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Abstract. We study the asymptotic behavior of the Klein-Gordon
equation with a nonlinear dissipative term [0, w(t)| P79, w(t) (p>1)
in xeR" (n=1) and t=0. We prove that the energy of solutions
does not converge to 0 as t-»o0 for p>142/n if Cauchy data are
suffciently small. We also prove that solutions of the above equa-
tion converge to suitable solutions of the linear Klein-Gordon equa-
tion in the energy space as t—co for p>14+4/n if 1<n<6 and
1+4/n<p<n/(n—6) if n=7.
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1. Introduction and Results
We consider the Cauchy problem for the nonlinear Klein-Gordon equation ;
0 w(®)—dw(t)+wt)+ f(8.w(1)=0
{ w0)=¢, Jw)=¢,

(1.1)

where x&R", te R*=[0, ), f(u)=|u|?"'u and 4 is the n-dimensional Laplacian.
The asymptotic behavior of solutions of (1.1) was considered in Nakao [9]. He
showed that

(1.2) IW(ZC|| @l (14£)" @ rep=D)/p-1
for 1<p<1+2/n and

(1.3 W@ .=ClPll(log (1+1))-*/P~D

for p=1+2/n. Here W(t):(aiiit()t)), (D=(Z> and {-|l, is the energy norm

Received December 13, 1989. Revised June 18, 1990.




152 Takahiro MOTAI
defined by
1
HW(t)H§=—2—{HHw(t)II%JrHBzw(t)H%},

where ||-|l; is L,(R™)-norm and H is the positive selfadjoint operator N —A+1
in L,. Our aim of this paper is to investigate how the energy of solutions of
(1.1) behaves as t—oo in the case p>1+2/n.

In order to state our results, we give the main notations used in this paper.
We denote by ||+, the norm in L,= L{R™). Let Hi=HYR™ with s€R and
1<g< o be the Sobolev spaces which are the completion of C3(R™) with norms

lells.q= 1T A+ 1512 AE), -

Here ~ denotes the Fourier transformation and 7' is its inverse. Especially
we denote by H*® the usual Sobolev spaces. We note that H:*=H;. For any
interval JCR and any Banach space B, we denote by C*(I; B) the space of B-
valued C*-functions over I, and by C,(I; B) the space of weakly continuous
functions from I to B, and by C.(I; B) the space of functions from I to B
that are strongly Lipschitz continuous. For any g¢, 1<g<, we denote by
LI; B) the space of B-valued L,-functions on I.
We define an inner product in the energy space H'XL, by

(-G bt o

VAN

where ¢,> is Ly(R")-inner product. We note that IWONZ=<W (&), W(E)De.
We shall use the operator {(H) for suitable functions {(-) as follows:

L(Hu=3"EMaE) in S,

where <&>=(1+]&|%)"* and &’ means the tempered distribution. We denote by
{U(t)} (t=R) an unitary group in H'XL, defined by
cos { Ht} H~'sin { Ht}
U(t) = .
— Hsin { Ht} cos{Ht}

First we state a result of existence and uniqueness.

THEOREM 1. Let n=l and p>1. Assume that @=(Z>EH2><HV\L2P.
Then there exists a unique solution w(t) of (1.1) which satisfies the following:
(1.4) w@t)e LAR*; HHYNCR*; HYNCHR*; HYNCHR*; L,),

(1.5) O wt)s Lo(RY ; HYN Ly R¥X RN LARY; Lop),
(1.6) twt)s LSR*; Ly).
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And the following energy equality and inequalities hold:

17) Wi+ ow@izde=101z,

a8 HWOE+ | 1017, p17@ 1+ 800 D de < I HOIE,
2 ¢ , p-1 2 2 | ¢' 2

@9 1wl +p Iaw@ ™, 18@ S (g )],

0,
152‘:’520), 8 (t)=( ag%i) and H@:(gg).

The main results can be stated as follows:

for t=R*, where HW(t):(

Theorem 2. Let w(t) be a solution of (1.1) with Cauchy data @:(Z)E

HNHS T X H*\N\H{N\ L,,, where s>n/2. Suppose that p>14+2/n (nzl) and D],
#0. Then there exists a 6>0 such that if |@llss1.1+ Qs =0, then [W(t)|. does
not converge to 0 as t—oo.

Theorem 3. Let w(t) be a solution of (1.1) with Cauchy data @:(—%)e
H*XH'M Lyp.
.
(i) Suppose that p>1+42/n (n=1). Then there exists (D*:(E;)e H*x H*

such that
(1.10) U=t W) —0+t — 0 weakly in H*X H' as t— .

(ii) Suppose that 1+4/n<p<oo if 1Zn=6 and 1+4/n<p<n/(n—6) if n=7.
Then the above @+ satisfies

(1.11) w)—-U@)o*),—0 as t—oo,

The theory of monotone operators provides the existence of a global solu-
tion. Uniqueness, energy equality and inequalites are obtained by standard
methods. So we may give a sketch of proof of Theorem 1. The energy decay
properties of the linear wave equations with a dissipative term are investigated
by Mochizuki [7, 8] and Matsumura [6]. For the proof of Theorem 2 we use
the same energy method used in Mochizuki [7, 8]. In order to prove Theorem
3, the Strichartz estimate (See Proposition 4.1.) and the energy inequality (1.8)
play an important role.
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2. Proof of Theorem 1

Since f’(u)>0 and f(u)u=0, the theory of monotone operators provides a

unique solution of (1.1). Noting that @:<¢)E H*XH' L, implies | @2, | Hep|?

and |(_ ¢¢_ P ¢)) _are finite, (L7), (1.5 and (L.9) are obtained by standard
methods. So there exist a solution w(¢) of (1.1) as follows:

(2.1) w)E L(R*; HONCW(R*; HYNC(R*; HY),

(2.2) 0 w(t)E L(R*; HYNC w(R*; HYNCL(R*; LO)NL,(R*XR™),

(2.3) tw(E L(R*; L)NCW(R*; L)

Since || f(@.w(®)|.=0zw(t)—dwt)+w(®)],, we have 0, w(t)= L(R*; L,,) by (2.1)
and (2.3).

Employing the same arguments as in Kato.[4], Shibata [10] and Shibata
and Kikuchi [11], we can obtain

(2.4) wheC(R*; HHNCHRY; HYNCHR*; L,).

Thus Theorem 1 is proved.

3. Proof of Theorem 2

w(t)

We note that W (z‘):(a w(t)
t

) satisfies

(3.1) W(l)=U(l‘)@—S:U(l‘-—f)F(atw(f))dT ,

where F(u):(fé)u)). Since U(¢) is an unitary operator on H'X L,, we have

(B2 WO, UO=UWOD, UOD.—| Wit—)F @), Uty
=101i—{ F @), U)Dyede

=10)— 5 | < S@uuen, dewenas,

Here w'(¢) is a solution of the linear Klein-Gordon equation:
0iw () —Adw(t)+1w(#)=0

(3.3)
w(0)=¢, o.w0)=¢.

By the Schwarz inequality we obtain
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(3.4) IO IEIWOIITOO ot 5 1< Gune, Bwtey|de

=W Ol Pl 5 |L 1< @ante), dwk(e))de

:Il+-[2 .

It follows from Holder’s inequality that

(3:9) I = %{S:Smmw(‘r)l ”“dxdz'}p/(pm {SZSM [0.w'(7)] ”“dxdr}»”(pm .

We recall the well-known estimate
(3.6) MOl CAH2(1@ 5.1+ Pls-1.1) 5

where s>n/2 and w'(f) is a solution of (3.3). (See Brenner [2] Appendix 2,
Bergh and Lofstrom [1] Theorem 6.2.4 and Brenner, Thomée and Wablbin [3]
Theorem 2.1.) By (1.7) and {0, w°#)|:<2]|@)2 we have

@7 I SC(@llee1, 1+ [Plls, 1) 7= DIPHD| D gRIcP+D

X {S:(l—}—T)-n(P—1)/zna‘wo(r)”gdf}ll(pﬂ)

SCU i+ 19 1)@ 210 D[ (1) meo-iege} T

Since p>1+2/n implies —n(p—1)/2< -1, there exists a >0 such that

(3.8) C5(p_1)/(p+l){5j(1+T)_”(p—1)/2dr}”(p+l)<_% .
Then it follows from (3.4), (3.7) and (3.8) that
(39) IBIES IWOLIO |+ 5 1012

if |@llss1, 1+ 1¢ls<08. Noting that |@],#0, we have %IIQ)HEéHW(Z‘)IIe for any

teR*. Therefore Theorem 2 is proved.

4. Proof of Theorem 3

We begin with the Strichartz estimate for solutions of the linear Klein-
Gordon equation.

Proposition 4.1. Let ¢=2, r=2 and

(4.1) st 1 2
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Then we have

{4.2) lwllz, ;L wn=C|®?]|,,

q

where (D:(Z) and w'(t) is a solution of (3.3).

See Marshall [5] for a proof.
Using this proposition, we obtain the following

Lemma 4.2. Under the same assumptions of Proposition 4.1 we have

“.3) || o= oF @@z <Cl@ R P+ 14Dyt mrens

(p~1)/2
u .
X ”Lr(p_l)/(r_z)az,m. Lycp-1y/¢g-2y (R

0
f(u))'

for suitable functions u, where F(u):(

Proof. For any V=( )eC"g(R")xC‘:;’(R”) we have

Uy
Vs
(4.4) <SZ°U(—T)F<u(r>)dr, V>e=S:°<U(—T)F(u(T))dT, Vede
=P, U de

= %S?Hf(u(r)), H™'9u(z)ydr,

where v(t)=cos{Ht}v,+H 'sin {Ht}v,. Recalling that H=+—4+1, by Holder’s
inequality we have

4.5) ] ST<H Flu(o), H-la,v(r»drb

=C ] 1wl @2 Pul + |u ) |22 H0,(0) | dxde

SCNul® PPV ul +1u )l Lycce, crxrn

><”ul[i‘;_(;)_/fw(r_z)(u,w);Lq(p_,)/(q_z)”H"latUHLT(u,w);chknn»
where ¢=2 and r=2. Since H™'d,u(¢) is a solution of (3.3) with Cauchy data
(H_lvg

Ho ), it follows from Proposition 4.1, (4.4) and (4.5) that
- 1
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(4.6) \ <SZ°U<—T)F(u(T))dr, V>e ’

< Clul® D2 u ]+ 1w Dl 2yt e
KNUNEDE oty qnymml Ve

Thus by the duality argument we obtain (4.3). Q.E.D.

Proof of (i). We note that W(¢) satisfies

4.7 W(t):U(t)d)-—S:U(t—r)F(atw(r)) dr,
and then
(4.8) U(—t)W(t):@—S:U(—T)F(atw(f))dr

Z@*'—}—SZQU(—T)F(atw(T))dT,
where

(4.9) 0*=0— V(-0 F@u(e)dr.
U1 — g n 0 n
For V=(')=C5(R"X C3(R") we have
(4.10) WO~ 0*, Vye={ W~ F@u(e), V)de
= PO, UV )udz

= %S"?f (B.w(r)), 0v(T)>dT,
t

where u(t)=cos{Ht}v,+H *sin {Ht}v.. In the same way as in obtaining (3.5)
and (3.7), it holds that for p>1+2/n

(4.11) [KU(—=t)W(t)—¢*, VDl —> 0  as t—oo,

Since U(t) is an unitary operator on H!'X L, it follows from (1.8) that
{U(—t)W(t)} is uniformly bounded on ¢ in H®X H'. Therefore we have

(4.12) U—tHW(t) — Ot weakly in H*XH'! as t—w
and Ote HEx H.

Proof of (ii). If 1/ and 1/q¢ satisfy (4.1), by (4.8) and Lemma 4.2 we have
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(4.13) W —-U@®)@H| = IIU(—t)W(t)—P* |,
< HSTU(—-T)F(a,w(T))dee

=CIHBw P01 Fosw | +18:w )] ycee, o3z

(p—1)/2
X ”atwIILI;(p_])/(T_g)(Et,w): Locp-1y)cq-2yCRP -

On the other hand by (1.8) and (1.5) we have
10w P22V 8w | +|0.w|)= L(R* X R™)
and dwe L, (R*; Ly(R™), where 1/r'=60/p+1 and 1/¢'=(0/p-+1)+(1—6)/2p
(0=6<1). Thus if
r—2 1 qg—2 1

-1 7 -1 ¢’
it follows from (4.13) that

(4.14)

(4.15) Wt)-U)g*|. — 0 as t—oo.
(4.14) implies that

(4.16) 1_1 (=16 1_1 (p=1f (p—1x1-0)
' r 2 2p+D)’ ¢ 2 20p+D) ip

Substituting (4.16) for (4.1), we have

(4.17) {(n+2)6+(n—6)} p*—2{(n+1)0+3} p—n(1—6)<0,
(4.18) {(n4+4)0 +(n—4)} p*—2{(n+2)6 +2} p—n(1—6)>0.
By (4.17) we have
(4.19) I<p<oo if < i:;
(4.20) 1<p<an®) if 6>,

n+2

Here a,(f) is a positive solution of

{(n+2)0 +(n—6)} p*—2{(n+1)6 +3} p—n(1—8)=0.
On the other hand by (4.18) we have

. 4—n
(4.21) p>pa(0) if 0>m.

Here (.(6) is a positive solution of

{(n+4)0+(n—)}p*—2{(n+2)0+2)p—n(1—0)=0.
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Noting that
{(n+2)0 +(n—6)} p*—2{(n+1)0+3} p—n(1—0)
<A+ +(n—4)} p*—2{(n+2)0 +2} p—n(1—6)

for p>1, we see that B,(0)<a,(8) for 6—n)/(n-+2)<8.
First we consider the case 1<n<6. Since a,(6) 1 « as 8 | (6—n)/(n+2), there
exists an ¢>0 such that

6—n 6—n
(4.22) ‘Bn(m)<an(m +E) .
Since 0<6# <1, it follows from (4.19), (4.20) and (4.21) that
4—n _6—n
(4.23) Bu@)<p<e  for Max{o, "2} <o < o B
6—n
(4.24) B(0)<p<a,(6) for — <OZL1

respectively. Noting that a,(f) and $,(8) are monotone decreasing functions,
we have

(4.25) ﬁn(il’;)@@o,
(4.26) 5n<1><p<an(i—;—’; +e).

Thus by (4.22), (4.25) and (4.26) we have 14+4/n=F.1)<p<o if 1<n<6,
Next we consider the case n>7. By (4.20) and (4.21) we have

(4.27) Ba()<p<an(8) for 0ZHL1.

Since @.(f) and B,(€) are monotone decreasing functions, we have

L4 =,()< p<an(0)= -

n—6"

Thus Theorem 3 is proved.
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