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SELFINJECTIVITY OF RINGS
RELATIVE TO LAMBEK TORSION THEORY

By

Mitsuo HOSHINO

Throughout this note R stands for an associative ring with identity, modules
are unitary modules and torsion theories are Lambek torsion theories. We use
the prefix “t—”" to mean “relative to Lambek torsion theory”.

In this note we call a ring R left t-selfinjective if Exth(X,R) is torsion for
every left R-module X. Our main aim is to characterize left t-selfinjective rings
R by a certain kind of linear compactness. Recall that a module X is called
absolutely pure if Exth(—, X) vanishes on the finitely presented modules. Also,
let us call a module X semicompact if lim n; is an epimorphism for every
inverse system of epimorphisms {n; : X — Y;}, ., with the Y, torsionless. Then,
as pointed out by Stenstréom [18], the argument of Matlis [13, Propositions 2
and 3] yields that a ring R is left selfinjective if and only if it is left absolutely
pure and right semicompact. It is shown in [9] that Exth(R/I,R) is torsion
for every left ideal I of R if and only if R is t-absolutely pure and right
t-semicompact. However, since t-epimorphisms are not necessarily set-theoretic
surjections, Baer’s lemma does not work. Namely, even if Exth(R/I,R) is
torsion for every left ideal 7 of R, R is not necessarily left 7-selfinjective. So
we need a rather strong notion of linear compactness to characterize left t-
selfinjective rings R.

We are also concerned with an arbitrary class of left R-modules ¢ which
contains gR and is closed under taking factor modules and extensions. We ask
when every submodule X of E(RR), the injective envelope of rR, with X € € is
torsionless. In various situations, this problem has been considered by several
authors (e.g., [3], [T] [16], [20], [2]. [6] [7] [4] and [8]). As a particular
case, we study the class of all t-finitely generated modules.

In the following, we denote by Mod R the category of left R-modules.
Right R-modules are considered as left R°P-modules, where R°P denotes the
opposite ring of R. Sometimes, we use the notation g X (resp. Xg) to stress that
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the module X considered is a left (resp. right) R-module. For a module X we
denote by E(X) its injective envelope. We denote by ()* both the R-dual
functors and for a module X we denote by ey : X — X™** the usual evaluation
map. A module X is called torsionless (resp. reflexive) if ey is a monomorphism
(resp. an isomorphism). For a module X e ModR we denote by 7(X) its
Lambek torsion submodule. Namely, 7(X) is a submodule of X such that
Homg(7(X), E(xR)) =0 and X /7(X) is cogenerated by E(zR). Then a module
X is called torsion (resp. torsionfree) if t(X) = X (resp. 7(X) = 0). Note that
torsionless modules are torsionfree. Finally, a submodule Y of a module X
is called a dense (resp. closed) submodule of X if X/Y is torsion (resp.
torsionfree).

1. Preliminaries

In this section, we collect several basic results which we need in later
sections.

Note first that Kerey = Y (resp. ©(X) < Y) for every submodule Y of X
with X/Y torsionless (resp. torsionfree). In particular, since torsionless modules
are torsionfree, 7(X) < Kerey for every module X.

The first three lemmas are obvious.

LemMA 1.1. A module X is torsion if and only if Y* = 0 for every (cyclic)
submodule Y of X. O

LEMMA 1.2. For a module X the following are equivalent.
(a) 7(X) = Kerey.

(b) Kerey is torsion.

(¢) X/1(X) is torsionless. O

LeMMA 1.3. Let u: X — Y be a monomorphism. Then the following hold.
(1) pw*=0 if and only if eyou=20.
(2) If Kerey is torsion, so is Kerey. O

LeMMA 1.4 ([7, Theorem A]). For a ring R the following are equivalent.
(a) t(X)=XKerey for every finitely presented X € Mod R.
(a)°P t(M) = Kerey for every finitely presented M € Mod RP. O

We call a ring Rzt-absolutely pure if it satisfies the equivalent conditions in
Cemma 1.4, Recall that a homomorphism 7 : X — Y is called a 7-epimorphism
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if Cokn is torsion. We call a module X rt-semicompact if lim =; is a -
epimorphism for every inverse system of t-epimorphisms {7, : X — Y;},_, with
the Y, torsionless (see [9] for details).

LemMma 1.5 ([8, Theorem 1.2]). For a ring R the following are equivalent.
(a) 7(X) = Kerey for every finitely generated X € Mod R.
(b) R is t-absolutely pure and right t-semicompact. O

LemMA 1.6 (cf. [10, Theorem 1.1]). Let n: F — X be an epimorphism with
F finitely generated free and put M = Cokn*. Then the following hold.

(1) Cokex = Exty(M,R).

(2) (Kerex)* embeds in Cokey.

Proor. (1) Obvious.

(2) Let ¢ : F* — M denote the canonical epimorphism and put ¥ = Cok ¢*.
Then Y ~Imey and by the part (1) Exth(Y,R) = Cokey. Thus by
1.3(1) the exact sequence 0 — Kerey — X — Y — 0 yields the desired
embedding. O

LeMMA 1.7. Let 05X 5 Y - Z — 0 be an exact sequence with Kerez
and Cok u* torsion. Then, if Cokey is torsion, so is Cokey.

PROOF. Since u** is monic, we have the following commutative diagram
with exact rows:

O X** u" Y** ¢

By Snake lemma we get an exact sequence Kera — Cokéexy — Cokey, so that it
suffices to show that Kera is torsion. Since n** o y** =0, n** = fo ¢ for some
B: W —2Z* Then Boaonm=fodoey=n"*oey=¢z0mn, thus foa=g¢z
because 7 is epic. Hence Kera « Kerez and Kera is torsion. O

LemMMA 18. Let n: X — Y be a t-epimorphism. Then, if X is t-semi-
compact, so is Y.
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ProOF. Let {mn;: Y — Z;},_A be an inverse system of t-epimorphisms with
the Z, torsionless. For each A€ A we have an exact sequence Cokn —
Cok(nyon) — Cokny — 0 and thus Cok(myomn) 1is torsion, so that
Cok(lim 7; o ) is torsion. Next, since lim m; o = (lim 7;) o, we have an
epimorphism Cok(lim n; o 1) — Cok(lim ;). Thus Cok(lim =;) is torsion.

O

The next lemma has been shown in the proof of [9, Proposition 2.4].
However, for completeness, we include a proof.

LEMMA 1.9. Let X be a module with Cokey torsion. Suppose Cok u* is
torsion for every monomorphism u: M — X*. Then X is 1-semicompact.

PrROOF. Let {m;: X — Y,}, A be an inverse system of t-epimorphisms with
the Y; torsionless. Since each =) is monic, so is lim n}. Thus Cok(lim n}*) =
Cok((lim =})*) is torsion. Since (lim ey,)o (lim ;) = (lim n}*) o ey, lim ey,
induces homomorphisms « : Im(lim n;) — Im(lim =}*) and g : Cok(lim 7;) —
Cok(lim 77*). We have an epimorphism Cokexy — Coka. Also, since lim ey, is
monic, by Snake lemma we have a monomorphism Kerf — Coka. Con-
sequently, Ker B is torsion, so is Cok(lim =;). O

2. Strongly exact full subcategories

Throughout this section € stands for a class of modules in Mod R. We ask
when every submodule X of E(xR) with X € € is torsionless. In various sit-
uations, this problem has been considered by several authors (e.g., [3], [1], [16],

[20]. [21 [6] 7] [4) and [8).
The next lemma is obvious (cf. Lemma 1.2).

LemMA 2.1. Suppose € is closed under taking factor modules. Then the
Sfollowing are equivalent.

(a) Every submodule X of E(xR) with X € € is torsionless.

(b) ©(X) = Kerex for every X € 6. O

LEMMA 2.2 (cf. [8, Theorem 1.2]). Suppose rRRe € and € is closed under
taking factor modules and extensions. Then the following are equivalent.

(a) 7(X) = Kerey for every X € %.

(b) Ext}((X ,R) is torsion for every X € 6.
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PrOOF. (a) = (b). Let 0 - K — F — X — 0 be an exact sequence with F
free and X € . Let n : K* — Exth(X, R) denote the canonical epimorphism and
let h e K*. It suffices to show (n(h)Rg)* = 0. Let us form a push-out diagram:

0 »y K » F > X > 0
¢
0 » R » Y » X > 0.

Then n(h)Rg is a homomorphic image of Cok ¢*. Since X € ¥ and RRe ¥, Y€ ¥
and Kerey is torsion. Thus Im¢ NKerey =0 and 4" oeg = &y o ¢ is monic.
Hence ¢** is monic and (Cok¢*)* = 0.

(b) = (a). Let X € % and let Y be a submodule of Kerey. We have only to
show Y*=0. By Lemma 1.3(1) the exact sequence 0 - Y - X —» X/Y — 0
yields an embedding Y* — Exth(X/Y,R) with X/Y € %, so that Y* is torsion
and Y*=0. O

LEMMA 2.3 (cf. [8, Theorem 1.2]). Suppose rRe € and € is closed under
taking factor modules and finite direct sums. Then the following are equivalent.
(a) ©(X) =Kereyx for every X € €.
(b) Cok u* is torsion for every monomorphism p:Y — X in Mod R with
Xeé.

PROOF. (a) = (b). Let u: Y — X be a monomorhism in ModR with
Xe%. Let n: Y* — Cok u* denote the canonical epimorphism and let A e Y*.
Form a push-out square:

i

4

R — Z.

Then n(h)Rg is a homomorphic image of Cok ¢*. Also, since kRR@® X € ¥ and Z
is a factor module of RR® X, Z € ¥. Thus, as in the proof of (a) = (b) in
Lemma 2.2, (n(h)Rg)* =0 and Coky* is torsion.

(b) = (a). Let X €€ and let Y be a submodule of Kerey. Let u: ¥ —» X
denote the inclusion. Then by [Lemma 1.3(1) Y* = Cok u*, so that Y* is torsion
and Y*=0. O
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LemMMA 2.4. Suppose € is closed under taking factor modules and extensions.
Let € be the class of all modules X € Mod R which can be embedded in some
Y € €. Then the following hold.

(1) € is closed under taking submodules, factor modules and finite direct
sums.

(2) For an exact sequence 0 > X — Y —-Z — 0 in ModR with Ze %,
X € % implies Y € €.

Proor. (1) Obvious.
(2) Let u: X - X’ be a monomorphism with X’ € ¥ and form a push-out
diagram:

0 — X » Y s Z (]
0 » X/ > Y’ > Z > 0.

Then v is monic with Y’ € €. O

THEOREM 2.5. Suppose rR € € and € is closed under taking factor modules
and extensions. Let € be the class of all modules X e Mod R which can be
embedded in some Y € €. Then the following are equivalent.

(a) Every submodule X of E(gR) with X € € is torsionless.

(b) ©(X) = Kerey for every X € €.

(c) ©(X) = Kerey for every X € €.

(d) Extk(X ,R) is torsion for every X € €.

(e) Coku* is torsion for every monomorphism p:X — Y in €.

PROOF. (a)<>(b). By Lemma 2.1.

(b) = (c). By Lemma 1.3(2).

(c) = (b). Obvious.

(b)<> (d). By Lemma 2.2.

(c)<> (e). By Lemmas 2.4(1) and 2.3. 0O

PROPOSITION 2.6 (cf. [20, Theorem 2]). Suppose € is closed under taking
submodules and factor modules. Then the following are equivalent.

(1) Every submodule X of E(xR) with X € € is torsionless.

(2) ©(X) = Kerey for every X € €.
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(3) (a) Every X € € with X* =0 is torsion.
(b) For an exact sequence 0 - X — Y —Z — 0 in ModR with Y€ ¥,
if both X and Z are torsionless, so is Y.

Proor. (1)<>(2). By [Lemma 2.1.

(2) = (3). Obvious.

(3)=(2). Let Xe¥ and he (Kerey)'. It suffices to show A=0. Let
u: Kerey — X denote the inclusion and form the push-out of u and 4:

0 —— Keregy L X »yImey ——— 0
0 —— Imh > Y »Imey —— 0.

Then Y is torsionless. Thus f o u = 0 because ey of ou = f** oexy o u = 0, so that
Imh = 0. O

3. r-Finitely generated modules

Recall that a module X is called t-finitely generated if it contains a finitely
generated dense submodule. In particular, every torsion module is t-finitely
generated. Throughout this section, we denote by #(R) the class of all -
finitely generated X € Mod R and by #(R) the class of all X € Mod R which can
be embedded in some Y € €(R).

Note that a module X is t-finitely generated if and only if there exists a
7-epimorphism # : F — X with F finitely generated free, and that composites of
7-epimorphisms are also t-epimorphisms. Thus the next lemma follows.

LEMMA 3.1. The class €(R) is closed under taking factor modules and
extensions. O

Since the class of all finitely generated X e Mod R is also closed under
taking factor modules and extensions, in the following we apply results in
Section 2 to finitely generated modules as well as t-finitely generated modules.

LemMMA 3.2. Let Q be a maximal left quotient ring of R. Then the following
are equivalent.

(a) rQ is torsionless.
(b) Exth(X,R) is torsion for every torsion X € Mod R.
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PROOF. Let u:grR — rQ denote the inclusion. Since u is an essential
monomorphism and gg o u = u** o g, it follows that rQ is torsionless if and
only if u** is monic.

(a) = (b). Let 0 » K — F — X — 0 be an exact sequence in Mod R with X
torsion and F free, and let =: K* — Extg(X,R) denote the canonical epi-
morphism. Let # € K* and form a push-out diagram:

0 »y K » F — X > 0
¢
0 » R » Y » X — 0.

Then n(h)Rg is a homomorphic image of Cok¢*, so that it suffices to show
(Cok ¢*)* = 0. Since Homg(g, Q) is a bijection, u = f o ¢ for some f : Y — rQ.
Thus u* = ¢* of* and we get an epimorphism Cok u* — Cok¢*. Since u** is
monic, (Coky*)* =0 and thus (Cok¢*)* =0.

(b) = (a). Since Cok u* embeds in Ext}e(RQ/R, R), Coky* is torsion and
thus p** is monic. O

REMARK. Let Q be a maximal left quotient ring of R. It follows from [11,
Proposition 2] and [19, Proposition 6] that every finitely generated submodule of
rQ is torsionless if and only if Exth(X, R) is torsion for every finitely generated
torsion X € Mod R. A slight modification of the proof above provides a direct
proof of this fact. Also, it follows from and [8, Lemma 5.2] that QO
is torsionless if and only if arbitrary direct products of copies of (Q/R)y are
torsion.

PROPOSITION 3.3. Let Q be a maximal left quotient ring of R. Then the
following are equivalent.
(1) ©(X) =Kerey for every X € 4(R).
(2) (a) ©1(X) = Kerey for every finitely generated X € Mod R.
(b) rQ is torsionless.

Proor. (1) = (2). Obvious.

(2) = (1). Let 0 » X — Y — Z — 0 be an exact sequence in Mod R with X
finitely generated and Z torsion. By Lemmas 3.1 and 2.2 it suffices to show that
Extk(Y, R) is torsion. Since Exty(X, R) is torsion by Lemma 2.2 and Extk(Z, R)
is torsion by Lemma 3.2, it follows that Ext}((Y, R) is torsion. O
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Recall that a dense right ideal I of R is called a minimal dense right ideal of
R if it is contained in every dense right ideal of R. Note that R has a minimal
dense right ideal if and only if arbitrary direct products of torsion right modules
are torsion.

COROLLARY 3.4. Suppose R has a minimal dense right ideal. Then the
following are equivalent.

(a) ©(X) = Kerey for every X € ¢(R).

(b) ©(X) = Kerey for every finitely generated X € Mod R.

Proor. (a) = (b). Obvious.

(b) = (a). Let Q be a maximal left quotient ring of R. Since gQ embeds in
E(zxR), by every finitely generated submodule of gQ is torsionless.
Thus by [9, Proposition 5.6] zQ is torsionless and [Proposition 3.3 applies. O

Lemma 3.5. Suppose R is t-absolutely pure and left t-semicompact. Then the
Sfollowing hold.

(1) Cokey is torsion for every X € €(R).

(2) Every X € 4(R) is t-semicompact.

Proor. (1) Let n: F — X be a t-epimorphism with F finitely generated
free and put M = Cok =*. Since n* is monic, Cok 7** = Extk(M ,R), so that by
Lemmas and 2.2 Cokn** is torsion. Since F is reflexive, we have an
epimorphism Cok n** — Cokéey and thus Cokey is torsion.

(2) Let Y be a finitely generated dense submodule of X. Then by [8,
Corollary 1.5] Y is t-semicompact and hence by so is X. O

PROPOSITION 3.6. Suppose 1(X) = Kerey for every X € €(R). Then
X* € (R°P) for every X € 4(R).

PROOF. Let n: F — Y be a t-epimorphism with F finitely generated free.
Then 7* is monic with F* € ¥(R°P), so that Y* € #(RP). Next, let u: X — Y be
a monomorphism in Mod R with Y € #(R). Since Y* € #(R°), by Lemma 2.4
(1) Im p* € €(R°P). Also, by Cok u* is torsion and Cok u* € €(R°P).
Thus by Lemma 2.4(2) X* e 4(R°?). [

THEOREM 3.7. Suppose t1(X) = Kerey for every X € 4(R) and R is left 1-
semicompact. Then the following hold.
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(1) Both Kersy and Cokey are torsion for every X € €(R).

(2) ()** induces a mono-preserving endofunctor of 4(R).

(3) A module X € 4(R) is reflexive if Exti(—,X) vanishes on the torsion
modules for i =0 and 1.

PROOF. Let X € #(R).

(1) By [Theorem 2.3 Kerey = t(X) is torsion. Next, let 0 » X 5 ¥ —
Z — 0 be an exact sequence in Mod R with Y € €(R). Since Z € ¥(R), Kerez is
torsion. Also, by Cok u* is torsion. Thus, since by [Lemma 3.5(1)
Cok ey is torsion, by [Lemma 1.7 so is Cokey.

(2) By Lemma 2.4(1) Imey € #(R). Also, since Cokey is torsion,
Cok ey € ¢(R). Thus by Lemma 2.4(2) X** € #(R). It then follows by
2.5 that the functor ()™ : #(R) — %(R) is mono-preserving.

(3) Suppose Exti,(—, X) vanishes on the torsion modules for i =0 and 1.
Then Homg(Kerey, X) = 0 implies Kerey = 0 and Exth(Cokey, X) = 0 implies
ex a splitting monomorphism. Finally, Homg(Cokey, X**) =0 implies Cok
&y = 0. l:l

PROPOSITION 3.8. Suppose 1(X) = Kerey for every X € ¢(R) and t(M) =
Kerey for every M € €(R°P). Then every X € 4(R) is t-semicompact.

PROOF. Let X € 4(R) and let u: M — X* be a monomorphism. Then by
Theorem 3.7(1) Cokey is torsion. Also, since by [Proposition 3.6 X* € ¥(R°P),
by Cok p* is torsion. Thus by Lemma 1.9 X is t-semicompact.

O

4. zt-Selfinjective rings

We call a ring R left t-selfinjective if Exth(X,R) is torsion for every
X € Mod R. We characterize left 7-selfinjective rings R by a certain kind of
linear compactness.

For a module X and a set 4, we denote by X4 (resp. X4) the direct sum
(resp. direct product) of copies of X indexed by the elements of A.

THEOREM 4.1. For a ring R the following are equivalent.
(1) R is left t-selfinjective.
(2) (a) R is t-absolutely pure.
(b) lim =, is a t-epimorphism for every inverse system of t-epimorphisms
{ms: F; — M}, A in Mod RP with the F), finitely generated free and
the M, torsionless.
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Proor. (1) = (2). By Lemma 2.2 R is t-absolutely pure. Next, let
{ms : F) = M}, .5 be an inverse system of t-epimorphisms in Mod R°P with the
F, reflexive and the M) torsionless. Since each m} is monic, so is lim =j. Thus by
Theorem 2.5 Cok(lim n}*) = Cok((lim =})*) is torsion. Since lim e, is an
isomorphism and lim &y, is monic, Cok(lim n;) embeds in Cok(lim =}*), so that
Cok(lim 7;) is torsion.

(2) = (1). By Lemmas and 2.2 Exth(X,R) is torsion for every finitely
generated X € Mod R. Next, let 0 — K 4 F > X — 0 be an exact sequence in
Mod R with F = gR“ free. Let A be the directed set of all nonempty finite
subsets of 4. For each Ae A, put F; = RR¥ and let j; : F; — F denote the
inclusion. Then lim j; is an isomorphism. For each 1 € A, form the pull-buck of

u and j;:

0 K —L S F — X 0
0 » K —2 5 F — X; » 0.

Since Cok u} = Exth(X;,R) is torsion, we get an inverse system of t-epi-
morphisms {u} : F; — K}}, .o with the F; finitely generated free and the K}
torsionless, so that Cok(lim u3) is torsion. Since lim j; is an isomorphism, so is
lim j;. Also, by the exactness of lim, lim i; is an isomorphism, so is lim ;. Thus
Cok p* = Cok(lim ) and Exty(X,R) = Cok y* is torsion. O

LemMA 4.2. Suppose R is right t-selfinjective. Then every X € Mod R with
Cok ey torsion is t-semicompact.

Proor. By [Theorem 2.3 and Lemma 1.9 O

LeEMMA 4.3. Let F = RR“) with A an infinite set. Then F is not t-semicompact.

Proor. Put G = zR4 and let u: F — G denote the inclusion. Then u is not
an essential monomorphism and Cok u is not torsion. Let A be the directed set
of all nonempty finite subsets of 4. For each A€ A, put G, = gR* and let
m, : G — G; denote the projection. Then lim n; is an isomorphism, so that we
get an inverse system of epimorphisms {m;ou:F — G}, .o with the G,
torsionless such that Cok(lim n; o u) = Cok u is not torsion. O
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PROPOSITION 4.4.  Suppose R is right t-selfinjective. Let F = RRYW with A an
infinite set. Then Coker is not torsion. In particular, F is not reflexive.

Proor. By Lemmas and 4.3. O

PROPOSITION 4.5. Suppose R is right t-selfinjective and right t-semicompact.
Then for a module X € Mod R, Cok ey is torsion if and only if X is 1-semicompact.

Proor. By [Lemma 4.2, [8, Theorem 1.2] and [9, Corollary 2.2]. O
We end with making the following remarks on reflexive modules.

REMARKS. (1) As remarked in [9], a module X € Mod R is reflexive if and
only if Cok ey is torsion and X can be embedded as a closed submodule in a
direct product of copies of zR.

(2) Even if R is t-absolutely pure and left and right z-semicompact, a
reflexive module X € Mod R is not necessarily t-semicompact. For example, let
R be the ring of rational integers and let F = xR with 4 a countably infinite
set. Then by R is t-absolutely pure and (left and right) t-semi-
compact. Also, by F is not t-semicompact. On the other hand, it
follows from a theorem of Specker that F is reflexive.

(3) It follows from [14, Theorem 1] that in case R is a left and right PF
ring, a module X € ModR is reflexive if and only if it is linearly compact.
Proposition 4.5 above generalizes this fact (cf. also [12, Theorem 3] and
[5, Corollary 2.6]).
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