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SOME PROPERTIES ON TESTS BASED ON
THE BAYESIAN CONFIDENCE INTERVAL

By

Michikazu SATO

Abstract. In testing statistical hypotheses, quite generally, if we
admit the result of Neyman-Pearson (apart from the interpretation of
them) in case that we specify $n$ in advance and admit the likelihood
principle, the stopping rule that “continue the experiments until
rejecting the null hypothesis” is closed. As a matter of fact, a
stronger phenomenon happens, and we shall show it with some
examples.

1. Introduction

Let $X_{1},$ $X_{2},$
$\ldots$ be independently and identically distributed (i.i. $d.$ ) random

variables with a normal distribution $N(\theta, 1)$ . We observe them in the order
$X_{1},$ $ X_{2},\ldots$ Let the prior distribution of $\theta$ be the Lebesgue measure (improper in
this case). When we observe $X_{1},\ldots,$ $X_{l}$ , the posterior distribution is $N(\overline{X}_{ll}, 1/n)$ ,

where $\overline{X}_{l},$

$=\Sigma_{j=1}^{il}X_{j}/n$ . Let $0<\alpha<1$ and define $k$ by $ P(|Z|>k)=\alpha$ , where $Z$ is a
random variable with a normal distribution $N(O,1)$ . Then, the Bayesian $100(1-\alpha)$

percent confidence interval is given by $[\overline{X}_{l}-(k/\sqrt{n}),\overline{X}_{\iota},+(k/\sqrt{n})]$ . Consider a
significance test of a hypothesis $H_{0}$ : $\theta=0$ . The Bayesian test with a significance
level $\alpha$ is that we accept $H_{0}$ if $\theta=0$ falls into the confidence interval and that
we reject $H_{0}$ otherwise. Note that the significance level here is not in the sense
of Neyman-Pearson’s. In this case, the critical region is $\{|\overline{X}_{ll}|>k/\sqrt{n}\}$ , so if we
specify $n$ in advance, the result coincides with that of Neyman-Pearson. In
application, it usually holds. Note that in the standpoint of usual Bayesian, we do
not have to specify $n$ in advance (Akaike [1], however, mentions this respect
critically.). Tests like this method are described in Lindley [10], [11] and
Shigemasu [15]. In [12], [13], however, Lindley seems to have abandoned this
standpoint and have taken the standpoint of Bayesian tests of Jeffreys [7]. In
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Shigemasu [15], both standpoints are described. Tests of Jeffreys are free from

the problem as will be mentioned later (Cornfield [5] p. 581).

Now consider the stopping rule that “continue the experiments as long as
$|\overline{X}|\leq k/\sqrt{n}$ holds and stop when it is violated.” Then, since this stopping rule is
closed (for the definition, see Section 2), if we take sufficiently small $\alpha$ and
make these experiments, we can make the supporters for this test believe that $H_{0}$

is not true, with probability 1 irrespective of $H_{0}$ being true or not. This fact is
described in Robbins [14], Lindley [9] (There is a mistake in this paper. See
Bartlett [2].), Cornfield [5], Berger and Wolpert [4], Basu [3]. As a matter of
fact, quite generally, if we admit the result of Neyman-Pearson (apart from the
interpretation of them) in case that we specify $n$ in advance and admit the
likelihood principle, such a phenomenon happens. We call this fact WSC as will
be mentioned later. Moreover, a stronger phenomenon happens. We see from the
above that the result of the test in the standpoint of Neyman-Pearson and the
likelihood principle are quite incompatible. Note that this is not the difference of
interpretations on the same result.

2. Main concepts

Let $X_{1},$ $ X_{\underline{?}},\ldots$ be a sequence of random variables. They are not necessarily
real-valued nor i.i. $d$ . Assume that the distribution of (X,, $ X_{2},\ldots$ ) is defined for
each parameter $\theta$ and we observe them in the order $\chi_{1},$ $\chi_{\underline{?}},\ldots$ . We denote
$X^{*}:=(X_{1},\ldots X_{l})$ . A stopping rule $\sigma$ is said to be closed at $\theta=\theta_{0}$ if

$P_{\theta_{1)}}$ (the random stopping time based on $\sigma’<\infty$ ) $=1$ .

When we say only “
$\sigma$ is closed,” it means that $\sigma$ is closed for all $\theta$ , and when

we say “
$\sigma$ is not closed,” it means that $\sigma$ is not closed for some $\theta$ . Similar

usage is adopted for the following WSC, SSC and ASC. In the sequel, we denote
a null hypothesis by $H_{0}$ and an alternative hypothesis by $H_{1}$ . We assume that, for
each $n$ , a critical region R. is given when we observe $X_{\iota}^{*}$ . When we consider a
randomized test, we transform it to a nonrandomized test by introducing random
numbers. Then we take the following definitions.

DEFINITION 2.1. A sequence of tests $\{R_{ll}\}$ is said to be weakly sophistically
closed (or WSC for short) at $\theta=\theta_{0}$ if

$P_{\theta_{()}}$ ( $X_{l}^{*}\in R_{I}$ for some $n$ ) $=1$ .
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DEFINITION 2.2. A sequence of tests $\{R,, \}$ is said to be strongly sophistically
closed (or SSC for short) at $\theta=\theta_{()}$ if

$P_{\theta_{(\}}}$ ( $X_{l}^{:1:}\in R_{l}$ i.o.) $=1$ ,

where “i.o.” means “infinitely often.”
The reader might think that SSC is an empty, abstract and only theoretical

concept because we cannot experiment infinitely. But, there is a sophistical
meaning in SSC as follows:

Now, I want to insist that $H_{0}$ is not true but there have already been a
predecessor’s experiments. Even if the results are unfavorable for me, I cannot
ignore them, but I can make supplementary examinations. So, if $H_{0}$ is rejected by
the results of the predecessor’s, I myself do not experiment, and insist, “

$H_{0}$ is
rejected by the results of a predecessor’s experiments”. If $H_{0}$ is accepted by the
results of the predecessor’s, I make supplementary examinations. I continue to do
them until $H_{0}$ is rejected, and insist “

$H_{0}$ is rejected by the results of my
supplementary examinations added to a predecessor’s experiments.” Then it
raises a question whether I succeed (that is, end finitely) or not. As for this
question, the following assertion holds.

Let $\sum$ be a family of closed randomized stopping rules which satisfies that
there exists a sequence $\{\sigma_{j}\}_{j=1}^{\infty}\subset\Sigma$ such that if we denote the random stopping
time based on $\sigma_{j}$ by $M_{j}$ (generally a random variable), by appropriately
determining a conditional joint probability distribution of stopping the experiments
for any given observed value,

(2.1)
$\lim_{j\rightarrow\infty}M_{j}=\infty$ $P_{\theta_{()}}-a.e$ .

holds. Then, the following (1) and (2) are equivalent.
(1) $\{R_{l}\}$ is SSC at $\theta=\theta_{0}$ .
(2) For any stopping rule of a predecessor’s in $\sum$ , I succeed in the above with

$P_{\theta_{()}}$ probability 1.
In particular, let $n_{1}<n_{2}<\ldots,n_{j}\in N$ and let $\sigma_{j}$ be the stopping rule

corresponding to experimenting exactly $n_{j}$ times. Put $\sum=\{\sigma_{j}\}^{\infty_{=1}}$ , then (2.1) holds.

Note that the assertion above does not only clarify the sophistical meaning of
SSC, but also is used in order to show SSC.

For $n_{1}<n_{2}<\ldots,n_{j}\in N$ , let

$R_{\iota}^{*}=\{_{\psi\prime}^{R_{l}}$

$(n=n)$

(
$n\neq n^{j_{j}}$

for all $j$ ).



80 Michikazu SATO

Let us denote $\{R_{1}^{::}\}^{\infty_{t=1}}$, by $\{R_{l_{/}}^{::}\}_{/}^{\infty_{=}}|$ and call it a subsequence of $\{R_{l}\}$ . We can
also regard it as a sequence of tests based on $Y_{1},$ $Y_{\underline{\gamma}},\ldots$ where
$Y_{j}=(X_{\iota_{/}|+|}, X_{\iota,1+2},\ldots, X_{I}),$ $n_{()}=0$ .

DEFINITION 2.3. A sequence of tests $\{R_{l}\}$ is said to be all-subsequentially
sophistically closed (or ASC for short) at $\theta=\theta_{0}$ if all subsequences of $\{R_{n}\}$ are
SSC at $\theta=\theta_{0}$ .

It is easily derived from the assertion above that this is equivalent to that all
subsequences of $\{R_{1}\}$ are WSC at $\theta=\theta_{0}$ .

By definition, ASC implies SSC, and SSC implies WSC.
In the subsequent discussion we shall not explicitly distinguish between a test

and a sequence of tests unless there is a possibility of misunderstanding.

3. An exact test and an asymptotic test

In the following discussion, we assume $0<\alpha<1$ .

DEFINITION 3.1. Fix $n$ . A test that satisfies the following assumptions (3a) and
(3b) is called a left-sided exact test based on T. with Neyman-Pearson
significance level $\alpha$ .
(3a) $T$. $=g_{l}(X_{1},\ldots X_{ll})$ is a real-valued random variable, and the distribution of $T_{t}$

does not depend on $\theta$ under $H_{0}$ .
(3b) There exists $t_{I}$ such that,

(i) We reject $H_{0}$ if $T$. $<\mathfrak{l}_{l}$ , and accept $H_{0}$ if $T$. $>t_{\iota}$ .
(ii)We reject $H_{0}$ with a constant conditional probability independent of

observed values if $T,$ $=t_{1}$ .
(iii) For $\theta$ under $H_{0},$ $P_{\theta}$ (reject $H_{0}$ ) $=\alpha$ .
Then $t_{l}$ is called a critical point.

DEFINITION 3.2. Fix $n$ . A test that satisfies (3a) and (i), (iii) of (3b) is called
a left-sided exact test based on T. except on a critical point with Neyman-
Pearson significance level $\alpha$ .

DEFINITION3.3. A test that satisfies (3a) for each $n$ and the following (3c)

and (3d) is called a left-sided asymptotic test with an open critical region based
on T. with Neyman-Pearson significance level $\alpha$ .
(3c) The distribution of T. under $H_{0}$ converges weakly to a probability
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distribution $\lambda$ whose distribution function is continuous.
(3d) There exists $t_{\infty}$ such that,

(iv)We reject $H_{0}$ if $T$. $<t_{\infty}$ , and accept $H_{0}$ if $T$. $\geq t_{\infty}$ .

(v) $\lambda((-\infty,t_{\infty}))=\alpha$ .
Then $t_{\infty}$ is called a critical point.

DEFINITION 3.4. In Definition 3.3, when we replace (iv) by the following
(iv)’, the test is called a left-sided asymptotic test with a closed critical region
based on $T_{n}$ with Neyman-Pearson significance level $\alpha$ .

(iv)’ We reject $H_{0}$ if $T_{n}\leq t_{\infty}$ , and accept $H_{0}$ if $T_{n}>t_{\infty}$ .

Usually, so far as SSC or ASC is concerned, the tests of Definition 3.1 to 3.4
are equivalent, but there are delicate problems. We shall now clarify them.

THEOREM 3.1. Under the assumption (3a), the following (1) and (2) are
equivalent.
(1) For any $\alpha$ , any left-sided exact test based on $T_{n}$ with Neyman-Pearson
significance level $\alpha$ is $SSC$ at $\theta=\theta_{0}$ .
(2) For any $\alpha$ , there exists a left-sided exact test based on $T_{n}$ with Neyman-

Pearson significance level $\alpha$ that is $SSC$ at $\theta=\theta_{0}$ .

PROOF. It is obvious that (1) implies (2). To prove the converse, we have
only to compare a critical region of level $\alpha$ with that of level $\alpha/2$ of (2).

It is noted that the similar results to Theorem 3.1 hold for ASC and WSC.

THEOREM 3.2. Under the assumptions (3a) and (3c), (1) and (2) in Theorem 3.1
and the following (3) to (8) are equivalent.
(3) For any $\alpha$ , any left-sided exact test based on $T_{n}$ except on a critical point
with Neyman-Pearson significance level $\alpha$ is $SSC$ at $\theta=\theta_{0}$ .
(4) For any $\alpha$ , there exists a left-sided exact test based on $T_{n}$ except on a critical
point with Neyman-Pearson significance level $\alpha$ that is $SSC$ at $\theta=\theta_{0}$ .
(5) For any $\alpha$ , any left-sided asymptotic test with an open critical region based
on $T_{n}$ with Neyman-Pearson significance level $\alpha$ is $SSC$ at $\theta=\theta_{0}$ .
(6) For any $\alpha$ , there exists a left-sided asympto $tic$ test with an open critical
region based on $T_{n}$ with Neyman-Pearson significance level $\alpha$ that is $SSC$ at
$\theta=\theta_{0}$ .
(7) (5) where “open” is replaced by “closed” holds.
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(8) (6) where “open” is replaced by “closed” holds.

PROOF. The proof that (5) and (6), (7) and (8) are equivalent, respectively,
is similar to Theorem 3.1. It is obvious that (6) implies (8), (3) implies (1), and
that (2) implies (4). If we show that (4) implies (5) and (8) implies (3), the proof
is completed. First, we shall prove that (4) implies (5). We take a critical point
$r_{n}(\alpha)$ and $t_{\infty}(\alpha)$ of (4) and (5), respectively. For $\theta$ under $H_{0}$ ,

(3.1) $\lim_{n\rightarrow\infty}P_{\theta}(T_{n}<r_{\infty}(\alpha/2))=\alpha/2$

holds. Hence, there exists $v$ such that

$\alpha/3<P_{\theta}(T_{n}<t_{\infty}(\alpha/2))<\alpha$ for $n\geq v$ .

Hence,

(3.2) $r_{\infty}(\alpha/3)\leq t_{\infty}(\alpha/2)<r_{\infty}(\alpha)$ for $n\geq v$

and we get (5). We get that (8) implies (3) by noting

$t_{l}(\alpha/3)<t_{\infty}(\alpha/2)<t_{n}(\alpha)$ for $n\geq v$ .

The similar result to Theorem 3.1 holds for ASC.

REMARK 1. In order to prove non-WSC, we cannot disregard critical regions
of finite $n\prime s$ . Hence Theorem 3.2 does not hold for WSC.

REMARK 2. Under only (3a), (4) does not imply (3). For a counter-example,
let $X_{1},$ $ X_{2},\ldots$ be i.i. $d$ . random variables with a uniform distribution $U(O, 1)$ under
$H_{0}$ and $T$. $\equiv 0$ . Then, the critical point $t_{l}(\alpha)$ is equal to $0$ . Both $R_{n}:=\{X,, <\alpha\}$

and $\hat{R}_{\iota}:=\{X_{1}<\alpha\}$ are left-sided exact tests based on T. except on a critical point
with Neyman-Pearson significance level $\alpha$ . But $\{R_{1}\}$ is ASC at $H_{0}$ and $\{\hat{R}_{n}\}$ is
non-WSC at $H_{0}$ .

REMARK 3. In Definition 3.3, if we exclude the assumption in (3c) that the
distribution function of $\lambda$ is continuous and exclude the sign of equality in (iv)

and replace (v) by “A test function $\varphi$ based on T. satisfies $\int\varphi(t)\lambda(dr)=\alpha$ . ,

then, we get into trouble as follows: In the assumptions of Section 1, denote the
distribution function of $N(O,1)$ by $\Phi$ . Under $H_{0},$ $\Phi(\sqrt{n}\overline{\chi}_{l})$ is distributed as
$U(O,1)$ , hence T. $;=\{1+\Phi(\sqrt{n}\overline{\chi}_{1})\}/n$ is distributed as $U(1/n,2/n)$ which
converges weakly to the Dirac measure on $0$ . Hence in the definition above,
which is milder than Definition 3.3, we always accept $H_{0}$ in a left-sided
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asymptotic test based on T. , while on the other hand we always reject $H_{0}$ in a
left-sided asymptotic test based on $-T_{l}$ . Note that, in the proof of Theorem 3.2,

the assumption that the distribution function of $\lambda$ is continuous is used in (3.1) and

the strict inequality in (3.2). Also note that when we say weak convergence,
generally, the limit is not necessarily a probability distribution, but in such cases,

(3.1) does not necessarily hold and we get into trouble, hence we exclude such
cases.

REMARK4. In Definition 3.3, the distribution function of $T_{n}$ is not necessarily
continuous under $H_{0}$ , hence the sign of equality in (iv) is not generally
nonessential. For example, under $H_{0}$ , let $X_{1},$ $ X_{2},\ldots$ be i.i. $d$ . random variables with
$U(O,1)$ and

$T_{n}$ $:=\left\{\begin{array}{l}X_{l} ifX_{1}<1/2,\\1/2 if1/2\leq X_{|}andX_{n}<1/n,\\(nX_{n}+n-2)/2(n-1) if1/2\leq X_{|}and1/n\leq X_{n}.\end{array}\right.$

Then, the limiting distribution of $T_{n}$ is $U(O,1)$ under $H_{0}$ . Let Neyman-Pearson
significance level $\alpha$ be 1/2. Then, the critical point $t_{\infty}$ of the asymptotic test is
equal to 1/2 and if we take the open critical region, which coincides with the
exact test in this case, the test is non-WSC at $H_{0}$ , but if we take the closed
critical region, the test is SSC at $H_{0}$ because

$P_{H_{0}}$ ( $T_{n}\leq 1/2$ i.o.) $=P_{H_{0}}(X_{1}<1/2)+P_{H_{()}}(X_{1}\geq 1/2)P_{H_{0}}$ ( $X_{n}<1/n$ i.o.)

$=1$ ,

where the last equality follows from the Borel-Cantelli lemma.

4. Criteria for SSC and ASC

In this section, we shall consider criteria for SSC and ASC. Note that the law
of iterated logarithm (Feller [6]) is useful to judge SSC, but useless to judge
ASC.

THEOREM 4.1. For a sequence of tests $\{R_{n}\}$ , the following assertions hold.
(1) If there exist $\epsilon>0$ and $m_{o}\in N_{0}:=N\cup\{0\}$ such that for any $m\geq m_{0}$ and
$X_{n}^{*},=x_{n}^{*}$ , there exists $n(>m)$ satisfying

$ P_{\theta_{(\}}}(X_{l}^{*}\in R_{n}|X_{ln}^{*}=x_{tl}^{*})\geq\epsilon$ ,

then $\{R_{n}\}$ is $SSC$ at $\theta=\theta_{0}$ .
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(2) There exist $\epsilon>0$ and $\prime_{(},$
$\in N_{t)}$ such that for any $m\geq m$ , and $X^{*}=x^{*}$ ,

$\lim_{l\rightarrow}\inf_{\infty}P_{\theta_{(1}}(X^{*}, \in R_{l}|X_{t}^{*}=x_{1}^{*})\geq\epsilon$ ,

then $\{R_{l}\}$ is $SSC$ at $\theta=\theta_{()}$ .

In this theorem, the conditional probability for $m=0$ means the unconditional
probability.

PROOF. Denote $P=P_{\theta_{(1}}$ and denote the sample space of X. by $(^{(}J\swarrow_{n}, (\nu_{l}^{\prime})$ .
(1) Step 1. For $m_{0}=0$ , , we shall prove WSC at $\theta=\theta_{0}$ . For $m\in N_{0}$ and $x_{m}^{*}$ ,

the least $n$ that satisfies the assumption is denoted by $N_{m}(x_{m}^{*})$ . We easily get
measurability of $N_{m}$ . We can assume that (

$\mathscr{K}_{n}\prime s$ are mutually disjoint by giving a
registration number to each element if necessary. Furthermore, by adding a
symbol $*,1$ which denotes a value that X. never takes, to SZ., we identify a finite
sequence $(x_{j},x_{!+1},\ldots,x_{j})\in\prod_{k=i}^{jc}\swarrow_{k}$ with an infinite sequence ( $*,*,\ldots,*x_{f},x_{i+1}|2i-|$”

$X_{j\prime j+1\prime j+2}^{**},\ldots)\in\prod_{k=1}^{\infty}(’\swarrow_{k}$ . In the subsequent discussion, we shall not explicitly
distinguish between a random variable and its value. Let

$N_{m}=N_{m}(X_{m}^{*})$ for $m\in N_{0}$

$M_{0}:=0$ , $M_{1}:=N_{M_{1-1}}$, for $n\in N$ .

We easily get $\prod_{n-}^{\infty_{-1^{r}}}\zeta y_{l}^{\prime}$ -measurability of $M_{ll}$ . Define a sequence of random
variables $\{Y_{ll}\}$ by

$Y_{\iota}$ $:=(X_{M_{l-1}+1}, X_{M,+2},\ldots, X_{M_{1}},)$ ,

where $Y_{n}$ takes values of $\prod^{\infty_{l=1}}(J\nearrow_{l}$ . Note that $M_{\iota-1}$ depends on $X_{1},\ldots,$ $ X_{M_{-1}},,\cdot$ We
easily get that $Y_{l}$ is $\prod_{\iota=1^{\prime}}^{\infty}c\swarrow_{l}\rightarrow\prod^{\infty_{t=1}}.c\swarrow_{l}$ -measurable, that is, $Y_{l}^{-1}(\prod_{n-}^{\infty_{-1}}.\sigma\swarrow_{l})$

$\subset\prod_{ll}^{\infty_{=1^{e}}}c\swarrow_{l}$ . Denote $Y_{l}^{*}:=(Y_{1},\ldots, Y_{l})$ . Then $Y_{l}^{*}=X_{M_{1}}^{*}$

, Regard $\{R_{M_{l}},\}^{\infty_{--1}}$ as a
sequence of tests based on $Y_{l}^{*}$ . Then,

$P$ ( $X_{1}^{*}\in R_{l}$ for some $n$ ) $\geq P$( $Y_{1}^{*}\in R_{M_{l}}$

, for some $n$ ).

Hence, we need only prove

$P$( $Y_{l}^{*}\in R_{M},$

, for some $n$ ) $=1$ .

Generally, for $\{A_{n}\}_{ll}^{\infty_{=1}}$ , if

$P(A_{l}|A_{1^{(}}\cap\cdots\cap A_{\iota- 1})\geq\epsilon>0$ for all $n$ ,
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then $P(\bigcup_{f}^{\infty_{l}}|A_{\iota}=’)=1$ , where the left-hand side in case of $n=1$ means unconditional
probability and if $P(B)=0$ , define $P(A|B)$ arbitrarily. We easily get it by

considering the complementary event. Fix $n$ and denote

$B;=\{Y_{1}^{*}\not\in R_{1},\ldots, Y^{*},\not\in R_{M_{\mathfrak{l}}1}\}$ ,

then we need only prove

(4.1) $ P(Y_{l}^{*}\in R_{M_{\mathfrak{l}}},|B)\geq\epsilon$ .

We can assume $P(B)>0$ . Since $M_{1}$ is constant by the definition, we denote it by
$m_{1}$ . Let

$B_{m_{2},\ldots,\prime n_{1}},$
$:=\{M_{2}=m_{2},\ldots, M_{\iota}=m_{ll}, Y_{1}^{*}\not\in R_{M_{1}}\ldots.,Y_{l}^{*}\not\in R_{M_{l}},\}$ .

Then $B=\sum_{m_{2},\ldots,m_{n}}B_{m_{2},\ldots,m_{n}}$ , where $\sum$ means the direct sum, and the summation is
taken over all possible values of $(M_{2},\ldots,M_{n})$ . Generally,

$P(A|\sum_{k}B_{k})=\sum_{k}P(A|B_{k})/\sum_{k}B_{k}$

holds if $\sum_{k}P(B_{k})>0$ . Hence, in order to prove (4.1), we need only prove

(4.2) $ P(Y_{n}^{*}\in R_{M_{I}},|B_{n_{2},\ldots,m_{l}},)\geq\epsilon$ .

We get

(4.3) $P(Y_{n}^{*}\in R_{M_{n}}|B_{m_{2},\ldots,\prime n_{n}})=P(X_{m_{n}}^{*}\in R_{m_{n}}|B_{m_{2},\ldots,m_{1}},)$

$=E[P(X_{m_{l}}^{*},\in R_{m_{\mu}}|X_{m,|-|}^{*})|B_{n_{2},\ldots,m_{1}},]$ .

The last equality holds because $B_{m_{2},\ldots.m_{l}}$, is a set determined only by $ X_{m_{|-|}}^{*},\cdot$ It is

essentially the definition of the conditional probability. From the assumption and
the definition of $M_{n}$ , we get

$ E[P(X_{ll}^{*}\in R_{n}|X_{m_{I-1}}^{*},)|B_{m_{2},\ldots,,n_{1}},]\geq E[\epsilon|B_{n_{2},\ldots,m_{lI}}]=\epsilon$ .

From (4.3) and the above, we get (4.2), hence $\{R_{\iota}\}$ is SSC at $\theta=\theta_{0}$ .
Step 2. For arbitrary $m_{0}$ , we shall prove that $\{R_{n}\}$ is SSC at $\theta=\theta_{0}$ . We need

only prove that, for any fixed $\ell(>m_{0})$ , if a predecessor experiments exactly $\ell$

times, I can reject $H_{0}$ by making supplementary examinations ( $P_{\theta_{(\}}}$ -a.e.). In

order to show the above, we need only prove that there exists $\tilde{m}_{0}>\ell$ such that
$\{R_{\overline{m}_{()}+ll-l}\}^{\infty_{l=1}}$ is WSC at $\theta=\theta_{0}$ . In the notation of Step 1, the possible values of $N$,
are $\ell+1,$ $\ell+2,\ldots$ , hence we can take $\tilde{m}_{0}>\ell(>m_{0})$ such that

$\delta:=P(N, =\tilde{m}_{0})>0$ .



86 Michikazu SATO

Denote $\tilde{\epsilon}:=\epsilon\delta(>0)$ . Consider $\{\tilde{R}_{I}\}:=\{R_{\overline{l}_{1)}+\prime 1-1}\}^{\infty_{|=|}}$ , which is a subsequence of $\{R_{ll}\}$ .

We can regard it as a sequence of tests based on $Z_{1}:=X_{\overline{n}_{1\}}}^{*},$ $Z_{7,\sim}:=X_{1_{\{)}+1}-,$ $Z_{3}:=$

$ X_{I_{lI}+2}-,\ldots$ . Denote the indicator of $A$ by $I_{A}$ . Then, we get

$P(Z_{1}\in\tilde{R}_{1})=P(X_{\overline{n}_{t)}}^{*}\in R_{l\overline{n}_{t)}})=E[P(X_{\iota_{\{},,\prime 1_{()}}^{*},-\in R_{-}|X^{*})]$

$\geq E[f_{|N,\overline{n}_{()}|}--\prime P(X_{\overline{n}_{\{}}^{*},\in R_{\overline{n}_{()}}|X^{*})]$

$\geq E[l_{|N^{-}=\prime\prime 1_{()}|}\epsilon]=\epsilon P(N, =\tilde{m}_{0})=\epsilon\delta=\tilde{\epsilon}$ ,

where the second inequality follows from the assumption and the definition of $N,$ .
Hence, for $m=0$ , if we let $n=1,$ $P(Z_{1}\in\tilde{R}_{1})\geq\tilde{\epsilon}$ holds. For $ m=1,2,\ldots$ , for any
given value of $Z_{1}^{*}$ $:=(Z_{1},\ldots,Z_{l})=X_{\overline{n}_{()}+m-1}^{*}$ , if we let $n=N_{\overline{n}_{()}+ln-1}-\tilde{m}_{0}+1$ , we get

$P(Z_{n}^{*}\in\tilde{R}_{n}|Z_{m}^{*})=P(X_{N_{m}+m-1}^{*}\in R_{N_{m}+m- 1}|X_{\overline{m}_{0}+m- 1}^{*})$

$\geq\epsilon\geq\tilde{\epsilon}$ .

Hence, for a sequence of tests $\{\tilde{R}_{n}\}$ based on $\{Z_{n}\}$ , the assumption holds for $\tilde{\epsilon}$

instead of $\epsilon$ and $m_{0}=0$ . Hence, from Step 1, we get $\{\tilde{R}_{n}\}$ is WSC at $\theta=\theta_{0}$ .
This completes the proof of (1).

(2) For any subsequence of $\{R_{n}\}$ , the assertion of (1) for $\epsilon/2$ instead of $\epsilon$ is
satisfied. Hence we get (2).

THEOREM 4.2. Let $X_{1},$ $ X_{2},\ldots$ be indepedent random variables and let
$T_{\iota}=g_{ll}(X^{*})$ be real-valued and $R_{n}\supset\{T_{n}<t_{0}\}$ , where $t_{0}$ is independent of $n$ .
Assume the following ( $ 4a\rangle$ and (4b).

(4a) There exists $t_{1}<t_{0}$ such that

$\lim_{n\rightarrow}\inf_{\infty}P_{\theta_{()}}(T_{n}<t_{1})>0$

(4b) There exists $m_{0}\in N_{0}$ such that for any $m\geq m_{0}$ and $x_{1},x_{2},\ldots,x_{m}(x_{j}$ is a value
that $x_{j}$ can take),

$g_{l}(x_{1},\ldots,x_{1}, X_{n+1},\ldots, X_{l})-T_{n}\rightarrow 0$ $(P_{\theta_{(}})$
$(n\rightarrow\infty)$

holds in the sense of convergence in probability.
Then, $\{R_{l}\}$ is ASC at $\theta=\theta_{0}$ .

PROOF.
$P_{\theta_{()}}(T_{l}<t_{0}|X_{1}=x_{1},\ldots, X_{m}=x_{n})=P_{\theta_{0}}(g_{l}(x_{1},\ldots,x_{n}, X_{m+1},\ldots, X_{ll})<t_{0})$

$\geq P_{\theta_{1)}}(T_{l}<r_{1})-P_{\theta_{0}}(g_{1}(x_{1},\ldots,x_{l}, X_{n+1},\ldots, X_{l})\geq t_{0}-t_{1})$
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holds. Take $\lim\inf,l\rightarrow\infty$ and we can reduce it to Theorem 4.1.

REMARK. We must not replace (4a) by

(4a)
$\lim_{\iota\rightarrow}\inf_{\infty}P_{\theta_{1)}}$

$(T$. $<t_{0})>0$

For a counter-example, $X_{1},$ $ X_{2},\ldots$ be independent random variables and let
$P_{\theta_{()}}(X_{1}\in A)=\alpha\in(0,1)$ and

$T_{\iota}:=\left\{\begin{array}{l}-1/n if X_{|}\in A,\\0 otherwise,\end{array}\right.$

$t_{0}$ $;=0$ , $R_{n}$ $:=\{T_{n}<0\}$ .

Then, $(4a)^{\prime}$ and (4b) hold but it is non-WSC at $\theta=\theta_{0}$ because

$P_{\theta_{0}}$ ( $T_{n}<0$ for some $n$ ) $=\alpha$ .

EXAMPLE 4.1. (1) $T_{n}=a_{n}\Sigma_{/}^{n_{=1}}\cdot X_{j}$ and $\lim_{n\rightarrow\infty}a_{n}=0$ implies that the
assumption (4b) holds.
(2) Let $X_{1},$ $ X_{2},\ldots$ be i.i. $d$ . and $R_{n}\supset\{\sqrt{n}\overline{X}_{n}<t_{0}\}$ and assume that one of the
following (4c) to (4e) holds at $\theta=\theta_{0}$ .
(4c) $ E_{\theta_{()}}X_{1}\leq 0<Var_{\theta_{0}}X_{1}<\infty$ .

(4d) $-\infty\leq E_{\theta_{()}}X_{1}<0$ .

(4e) $X_{1}$ is distributed as a Cauchy distribution.
Then, $\{R_{n}\}$ is ASC at $\theta=\theta_{0}$ .

(3) The example in Section 1 is ASC.
(4) Let $X_{1},$ $ X_{2},\ldots$ be i.i. $d$ . and $R_{n}=\{\sqrt{n}\overline{\chi}_{n}<t_{0}\}$ and assume $ 0<E_{\theta_{()}}X_{I}\leq\infty$ . Then
$\{R_{n}\}$ is non-SSC at $\theta=\theta_{0}$ . For further details, this example satisfies

$P_{\theta_{()}}$ ( $\sqrt{nX}n<t_{0}$ i.o.) $=0$ .

(5) In the assumptions of (4), if $X_{1}$ is distributed as a normal distribution at $\theta=\theta_{0}$

and $E_{\theta_{(\}}}X_{1}>t_{0}$ , then $\{R_{n}\}$ is non-WSC at $\theta=\theta_{0}$ .
Indeed, we can easily get (1) to (4) by using the central limit theorem, the

strong law of large numbers, and the reproducibility of a Cauchy distribution. We
shall prove (5). Let $X_{1}$ be distributed as $N(\xi_{0},\sigma^{2})$ at $\theta=\theta_{0}$ . We may assume
$\sigma=1$ and $t_{0}>0$ . Let $Z_{j}:=X_{j}-\xi_{0},\xi_{1}:=\xi_{0}-t_{0}(>0),$ $Y_{j}:=Z_{j}-\xi_{1}$ Then, we get
$R_{n}=\{\sqrt{nZ}n<t_{0}-\sqrt{n}\xi_{0}\}\subset\{\sqrt{nY_{n}}<0\}$ . Since $Y_{j}\prime s$ are i.i. $d$ . random variables with
$N(\theta, 1)$ , we need only prove that, if $X_{j}s$ are i.i. $d$ . random variables with
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$N(\theta, 1)$ , and

$H_{()}$ : $\theta=\theta_{()}$ , $H_{1}$ : $\theta=-\theta_{()}$ $(\theta_{0}>0)$ ,

then $R$. $=\{\sqrt{n}\overline{\chi}_{1}<0\}$ is non-WSC at $H_{0}$ . Let the prior distribution be

$P(\theta=\theta_{()})=P(\theta=-\theta_{0})=1/2$ ,

then

$\tilde{R}_{l\mathfrak{l}}=\{P(\theta=\theta_{0}|\overline{X}_{ll})<\frac{1}{2}\}$

holds. Hence, from Cornfield [5] p. 581, it is non-WSC at $H_{0}$ .

EXAMPLE 4.2. In multinomial trials, if we specify Neyman-Pearson
significance level $\alpha$ , the usual $\chi^{2}$ -test is ASC. We can get it from Theorem 4.2
or Koike [8].

THEOREM 4.3. Let $X_{1},$ $ X_{2},\ldots$ be i.i.d. and

$H_{0}$ : $X_{1}$ is distributed as $v_{0},$ $H_{1}$ : $X_{1}$ is distributed as $v_{1}$ ,

where $v_{0}\neq v_{1},$ $v_{0}$ and $_{1}$ are mutually absolutely continuous and assume

(4f) $\int dv_{0}(\log dv_{1}/dv_{0})^{2}<\infty$ .

Then, if we specify Neyman-Pearson significance level $\alpha$ and $R_{l}$ be one of the
most powerful tests, then $\{R_{\iota}\}$ is $ASC$ .

PROOF. Let Y. $:=\log(dv_{0}/dv_{1})(X_{l})$ . Then, the most powerful test is a
likelihood ratio test, hence it is a left-sided exact test based on $\overline{Y_{n}}$ except on the
critical point. By using Theorem 3.2, we can easily reduce it to Example 4.1 (2).

REMARK. It is not clear whether (4f) is necessary or not, but we must not
omit the assumption that $v_{0}$ and $v_{1}$ are mutually absolutely continuous. For a
counter-example, let $H_{0}:\theta=1,$ $H_{1}$ : $\theta\neq 1$ . Then, the most powerful test with
Neyman-Pearson significance level $\alpha$ is essentially unique and it is

$R_{l1}=$ { $T_{n}<^{l}\sqrt[1]{\alpha}$ or $1<T_{l}$ }

where $T,$ $;=\max_{1\leq j\leq\prime\iota}X_{j}$ . (Note that if $H_{1}$ is composed of only one point, it is not

generally essentially unique.) If the prior distribution is $ d\theta/\theta$ and take the
shortest Bayesian confidence interval, the test based on it coincides with $R_{l}$ .
Since
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$P_{\theta=1}$ ( $X_{l}^{*}\in R_{n}$ for some $n$ ) $=\alpha\{1+\sum_{\iota=2}^{\infty}(1-\alpha^{|/\iota-|)}n(’)^{\prime\prime- 1}\}$

$<\alpha\sum_{1n=}^{\infty}(1-\alpha)^{\prime\iota-1}=1$ ,

$\{R_{n}\}$ is non-WSC at $H_{0}$ . Also we easily get that it is ASC at $H_{1}$ .

The following theorem assures us that in order to judge SSC or ASC when
there is a nuisance parameter, we can reduce the problem to the case that the
nuisance parameter is known under some regularity conditions.

THEOREM 4.4. Denote the parameter space by $\Omega=\Omega^{1}\times\Omega^{2}$ and a parameter
by $\theta=(\xi,\eta)$ . Regard $\eta$ as a nuisance parameter and consider the test

$H_{0}$ : $\xi\in\Omega_{0}^{1}$ , $H_{1}$ : $\xi\in\Omega|$ .
Fix $\xi_{0}$ and $\eta_{0}$ .
(I) Assume that the following (4g) and (4h) hold.
(4g) $\Omega^{2}\subset R^{k}$ and $\hat{\eta}_{n}=\hat{\eta}_{n}(X_{n}^{*})$ is a strongly consistent estimator of $\eta$ at
$\eta=\eta_{0}$ . Let $\hat{\eta}_{n}\in\Omega^{2^{*}},\Omega^{2}\subset\Omega^{2^{*}}\subset R^{k}$ .
(4h) $T_{n}=g_{n}(X_{n}^{*})$ is independent of $\xi,\eta$ and real-valued, and if we fix $\eta$ , the
distribution of $T_{n}$ is independent of $\xi\in\Omega_{0}^{1}$ and its asymptotic distribution exists as
a probability distribution whose distribution function is continuous and we can
take $t_{\infty}$ : $(0,1)\times\Omega^{2^{*}}\rightarrow R$ such that

$\lambda_{\eta}((-\infty,t_{\infty}(\alpha,\eta)))=\alpha$ for all $\eta\in\Omega^{2}$

and $\eta-t_{\infty}(\alpha, \eta)$ is continuous on $\Omega^{2^{*}}$

Then, the following (1) and (2) are equivalent.
(1) For any $\alpha$ , when $\eta=\eta_{0}$ is known, a left-sided test based on $T_{n}$ with
Neyman-Pearson significance level $\alpha$ is $SSC$ at $\xi=\xi_{0}$ .
(2) For any $\alpha$ , the test $R_{n}^{(\alpha)}:=\{T_{n}<t_{\infty}(\alpha,\hat{\eta}_{n})\}$ is $SSC$ at $\xi=\xi_{0},\eta=\eta_{0}$ .
(II) In (I), $lf$ “a strongly consistent estimator”, $SSC$ ’ are replaced by $a$

(weakly) consistent estimator”, $ASC’$ , respectively, then the similar result
holds.

PROOF. We shall prove that (1) implies (2). Fix $\alpha$ , then,

$\lim_{\iota\rightarrow\infty}t_{\infty}(\alpha,\hat{\eta}_{l})=t_{\infty}(\alpha,\eta)$ , $P_{\xi_{(1},\eta_{0}}-a.e$ .

and
$t_{\infty}(\alpha/2,\eta_{0})<t_{\infty}(\alpha,\eta_{0})$
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hold. Hence,

$\lim_{v\rightarrow\infty}P_{\xi_{(1}.\eta_{(1}}$ (for all $n\geq v,r_{\infty}(\alpha/2,$ $\eta_{()})<t_{\infty}(\alpha,\hat{\eta}_{l})$ ) $=1$ .

And we get

$P_{\xi_{()}.\eta_{()}}(T_{l}<t_{\infty}(\alpha,\hat{\eta}_{0})$ i.o.)

$\geq P_{\xi_{()},\eta_{()}}(T_{l}<t_{\infty}(\alpha/2,\eta_{0})$ i.o.)

$-P_{\xi_{()},\eta_{()}}$ (not for all $n\geq v$ , $t_{\infty}(\alpha/2,\eta_{0})<t_{\infty}(\alpha,\hat{\eta}_{1})$ )

$=P_{\xi_{()}.\eta_{\{1}}$ (for all $n\geq v$ , $t_{\infty}(\alpha/2,\eta_{0})<t_{\infty}(\alpha,\hat{\eta}_{l})$ )

$\rightarrow 1$ as $ v\rightarrow\infty$ .

We can similarly prove that (2) implies (1).
(II) Fix $\{n_{j}\}\subset N,$ $ n_{1}<n_{2}<\cdots$ . Then, there exists a subsequence $\{n_{\dot{\Lambda}}\}$ such that

$\lim_{k\rightarrow\infty}\hat{\eta}_{\iota_{j_{(}}}\rightarrow\eta_{0}$ , $P_{\xi_{()},\eta_{()}}-$ a.e.,

and we can reduce it to (I).

REMARK. In (I), we must not replace “a strongly consistent estimator” by “a
consistent estimator”. For a counter-example, let $X_{1},X_{2},\ldots$ be i.i. $d$ . random
variables with $N(\xi,\sigma^{2})$ where $\xi\leq 0,\sigma\geq 1$ and $H_{0}$ : $\xi=0,$ $H_{1}$ : $\xi<0$ . Let $\Phi$ be the
distribution function of $N(O, 1)$ and

$T_{l}:=\left\{\begin{array}{l}\Phi(X_{l})\\\Phi(X_{|})\end{array}\right.$ $otherwis^{n}eif\Phi(X).<1/n$

,

Then, in the notation of Theorem 4.4, where $\eta=\sigma$ ,

$\lambda_{1}((-\infty,t))=\Phi(\Phi^{-1}(r)/\sigma)$ for $0<t<1$ ,

and
$r_{\infty}(\alpha,\sigma)=\Phi(\sigma\Phi^{-1}(\alpha))$

hold. Fix $\xi,\sigma$ . Then, for a sufficiently large $n$ ,

$R_{n}^{t\alpha.\sigma)}\supset\{(X_{n}-\xi)/\sigma<\Phi^{-1}(1/n)\}$

holds. Hence, from the Borel-Cantelli lemma, $\{R_{ll}^{t\alpha,\sigma)}\}$ is SSC. On the other hand,

let $\hat{\sigma}_{\iota}$, be a strongly consistent estimator of $\sigma$ and

$\hat{\sigma}_{ll}^{*}$ $:=\left\{\begin{array}{l}n if\Phi(X_{ll})<1/n,\\\hat{\sigma}_{ll} otherwise.\end{array}\right.$
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Then, $\hat{\sigma}_{\iota}^{*}$ is a consistent estimator of $\sigma$ and $R_{ll}^{(\alpha)}:=\{T_{1}<t_{\infty}(\alpha,\hat{\sigma}_{l}^{*})\}$ is non-SSC at
$\xi=0$ and any $\sigma$ if $0<\alpha<1/2$ [By Chebyshev’s inequality and the Borel-
Cantelli lemma, we need only consider the case $\Phi(X_{\iota})\geq 1/n.$ ].

EXAMPLE 4.3. Let X, . $ X_{2},\ldots$ be i.i. $d$ . random variables with $N(\xi,\sigma^{2})$ . Then,

if we specify Neyman-Pearson significance level $\alpha$ , Student’s tests

(1) $H_{0}$ : $\xi=0$ , $H_{1}$ : $\xi\neq 0$ (the two-sided test)

(2) $H_{0}$ : $\xi=0$ , $H_{1}$ : $\xi<0$ (the left-sided test)

are ASC. Note that the interpretation of the left-sided test is more realistic to

consider

(3) $H_{0}$ : $\xi\geq 0$ , $H_{1}$ : $\xi<0$

than (2). This is ASC at $\xi\leq 0$ , non-SSC at all $\xi>0,$ $\sigma>0$ . We can prove it by
reducing it to the case that $\sigma$ is known (Example 4.1) by using Theorem 3.2 and
Theorem 4.4.
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