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Abstract. We study the asymptotic behavior of the Klein-Gordon

equation with a nonlinear dissipative term ＼dtw(t)＼p~1dtw(t)(p>l)

in xei?" (n^l) and t^O. We prove that the energy of solutions

does not converge to 0 as t--+°ofor p>l+2/n if Cauchy data are

suffcientlysmall. We also prove that solutions of the above equa-

tion converge to suitable solutions of the linear Klein-Gordon equa-

tion in the energy space as t―>co for /?>l+4/n if l^n^6 and

i+A/n^txfn/Cn― P>)if v>l
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1. Introduction and Results

We consider the Cauchy problem for the nonlinear Klein-Gordon equation;

f dtw(t)-Jw(t)+w(t)+f(dtw(t))=Q
(1.1)

( w(O)=0, dtw(Q)=<p,

where x^Rn, t(ER+ = [0, oo), f(u)= ＼u ＼p~1u and A is the n-dimensional Laplacian.

The asymptotic behavior of solutions of (1.1) was considered in Nakao [9]. He

(1.2)

for K/xl+2/w and

(1.3)

!IW(OII,<C||0|L(l+n-c2-B<p-1>>/<p-1>

＼＼w(t)＼＼e^c＼＼0uioga+t))-tKp-i>

for p = l+2/n. Here W(t)=( {t}A 0 = (*
＼dtiv(t)/ ＼(p
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] and ||-||eis the energy norm
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defined by

＼＼W(t)＼＼l=j{＼＼Hw(t)＼＼l+＼＼dMt)＼＼i},

where ||-||2is L2(i2")-norm and H is the positive selfadjoint operator V―Zf+1

in L2. Our aim of this paper is to investigate how the energy of solutions of

(1.1) behaves as ;£―>ooin the case p>l+2/n.

In order to state our results,we give the main notations used in this paper.

We denote by ||-||athe norm in Lq=Lq(Rn). Let Hsq=Hsq(Rn) with s^R and

lsS<7<cx> be the Sobolev spaces which are the completion of C (Rn) with norms

iiuii,.,=ii3-i(i+iei')'/lfi())ii≪.

Here ~denotes the Fourier transformation and 3"1 is its inverse. Especially

we denote by Hs the usual Sobolev spaces. We note that HS=HS2. For any

interval IdR and any Banach space B, we denote by Ck(I; B) the space of B-

valued Ck-functions over /, and by CW(I; B) the space of weakly continuous

functions from / to B, and by CL{I; B) the space of functions from I to B

that are strongly Lipschitz continuous. For any q, l^^^co, we denote by

Lq(I; B) the space of fi-valued LQ-functions on /.

We define an inner product in the energv soace HxxLo bv

(

(Vl))=^{<Huit HVl>+<ut, v2y),

where < ,> is L2(i2")-iimer product. We note that ＼＼W(t)＼＼2e=<W(t),W(t)＼-

We shall use the operator C,(H) for suitable functions C(-) as follows:

C(H)M = ff"1<C≪f≫fi(e)) mSf,

where <£>=(! + |£|2)1/2and S' means the tempered distribution. We denote by

{U(t)} (t(ER) an unitary group in HlxL<i, defined by

cos{Ht} H'1 sin {Ht}＼

-Hsm{Ht＼ cos {/ft} /

First we state a result of existence and uniqueness.

Theorem 1. Let n^l and p>l. Assume that 0―{j＼^H2xi-Pr＼L2v

Then there exists a uniaue solution wit) of (1.1) which satisfiesthe following:

(1.4)

(1.5)

(1.6)

u/(*)eL^R+; H2)r＼C(R+; H*)r＼C＼R+; H1)nC＼R+; U)

dtw(t)<EL≪iR+ ; H1)r＼Lv+1{R+xRn)r＼LolR+ ; L2p),

d!w(t)(ELJR+: L2).
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And the following energy equality and inequalitieshold:

(1.7)

(1.8)

(1.9)

＼＼HW(tWe+＼

Jo

＼＼dtw{r)＼p-＼
p＼FdMT)＼2+＼dMT)＼2}dt^＼＼H0＼＼l,

0

Jo

for t<=R+, where HW(t) =
/ Hw(t) ＼

＼Hdtw(ty

＼dlw{r)＼zydz^ ( * )＼2

9- =R > ＼H<!>)

The main results can be stated as follows:

Theorem 2. Let wit) be a solution of (1.1) with Cauchy data 0 =
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(i>

H2r＼H{+1xHlr＼H＼r＼LiP, where s>n/2. Suppose that p>l+2/n (n^l) and ＼＼0＼＼e

=£0. Then there exists a <5>0 such that if ||0||,+i.i+||0||,.i^5, then ＼＼W(t)＼＼edoes

not converge to 0 as t―>oo.

Theorem 3. Let w{t) be a solution of (1.1) with Cauchy data 0 = (~je

H2xHlr＼L2p.

(i) Suppose that p>l+2/n (n^l). Then there exists <P+=

such that

GH'XH1

(1.10)

(ii)

U(-t)W(t)-O+―>0 weakly in HzxHl as t-+°o.

Suppose thatl+4/n<£<co if l_^n^6 and l+4/n<p<n/(n― 6) ifn^l.

Then the above @+ satisfies

(1.11) ＼＼W(t)-U(t)0+＼＼e ―> 0 as t->oo

The theory of monotone operators provides the existence of a global solu-

tion. Uniqueness, energy equality and inequalites are obtained by standard

methods. So we may give a sketch of proof of Theorem 1. The energy decay

properties of the linear wave equations with a dissipative term are investigated

by Mochizuki [7, 8] and Matsumura [6]. For the proof of Theorem 2 we use

the same energy method used in Mochizuki [7, 8]. In order to prove Theorem

3, the Strichartz estimate (See Proposition 4.1.) and the energy inequality (1.8)

play an important role.
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2. Proof of Theorem 1

Since f'(u)>0 and /(m)k^O, the theory of monotone operators provides a

unique solution of (1.1). Noting that 0=(^)^H2xH!lr＼L2p implies ＼＼R＼＼l＼＼H$＼＼l

and ( * )＼ are finite, (1.7), (1.8) and (1.9) are obtained by standard

P

methods. So there exist a solution w(t) of (1.1) as follows:

(2.1) w(t)(=LJ,R+; H2)r＼Cw(R+; H2)r＼CL(R+; Hl),

(2.2) dtw(t)^LJiR+; H')r＼CW(R+; //1)nCi(i2+; Lz)r＼Lp+1(R+xRn),

(2.3) d?w(0e Lco(i2+;U)r＼Cw(R+; U).

Since ||/(3tu;(?))ll2= IISfM/CO-^wCO+wWIU, we have dtw{t)^Loo{R+; L2p) by (2.1)

and (2.3).

Employing the same arguments as in Kato [4], Shibata [10] and Shibata

and Kikuchi [11], we can obtain

(2.4) w(t)^C(R+;H2)nC＼R+; H1)r＼C＼R+; L2).

Thus Theorem 1 is proved.

(3.1)

3. Proof of Theorem 2

We note that W(t)=(
R.)
satisfies

＼dtw{t)/

W(t)=U(t)0-[tU(t-t)F(dtw(T))dT
Jo

where F(u)=

(3.2)

＼f(u)J
. Since U(t) is an unitary operator on H1xL2, we have

<W(t), U(t)0>e=<U(t)0, U(t)0＼-＼＼u(t-T)F(dMT)), U(t)0}edr
Jo

wni- ＼＼FidMr)),U{v)O＼dt
Jo

= ＼＼m-^＼<f{dtw{T)),dtw＼T)ydr,
I Jo

Here w°(t)is a solution of the linear Klein-Gordon equation;

(3.3)
f d2tw＼t)-Aw%t)+w＼t)=0

1
iv＼0)=6, dtw＼O)=<p

By the Schwarz inequality we obtain



(3.4)
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110112^l|Wmiltf(O0 II. ＼<KdMT)),dtw＼T)y＼dT

= ＼＼W(t)＼＼e＼＼0＼＼e+UtKf(dMT)),diw＼T)}＼dT

It follows from Holder's inequality that

(3.5) ^{＼'L
1 p/cp+n rrtr i i/cp+15

＼dtw{r)＼p+ldxdz＼ ＼＼ ＼dtw＼r)＼p+ldxdt＼

We recall the well-known estimate

(3.6) l|u;0(OII-^C(l+0-≫/1(||rf||,.1 + ||^||,.1.l)l
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where s>n/2 and w°(t)is a solutionof (3.3). (See Brenner [2] Appendix 2,

Bergh and Lofstrom [1] Theorem 6.2.4and Brenner, Thomee and Wablbin [3]

Theorem 2.1.) By (1.7)and ||9tu/0(rt||I^2||Wwe have

(3.7) /2^C(||^L+1>1+||c&||,il)cp-1>/cp+1)l|^|||p/cp+1)

(Ct -il/Cp+i)xy
o(l+r)-"cp-1)/2|!a£M;o(r)||Irfr}

^C(||^||,+1.1 + ||^L.1)cp-1)/cp+1>||^||l{j[(l+r)-BCp-1J/2rfr}1/CP+1>

Since t>>l+2/n implies ―nit―1)/2<― 1, there exists a 8>0 such that

(3.8) C£<p-d/cp+i> jr(l+r)-"cp-1)/2dr}
IJo J

Then it follows from (3.4),(3.7) and (3.8) that

(3.9)

1/Cp + l)

＼wm＼＼w(t)uR＼＼e+^＼＼R＼＼i

<2"

if ＼＼$＼＼s+i.i+＼＼<ph.i^d. Noting that ＼＼0＼＼ei=O,we have
~

t<=R+. Therefore Theorem 2 is proved.

4. Proof of Theorem 3

110112ÛWm for any

We begin with the Strichartz estimate for solutions of the linear Klein-

Gordon equation.

Proposition 4.1. Let q>2, r^2 and

(4.1)

1

_

~2

_!

n

1

<―<^r
nr q

2_

nr
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Then we have

(4.2)
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＼＼w°＼＼LrCR;Z.qUtn≫<C＼＼0＼＼e,

where 0

(4.3)

( .) and w＼t) is a solution of (3.3).

See Marshall [5] for a proof.

Using this proposition, we obtain the following

Lemma 4.2. Under the same assumptions of Proposition 4.1 we have

^U{-T)F{u(?))dr
e<C＼＼＼ur-^＼＼Pu＼

+ ＼u＼)h2at^xRn>

V Hi/II(P-O/2

for suitablefunctionsu, where F(u)=( A

Proof. For any V=(Vl＼^C^{Rn)xCt{Rn) we have

(4.4)
(§°

t
U(-T)F(u(r))dT, F^=j"<i7(-r)F(M(r))dr, V＼dt

=£°<F(u(r))ff/(r)F>erfr

= -|r<^/(M(r))f H-ldtv(T)}dr

where v(t)=ca&{Ht}v1+H-1sin.{Ht}vi. Recallingthat #=V―J+l, by Holder's

inequalitywe have

(4.5)
j"<i//(u(r)),

H-%v(t))dr

^C
n
I" I CP"1)/2(IFw I+ Iu |)|m |"-1)/21 H-'dMv)| dxdt

^C＼＼＼u＼^<＼＼Fu＼ + ＼u＼)＼＼L2at^xRn>

X||M|||^)_/12)/cr_2)([t,00);i2(p_J;i/(g_2;)||H"13£f||Z,r([J,co);ig(flr0),

where q^2 and r^2. Since i/"13ty(0 is a solution of (3.3) with Cauchy data

( 21 it follows from Proposition 4.1, (4.4) and (4.5) that



(4.6)
(＼:
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U(-T)F(u(T))dr, v)

^C|||M|"-≫/t(|rM| + |u|)||Z,(CtieOxJIn>

X||M||iPr.-y_/^/(r_2)([J,cc);ig(p_1)/w_2;i(J?re))||F||e

Thus by the duality argument we obtain (4.3).

Proof of (i). We note that Wit) satisfies

(4.7)

and then

(4.8)

where

(4.9)

W(t)=U(t)0- ^U{t-T)F(dtw{T))dr
Jo

U{ - t)W(t)=0 -
[U(
-t)F(dMt))dT

Jo

= 0 ++[°U(-T)F(dMT))dT

0+=0-＼a°U(-T)F(dtw(T))dT
Jo

For F=(yi)GC^(i2")xC^(i2") we have

(4.10) <u(-t)W(t)-o+, v>e--=＼＼u(-r)F(dtw(T)),vyedt
Jo

=
j"<F(3tu;(r)),

U{t)V＼dz

= ^t<f{dtw{z)),dtv(T)>di:

Q.E.D

157

where v(t)―cos{Ht}v1JrH 1 sin{Ht}v2. In the same way as in obtaining (3.5)

and (3.7),it holds that for p>l+2/n

(4.11) ＼<U(-t)W(t)-$+, V＼＼―>0 as?->co.

Since U(t) is an unitary operator on i/1xL2, it follows from (1.8) that

{U(―t)W(t)＼ is uniformly bounded on t in H2xH＼ Therefore we have

(4.12) U(-t)W(t)―>0+ weakly in H2xHx as t->oo

and 0+t=H2xH＼

Proof of (ii). If 1/r and 1/g satisfy (4.1), by (4.8) and Lemma 4.2 we have
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(4.13) ＼＼W(t)-lKt)0+＼＼e=＼＼U(-tW(t)-0+＼＼e

<: ^U{-T)F{dtw{r))dz
e

^C＼＼＼dtw＼^<X＼Vdtw＼ + ＼dtw＼)＼＼L^t^Rn,

V II3 -,,||(p-l)/2XH°'tU;llir(p-l)/cr-2)^£,oo);£gcp_1)/(g_2)(iJ70).

On the other hand by (1.8) and (1.5) we have

＼dtw＼<-p-≫'＼|F3£w I + |3tu;I )(EL2(R+xRn)

and dtw^Lr,(R+; Lq.(Rn)), where l/r'=0//>+l and l/<7'=(0//>+l)+(l-0)/2/>

(0<^<l). Thus if

(4.14)
r-2 _ 1 q-2 __ 1

r(p-l)~ r" q(p-l) ~q"

it follows from (4.13)that

(4.15) W(t)-U(t)$+＼＼e―* 0 as f-oo

(4.14)implies that

(4.16)
r

_

1

_
~2

(P-DO

2LP+D'

l

_

Q

Substituting (4.16) for (4.1), we have

(4.17)

(4.18)

_

1

_

2

(p-i)d (p-ivi-o)
2(/> + l) At

{(n+2)0+(n-6)}£2-2{(tt+l)0-f3}/>-n(l-0)<O,

{(n+4)6>+(n-4)}£2-2{(n+2)0+2}/>-?2(i-0)>Q.

By (4.17) we have

(4.19)

(4.20)

1<6<oo if 6^
6―n

n+2 '

6-w
Kp<an{6) if d>

n+2 '

Here an{0)is a positivesolutionof

{(n+2)d+(n-6)}p2-2{(n+l)d+3}p-n(l-d)=Q

On the other hand by (4.18)we have

(4.21) P>Pn{6) if 0>^~.

Here f$n(0)is a positivesolutionof

{(n+4)d+(n-4:)}p2-2{(n+2)d+2)p-n(l-d)=Q
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Noting that

{(n+2)d+(n-6)}pz-2{(n+l)d+3}p-na-0)

<{(tt+4)0+(tt-4)}/>2-2{(rc+2)0+2}/>-tt(l-0)

for p>l, we see that pn{d)<an{0) for (6-n)/(n+2)<0.

First we consider the case l^n^6. Since an{6) | °°as 61| (6 ―n)/(n+2), there

(4.22) Q
/6 ― n＼ /6 ― n , ＼

Since O<0.<1, it follows from (4.19),(4.20) and (4.21) that

(4.23)

(4.24)

(4.25)

(4.26)

$n(d)<P<co for Max JO

Pn(O)<p<an(d)

/3≫

(

for

4―72]

n+A＼

6-w
n+2

<d£

<d<i

&)<><-.

/>'<≫<*<≪･&£+')

1+

Thus Theorem 3 is proved.

-=pna)<P<an(Q)=

6―n

n+2 '

respectively. Noting that an(d) and /3n(0)are monotone decreasing functions,

Thus by (4.22),(4.25)and (4.26) we have l+4/n=/3n(l)<£<oo if l^n^6,

Next we considerthe case n>7. By (4.20)and (4.21) we have

(4.27) pn(O)<p<an(d) forO^tf^l.

Since aJO) and Bn(d) are monotone decreasingfunctions,we have

n

^6
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