}(w_{\alpha(k)}), c(w_{\alpha(k)}), r_{1}(w_{\alpha(k)}), \ldots, r_{d}(w_{\alpha(k)}))\}_{k=1}^{\infty}$

exists, where $S_{m,2d}$ is the Stiefel manifold of all orthonormal $2d$-frames in $R^{m}$ ,
$B^{m}(C)$ is the m-dimensional ball of center $O$ and radius $C$ in $R^{m}$ and $[0, R_{j}]$

$(1\leq i\leq d)$ are closed intervals. Let $(e_{1}^{0}, \ldots, e_{2d}^{0}, c^{0}, r_{1}^{0}, \ldots, r_{d}^{0}):=\lim_{k\rightarrow\infty}(e_{1}(w_{\alpha(k)})$ ,

. . . , $e_{2d}(w_{\alpha(k)}),$ $c(w_{\alpha(k)}),$ $r_{1}(w_{\alpha(k)}),$
$\ldots,$

$r_{d}(w_{\alpha(k)}))$ . From (3.1) and the constancy of $a_{i}$

on $V_{0}$ , we have

$\lim_{k\rightarrow\infty}(f\circ\sigma_{w_{\alpha(k)}})(s)=\lim_{k\rightarrow\infty}\{c(w_{\alpha(k)})+\sum_{i=1}^{d}r_{i}(w_{\alpha(k)})(\cos(a_{i}(w_{\alpha(k)})s)e_{2i-1}(w_{\alpha(k)})$

$+\sin(a_{j}(w_{\alpha(k)})s)e_{2i}(w_{\alpha(k)})\}$

$=c_{0}+\sum_{i=1}^{d}r_{i}^{0}(\cos(a_{i}(w_{1})s)e_{2i-1}^{0}+\sin(a_{j}(w_{1})s)e_{2i}^{0})$ .
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On the other hand, we have

$\lim_{k\rightarrow\infty}(f\circ\sigma_{w_{\alpha(k))}})(s)=\lim_{k\rightarrow\infty}(f\circ\exp_{p})(sw_{\alpha(k)})=(f\circ\exp_{p})(sv)$

$=(f\circ\sigma_{v})(s)$ ,

where $\exp_{p}$ is the exponential map of $M$ at $p$ . Thus we can obtain

$(f\circ\sigma_{v})(s)=c_{0}+\sum_{i=1}^{d}r_{i}^{0}(\cos(a_{i}(w_{1})s)e_{2i-1}^{0}+\sin(a_{j}(w_{1})s)e_{2i}^{0})$ ,

which implies that $f\circ\sigma_{v}$ is a helix of order $2d$, that is, $v\in V_{p,2d}$ . Clearly, this
implies $v\in V_{0}$ . Therefore, we have $\overline{V}_{0}=V_{0}$ , that is, $V_{0}$ is closed in $S_{p}M$ . On the
other hand, since $V_{p,2d}$ is open in $S_{p}M$ by Lemma 2.1, so is also $V_{0}$ . Hence, it
follows from the connectedness of $S_{p}M$ that $V_{0}=S_{p}M$ , that is, $V_{p,2d}=S_{p}M$ .
This completes the proof. $\square $

From this lemma, we can prove the following result.

THEOREM 3.2. Let $f$ be a generalized helical immersion of an n-dimensional
compact Riemannian manifold $M$ all of whose geodesics are closed into an m-
dimensional Euclidean space $R^{m}$ . Then the following statements (i) and (ii) hold:

(i) all geodesics in $M$ are viewed as closed helices of the same order with the
same length in $R^{m}$ ,

(ii) if $f$ is an embedding, then $M$ is a SC-mamfold.

PROOF. Let $2d$ be the order of $f$ Take $p\in M$ with $ V_{p,2d}\neq\emptyset$ . From Lemma
3.1, it follows that $V_{p,2d}=S_{p}M$ and that $a_{i}(1\leq i\leq d)$ are constant on $S_{p}M$ .
This implies that all geodesics in $M$ through $p$ are viewed as closed helices of
order $2d$ with the same length in $R^{m}$ . Take an arbitrary $q\in M$ . Since $M$ is
compact and hence complete, there is a geodesic in $M$ through $p$ and $q$ . This
implies $ V_{q,2d}\neq\emptyset$ . Hence, we see that all geodesics in $M$ through $p$ or $q$ are
viewed as closed helices of order $2d$ with the same length in $R^{m}$ . Thus the
statement (i) is deduced from the arbitrarity of $q$ . Assume that $f$ is an embedding.
Since a closed helix in $R^{m}$ are simply closed, all geodesics in $M$ are simply closed
geodesics. Also, $1(\sigma)=l(f\circ\sigma)$ holds for each geodesic $\sigma$ in $M$. From the
statement (i), $l(f\circ\sigma)$ is independent of the choice of $\sigma$ . Therefore, so is also $l(\sigma)$ ,
that is, all geodesics in $M$ have the same length. Thus $M$ is a SC-manifold.

$\square $
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From the statement (ii) of this theorem, we can obtain the following
corollary.

COROLLARY 3.3. Let $f$ : $M\rightarrow R^{m}$ be an immersion as in Theorem 3.2. If$f$ is
an embedding and $M$ is a Riemannian homogeneous space, then $M$ is isometric to a
compact symmetric space of rank one.

PROOF. By the statement (ii) of Theorem 3.2, $M$ is a SC-manifold. Hence,
since $M$ is a Riemannian homogeneous space, $M$ is isometric to a compact
symmetric space of rank one by Theorem 7.55 of [1, P196]. $\square $

Next we shall investigate in what case an immersion as in Theorem 3.2 is
helical. First we shall show the following lemma.

LEMMA 3.4. Let $f$ be an immersion as in Theorem 3.2 and $2d$ the order of $f$

In case of $d\geq 2$ , assume that $\hat{\lambda}_{i}(1\leq i\leq d-1)$ are constant on $SM$, where $\hat{\lambda}_{j}$

$(1\leq i\leq d-1)$ are functions defined in Sect. 2. Then $f$ is helical.

PROOF. Fix $p\in M$ . By Theorem 3.2, $V_{p,2d}=S_{p}M$ holds. For each $v\in S_{p}M$ ,
$f\circ\sigma_{v}$ is uniquely expressed as

(3.2) $(f\circ\sigma_{v})(s)=c(v)+\sum_{i=1}^{d}r_{j}(v)(\cos(a_{i}(v)s)e_{2i-1}(v)+\sin(a_{i}(v)s)e_{2i}(v))$ .

It follows from Lemma 3.1 that $a_{i}(1\leq i\leq d)$ are constant on $S_{p}M$ . Hence,
since $\hat{\lambda}_{j}(1\leq i\leq d-1)$ are constant on $S_{p}M$ by the assumption, so are also
$r_{i}(1\leq l\leq d)$ by Lemma 2.3. Therefore, by (3.2), $f\circ\sigma_{v}(v\in S_{p}M)$ are mutually
congment, that is, they have the same Frenet curvatures. This together with the
arbitrarity of $p$ and the completeness of $M$ implies that $f$ is helical. $\square $

Define functions $F_{ij}(i\geq 0,j\geq 0)$ on SM by

$F_{ij}(v)$ $:=\langle(\overline{\nabla}^{i}h)(v, \ldots, v), (\overline{\nabla}^{j}h)(v, \ldots, v)\rangle$ $(v\in SM)$

and functions $G_{ij}$ on the Stiefel bundle $V_{2}(M)$ of $M$ of all orthonormal 2-frames
of $M$ by

$G_{ij}(v, w)$ $:=\langle(\overline{\nabla}^{j}h)(v, \ldots, v), (\overline{\nabla}^{j}h)(v, \ldots, v, w)\rangle$ $((v, w)\in V_{2}(M))$ .

Now we shall prepare another lemma.
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LEMMA 3.5. Let $f$ be an immersion as in Theorem 3.2 and $2d$ the order of$f$

Assume that $F_{kk}$ is constant on $SM$ and $\overline{\nabla}^{j}h(i\geq 2)$ are symmetric, where $k$ is a
fixed non-negative integer. Then the following relations hold:

$G_{kk}=0$ , $\sum_{i=0}^{j}\left(\begin{array}{l}j\\i\end{array}\right)F_{k+j-i,k+i+1}=0$ ,

$\sum_{i=0}^{j}\left(\begin{array}{l}j\\i\end{array}\right)G_{k+i+1,k+j-t}=0$ , $\sum_{i=0}^{j}\left(\begin{array}{l}j\\i\end{array}\right)G_{k+i,k+j-i+1}=0$ $(j\geq 0)$ .

PROOF. Take an arbitrary point $p$ of $M$ and furthermore, take an arbitrary
orthonormal 2-frame $(v, w)$ of $M$ at $p$ . Let $\tilde{v}$ be the velocity vector field of the
geodesic $\sigma_{v}$ . By operating $d/ds$ to the constant function $F_{kk}(\tilde{v})$ , we have
$F_{k,k+1}(\tilde{v})=0$ , where $s$ is the arclength of $\sigma_{v}$ . Furthermore, by operating $(d/ds)^{j}$

to $F_{k,k+1}(\tilde{v})=0$ and substituting $s=0$ , we can obtain $\sum_{i=0}^{j}\left(\begin{array}{l}j\\i\end{array}\right)F_{k+j-i,k+l+1}(v)=$

$0$ . Hence, by the arbitrarity of $v$ and $p,$
$\sum_{i=0}^{j}\left(\begin{array}{l}j\\i\end{array}\right)F_{k+j-i,k+i+1}=0$ holds on $SM$.

By differentiating $F_{kk}|_{S_{p}M}$ in the direction $w(\in T_{v}(S_{p}M))$ , we have $G_{kk}(v, w)=0$ .
By the arbitrarity of $(v, w)$ and $p,$ $G_{kk}=0$ holds on $V_{2}(M)$ . Let $\tilde{w}$ be the parallel
vector field along $\sigma_{v}$ with $\tilde{w}(O)=w$ . By operating $d/ds$ to $G_{kk}(\tilde{v},\tilde{w})$ and sub-
stituting $s=0$ , we have $G_{k+1,k}(v, w)+G_{k,k+1}(v, w)=0$ . Also, by differentiating
$F_{k,k+1}|_{S_{p}M}=0$ in the direction $w(\in T_{v}(S_{p}M))$ , we have

$(k+2)G_{k+1,k}(v, w)+(k+3)G_{k,k+1}(v, w)=0$ .

Therefore, we can obtain $G_{k+1,k}(v, w)=G_{k,k+1}(v, w)=0$ and hence, by the
arbitrarity of $(v, w)$ and $p,$ $G_{k+1,k}=G_{k,k+1}=0$ holds on $V_{2}(M)$ . Furthermore, by
operating $(d/ds)^{j}$ to $G_{k+1,k}(\tilde{v},\tilde{w})=G_{k,k+1}(\tilde{v},\tilde{w})=0$ and substituting $s=0$ , we
can obtain

$\sum_{i=0}^{j}\left(\begin{array}{l}j\\i\end{array}\right)G_{k+i+1,k+j-i}(v, w)=\sum_{i=0}^{j}\left(\begin{array}{l}j\\i\end{array}\right)G_{k+i,k+j-i+1}(v, w)=0$ .

Hence, by the arbitrarity of $(v, w)$ and $p$ ,

$\sum_{i=0}^{j}\left(\begin{array}{l}j\\i\end{array}\right)G_{k+i+1,k+j-i}=\sum_{i=0}^{j}\left(\begin{array}{l}j\\i\end{array}\right)G_{k+i,k+j-i+1}=0$

holds on $V_{2}(M)$ . $\square $



820 Naoyuki KOIKE

From these lemmas, we can show the following result.

THEOREM 3.6. Let $f$ be a generalized helical immersion of order $2d$ of an
n-dimensional compact Riemannian mamfold $M$ all of whose geodesics are closed
into an m-dimensional Euclidean space $R^{m}$ . In case of $d\geq 2$, assume that, for each
$p\in M,$ $\Vert(\overline{\nabla}^{j}h)(v, \ldots, v)\Vert$ is independent of the choice of $v\in S_{p}M(0\leq i\leq d-2)$

and furthermore, in case of $d\geq 6$ , assume that $\overline{\nabla}^{i}h$ is symmetric $(2\leq i\leq$

$[d/2]-1)$ , where $[]$ is the Gauss’s symbol. Then $f$ is helical.

PROOF. If $d=1$ , then $f$ is a planar geodesic immersion and hence a helical
immersion of order 2. In the sequel, assume that $d\geq 2$ . Take an arbitrary point
$p_{0}$ of $M$ and furthermore take an arbitrary orthonormal 2-frame $(v, w)$ of $M$ at
$p0$ . Let $(v_{0}, \ldots, v_{2d-1})$ (resp. $\lambda_{i}(1\leq i\leq 2d-1)$ ) be the Frenet frame (resp. i-th
Frenet curvature) of $f\circ\sigma_{v}$ , where we note that $f\circ\sigma_{v}$ is of order $2d$ by Theorem
3.2. From the Gauss formula and the Frenet formula, we have

(3.3) $\lambda_{1}v1=h(v_{0}, v_{0})$

and hence $\hat{\lambda}_{1}(v)^{2}=F_{00}(v)$ . By the arbitrarity of $v$ and $p_{0}$ , we see that $\hat{\lambda}_{1}^{2}=F_{00}$

holds on $SM$. By the assumption, $\hat{\lambda}_{1}$ is constant on $S_{p}M$ for each $p\in M$ .
Furthermore, since $f$ is generalized helical and there exists a geodesic through
arbitrary two points of $M$ by the compactness of $M,\hat{\lambda}_{1}(=F_{00})$ is constant on
$SM$. Thus, if $d=2$ , then $f$ is helical by Lemma 3.4. In the sequel, assume $d\geq 3$ .
By operating $\tilde{\nabla}_{v_{0}}$ to (3.3), we have

$-\lambda_{1}^{2}v_{0}+\lambda_{1}\lambda_{2}v_{2}=-A_{h(v_{0},v_{0})}v_{0}+(\overline{\nabla}h)(v_{0}, v_{0}, v_{0})$ .

Also, since $F_{00}$ is constant on $SM$, it follows from Lemma 3.5 that $G_{00}=0$ and
hence $A_{h(v_{0},v_{0})}v_{0}=F_{00}(v_{0})v_{0}$ , where we note that the symmetricness of $h$ is used.
So we can obtain

(3.4) $-\lambda_{1}^{2}v_{0}+\lambda_{1}\lambda_{2}v_{2}=-F_{00}(v_{0})v_{0}+(\overline{\nabla}h)(v_{0}, v_{0}, v_{0})$

and hence

$\hat{\lambda}_{1}(v)^{4}+\hat{\lambda}_{1}(v)^{2}\hat{\lambda}_{2}(v)^{2}=F_{00}(v)^{2}+F_{11}(v)$ .

By the arbitrarity of $v$ and $p_{0}$ , we see that

(3.5) $\hat{\lambda}_{1}^{4}+\hat{\lambda}_{1}^{2}\hat{\lambda}_{2}^{2}=F_{00}^{2}+F_{11}$
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holds on $SM$. Since $\hat{\lambda}_{1}$ and $F_{00}$ are constant on $SM$ and $F_{11}$ is constant on $S_{p}M$

for each $p\in M$ , it follows from (3.5) that $\hat{\lambda}_{2}$ is constant on $S_{p}M$ for each $p\in M$ .
Furthermore, since $f$ is a generalized helical and there exists a geodesic through
arbitrary two points of $M,\hat{\lambda}_{2}$ is constant on $SM$. Thus, if $d=3$ , then $f$ is helical
by Lemma 3.4. In the sequel, assume $d\geq 4$ . By operating $\tilde{\nabla}_{v_{0}}$ to (3.4), we have

$-\lambda_{1}(\lambda_{1}^{2}+\lambda_{2}^{2})v_{1}+\lambda_{1}\lambda_{2}\lambda_{3}v_{3}$

$=-2F_{10}(v_{0})v_{0}+F_{00}(v_{0})h(v_{0}, v_{0})$

$-A_{(\overline{\nabla}h)(v_{0},,v_{0},v_{0})}v_{0}+(\overline{\nabla}^{2}h)(v_{0}, \ldots, v_{0})$ .

Also, since $F_{00}$ is constant on $SM$, we have $F_{10}=0$ and $G_{10}=0$ by Lemma 3.5,
where we note that the symmetricness of $\overline{\nabla}h$ is used. So we have

(3.6) $-\lambda_{1}(\lambda_{1}^{2}+\lambda_{2}^{2})v_{1}+\lambda_{1}\lambda_{2}\lambda_{3}v_{3}=F_{00}(v_{0})h(v_{0}, v_{0})+(\overline{\nabla}^{2}h)(v_{0}, \ldots, v_{0})$ .

and hence
$\hat{\lambda}_{1}(v)^{2}(\hat{\lambda}_{1}(v)^{2}+\hat{\lambda}_{2}(v)^{2})^{2}+\hat{\lambda}_{1}(v)^{2}\hat{\lambda}_{2}(v)^{2}\hat{\lambda}_{3}(v)^{2}$

$=F_{00}(v)^{3}+2F_{00}(v)F_{20}(v)+F_{22}(v)$ .

By the arbitrarity of $v$ and $p_{0}$ , we see that

(3.7) $\hat{\lambda}_{1}^{2}(\hat{\lambda}_{1}^{2}+\hat{\lambda}_{2}^{2})^{2}+\hat{\lambda}_{1}^{2}\hat{\lambda}_{2}^{2}\hat{\lambda}_{3}^{2}=F_{00}^{3}+2F_{00}F_{20}+F_{22}$

holds on $SM$. Since $\hat{\lambda}_{1},\hat{\lambda}_{2}$ and $F_{00}$ are constant on $SM$, so is also $F_{11}$ by (3.5).

Furthermore, since $F_{00}$ and $F_{11}$ are constant on $SM$, so is also $F_{20}$ by Lemma 3.5.
Therefore, since $\hat{\lambda}_{1},\hat{\lambda}_{2},$

$F_{00}$ and $F_{20}$ are constant on $SM$ and $F_{22}$ is constant on
$S_{p}M$ for each $p\in M$, it follows from (3.7) that $\hat{\lambda}_{3}$ is constant on $S_{p}M$ for each
$p\in M$ . Moreover, since $f$ is generalized helical and there exists a geodesic through
arbitrary two points of $M,\hat{\lambda}_{3}$ is constant on $SM$. Thus, if $d=4$ , then $f$ is helical
by Lemma 3.4. In case of $d\geq 5$ , by repeating the same process, we can show that
$\hat{\lambda}_{i}(4\leq i\leq d-1)$ are constant on $SM$. Hence $f$ is helical by Lemma 3.4. $\square $

Now we shall recall examples of a helical immersion into a sphere (or a
Euclidean space) given by K. Tsukada in [18]. Let $M$ be an n-dimensional
compact symmetric space of rank one. Let $V_{k}$ be the eigenspace for k-th
eigenvalue $\lambda_{k}$ of the Laplace operator on $M$ and let $\dim V_{k}=m(k)+1$ . We
define an inner product $\langle, \rangle$ on $V_{k}$ by $\langle\phi, \psi\rangle:=\int_{M}\phi\psi dV$ , where $dV$ is the
volume element of $M$. We define a map $\Phi_{k}$ : $M\rightarrow R^{m(k)+1}$ by $\Phi_{k}(p):=$

$\sqrt{n/\lambda_{k}}(\phi_{0}(p), \ldots, \phi_{m(k)}(p))$ , where $(\phi_{0}, \ldots, \phi_{m(k)})$ is an orthonormal base of $V_{k}$ .
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Then $\Phi_{k}$ becomes a helical immersion. Furthermore, it is shown that $\Phi_{k}(M)$ is
contained in a hypersphere $S^{m(k)}$ of $R^{m(k)+1}$ and that $\Phi_{k}$ : $M\rightarrow S^{m(k)}$ is minimal
and helical. The isometric immersion $\Phi_{k}$ is called the k-th standard minimal
immersion into $S^{m(k)}$ . K. Tsukada defined an isometric immersion $\Phi_{k_{1}\cdots k_{r}}$ of $M$

into $R^{m(k_{1})+\cdots m(k_{r})+r}$ by

$\Phi_{k_{1}\cdots k_{r}}(p)$ $:=(c_{1}\Phi_{k_{1}}(p), \ldots, c_{r}\Phi_{k_{r}}(p))$ ,

where $k_{1},$
$\ldots,$

$k_{r}$ are positive integers and $c_{1},$
$\ldots,$

$c_{r}$ are positive numbers with
$c_{1}^{2}+\cdots+c_{r}^{2}=1$ . He showed that it is a helical immersion into a hypersphere
$S^{m(k_{1})+\cdots m(k_{r})+r-1}$ of $R^{m(k_{1})+\cdots m(k_{r})+r}$ (cf. [18]). Now we can obtain the following
result in terms of Theorem 3.6 and Theorem 4.7 of [14].

COROLLARY 3.7. Under the hypothesis in Theorem 3.6, assume that $f$ is a full
embedding and $\dim M=2$ or odd integer. Then $M$ is isometric to a sphere or a
real projective space and $f$ is congruent to the above immersion $\Phi_{k_{1}\cdots k_{r}}$ .

4. Generalized helical immersions into a sphere

In this section, we shall deduce some results for a generalized helical
immersion into a sphere in terms of results in the previous section. First we can
deduce the following result from Theorem 3.2.

THEOREM 4.1. Let $f$ be a generalized helical immersion of an n-dimensional
compact Riemannian manifold $M$ all of whose geodesics are closed into an m-
dimensional sphere $S^{m}$ . Then the following statements (i) and (ii) hold:

(i) $\iota ff$ is of odd (resp. even) order $d$, then all geodesics in $M$ are viewed as
closed helices of order $d$ (resp. $d$ or $d-1$ ) with the same length in $S^{m}$ ,

(ii) $lff$ is an embedding, then $M$ is a SC-manifold.

PROOF. Let $\iota$ be the totally umbilical embedding of $S^{m}$ into $R^{m+1}$ and set
$\tilde{f}$

$:=\iota\circ f$ . It is clear that $\tilde{f}$ is generalized helical. Hence, it follows from Theorem
3.2 that all geodesics in $M$ are viewed as closed helices of the same order with the
same length in $R^{m+1}$ . This deduces the statement (i) because a helix of order $d$ in
$S^{m}$ is viewed as a helix of order $2[(d+1)/2]$ in $R^{m+1}$ . If $f$ is an embedding, then
so is also $f$ . Hence, the statement (ii) is deduced from Theorem 3.2. $\square $

From the statement (ii) of this theorem, we can obtain the following
corollary.
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COROLLARY 4.2. Let $f$ : $M\leftarrow rS^{m}$ be an immersion as in Theorem 4.1. If$f$ is
an embedding and $M$ is a Riemannian homogeneous space, then $M$ is isometric to a
compact symmetric space of rank one.

Also, we can deduce the following result from Theorem 3.6.

THEOREM 4.3. Let $f$ be a generalized helical immersion of order $2d-1$ or $2d$

of an n-dimensional compact Riemannian mamfold $M$ all of whose geodesics are
closed into an m-dimensional sphere $S^{m}$ . In case of $d\geq 2$ , assume that, for each
$p\in M$ , $\Vert(\overline{\nabla}^{j}h)(v, \ldots, v)\Vert$ is independent of $v\in S_{p}M(0\leq l\leq d-2)$ and fur-
thermore, in case of $d\geq 6$ , assume that $\overline{\nabla}^{j}h$ is symmetric $(2\leq i\leq[d/2]-1)$ . Then

$f$ is helical.

PROOF. Let $\iota$ be the totally umbilical embedding of $S^{m}$ into $R^{m+1}$ and set
$f;=\iota\circ f$ . From the assumptions, we can show that $f$ satisfies the conditions
of Theorem 3.6. Hence $f$ is helical by Theorem 3.6. This implies that so is
also $f$ $\square $

Also, we can obtain the following result from Corollary 3.7.

COROLLARY 4.4. Under the hypothesis in Theorem 4.3, assume that $f$ is a full
embedding and $dimM=2$ or odd integer. Then $M$ is isometric to a sphere or a
real projective space and $f$ is congruent to the immersion $\Phi_{k_{1}\cdots k_{r}}$ stated in Sect. 3.
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