FUNCTION SPACES WHICH ARE STRATIFIABLE (*)

By

Bao-Lin Guo

Abstract. Let X be a compact metric space and Y a stratifiable space. By C(X, Y), we denote the space of continuous maps from X to Y with the compact-open topology. In general, C(X, Y) is not stratifiable. In this paper, we show that C(X, Y) is stratifiable if Y satisfies the condition given by Mizokami [Mi]. And we construct a stratifiable space Y such that C(X, Y) is not stratifiable even if X is countable and compact.

1. Introduction.

Let X and Y be topological spaces. By $\mathfrak{F}(X)$, $\mathfrak{R}(X)$ and $\mathfrak{D}(X)$, we denote the families of all nonempty finite subsets, all compact subsets and all open subsets of X, respectively. By C(X,Y), we denote the space of all continuous maps of X to Y admitting the compact-open topology, whose open base is

$$\{M(K_1, \dots, K_n; U_1, \dots, U_n) | n \in \mathbb{N},$$

$$K_i \in \Re(X), U_i \in \mathfrak{D}(Y) \quad \text{for } i=1, \dots, n\}$$

where

$$M(K_1, \dots, K_n; U_1, \dots, U_n)$$

= $\{f \in C(X, Y) | f(K_i) \subset U_i \quad \text{for } i=1, \dots, n\}$

A regular space Y is stratifiable if it has a σ -closure preserving (abbrev. σ -CP) quasi-base \mathcal{B} [Ce] (cf. [Bo₁]), where \mathcal{B} is a quasi-base for Y if for any $y \in Y$ and each neighborhood U of y, there exists $B \in \mathcal{B}$ such that $y \in Int$ $B \subset B \subset U$. In general, C(X, Y) is not stratifiable even if X is compact metric and Y is stratifiable. In fact, Borges [Bo₂] constructed a stratifiable space Y such that C(I, Y) is not normal, where I = [0, 1] is the unit interval.

¹⁹⁹¹ Mathematics Subject Classification. 54B20, 54C55, 54E20.

Key words and phrases. Function space, compact-open topology, σ -CP-CF family, quasi-base, stratifiable space, ANE(S), ANR(S).

Received February 16, 1993.

^(*) This is a part of the author's Ph. D. thesis written under the direction of Professor K. Sakai at the University of Tsukuba.

Similarly to C(X, Y), the hyperspace $\Re(Y)$ with the Vietoris topology is not stratifiable even if Y is stratifiable (cf. [MK] and [Mi]). In [Mi], Misokami gave a condition for Y such that $\Re(Y)$ is stratifible. In this paper, we show that if Y satisfies this Mizokami's condition then C(X, Y) is stratifiable for any compact metric space X. Cauty $[Ca_3]$ proved that if Y is a CW-complex then C(X, Y) is stratifiable for any compact space X. But any non-metrizable CW-complex Y does not satisfy the Mizokami's condition by [Mi, Theorem 4.3] (or cf. [GS, Example 3.2]). Therefore our result is independent from Cauty's result.

By $C_p(X, Y)$, we denote the space of all continuous maps from X to Y admitting the pointwise convergence topology, that is, $C_p(X, Y)$ is a subspace of the product space Y^X . Note that if Y is stratifiable then $C_p(X, Y)$ is stratifiable for a countable space X, since it can be embedded in the countable product space Y^{ω} of Y (cf. [Ce]). Thus it is natural to ask whether C(X, Y) is stratifiable for a compact countable space X and a stratifiable space Y. However it can be seen in Section 3 that C(X, Y) is not stratifiable for a compact countable space X and a stratifiable space Y which is constructed by Mizokami in [Mi, Example 2.1].

2. Main Result.

For a family \mathcal{B} of subsets of Y and $A \subset Y$, let $\mathcal{B} \mid A = \{B \cap A \mid B \in \mathcal{B}\}$. We say that \mathcal{B} is finite on compact sets (abbrev. CF) in Y if $\mathcal{B} \mid K$ is finite for each $K \in \Re(X)$. And \mathcal{B} is σ -CP-CF if it can be written as $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ such that each \mathcal{B}_n is CP (closure-preserving) and CF in Y. In this section, we show the following theorem.

THEOREM 2.1. Let X be a compact metric space and Y a stratifiable space which has a σ -CP-CF quasi-base consisting of closed sets. Then C(X, Y) has a σ -CP quasi-base, hence it is stratifiable.

To prove this theorem, we need some lemmas.

LEMMA 2.2. Let U be an open set in C(X, Y), $f \in U$ and \mathcal{B} a quasi-base for Y. Then there exist $K_1, \dots, K_n \in \Re(X)$ and $B_1, \dots, B_n \in \mathcal{B}$ such that

$$f \in M(K_1, \dots, K_n; \text{Int } B_1, \dots, \text{Int } B_n)$$

 $\subset M(K_1, \dots, K_n; B_1, \dots, B_n) \subset U,$

that is, the family

$$\{M(K_1, \dots, K_n; B_1, \dots, B_n) | n \in \mathbb{N},$$

$$K_i \in \Re(X), B_i \in \mathcal{B} \ (i=1, \dots, n)\}$$

is a quasi-base for C(X, Y).

PROOF. Since U is open in C(X, Y), we have $K_1, \dots, K_m \in \Re(X)$ and $U_1, \dots, U_m \in \mathfrak{D}(Y)$ such that

$$f \in M(K_1, \dots, K_m; U_1, \dots, U_m) \subset \mathcal{U}$$
.

For any $i=1, \dots, m$ and $x \in K_i$, since $f(x) \in U_i$, there is $B_i^x \in \mathcal{B}$ such that $f(x) \in \text{Int } B_i^x \subset B_i^x \subset U_i$, whence

$$x \in f^{-1}(\operatorname{Int} B_i^x) \subset f^{-1}(B_i^x) \subset f^{-1}(U_i)$$
.

By compactness of K_i , there are $x_i^1, \cdots, x_i^{n(i)} \in K_i$ such that

$$K_{i} \subset \bigcup_{j=1}^{n(i)} f^{-1}(\operatorname{Int} B_{i,j}) = f^{-1}(\bigcup_{j=1}^{n(i)} \operatorname{Int} B_{i,j})$$
$$\subset f^{-1}(\bigcup_{i=1}^{n(i)} B_{i,j}) \subset f^{-1}(U_{i}).$$

where $B_{i,j}=B_{i}^{x_i^j}$. Then K_i has a closed cover $\{K_{i,j}\}_{j=1}^{n(i)}$ such that $K_{i,j} \subset f^{-1}(\operatorname{Int} B_{i,j})$. Note that $K_{i,j} \in \Re(X)$. It is clear that

$$f \in M(K_{i,1}, \dots, K_{i,n(i)}; \text{Int } B_{i,1}, \dots, \text{Int } B_{i,n(i)})$$

 $\subset M(K_{i,1}, \dots, K_{i,n(i)}; B_{i,1}, \dots, B_{i,n(i)}) \subset M(K_{i}, U_{i})$

Therefore we have

$$f \in \bigcap_{i=1}^{m} M(K_{i,1}, \dots, K_{i,n(i)}; \operatorname{Int} B_{i,1}, \dots, \operatorname{Int} B_{i,n(i)})$$

$$\subset \bigcap_{i=1}^{m} M(K_{i,1}, \dots, K_{i,n(1)}; B_{i,1}, \dots, B_{i,n(i)})$$

$$\subset M(K_{1}, \dots, K_{m}; U_{1}, \dots, U_{m}) \subset U. \qquad \Box$$

LEMMA 2.3. Let \mathcal{B} be a CP (resp. CF) family of closed sets in X. Then $\mathcal{B}^* = \{ \cap \mathcal{A} \mid \mathcal{A} \in \mathfrak{F}(\mathcal{B}) \}$ is also CP (resp. CF).

PROOF. The CF case is obvious. To see the CP case, let $\mathfrak{C}\subset\mathfrak{F}(\mathfrak{B})$. We prove that

$$\bigcup_{\mathcal{A} \in \mathfrak{C}} (\cap \mathcal{A}) = \overline{\bigcup_{\mathcal{A} \in \mathfrak{C}} (\cap \mathcal{A})}.$$

To this end, let $x \notin \bigcup_{\mathcal{A} \in \mathcal{C}} (\cap \mathcal{A})$. For each $\mathcal{A} \in \mathcal{C}$, since $x \notin \cap \mathcal{A}$, we can choose $B_{\mathcal{A}} \in \mathcal{A}$ such that $x \notin B_{\mathcal{A}}$. Since $\{B_{\mathcal{A}} | \mathcal{A} \in \mathcal{C}\} \subset \mathcal{B}$ and \mathcal{B} is CP, we have

$$\overline{\bigcup_{A \in \mathfrak{C}} (\cap A)} \subset \overline{\bigcup_{A \in \mathfrak{C}} B_A} = \bigcup_{A \in \mathfrak{C}} B_A.$$

Since $x \notin \bigcup_{\mathcal{A} \in \mathcal{G}} B_{\mathcal{A}}$, $x \notin \overline{\bigcup_{\mathcal{A} \in \mathfrak{g}} (\cap \mathcal{A})}$. Therefore it follows that

$$\bigcup_{\mathcal{A}\in\mathfrak{C}}(\cap\mathcal{A})=\overline{\bigcup_{\mathcal{A}\in\mathfrak{C}}(\cap\mathcal{A})}\;.$$

REMARK. In the CP case of the above lemma, it is necessary to assume that members of \mathcal{B} are closed in X. In fact, let

$$X = \{0\} \cup \left\{ \left\{ \frac{1}{n} \right\} \mid n \in \mathbb{N} \right\} \text{ and } \mathcal{B} = \{B \subset X \mid |B| = \aleph_0\}.$$

Note that $X \setminus \{0\} \in \mathcal{B}$, but it is not closed in X. For any $\emptyset \neq \mathcal{B}_0 \subset \mathcal{B}$, we have

$$\bigcup \overline{\mathcal{B}_0} = \{0\} \cup \bigcup \mathcal{B}_0 = \overline{\bigcup \mathcal{B}_0}$$

that is, \mathcal{B} is CP. On the other hand, $\{\{1/n\} \mid n \in \mathbb{N}\} \subset \mathcal{B}^*$ and

$$\bigcup \overline{\left\{\left\{\frac{1}{n}\right\} \middle| n \in \mathbb{N}\right\}} \not\subset \bigcup \left\{\left\{\frac{1}{n}\right\} \middle| n \in \mathbb{N}\right\},\,$$

whence \mathcal{B}^* is not CP.

The following lemma is easy.

LEMMA 2.4. If $\mathcal A$ and $\mathcal B$ are CP (resp. CF) families, then $\mathcal A \cup \mathcal B$ is also CP (resp. CF). \square

PROOF OF THEOREM 2.1. Let \mathcal{B} be a σ -CP-CF quasi-base for Y consisting of closed sets. By Lemma 2.4, we can write $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$, where $\mathcal{B}_1 \subset \mathcal{B}_2 \subset \cdots$ are CP and CF. Using the compactness, X has a sequence $\{\mathcal{C}_n\}_{n=1}^{\infty}$ of finite closed covers of X such that mesh $\mathcal{C}_n \to 0$ if $n \to \infty$. For each $m, n \in \mathbb{N}$ and $(\mathcal{C}_1, \dots, \mathcal{C}_m) \in (\mathcal{C}_n)^m$, we define

$$\mathcal{A}_{(C_1,\dots,C_m)}^n = \{ M(C_1, \dots, C_m; B_1, \dots, B_m) | B_i \in \mathcal{B}_n \ i=1, \dots, m \}.$$

We shall show that

$$\mathcal{A} = \bigcup_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcup \left\{ \mathcal{A}_{(C_1, \dots, C_m)}^n | (C_1, \dots, C_m) \in (C_n)^m \right\}$$

is a quasi-base for C(X, Y) and that each $\mathcal{A}^n_{(C_1, \dots, C_m)}$ is CP. Then \mathcal{A} is σ -CP quasi-base since each $(\mathcal{C}_n)^m$ is finite.

First to prove that \mathcal{A} is a quasi-base for C(X,Y), let \mathcal{U} be open in C(X,Y) and $f \in \mathcal{U}$. By Lemma 2.2, there are $K_1, \dots, K_l \in \Re(X)$ and $B_1, \dots, B_l \in \mathcal{B}$ such that

$$f \in M(K_1, \dots, K_l; \text{Int } B_1, \dots, \text{Int } B_l)$$

 $\subset M(K_1, \dots, K_l; B_1, \dots, B_l) \subset U.$

Let

$$\eta = \min \left\{ \text{dist} \left(K_i, X \setminus f^{-1}(\text{Int } B_i) \right) | i = 1, \dots, l \right\} > 0$$

where dist (A, \emptyset) =diam X. Since mesh $\mathcal{C}_n \to 0$ $(n \to \infty)$ and $\mathcal{B}_1 \subset \mathcal{B}_2 \subset \cdots$ we can choose $n \in \mathbb{N}$ such that mesh $\mathcal{C}_n < \eta$ and $B_1, \dots, B_l \in \mathcal{B}_n$. For each $i=1, \dots, l$, write

$$\{C \in \mathcal{C}_n \mid C \cap K_i \neq \emptyset\} = \{C_{i,1}, \dots, C_{i,m_i}\}.$$

Then $K_i \subset \bigcup_{j=1}^{m_i} C_{i,j} \subset f^{-1}(\text{Int } B_i)$, whence

$$f \in M(C_{i,1}, \dots, C_{i,m_i}; \overline{\operatorname{Int} B_i, \dots, \operatorname{Int} B_i})$$

$$\subset M(C_{i,1}, \dots, C_{i,m_i}; \overline{B_i, \dots, B_i}) \subset M(K_i, B_i).$$

Hence we have

$$f \in \bigcap_{i=1}^{l} M(C_{i,1}, \dots, C_{i,m_i}; \overline{\operatorname{Int} B_i}, \dots, \overline{\operatorname{Int} B_i})$$

$$\subset \overline{\operatorname{Int}} \bigcap_{i=1}^{l} M(C_{i,1}, \dots, C_{i,m_i}; \overline{B_i, \dots, B_i})$$

$$\subset \bigcap_{i=1}^{l} M(C_{i,1}, \dots, C_{i,m_i}; \overline{B_i, \dots, B_i})$$

$$\subset M(K_1, \dots, K_l; B_1, \dots, B_l) \subset \mathcal{U}.$$

Let $m = \sum_{i=1}^{l} m_i$ and

 $(C_1, \, \cdots, \, C_m) = (C_{1, \, 1}, \, \cdots, \, C_{1, \, m_1}, \, \cdots, \, C_{l, \, 1}, \, \cdots, \, C_{l, \, m_l}) \in (\mathcal{C}_n)^m \; .$

Then

$$\bigcap_{i=1}^{l} M(C_{i,1}, \dots, C_{i,m_i}; \overbrace{B_i, \dots, B_i}^{m_i})$$

$$= M(C_1, \dots, C_m; \overbrace{B_1, \dots, B_1}^{m_1}, \dots, \overbrace{B_l, \dots, B_l}^{m_l})$$

$$\in \mathcal{A}_{(C_1, \dots, C_m)}^{n_0} \subset \mathcal{A}.$$

Next to show that each $\mathcal{A}^n_{(C_1,\dots,C_m)}$ is CP, let $\mathcal{B}'\subset(\mathcal{B}_n)^m$ and

$$\mathcal{A}' = \{ M(C_1, \dots, C_m; B_1, \dots, B_m) | (B_1, \dots, B_m) \in \mathcal{B}' \}$$

$$\subset \mathcal{A}^n_{(C_1, \dots, C_m)}.$$

To prove that $\overline{\bigcup \mathcal{A}'} = \bigcup \mathcal{A}'$, let $g \in C(X, Y) \setminus \bigcup \mathcal{A}'$. For each $k = 1, \dots, m$, let $p_k : (\mathcal{B}_n)^m \to \mathcal{B}_n$ be the projection defined by $p_k(B_1, \dots, B_m) = B_k$ and

$$\mathcal{B}'(k) = \{B \in p_k(\mathcal{B}') \mid g(C_k) \not\subset B\} \subset \mathcal{B}_n$$
.

In case $\mathcal{B}'(k)=\emptyset$, let $M_k=C(X,Y)$. In case $\mathcal{B}'(k)\neq\emptyset$, we can write

$$\mathcal{B}'(k)|g(C_k) = \{G_{k,1}, \dots, G_{k,m_k}\},\$$

because \mathcal{B}_n is CF. Note that $g(C_k) \setminus G_{k,i} \neq \emptyset$ for each $i=1, \dots, m_k$. We can choose points $x_{k,1}, \dots, x_{k,m_k} \in C_k$ such that $g(x_{k,i}) \in g(C_k) \setminus G_{k,i}$. Then

$$V_{k,i} = Y \setminus \bigcup \{B \in \mathcal{B}_n | g(x_{k,i}) \notin B\}$$

is an open neighborhood of $g(x_{k,i})$ in Y because \mathcal{B}_n is CP. Let

$$M_k = M(\{x_{k,1}\}, \dots, \{x_{k,m_k}\}; V_{k,1}, \dots, V_{k,m_k}).$$

Then $M(g) = \bigcap_{k=1}^m M_k$ is an open neighborhood of g in C(X, Y). And moreover $M(g) \cap (\bigcup \mathcal{A}') = \emptyset$. In fact, for any $(B_1, \dots, B_m) \in \mathcal{B}'$,

$$g \notin M(C_1, \dots, C_m; B_1, \dots, B_m),$$

whence $g(C_k) \not\subset B_k$, i.e., $B_k \in \mathcal{B}'(k)$ for some $k \leq m$. Then $B_k \cap g(C_k) = G_{k,i}$ for some $i \leq m_k$, which implies that

$$g(x_{k,i}) \in V_{k,i} \cap (g(C_k) \setminus B_k)$$
.

By the definition of $V_{k,i}$, we have $V_{k,i} \cap B_k = \emptyset$. Hence

$$M(g) \cap M(C_1, \dots, C_m; B_1, \dots, B_m) = \emptyset$$
.

Thus $g \notin \overline{\bigcup \mathcal{A}'}$.

REMARKS. In the above proof,

$$\mathcal{M} = \{ M(C_1, \dots, C_n; B_1, \dots, B_n) | n \in \mathbb{N},$$

$$C_i \in \Re(X), B_i \in \mathcal{B} \quad \text{for } i = 1, \dots, n \}$$

is a quasi-base for C(X, Y) by Lemma 2.2. Since $\mathcal{B} = \bigcup_{k=1}^{\infty} \mathcal{B}_k$, $\mathcal{M} = \bigcup_{k=1}^{\infty} \mathcal{M}_k$, where

$$\mathcal{M}_k = \{ M(C_1, \dots, C_n; B_1, \dots, B_n) | C_i \in \Re(X), B_i \in \mathcal{B}_k \text{ and } n \in \mathbb{N} \}.$$

Although one might expect that each \mathcal{M}_k is CP, this is not true. In fact, let $X = \{0\} \cup \{1/n \mid n \in \mathbb{N}\}$ and Y = [0, 1]. We inductively define families \mathcal{B}_n of closed sets in Y as follows: $\mathcal{B}_1 = \{[0, 1/2], [1/2, 1]\}$ and

$$\mathscr{B}_n = \mathscr{B}_{n-1} \cup \left\{ \left[\frac{i-1}{n+1}, \frac{i}{n+1} \right] \middle| i=1, \cdots, n+1 \right\}$$

for each n>1. Clearly $\mathcal{B}_1 \subset \mathcal{B}_2 \subset \cdots$ are CP and CF in Y and $\mathcal{B}=\bigcup_{n\in\mathbb{N}} \mathcal{B}_n$ is a quasi-base of Y. To see that \mathcal{M}_k is not CP in C(X, Y), let

$$\mathcal{M}_{k}' = \left\{ M\left(\left\{\frac{1}{n}\right\}, \left[\frac{1}{k+1}, \frac{2}{k+1}\right]\right) \middle| n \in \mathbb{N} \right\} (\subset \mathcal{M}_{k})$$

and define $f \in C(X, Y)$ by

$$f(x) = \frac{1}{k+1}(1-x) \quad \text{for each } x \in X.$$

It is easy to see that $f \notin \mathcal{M}_k' = \bigcup \mathcal{M}_k'$. We show that $f \in \overline{\bigcup \mathcal{M}_k'}$. To this end, let $\mathfrak{U} = \bigcap_{i=1}^l M(C_i, U_i)$ be any basic open neighborhood of f in C(X, Y), where $C_i \in \mathfrak{R}(X)$ and $U_i \in \mathfrak{D}(Y)$. In the case $0 \notin \bigcup_{i=1}^l C_i$, there exist $N \in \mathbb{N}$ such that $1/m \notin \bigcup_{i=1}^l C_i$ for each $m \geq N$. Then we have

$$M\left(\left\{\frac{1}{2N}\right\}, \left[\frac{1}{k+1}, \frac{2}{k+1}\right]\right) \cap \mathfrak{u} \neq \emptyset$$
,

whence $(\bigcup \mathcal{M}'_k) \cap \mathbb{1} \neq \emptyset$. In the case $0 \in C_j$ for some $j \leq l$, $1/(k+1) = f(0) \in U_j$. Let

$$U = \bigcap \{U_j | 0 \in C_j, j=1, \dots, l\} (\neq \emptyset)$$
.

Since U is open in Y and $1/(k+1) \in U$, we can choose some $m \in \mathbb{N}$ such that

$$\left[\frac{1}{k+1} - \frac{1}{m}, \frac{1}{k+1} + \frac{1}{m}\right] \subset U$$
 and $\left[0, \frac{2}{m}\right] \cap C_i = \emptyset$ if $0 \notin C_i$.

We define $g \in C(X, Y)$ by

$$g(x) = \begin{cases} \frac{1}{k+1} & \text{if } x \leq \frac{1}{m}, \\ \frac{1}{k+1} \left(1 + \frac{2}{m} - 2x \right) & \text{if } \frac{1}{m} \leq x \leq \frac{2}{m}, \\ f(x) & \text{if } x \geq \frac{2}{m}. \end{cases}$$

Then $g \in M(\{1/m\}, [1/(k+1), 2/(k+1)]) \cap \mathfrak{U}$, whence $(\bigcup \mathcal{M}'_k) \cap \mathfrak{U} \neq \emptyset$.

In fact, if $C_i \cap [0, 2/m] = \emptyset$ then $g(C_i) = f(C_i) \subset U_i$. If $C_i \cap [0, 2/m] \neq \emptyset$, we have $0 \in C_i$, whence $U \subset U_i$. Then

$$g(C_{i}) = g\left(C_{i} \cap \left[0, \frac{2}{m}\right]\right) \cup g\left(C_{i} \setminus \left[0, \frac{2}{m}\right]\right)$$

$$\subset \left[\frac{1}{k+1} - \frac{1}{m}, \frac{1}{k+1} + \frac{1}{m}\right] \cup f\left(C_{i} \setminus \left[0, \frac{2}{m}\right]\right)$$

$$\subset U_{i}.$$

Therefore $f \in \overline{\bigcup \mathcal{M}'_k}$, that is, \mathcal{M}_k is not CP in C(X, Y).

By \mathcal{S} , we denote the class of stratifiable spaces. It is known that a stratifiable space is an $ANR(\mathcal{S})$ iff it is an $ANE(\mathcal{S})$. In Theorem 2.1, if Y is an $ANR(\mathcal{S})$ then C(X,Y) is an $ANE(\mathcal{S})$, hence an $ANR(\mathcal{S})$. In fact, let A be a closed set in a stratifiable space Z and $\varphi \in C(A,C(X,Y))$. We define $\tilde{\varphi}:A\times X$

 $\neg Y$ by $\tilde{\varphi}(a, x) = \varphi(a)(x)$. By the compactness of X, we have $\tilde{\varphi}$ is continuous. Since Y is an ANE(\mathcal{S}) and $Z \times X$ is stratifiable, there exists a neighborhood W of $A \times X$ in $Z \times X$ and $\tilde{\Phi} \in C(W, Y)$ such that $\tilde{\Phi} \mid A \times X = \tilde{\varphi}$. Since X is compact, A have a neighborhood U in Y such that $A \times X \subset U \times X \subset W$. We define $\Phi : U \to C(X, Y)$ by

$$\Phi(z)(x) = \widetilde{\Phi}(z, x) \quad (x \in X)$$

for each $z \in U$. Then ϕ is an extension of φ on U. Thus we have the following result.

COROLLARY 2.5. Let X be a compact metric space and Y an ANR(S) which has a σ -CP-CF quasi-base consisting of closed sets. Then C(X, Y) is an ANR(S).

In Theorem 2.1, it is a problem whether metrizability of X is necessary or not, that is,

PROBLEM 2.6. Is Theorem 2.1 true for a non-metrizable compact space X?

3. A Counterexample.

In this section, we show that C(X, Y) is not stratifiable for $X = \{0\} \cup \{1/n \mid n \in \mathbb{N}\}$ and the stratifiable space Y which is constructed by Mizokami in [Mi, Example 2.1] (indeed, Y is a countable Lašnev space). First we show the following:

LEMMA 3.1. Let X be compac, $y_0 \in Y$ and A a neighborhood base of y_0 in Y. Then $\{M(X, A) | A \in A\}$ is a neighborhood base of the constant map f_0 with $f_0(X) = \{y_0\}$ in C(X, Y).

PROOF. For each neighborhood \mathcal{D} of f_0 in C(X, Y), there exist $C_1, \dots, C_n \in \Re(X)$ and $U_1, \dots, U_n \in \mathfrak{D}(Y)$ such that

$$f_0 \in M(C_1, \dots, C_n; U_1, \dots, U_n) \subset \mathcal{I}$$
.

Since each U_i is an open neighborhood of y_0 in Y, there is $A \in \mathcal{A}$ such that $A \subset \bigcap_{i=1}^n U_i$, whence

$$f_0 \in M(X, A) \subset M(C_1, \dots, C_n; U_1, \dots, U_n) \subset \mathcal{H}$$
.

Example 3.2. Let $X = \{0\} \cup \{1/n \mid n \in \mathbb{N}\} \subset \mathbb{R}$ be the space of a convergent sequence. There exists a countable Lašnev space Y such that C(X, Y) is not stratifiable.

PROOF. Let Y be the space of [Mi, Example 2.1], namely Y=Y'/A, where

$$Y' = \left[(\mathbf{Q} \cap (0, 1)) \setminus \left\{ \frac{1}{n} \mid n \in \mathbf{N} \right\} \right] \times \left[\{0\} \cup \left\{ \frac{1}{n} \mid n \in \mathbf{N} \right\} \right]$$

is a subspace of \mathbb{R}^2 and $A = \{(x, 0) | (x, 0) \in Y'\}$. Let $p: Y' \to Y$ be the quotient map and $y_0 = p(A) \in Y$. We shall show that C(X, Y) is not stratifiable. For each $k \in \mathbb{N}$, let

$$N_k = p\left(\left(\left(\frac{1}{k+1}, \frac{1}{k}\right) \times \left[0, \frac{1}{k}\right]\right) \cap Y'\right)$$

and $\widetilde{N}_k = \bigcup_{i \geq k} N_i$. For simplicity, we write $N = \widetilde{N}_1$. Note that $y_0 \in N$ and N has the weak topology with respect to $\{N_k\}_{k \in \mathbb{N}}$. For each $(y_1, \dots, y_n) \in N^n$, we define $f_{(y_1, \dots, y_n)} \in C(X, N)$ by

$$f_{(y_1,\dots,y_n)}(x) = \begin{cases} y_i & \text{if } x = \frac{1}{i} \ge \frac{1}{n}, \\ y_0 & \text{otherwise.} \end{cases}$$

In case $y_1 = \cdots = y_n = y_0$, $f_{(y_0, \dots, y_0)}$ is the constant map, which is simply denoted by f_0 .

To see that C(X, Y) is not stratifiable, it suffices to show that C(X, N) is not stratifiable. On the contrary, assume that C(X, N) is stratifiable. Then f_0 has a CP neighborhood base \mathfrak{B} consisting of closed sets in C(X, N) (see [Ce, Lemma 7.3]). For each $B^* \in \mathfrak{B}$, we define a subset $O(B^*)$ of N by

$$O(B^*) = \bigcup \{ f(X) \mid y_0 \in f(X) \in \mathfrak{F}(N) \text{ and } f \in \text{Int } B^* \}.$$

Then we have

LEMMA 3.3. $O(\mathfrak{B}) = \{O(B^*) | B^* \in \mathfrak{B}\}$ is a neighborhood base of y_0 in N.

PROOF. For each neighborhood V of y_0 in N, there exists $B^* \in \mathfrak{B}$ such that $B^* \subset M(X, V)$, whence $O(B^*) \subset \bigcup \{f(X) \mid f \in \text{Int } B^*\} \subset V$.

Next we show that $O(B^*)$ is a neighborhood of y_0 in N for each $B^* \in \mathfrak{B}$. Since each B^* is a neighborhood of f_0 in C(X, N), there are $C_1, \dots, C_n \in \mathfrak{R}(X)$ and $U_1, \dots, U_n \in \mathfrak{D}(N)$ such that

$$f_0 \in M(C_1, \dots, C_n; U_1, \dots, U_n) \subset \operatorname{Int} B^*.$$

Since each U_i is a neighborhood of y_0 in N, $U = \bigcap_{i=1}^n U_i$ is a neighborhood of y_0 in N. Observe that for each $y \in U$,

$$f_y \in M(X, U) \subset M(C_1, \dots, C_n; U_1, \dots, U_n) \subset \text{Int } B^*.$$

Then it follows that $U = \bigcup_{y \in U} f_y(X) \subset O(B^*)$. Thus $O(B^*)$ is a neighborhood of y_0 in Y.

Next, for each $(y_1, \dots, y_n) \in \mathbb{N}^n$, we define

$$\mathfrak{B}(y_1, \dots, y_n) = \{B^* \in \mathfrak{B} \mid f_{(y_1, \dots, y_i)} \in \text{Int } B^* \text{ for each } i = 1, \dots, n\}.$$

LEMMA 3.4. For any neighborhood V_k of y_0 in N_k ,

$$\mathfrak{B} = \bigcup \{\mathfrak{B}(y) | y \in V_k \setminus \{y_0\}\}.$$

And for any $(y_1, \dots, y_n) \in \mathbb{N}^n$ and any neighborhood V_k of y_0 in N_k ,

$$\mathfrak{B}(y_1, \dots, y_n) = \bigcup \{\mathfrak{B}(y_1, \dots, y_n, y) | y \in V_k \setminus \{y_0\}\}.$$

PROOF. Because of similarity, we show only the second statement. From the definition of $\mathfrak{B}(y_1, \dots, y_n, y)$,

$$\bigcup \{\mathfrak{B}(y_1, \cdots, y_n, y) | y \in V_k \setminus \{y_0\}\} \subset \mathfrak{B}(y_1, \cdots, y_n).$$

Conversely let $B^* \in \mathfrak{B}(y_1, \dots, y_n)$. Since $f_{(y_1, \dots, y_n)} \in \operatorname{Int} B^*$, we have $C_1, \dots, C_l \in \mathfrak{R}(X)$ and $U_1, \dots, U_l \in \mathfrak{D}(N)$ such that

$$f_{(y_1,\dots,y_n)} \in M(C_1,\dots,C_l;U_1,\dots,U_l) \subset \operatorname{Int} B^*.$$

Then $O_k = V_k \cap \cap \{U_i | y_0 \in U_i\}$ is an open neighborhood of y_0 in N_k . For $y' \in O_k \setminus \{y_0\} \subset V_k \setminus \{y_0\}$, $B^* \in \mathfrak{B}(y_0, \dots, y_n, y')$. In fact, if $1/(n+1) \notin C_i$ then

$$f_{(y_1, \dots, y_n, y')}(C_i) = f_{(y_1, \dots, y_n)}(C_i) \subset U_i$$
.

If $1/(n+1) \in C_i$ then $y_0 \in f_{(y_1, \dots, y_n)}(C_i) \subset U_i$, which $O_k \subset U_i$. Hence

$$f_{(y_1, \dots, y_n, y')}(C_i) \subset f_{(y_1, \dots, y_n)}(C_i) \cup \{y'\} \subset U_i \cup O_k \subset U_i$$
.

Therefore $f_{(y_1,\dots,y_n,y')} \in M(C_1,\dots,C_l;U_1,\dots,U_l) \subset \text{Int } B^*.$

LEMMA 3.5. There exist $1=k_0 < k_1 < \cdots \in \mathbb{N}$, open neighborhoods $N=W_0 \supset W_1 \supset \cdots$ of y_0 in N, $y_n \in (W_{n-1} \setminus W_n) \cap N_{k_{n-1}}$ and $B_n^* \in \mathfrak{B}_{n-1} = \mathfrak{B}(y_1, \cdots, y_{n-1})$ where $\mathfrak{B}_0 = \mathfrak{B}$ such that

- $(1)_n$ $O(\mathfrak{B}_n)|\widetilde{N}_k$ is a neighborhood base of y_0 in \widetilde{N}_k for each $k \geq k_n$,
- $(2)_n$ $f_n = f_{(y_1, \dots, y_n)} \in M_n(W_n)$ and $M_n(W_n) \cap B_n^* = \emptyset$, where

$$M_n(W_n) = M(\{1\}, \dots, \{\frac{1}{n}\}; \{y_1\}, \dots, \{y_n\}) \cap M(X \setminus \{1, \dots, \frac{1}{n}\}, W_n).$$

PROOF. Note that $k_0=1$ and $O(\mathfrak{B}_0)=O(\mathfrak{B})$ satisfy $(1)_0$ by Lemma 3.3. Supposing that $\{k_0, \dots, k_{n-1}\}$, $\{W_0, \dots, W_{n-1}\}$, $\{y_1, \dots, y_{n-1}\}$ and $\{B_1^*, \dots, B_{n-1}^*\}$ have been obtained, we find k_n, W_n, y_n and B_n^* .

First assume that no $y \in (W_{n-1} \cap N_{k_{n-1}}) \setminus \{y_0\}$ and no $k > k_{n-1}$ satisfy $(1)_n$, that is, for each $y \in (W_{n-1} \cap N_{k_{n-1}}) \setminus \{y_0\}$, $O(\mathfrak{B}(y_1, \dots, y_{n-1}, y)) \mid \tilde{N}_m$ is not a

neighborhood base of y_0 in \widetilde{N}_m for infinitely many $m > k_{n-1}$. Since $(W_{n-1} \cap N_{k_{n-1}}) \setminus \{y_0\}$ is countable, we can write

$$(W_{n-1} \cap N_{k_{n-1}}) \setminus \{y_0\} = \{z_i | i \in \mathbb{N}\} (\subset N),$$

where $z_i \neq z_j$ if $i \neq j$. Then we can inductively choose $k_{n-1} < m_1 < m_2 < \cdots$ and neighborhoods V_{m_i} of y_0 in \widetilde{N}_{m_i} such that

$$O(B^*) \cap \widetilde{N}_{m_i} \not\subset V_{m_i}$$
 for each $B^* \in \mathfrak{B}(y_1, \dots, y_{n-1}, z_i)$.

Without loss of generality, we can assume $\tilde{N}_{k_{n-1}} = V_{m_0} \supset V_{m_1} \supset \cdots$ and define $V = \bigcup_{i=0}^{\infty} (V_{m_i} \setminus \tilde{N}_{m_{i+1}})$. Then V is a neighborhood of y_0 in $\tilde{N}_{k_{n-1}}$. By $(1)_{n-1}$, $O(B^*) \cap \tilde{N}_{k_{n-1}} \subset V$ for some $B^* \in \mathfrak{B}_{n-1}$, whence

$$O(B^*) \cap \widetilde{N}_{m_i} \subset V \cap \widetilde{N}_{m_i} = V_{m_i}$$
 for each $i \in \mathbb{N}$

On the other hand,

$$\mathfrak{B}_{n-1} = \mathfrak{B}(y_1, \dots, y_{n-1}) = \bigcup_{i \in \mathbb{N}} \mathfrak{B}(y_1, \dots, y_{n-1}, z_i)$$

by Lemma 3.4, whence $B^* \in \mathfrak{B}(y_1, \dots, y_{n-1}, z_i)$ for some $i \in \mathbb{N}$. This is a contradiction. Therefore we have $k_n \in \mathbb{N}$ and $y_n \in (W_{n-1} \cap N_{k_{n-1}}) \setminus \{y_0\}$ satisfying $(1)_n$.

Note that $(W_{n-1} \cap N_{k_{n-1}}) \setminus \{y_n\}$ is a neighborhood of y_0 in $N_{k_{n-1}}$. By $(1)_{n-1}$, we have $B_n^* \in \mathfrak{B}_{n-1}$ such that $O(B_n^*) \cap N_{k_{n-1}} \subset (W_{n-1} \cap N_{k_{n-1}}) \setminus \{y_n\}$. Hence $f = f_{(y_1, \dots, y_n)} \notin B_n^*$. Since B_n^* is closed in C(X, N), there exist $C_1, \dots, C_l \in \mathfrak{R}(X)$ and $U_1, \dots, U_l \in \mathfrak{D}(N)$ such that

$$f_n \in M(C_1, \dots, C_l; U_1, \dots, U_l) \subset C(X, N) \setminus B_n^*$$

Let

$$W_n = (W_{n-1} \cap (\cap \{U_i | y_0 \in U_i\})) \setminus \{y_n\} \subset W_{n-1}$$
.

Then W_n is an open neighborhood of y_0 in N, $y_n \in (W_{n-1} \setminus W_n) \cap N_{k_{n-1}}$ and $f \in M_n(W_n)$. To see that $M_n(W_n) \cap B_n^* = \emptyset$, it suffices to show that

$$M_n(W_n) \subset M(C_1, \dots, C_l; U_1, \dots, U_l).$$

Let $g \in M_n(W_n)$. If $C_i \subset \{1, \dots, 1/n\}$ then $g(C_i) = f_n(C_i) \subset U_i$. If $C_i \setminus \{1, \dots, 1/n\}$ $\neq \emptyset$ then

$$g(C_i) \subset g\left(X \setminus \left\{1, \dots, \frac{1}{n}\right\}\right) \cup g\left(C_i \cap \left\{1, \dots, \frac{1}{n}\right\}\right)$$
$$\subset W_n \cup f_n(C_i) \subset U_i,$$

because $y_0 \in f_n(C_i) \subset U_i$. Thus W_n and B_n^* satisfy $(2)_n$.

To complete the proof of Example 3.2, let $\{k_n | n \in \mathbb{N}\}$, $\{y_n | n \in \mathbb{N}\}$, $\{W_n | n \in \mathbb{N}\}$

and $\{B_n^* | n \in \mathbb{N}\}$ be obtained in Lemma 3.5. We define $f \in C(X, Y)$ by

$$f(x) = \begin{cases} y_n & \text{if } x = \frac{1}{n}, \\ y_0 & \text{if } x = 0. \end{cases}$$

Then $f_n = f_{(y_1, \dots, y_n)}$ converges to f in C(X, N) if $n \to \infty$. In fact, let $U^* = M(C_1, \dots, C_l; U_1, \dots, U_l)$ be a basic neighborhood of f in C(X, N), where $C_i \in \Re(X)$ and $U_i \in \mathfrak{D}(N)$. Without loss of generality, we can assume $C_1 = \{1\}$. And let

$$n_0 = \max \left\{ n \left| \frac{1}{n} \in \bigcup \left\{ C_i \middle| 0 \notin C_i \right\} \right\} \right\}$$

For each $n \ge n_0$, $f_n(C_i) = f(C_i) \subset U_i$ if $0 \notin C_i$ and $f_n(C_i) \subset f(C_i) \subset U_i$ if $0 \in C_i$, whence $f_n \in U^*$.

Since $f \in M_n(W_n)$ by the definition, $f \notin B_n^* = \operatorname{cl} B_n^*$ for each $n \in \mathbb{N}$, whence $f \notin \operatorname{cl}(\bigcup \{B_n^* \mid n \in \mathbb{N}\})$ because \mathfrak{B} is CP. Then f has a neighborhood V^* in C(X, N) such that $V^* \cap B_n^* = \emptyset$ for each $n \in \mathbb{N}$. Choose $m \in \mathbb{N}$ so that $f_{k_m} \in V^*$. Then $B_{k_m+1}^* \in \mathfrak{B}_{k_m} = \mathfrak{B}(y_1, \dots, y_{k_m})$. From the definition of $\mathfrak{B}(y_1, \dots, y_{k_m})$, it follows that

$$f_{k_m} = f_{(y_1, \dots, y_m)} \in \text{Int } B_{k_m+1}^* \subset B_{k_m+1}^*$$
.

Hence $f_{k_m} \in V^* \cap B_{k_m+1}^*$. This is a contradiction. The proof is completed.

References

[Bo₁] Borges, C.R., On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.

[Bo₂] ——, On function spaces of stratifiable spaces and compact spaces, Proc. Amer. Math. Soc. 17 (1966), 1074-1078.

[Bo₃] ——, A study of absolute extensor spaces, Pacific J. Math. 31 (1969), 609-617.

 $\begin{bmatrix} Bo_4 \end{bmatrix}$ ———, Connectivity of function spaces, Can. J. Math. 23 (1971), 759-763.

[Ca₁] Cauty, R., Sur le prolongement des fonctions continues à valeurs dans CW-complex, C.R. Acad. Sc. Paris, Sér. A 274 (1972), 35-37.

[Ca₂] ——, Rétraction dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129-149.

[Ca₃] —, Sur les espace d'applications dans les CW-complexes, Arch. Math. 27 (1976), 306-311.

[Ce] Ceder, J.G., Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-126.

[GS] Guo, B.-L. and Sakai, K., Hyperspaces of CW-complexs, Fund. Math., 143 (1993), 23-40.

[Hu] Hu, S.-T., Theory of Retracts, Wayne St. Univ. Press, Detroit, 1965.

[Mi] Mizokami, T., On *CF* families and hyperspaces of compact subsets, Topology Appl. **35** (1990), 75-92.

[MK] Mizokami, T. and Koiwa, T., On hyperspaces of compact and finite subsets, Bull. Joetsu Univ. of Education 6 (1987), 1-14.

[S] Stone A.H., A note on paracompactness and normality of mapping spaces, Proc. Amer. Math. Soc. 14 (1961), 81-38.

Institute of Mathematics University of Tsukuba Tsukuba 305 Japan