
TSUKUBA J. MATH.
Vol. 21 No. 3 (1997), 795-808

TORSION INJECTIVE COVERS AND RESOLVENTS

By

J. R. Garcia ROZAS and Blas TORRECILLAS*

1. Introduction

E. Enochs began the study of injective covers in [3], characterizing when
any left R-module has an injective cover. This happens if and only if $R$ is a left
noetherian ring. Torsion injective covers and torsionfree injective covers were
introduced by Ahsan and Enochs in [2] and [1] respectively, in the context of the
Goldie torsion theory. B. Torrecillas in [13] defined $\tau$-torsionfree $\tau$-injective
covers and $\tau$-injective covers for $\tau$ a hereditary torsion theory. These covers
have been studied in [6] and [7].

In this paper, $\tau$-torsion $\tau$-injective covers and envelopes are studied for $\tau$

any torsion theory. Then we construct relative homological algebra by means
of complexes with this kind of covers and envelopes. In Section 3, we find
necessary and sufficient conditions for the existence of $\tau$-torsion $\tau$-injective
covers and envelopes for any module. In the aim of the descomposition theorem
of abelian groups in divisible and reduced part, we give a torsion theoretical
version in terms of $\tau$-torsion $\tau$-injective modules as divisibles ones, Proposition
2, relating such descomposition with certain condition on the existence of
$\tau$-torsion $\tau$-injective covers. The existence of $\tau$-torsion $\tau$-injective envelopes is
given in Theorem 2.

In Section 4, we study the balance (see [5]) of the functor $Hom(-, -)$

relative to the class of $\tau$-torsion $\tau$-injective modules. When the balance is given,
it is possible to introduce left derived functor of $Hom(-, -)$ by using resolvents
and resolutions of $\tau$-torsion $\tau$-injective modules. Left and right relative global
dimension of the ring $R$ are defined and analysed.

2. Preliminaries

Throught this note $R$ denotes a unitary ring, R-Mod the category of all
left R-modules and all R-homomorphisms, and $\mathscr{C}$ a full subcategory of R-Mod
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closed under isomorphisms and direct summands. $\tau$ will denote a hereditary
torsion theory on R-Mod and $\mathscr{L}(\tau)$ the Gabriel filter associated to $\tau$ . We mean
by $(\mathscr{T}_{\tau}, \mathscr{F}_{\tau})$ the $\tau$-torsion and $\tau$-torsionfree classes respectively associated to $\tau$ .
By $Q_{\tau}(-)$ , we denote the localization functor associated to $\tau$ and $\tau(-)$ the
$\tau$-torsion functor. We say that $\tau$ is stable if the class of $\tau$-torsion left R-modules
is closed under injective hulls.

We say that an R-module $M$ is $\tau$-injective if $Ext_{R}^{1}(T, M)=0$ for all
$\tau$-torsion R-module $T$ . We will denote by $E_{\tau}(M)$ the $\tau$-injective hull of any left
R-module $M$ .

We will say that $\tau$ is a TTF-theory in case that the class of $\tau$-torsion
modules is closed under direct products. It is well known that $\tau$ is a TTF-theory
if and only if there exists an idempotent two-sided ideal $I$ such that $\mathscr{T}_{\tau}$ consists
of those left R-modules $M$ with $IM=0$ . Since $\mathscr{T}_{\tau}$ is a torsionfree class, we will
denote by $(\mathscr{C}_{\tau}, F_{\tau}, \mathscr{F}_{\tau})$ the triple with $\mathscr{C}_{\tau}$ the torsion class associated to $\mathscr{T}_{\tau}$ .

All R-modules will be left R-modules and all torsion theories will be hered-
itary. We will denote by $J^{g}J_{\overline{\tau}}$ (respectively $J_{\tau}$ ) the class of all $\tau$-torsion $\tau-$

injective R-modules (resp. the class of all $\tau$-injective R-modules). (For concepts
about torsion theory we will refer to [8] and [10]).

We recall the definition introduced by E. Enochs in [3].

DEFINITION 1. Let $M$ be an R-module. We say that $E$ in $\mathscr{C}$ is a $\mathscr{C}$-precover
of $M$ if there exists an homomorphism $\phi:E\rightarrow M$ such that the triangle

can be completed for each homomorphism $E^{\prime}\rightarrow M$ with $E^{\prime}$ in $\mathscr{C}$ . If the triangle

can be completed only by automorphisms, we say that $\phi:E\rightarrow M$ is a $\mathscr{C}$-cover.
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REMARK. a) A $\mathscr{C}$-cover of an object, if it exists, is unique up to
isomorphisms.

b) Dually, the concept of $\mathscr{C}$-envelope can be defined, (cf. [3]).

Now, we give the concepts of resolvent and resolution that appear in [3] for
$\mathscr{C}$ the class of injectives modules.

DEFINITION 2. (a) A comp $lex\cdots\rightarrow E_{1}\rightarrow E_{0}\rightarrow M\rightarrow 0$ where

$E_{0}\rightarrow M$ , $E_{1}\rightarrow Ker(E_{0}\rightarrow M)$ , $E_{n+1}\rightarrow Ker(E_{n}\rightarrow E_{n-1})$

for $n\geq 1$ are $\mathscr{C}$-precovers is called a $\mathscr{C}$-resolvent of M. If $E_{n+1}\rightarrow Ker(E_{n}\rightarrow E_{n-1})$

are $\mathscr{C}$-covers, the above complex is called a minimal $\mathscr{C}$-resolvent of M. For $n\geq 0$ ,
$C_{n}=Ker(E_{n}\rightarrow E_{n-1})$ is $ca$lled the $nth$ syzygy of $M$ (for $n=0$ , we take
$E_{n-1}=M)$ .

(b) Dually, $\mathscr{C}$-resolutions are defined. If $ 0\rightarrow M\rightarrow G^{0}\rightarrow G^{1}\rightarrow\cdots$ is a
$\mathscr{C}$-resolution of $M$, then $C^{0}=M,$ $C^{n}=Im(G^{n-1}\rightarrow G^{n})$ for $n\geq 1$ is called the
$nth\mathscr{C}$-cosyzygy of $M$.

We will be interested in $J\mathscr{T}_{\tau}$-covers, $J\mathscr{T}_{\tau}$ -resolvents and $J\mathscr{T}_{\tau}$-resolutions.

3. Existence of covers and envelopes

First, we study when there exist $JF_{\tau}$-covers.

LEMMA 1. Let $\tau$ be a torsion theory in R-Mod. Suppose that $\mathscr{L}(\tau)$ verifies
the ascending chain condition over left ideals. Then $J\mathscr{T}_{\tau}$ is closed under direct
limits and every R-module in $J\mathscr{T}_{\tau}$ is a direct sum of indescomposable R-modules.

PROOF. It is well-known that the full subcategory $\mathscr{T}_{\tau}$ is a Grothendieck
category with the following set of generators: $\{R/I|I\in \mathscr{L}(\tau)\}$ . Since $\mathscr{L}(\tau)$

verifies the ascending chain condition over ideals, it follows that for each
$I\in \mathscr{L}(\tau),$ $R/I$ is a noetherian object in $F_{\tau}$ . So $\mathscr{T}_{\tau}$ is a locally noetherian
Grothendieck category. Hence, the class of injectives objects in $\mathscr{T}_{\tau}$ is closed
under direct limits and every injective object in $\mathscr{T}_{\tau}$ is a direct sum of inde-
composable objects (see [10, Page 124]). But, it is not hard to check that the
injective objects in $\mathscr{T}_{\tau}$ are precisely the $\tau$-torsion $\tau$-injective R-modules. $\square $

The following Theorem extends the result of Ahsan and Enochs [2, Page
259].
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THEOREM 1. Let $\tau$ a torsion theory in R-Mod. The following conditions are
equivalent.

(a) $\mathscr{L}(\tau)$ verifies the ascending chain condition over left ideals.
(b) Every R-module has a $J\mathscr{T}_{\tau}$-cover.

PROOF. $(a)\Rightarrow(b)$ By [3], in order to find $J\mathscr{T}_{\tau}$-covers for each R-module is
enough to impose that every R-module in $J\mathscr{T}_{\tau}$ can be written as a direct sum of
indescomposable R-modules in $J\mathscr{T}_{\tau}$ , and $J\mathscr{T}_{\tau}$ will be closed under direct limits.
So, we only have to apply Lemma 1.

$(b)\Rightarrow(a)$ Suppose that every R-module has a $J\mathscr{T}_{\tau}$-cover. Then $J\mathscr{T}_{\tau}$ is
closed under direct sums [6, Proposition 1]. Hence, by [9, Lemma 2], $\mathscr{L}(\tau)$

verifies the ascending chain condition over ideals. $\square $

REMARK. a) If $M$ is a $\tau$-torsionfree R-module, then $0\rightarrow M$ is the $J\mathscr{T}_{\tau}-$

cover of $M$ .
b) If $\tau(M)$ is $\tau$-injective, then the inclusion $\tau(M)\rightarrow M$ is the $J\mathscr{T}_{\tau}$-cover of

$M$ .
c) The $J\mathscr{T}_{\tau}$-cover of $M$ and $\tau(M)$ are the same, in case that it exists.

EXAMPLES. 1) Suppose that $\tau$ is a stable torsion theory. If $E\rightarrow M$ is an
injective cover of $M$ , then $\tau(E)\rightarrow M$ (the restriction map) is a $JF_{\tau}$-cover of $M$

(see [6, Note 2]).
2) Let $R$ be a commutative noetherian ring. It is well known that, in this

case, every torsion theory is stable. In [4, Proposition 3.2] has been proved that
every finitely generated R-module $M$ has an injective cover in the form
$E=\oplus_{i=1}^{n}E(R/\eta_{j})$ where $\eta_{j}$ is a maximal ideal for each $i$ . Since, in this case, the
$J\mathscr{T}_{\tau}$-cover of $M$ is the $\tau$-torsion direct sumand of $E$ , it follows that the $J\mathscr{T}_{\tau}-$

cover of $M$ is $E(R/\eta_{1})\oplus\cdots\oplus E(R/\eta_{k})$ , where $\eta_{1},$
$\ldots,$

$\eta_{k}$ are the maximal ideals
in $\mathscr{L}(\tau)$ which appear in the decomposition of $E$ .

3) Let $(R, \eta)$ a commutative noetherian local ring with maximal ideal $\eta$ and
$\tau_{\eta}$ the torsion theory associated to the punctured spectrum of $R$ , i.e. generated
by the powers of $\eta$ . For each finitely generated R-module $M$ , its injective cover
has the form $E(R/\eta)^{(s)}$ . Since $E(R/\eta)^{(s)}$ is $\tau_{\eta}$ -torsion, it follows that the injective
cover and the $J\mathscr{T}_{\tau_{\eta}}$ -cover coincide. (Note that this happens for any torsion
theory).

In order to find $J\mathscr{T}_{\tau}$-resolutions, we must answer when there exist $J\mathscr{T}_{\tau}-$

envelopes for any R-module. The next result gives a complete solution to this
problem. Now, we give several useful lemmas.
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LEMMA 2. $J_{\tau}$-envelopes and $\tau$-injective hulls coincide for any module $M$ (the

same for $J\mathscr{T}_{\tau}$-envelopes and $\tau$-injective hulls of $\tau$-torsion R-modules).

PROOF. Easy. $\square $

The following Lemma can be proved by using the dual arguments of [3,

Proposition 2.1].

LEMMA 3. Let $\mathscr{C}$ be a class of R-modules closed under isomorphisms and
direct summands. If every R-module has a $\mathscr{C}$-envelope, then $\mathscr{C}$ is closed under
direct products.

The following result characterizes the torsion theories with the property that
any module has a $\tau$-torsion $\tau$-injective envelope.

THEOREM 2. Let $\tau$ a torsion theory in R-Mod. The following conditions are
equivalent.

(a) Every R-module has a $fl\infty_{\tau}$ -envelope.
(b) $\tau$ is a TTF-theory.

PROOF. $(a)\rightarrow(b)$ Let $\{T_{i}\}_{i\in I}$ a index family of $\tau$-torsion R-modules. By
Lemma 3, $\prod_{i\in I}E_{\tau}(T_{i})$ belongs to $J\mathscr{T}_{\tau}$ . Because $\prod_{i\in I}T_{i}$ is a submodule of
$\prod_{i\in I}E_{\tau}(T_{i})$ , it follows that it is $\tau$-torsion. Hence $\tau$ is a TTF-theory.

$(b)\rightarrow(a)$ Let $\tau\equiv(\mathscr{C}, \mathscr{T}, \mathscr{F})$ be a TTF-theory and $\sigma$ the idempotent radical
associated to the torsion theory (non necessarily hereditary) $(\mathscr{C}, /^{})$ . We prove
that for each R-module $M,$ $M\rightarrow pM/\sigma(M)\rightarrow iE_{\tau}(M/\sigma(M))$ is the $J\mathscr{T}_{\tau}$ -envelope
of $M$ (where $p$ is the natural projection and $i$ is the inclusion). Also, we
denote by $j:\sigma(M)\rightarrow M$ the inclusion. It is clear that $E_{\tau}(M/\sigma(M))$ is in $J\mathscr{T}_{\tau}$ .
Let $X\in fla_{\overline{\tau}}$ and let $g:M\rightarrow X$ be a morphism. Since $gj=0$ , there exists
$\overline{g}:M/\sigma(M)\rightarrow X$ such that $\overline{g}p=g$ . Since $M/\sigma(M)\rightarrow iE_{\tau}(M/\sigma(M))$ is the $J\mathscr{T}_{\tau}-$

envelope of $M/\sigma(M)$ , it follows that there exists $h:E_{\tau}(M/\sigma(M))\rightarrow X$ such that
$hi=\overline{g}$ . Therefore $hip=g$ and $ip:M\rightarrow E_{\tau}(M/\sigma(M))$ is a $J^{\tau_{\tau}}/$-preenvelope of
$M$ . Finally, if $\alpha:E_{\tau}(M/\sigma(M))\rightarrow E_{\tau}(M/\sigma(M))$ verifies $\alpha ip=p$ , then, since $p$

is epic, it follows that $\alpha i=i$ . Because $i:M/\sigma(M)\rightarrow E_{\tau}(M/\sigma(M))$ is a $J\mathscr{T}_{\tau}-$

envelope, $\alpha$ is an automorphism. $\square $

Now, we are going to study when the $J\mathscr{T}_{\tau}$ -cover of any R-module is a
monomorphism. Following [8, Chapter 11], an R-module $L$ is said $\tau$-projective
if $Ext_{R}^{1}(L, T)=0$ for every $\tau$-torsion R-module $T$ .
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PROPOSITION 1. Let $\tau$ be a torsion theory in R-Mod. If $\mathscr{L}(\tau)$ verlfies the
ascending chain condition over left ideals and every left ideal in $\mathscr{L}(\tau)$ is $\tau-$

projective, then any R-module $M$ has a monic $J\mathscr{T}_{\tau}$-cover.
If $\tau$ is stable, the converse is also true.

PROOF. By [6, Proposition 4], we only have to prove that the class $J\mathscr{T}_{\tau}$ is
closed under direct sums and epimorphic images. By Lemma 1 and since $\mathscr{L}(\tau)$

verifies the ascending chain condition over left ideals, it follows that $JF_{\tau}$ is
closed under direct sums.

Now, we are going to see that if every ideal in $\mathscr{L}(\tau)$ is $\tau$-projective, then
$J\mathscr{T}_{\tau}$ is closed under epimorphic images. Let $0\rightarrow K\rightarrow E\rightarrow E/K-O$ an exact
sequence with $E$ in $J\mathscr{T}_{\tau}$ . Given $I\in \mathscr{L}(\tau)$ , we have the exact sequence:

$\rightarrow Ext_{R}^{1}(R/I,E)\rightarrow Ext_{R}^{1}(R/I, E/K)\rightarrow Exl_{R}^{2}(R/I, K)\rightarrow\cdots$ .

As $E$ is $\tau$-injective, $Ext_{R}^{1}(R/I, E)=0$ . Also, since $I$ is $\tau$-projective and $K$ is
$\tau$-torsion,

$Ext_{R}^{2}(R/I, K)\simeq Ext_{R}^{1}(I, K)=0$ .

Hence $Ext_{R}^{1}(R/I, E/K)=0$ for all $I\in \mathscr{L}(\tau)$ and so $E/K$ is in $J\mathscr{T}_{\tau}$ .
Conversely, let $\tau$ be a stable torsion theory. Suppose that any R-module has

a monic $JF_{\tau}$-cover. By [6, Proposition 4], $J\mathscr{T}_{\tau}$ is closed under direct sums
and epimorphic images. Take $X$ a $\tau$-torsion R-module and $I\in \mathscr{L}(\tau)$ . Applying
$Hom_{R}(R/I, -)$ to the exact sequence $0\rightarrow X\rightarrow E(X)\rightarrow E(X)/X\rightarrow 0$ , we have:

. . . $\rightarrow Ext_{R}^{1}(R/I,E(X)/X)\rightarrow Ext_{R}^{2}(R/I, X)\rightarrow 0=Ext_{R}^{2}(R/I, E(X))$ .

Since $\tau$ is stable, it follows that $E(X)$ is $\tau$-torsion. Therefore $E(X)/X$ is $\tau$-injective
and so $Ext_{R}^{1}(R/I, E(X)/X)=0$ . We conclude that

$0=Ext_{R}^{2}(R/I, X)\simeq Ext_{R}^{1}(I, X)$ ,

and $I$ is $\tau$-projective.
On the other hand, since $JF_{\tau}$ is closed under direct sums, by [9, Lemma 2],

$\mathscr{L}(\tau)$ verifies the ascending chain condition over ideals. $\square $

We will say that an R-module $M$ is $J\mathscr{T}_{\tau}$ -cotorsion (resp. $J\mathscr{T}_{\tau}$ -reduced) if
$Ext_{R}^{1}(E, M)=0$ (resp. $Hom_{R}(E,$ $M)=0$ ) for all $E\in J\mathscr{T}_{\tau}$ . The following result is
a generalization of the well-known descomposition theorem of abelian groups in
divisible and reduced part.
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PROPOSITION 2. Let $\tau$ be a torsion theory in R-Mod such that $\mathscr{L}(\tau)$ verifies
the ascending chain condition over ideals.

The following assertions are equivalent.
(a) $J\mathscr{T}_{\tau}$ is closed under epimorphic images.
(b) Every $J\mathscr{T}_{\tau}$-cover is a monomorphism.
(c) $J\mathscr{T}_{\tau}$ coincides with the class of $\tau$-torsion and $J\mathscr{T}_{\tau}$-cotorsion R-modules.
(d) Any $\tau$-torsion R-module $T$ is a direct sum $T=E\oplus K$ of an R-module $E$

in $J\mathscr{T}_{\tau}$ and a $J\mathscr{T}_{\tau}$-reduced R-module $K$.

PROOF. The equivalence of (a) and (b) is a direct consequence of [6,

Proposition 4].

$(a)\Rightarrow(c)$ Denote by $\mathscr{K}_{\tau}$ the class of $\tau$-torsion and $J\mathscr{T}_{\tau}$-reduced R-modules.
Then, it is clear that $J\mathscr{T}_{\tau}\subseteq \mathscr{M}_{\tau}^{\prime}$ . Conversely, let $C\in\ovalbox{\tt\small REJECT}_{\tau}^{\prime}$ and consider the short
exact sequence $0\rightarrow C\rightarrow E_{\tau}(C)\rightarrow E_{\tau}(C)/C\rightarrow 0$ . By hypothesis, $E_{\tau}(C)/C\in JF_{\tau}$ ,
then the sequence splits and so $C\in J\mathscr{T}_{\tau}$ .

$(c)\Rightarrow(b)$ Let $M\in R$-Mod. We consider the exact sequence $ 0\rightarrow C\rightarrow$

$\phi$

$E\rightarrow M$ , where $\phi$ : $E\rightarrow M$ is the $J\mathscr{T}_{\tau}$ -cover of $M$ . Then $C$ is $\tau$-torsion and
$JF_{\tau}$-cotorsion. Therefore, by hypothesis, $C$ is in $J\mathscr{T}_{\tau}$ . Hence the above exact
sequence splits, a contradiction if $C\neq 0$ . So $\phi$ is a monomorphism.

$(c)\Rightarrow(d)$ Let $T$ be any $\tau$-torsion R-module. We consider the exact sequence
$0\rightarrow E\rightarrow T\rightarrow K\rightarrow 0$ , where $E\rightarrow T$ is the $JF_{\tau}$-cover of $T$ . Since $K$ is $\tau$-torsion
the sequence splits and so $T$ is a direct sum $T=E\oplus K$, where $E$ is the maximal
submodule of $T$ that belongs to $J^{\varpi_{\tau}}/$ . It is clear that $K$ is $J\mathscr{T}_{\tau}$ -reduced.

$(d)\Rightarrow(b)$ If $E\rightarrow M$ is an $JF_{\tau}$-cover of $M$, then $E\rightarrow\tau(M)$ is an $J\mathscr{T}_{\tau}$-cover
of $\tau(M)$ . By $(c)\tau(M)=E^{\prime}\oplus K$ with $E^{\prime}\in J\mathscr{T}_{\tau}$ and $K\in ff_{\tau}$ . Then, $E=E^{\prime}$ is the
cover and it is monic. $\square $

4. Homology relative to $J\mathscr{T}_{\tau}$

In this Section we introduce left derived functors of $Hom(-, -)$ relative to
the class $J\mathscr{T}_{\tau}$ .

Let $\tau$ be a torsion theory in R-Mod, and suppose that $\mathscr{L}(\tau)$ verifies the
ascending chain condition over left ideals. If . . . $\rightarrow E_{1}\delta_{2}\rightarrow E_{0}\delta_{1}\rightarrow\epsilon N\rightarrow 0$ is a $JF_{\tau}-$

resolvent of $N$, it is clear that the sequence

. . . $\delta_{2_{*}}\delta_{1_{*}}-\rangle$
$ Hom(E, E_{1})-\rangle$ $Hom(E,E_{0})\rightarrow^{*}\epsilon Hom(E,N)\rightarrow 0$

is exact for each $E$ in $JF_{\tau}$ . Also, if $E$ is any R-module, the above sequence
verifies $\delta_{k_{*}}\delta_{k+1_{*}}=0$ for any positive integer $k$ . It can be proved that it is possible
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to constmct, like with projective resolvents, left derived functors of $Hom(M, -)$

relative to $J\mathscr{T}_{\tau}$ , for each R-module $M$ . For it, we define $\tau-Ext_{0}(M, N)=$

$Hom(M, E_{0})/Im\delta_{1_{*}},$ $\tau-Ext_{1}(M, N)=Ker\epsilon_{*}/Im\delta_{1_{*}}\tau-Ext_{i}(M, N)=Ker\delta_{i-1_{*}}/$

$Im\delta_{i_{*}}$ for all $i>1$ . In general, $\tau-Ext_{0}(M, N)$ is not isomorphic to $Hom(M, N)$ ,
as it is the case by using projective resolvents.

In order to construct $J\mathscr{T}_{\tau}$ -resolutions, we must have $J\mathscr{T}_{\tau}$ -envelopes for any
R-module. So, let $\tau$ be a TTF-theory (see Theorem 2). For each R-module $M$ , it
is possible to construct a $J\mathscr{T}_{\tau}$ -resolution

$ 0\rightarrow M\rightarrow\eta E^{0}\rightarrow^{l}E^{1}\delta\rightarrow\delta^{2}\ldots$

where $C^{0}=M$ , and $C^{i}=Im\delta^{j}(i\geq 1)$ are the cosyzygies of the above resolution.
Since $E^{i}$ is the $\tau$-injective envelope of $C^{j}$ , note that, for $i\geq 1$ , each $C^{j}$ is a
submodule of $E^{i}$ .

In the same way that with $J\mathscr{T}_{\tau}$-resolvents, now we can construct left
derived functors of $Hom_{R}(-, N)$ by using $JJ_{\tau}$-resolutions of $M$ . We give a
description of the left derived functors $\tau-Ext_{i}(-, N)$ of $Hom_{R}($-, $N)$ relative to
$J\mathscr{T}_{\tau}$ . Given two R-module $M$ and $N$ we consider a $J\mathscr{T}_{\tau}$ -resolution of $M$

$ 0\rightarrow M\rightarrow\eta E^{0}\rightarrow E^{1}\delta^{1}\rightarrow\delta^{2}\ldots$

by applying $Hom(-, N)$ we obtain the complex

. . . $\delta^{2}\delta^{1}\rightarrow^{*}Hom(E^{1}, N)\rightarrow^{*}Hom(E^{0}, N)\rightarrow^{*}Hom(M, N)\eta$ .

Then $\tau-\overline{Ext_{0}(M,N)}=Hom(E^{0}, N)/Im\delta^{1^{*}},$ $\tau-\overline{Ext_{1}(M,N)}=Ker\eta^{*}/Im\delta^{1^{*}}$ and
$\tau-\overline{Ext_{i}(M,N)}=Ker\delta^{i-1^{*}}/Im\delta^{i^{*}}$ for $i>1$ .

We need to show that left derived functors given above are well defined and
that $\tau-Ext_{j}(M, N)=\tau-\overline{Ext_{i}(M,N)}$ for all $i$ .

Let $\mathscr{A}$ and $\mathscr{B}$ abelian categories and $\mathscr{C},$
$\mathscr{D}$ full subcategories of $\mathscr{A}$ and $\mathscr{B}$

respectively. Following [5], we will say that the additive functor $F:\mathscr{A}\times \mathscr{B}\rightarrow Ab$

(contravariant in the first variable and covariant in the second one) is left
balanced relative to $(\mathscr{C}, \mathscr{D})$ if for each object $A$ of $\mathscr{A}$ there is a complex

$ 0\rightarrow A\rightarrow C^{0}\rightarrow C^{1}\rightarrow\ldots$ ,

with each $C^{i}\in \mathscr{C}$ which becomes exact when $F(-, D)$ is applied for any $D\in \mathscr{D}$ ,
and if for each object $B$ of $\mathscr{B}$ there is a complex

. . . $\rightarrow D_{1}\rightarrow D_{0}\rightarrow B\rightarrow 0$
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with each $D_{i}$ in $\mathscr{D}$ such that the functor $F(C, -)$ applied to the complex gives an
exact sequence whenever $C\in \mathscr{C}$.

PROPOSITION 3. a) Let $\tau$ be a torsion theory, and suppose that $\mathscr{L}(\tau)$ verifies
the ascending chain condition over left ideals. Then

$Hom(-, -):\mathscr{T}_{\tau}\times R-Mod\rightarrow Ab$

is a left balanced functor by $(J\mathscr{T}_{\tau}, J\mathscr{T}_{\tau})$ .
b) Let $\tau$ be a TTF-theory, and suppose that $\mathscr{L}(\tau)$ verifies the ascending chain

condition over left ideals. Then

$Hom(-, -):R-Mod\times R-Mod\rightarrow Ab$

is a left balanced functor by $(J\mathscr{T}_{\tau}, J\mathscr{T}_{\tau})$ .

PROOF. Apply Theorem 1 and Theorem 2. $\square $

Then, if $\tau$ is a TTF-theory and $\mathscr{L}(\tau)$ verifies the ascending chain condition
over left ideals, $M$ and $N$ are two R-modules such that $M$ has a $J\mathscr{T}_{\tau}$-resolution
$\{E^{i},\delta^{i}\}$ and $N$ has a $J\mathscr{T}_{\tau}$ -resolvent $\{E_{i},\delta_{i}\}$ , then the double complex
$Hom(E^{n}, E_{m})$ , and the complexes $Hom(E^{n}, N)$ and $Hom(M, E_{n})$ have isomorphic
homology, [5, Proposition 2.3]. We will denote by $\tau-Ext_{n}(M, N)$ the homology
of the complex $Hom(M, E_{n})$ (or the homology of the complex $Hom(E^{n},$ $N)$ ).

By [5, Corollary 2.4], the definitions of the relative homology functors given
before do not depend on the $J\mathscr{T}_{\tau}$ -resolvents and $JF_{\tau}$-resolutions taken.

Following [5], with some modifications, we give the following definitions.

DEFINITION 3. a) Let $M$ be an R-module and $\mathscr{C}$ a full subcategory of R-Mod.
We define $\mathscr{C}-l.dim(M)$ , the dimension respect to $\mathscr{C}$-resolvents of $M$, as the less
positive integer $n$ such that there exist a $\mathscr{C}$-resolvent

$0\rightarrow E_{n-1}\rightarrow E_{n-2}\rightarrow\cdots\rightarrow E_{0}\rightarrow M\rightarrow 0$ ,

$lf$ such integer exists. We say that $\mathscr{C}-l.dim(M)<\infty lf\mathscr{C}-l.dim(M)=n$ for
some non negative integer $n$ .

Dually, the dimension respect to $\mathscr{C}$-resolutions of $M$ is defined. It will be
denoted by $\mathscr{C}-r.dim(M)$ .

b) The left global dimension of $R$ relative to $\mathscr{C}$ is defined as the supremum of
$\mathscr{C}-l.dim(M)$ , for all R-modules M. It is denoted by $\mathscr{C}^{l}- gl.dimR$ .

Dually the right global dimension of $R$ relative to $\mathscr{C}$ is defined as the
supremum of $\mathscr{C}-r.dim(M)$ , for all R-modules M. It is denoted by $\mathscr{C}^{r}-gl.dimR$ .
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LEMMA 4. a) Let $\tau$ be a torsion theory, and suppose that $\mathscr{L}(\tau)$ verifies the
ascending chain condition over left ideals.

$a.1)$ The following conditions are equivalent.
i) $J\mathscr{T}_{\tau}-l.dim(M)=0$ .
ii) $M$ is $J\mathscr{P}_{\tau}^{\vee}$ -reduced.
iii) $\tau-Ext_{0}(X, M)=0$ for all $X\in R$-Mod.
$a.2)$ The following assertions are equivalent.
i) $J\mathscr{T}_{\tau}-l.dim(M)=1$ .
ii) $M$ is not $JF_{\tau}$-reduced and there exists a $J\mathscr{T}_{\tau}$-precover of $M,$ $\epsilon:E\rightarrow M$,

with $Ker\in J^{g}J_{\overline{\tau}}$-reduced.
iii) $\tau-Ext_{0}(N, M)\neq 0$ for some $N\in R$-Mod, and $\tau-Ext_{1}(X, M)=0$ for

all $X\in R$-Mod.
b) Let $\tau\equiv(\mathscr{C}, \mathscr{T}, \mathscr{F})$ be a TTF-theory in R-Mod.
$b.1)$ The $fo$llowing conditions are equivalent.
i) $JF_{\tau}-r.dim(M)=0$

ii) $M\in \mathscr{C}$ .
iii) $\tau-\overline{Ext_{0}(N,X)}=0$ for all $X\in R$-Mod.
$b.2)$ Suppose, in addition that $\mathscr{L}(\tau)$ verifies the ascending chain condition

over left ideals. The following conditions are equivalent.
i) $M\in J\mathscr{T}_{\tau}$

ii) $\tau-Ext_{0}(M, X)=Hom_{R}(M, X)$ for all $X\in R$-Mod.
iii) $\tau-Ext_{0}(X, M)=Hom_{R}(X, M)$ for all $X\in R$-Mod.
$b.3)$ The following assertions are equivalent.
i) $JF_{\tau}-r.dim(M)=1$ .
ii) There exists $a$ epic $J\mathscr{T}_{\tau}$-preenvelope of $M$.
iii) $\tau-\overline{Ext_{0}(M,N)}\neq 0$ for some $N\in R$-Mod, and $\tau-\overline{Ext_{1}(M,X)}=0$ for all

$X\in R$-Mod.

PROOF. We will prove (a). (b) can be proved with similar arguments.

(a.1) $i$ ) $\Rightarrow ii$ ) If $J_{\overline{\tau}}^{\prime}-l.dim(M)=0$ , then any $JF_{\tau}$-precover of $M$ is zero.
So, it is clear that $Hom(E, M)=0$ for each $E\in J\mathscr{T}_{\tau}$ .

$ii)\Rightarrow iii)$ By (ii) $0\rightarrow M$ is a $JF_{\tau}$-resolvent of $M$ . Therefore, we have
$\tau-Ex\iota_{0}(X, M)=Hom(X, 0)=0$ , for all $X\in R$-Mod.

$iii)\Rightarrow i)$ It is enough to check that $0\rightarrow M$ is a $JF_{\tau}$-precover of $M$ . Let
. . . $\rightarrow E_{1}\delta_{2}\rightarrow E_{0}\delta_{1}\rightarrow\epsilon M\rightarrow 0$ be a $JF_{\tau}$-resolvent of $M$ . We take any R-module.
Then, appliying $Hom(X, -)$ to the above complex, we obtain the complex

.. . $\delta_{2_{*}}\delta_{\iota_{*}}-\rangle$
$ Hom(X, E_{1})-\rangle$ $Hom(X, E_{0})\rightarrow^{*}\epsilon Hom(X, M)\rightarrow 0$ .



Torsion injective covers and resolvents 805

Therefore, $\tau-Ext_{0}(X, M)=Hom(X, E_{0})/Im\delta_{1_{*}}=0$ . Hence, for $E\in J\mathscr{T}_{\tau}$ we
have the exact sequence

$0\rightarrow Hom(E, C_{1})\rightarrow Hom(E, E_{1})^{\delta_{1}}-\rightarrow^{*}Hom(E, C_{0})\rightarrow 0$ ,

where $C_{i}$ are the syzygies of the above $JF_{\tau}$-resolvent. Then $Hom(E, C_{0})=Im\delta_{1_{*}}$ .
It implies that

$Hom(E, M)=Hom(E,E_{0})/Hom(E, C_{0})=\tau-Ext_{0}(E, M)=0$ .

So, $M$ is $J\mathscr{T}_{\tau}$-reduced.
(a.2) $i$ ) $\Rightarrow ii$ ) $(i)$ implies that there exists a $J\mathscr{T}_{\tau}$ -resolvent of $M$ in the form

$0\rightarrow E_{0}\rightarrow M$, with $E_{0}\neq 0$ . Then $M$ is not $J\mathscr{T}_{\tau}$ -reduced. If the kemel of any
$J\mathscr{T}_{\tau}$-precover is not $J\mathscr{T}_{\tau}$ -reduced, then any $J\mathscr{T}_{\tau}$-resolvent of $M$ has the form

$E_{1}\rightarrow E_{0}\rightarrow M\rightarrow 0$ with $E_{0},$ $E_{1}\neq 0$ . This is a contradiction with (i).
$ii)\Rightarrow iii)$ If $M$ is not $J\mathscr{T}_{\tau}$ -reduced, then, by (a.1), $\tau-Ext_{0}(N, M)\neq 0$ for

some $N\in R$-Mod. Now, we will prove that $\tau-Ext_{1}(X, M)=0$ , for all $X\in R-$

Mod. We take a $J\mathscr{T}_{\tau}$ -precover of $M$ which kemel is $J\mathscr{T}_{\tau}$ -reduced, $\epsilon:E_{0}\rightarrow M$ .
Then $0\rightarrow E_{0}\delta_{I}\rightarrow M$ is a $JF_{\tau}$-resolvent of $M$ . So, $\tau-Ext_{1}(X, M)=Hom(X, 0)/$

$Im\delta_{1_{*}}=0$ , for all $X\in R$-Mod.
$iii)\Rightarrow i)$ We show that there exists a $J\mathscr{T}_{\tau}$ -resolvent of $M$ in the form

$0\rightarrow E_{0}\delta_{1}\rightarrow\epsilon M\rightarrow 0$ . We consider a minimal $JF_{\tau}$-resolvent of $M$ :

.. . $\rightarrow E_{1}\delta_{2}\rightarrow E_{0}\delta_{1}\rightarrow\epsilon M\rightarrow 0$ .

For any $X\in R$-Mod, we have the exact sequence $ 0\rightarrow Hom(X, C_{1})\rightarrow$

$Hom(X,E_{1})^{\delta_{1}}\rightarrow^{*}Hom(X, C_{0})\rightarrow 0(\tau-Ext_{1}(X, M)=Ker\epsilon_{*}/Im\delta_{1_{*}}=0)$ . Therefore,

the sequence $0\rightarrow C_{1}\rightarrow E_{1}\rightarrow C_{0}\rightarrow 0$ is splitting. Hence $C_{0}\in J\mathscr{T}_{\tau}$ and so $C_{0}=0$

(see [6, Proposition 2]). So $0\rightarrow E_{0}\rightarrow M$ is a $J\mathscr{T}_{\tau}$-resolvent of M. $\square $

Now, by means of an inductive argument we can deduce the following
result.

THEOREM 3. Let $\tau$ be a torsion theory, and suppose that $\mathscr{L}(\tau)$ verifies the
ascending chain condition over left ideals. Let $M$ be an R-module. The following
conditions are equivalent for $n\geq 2$ .

(a) $J\mathscr{T}_{\tau}-l.dim(M)=n$ .
(b) There exists a ff-resolvent of $M$ such that the $ith$ syzygy is not $J\mathscr{T}_{\tau}-$

reduced for $i\leq n-2$ and the $n-1$ th syzygy is $J\mathscr{T}_{\tau}$-reduced.
c) $\tau-Ext_{i}(N, M)\neq 0$ for all $j<n$ and some $N\in R$-Mod and $\tau-$

$Ext_{n}(X, M)=0$ for any R-module $X$.
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Let $\tau$ be a TTF-theory in R-Mod. Dually, the following conditions are
equivalent for $n\geq 2$ .

(a) $J\mathscr{T}_{\tau}-r.dim(M)=n$ .
(b) There exists a $J\mathscr{T}_{\tau}$-resolution of $M$ such that the $ith$ cosyzygy do not

belong to $J\mathscr{T}_{\tau}$ for $i\leq n-2$ and the $n-1$ th cosyzygy belongs to $J\mathscr{T}_{\tau}$ .
(c) $\tau-\overline{Ext_{i}(M,N)}\neq 0$ for all $i>n$ and some $N\in R$-Mod, and

$\tau-\overline{Ext_{n}(M,X)}=0$, for each R-module $X$.

REMARK. If the syzygy $C_{i}$ is $J\mathscr{T}_{\tau}$-reduced, then the $J\mathscr{T}_{\tau}$-precover
$E_{i}\rightarrow C_{i-1}$ is a $JF_{\tau}$-cover.

The following result is consequence of Lemma 4.

LEMMA 5. Let $\tau$ be a TTF-theory and suppose that $\mathscr{L}(\tau)$ verifies the
ascending chain condition over left ideals. The following assertions are equivalent.

a) $JF_{\tau}^{r}-gl.dim(R)=0$ .
b) $JF_{\tau}^{l}-gl.dim(R)=0$ .
c) $\overline{J_{\tau}}^{\theta}=\{0\}$ .

PROPOSITION 4. Let $\tau$ be a TTF-theory and suppose that $\mathscr{L}(\tau)$ verifies the
ascending chain condition over $ lef\iota$ ideals. Then,

$J\mathscr{T}_{\tau}^{r}-gl.dim(R)=2+IT_{\tau}^{r}-gl.dim(R)$ ,

$lfJ\mathscr{T}_{\tau}^{r}-gl.dim(R)\geq 2$ .

PROOF. In order to calculate $J\mathscr{T}_{\tau}^{r}-gl.dim(R)$ when $\tau$ is a non trivial
TTF-theory given by the idempotent two-sided ideal $I$ , it is convenient to
remark that the localizing subcategory of $\tau$-torsion R-modules, $\mathscr{T}_{\tau}$ , is equivalent
to the category of $R/I$-modules $R/I$-Mod. Also injectives objects in $F_{\tau}$ (and so
in $R/I$-Mod) are precisely the $\tau$-torsion $\tau$-injectives R-modules. Therefore we
have

$J\mathscr{T}_{\tau}^{r}-gl.dim(R)=1+l.gl.dim(R/I)$ ,

where l.gl.$dim(R/I)$ denotes the usual left usual global dimension of $R/I$ . On the
other hand, since the $JF_{\tau}$-cover of a left R-module $M$ is the same that the $J\mathscr{T}_{\tau}-$

cover of $\tau(M)$ , we have, for $\tau$ non trivial,

$J\mathscr{T}_{\tau}^{l}-gl.dim(R)=J_{R/I}^{l}-gl.dim(R/I)$ ,
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where $J_{R/I}$ denotes the class of injectives $R/I$-modules. By using [3, Proposition
8.1],

$J\mathscr{T}_{\tau}^{l}-gl.dim(R)=l.gl.dim(R/I)-1$ ,

if l.gl.$dim(R/I)\geq 3$ , and $J\mathscr{T}_{\tau}^{l}-gl.dim(R)=1$ if the usual left global dimension
of $R/I$ is zero, one or two. Therefore,

$J\mathscr{T}_{\tau}^{r}-gl.dim(R)=2+J\mathscr{T}_{\tau}^{l}-gl.dim(R)$ ,

if $J\mathscr{T}_{\tau}^{l}-gl.dim(R)\geq 2$ . $\square $

When $\tau$ is an arbitrary hereditary torsion theory, the dimension
$J\mathscr{T}_{\tau}^{l}-gl.dim(R)$ coincides with the supremum of the length of injective

resolvents in the full subcategory $\mathscr{T}_{\tau}$ of R-Mod. The following result gives

sufficient and necessary conditions for the case $J\mathscr{T}_{\tau}^{l}-gl.dim(R)=1$ .

In [5, Pag. 307], Enochs and Jenda have characterized the coreflexivity of
the full subcategory of injectives R-modules of R-Mod, for $R$ any left noetherian

ring, in terms of the usual left global dimension of $R$ . The following Proposition
extends the above result. It is proved that the full subcategory $JF_{\tau}$ of injective
objects in $\mathscr{T}_{\tau}$ is a Co-Giraud subcategory of $\mathscr{T}_{\tau}$ . It means that $J\mathscr{T}_{\tau}$ is a
coreflexive subcategory with a preserving co-kemel coreflector $\mathscr{C}^{\tau}$ (see [11]).

PROPOSITION 5. Let $\tau$ be a torsion theory and suppose that $\mathscr{L}(\tau)$ verifies the
ascending chain condition over left ideals. The following conditions are equivalent.

(a) $J\mathscr{T}_{\tau}^{l}-gl.dim(R)\leq 1$ .
(b) The inclusion functor, $i:J\mathscr{T}_{\tau}\rightarrow \mathscr{T}_{\tau}$ , has the right adjoint $\mathscr{C}^{\tau}$ : $\mathscr{T}_{\tau}\rightarrow J\mathscr{T}_{\tau}$ ,

where $\mathscr{C}^{\tau}(M)$ is the $J\mathscr{T}_{\tau}$-cover of $M$ for all $M\in F_{\tau}$ .

PROOF. $(a)\Rightarrow(b)$ By Theorem 3, any kemel of a $JF_{\tau}$-precover is $J\mathscr{T}_{\tau}-$

reduced. Given $T\in \mathscr{T}_{\tau}$ , we consider the exact sequence $0\rightarrow K\rightarrow \mathscr{C}^{\tau}(T)\rightarrow T$ ,

where $\mathscr{C}^{\tau}(T)\rightarrow T$ is the $J\mathscr{T}_{\tau}$-cover of $T$ . Then, for all $E\in J\mathscr{T}_{\tau}$ , by apply-
ing $Hom_{R}(E, -)$ , we obtain the natural isomorphism $ Hom_{R}(i(E), T)\cong$

$Hom_{R}(E, \mathscr{C}^{\tau}(T))$ . So $\mathscr{C}^{\tau}$ is right adjoint of $i$ .
$(b)\Rightarrow(a)$ By Theorem 3, it is enough to check that any non trivial $JF_{\tau}-$

cover has a $J\mathscr{T}_{\tau}$ -reduced kemel. But, this can be proved by the reverse
argument of the above. $\square $
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