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SMASH PRODUCTS AND COMODULES OF LINEAR MAPS

By

K. -H. ULBRICH*

Let $G$ be a finite group and $A$ be a G-graded algebra over a commutative
ring $k$ . Consider the G-graded right A-module $U=\bigoplus_{\sigma\in G}A(\sigma)$ where $A(\sigma)=A$ has

grading shifted by $\sigma$ . $N\dot{a}st\dot{a}sescu$ and Rodin\‘O [5] proved that

(1) $End_{A- gr}(U)*G\cong End_{A}(U)$ , and $A\# k[G]^{*}\cong End_{A- gr}(U)$

where $End_{A-gr}(U)$ denotes the algebra of graded A-endomorphisms of $U$ , and $*$

means crossed product, [5], Theorems 1.2 and 1.3. The proofs are given by

some explicit matrix computations relying on a graded isomorphism $End_{A}(U)\cong$

$M_{n}(A),$ $n=|G|,$ $[5]$ , Prop. 1.1. The first isomorphism of (1) has recently been
generalized to

(2) $End_{A-gr}(U)*G\cong END_{A}(U)$ , [2], Thm. 3.3,

for not necessarily finite groups $G$ . The purpose of this paper is to give Hopf
algebraic versions of (1) and (2). Write $H=k[G]$ . First note that the above
crossed products are also smash products. Furthermore, a G-graded k-module
is the same as an H-comodule, and the A-isomorphism

$U\rightarrow^{\sim}H\otimes A$ , $a(\sigma)-\sigma^{-1}\otimes a(\sigma)$ , $a(\sigma)\in A(\sigma)$ ,

is H-colinear where $H\otimes A$ has coaction $\alpha:H\otimes A\rightarrow H\otimes A\otimes H$ defined by

(3) $\alpha(h\otimes a)=\Sigma h_{(1)}\otimes a_{(0)}\otimes h_{(2)}a_{(1)}$ , $h\in H,$ $a\in A$ .

Now let $H$ be any Hopf algebra over $k$ and set $U=H\otimes A$ for a right H-comodule
algebra $A$ . Let $End_{A}^{H}(U)$ be the algebra of right A-linear maps $U\rightarrow U$ which
are colinear with respect to (3). We shall generalize (1), for $H$ finite over $k$ , to

(4) $End_{A}^{H}(U)\# H\cong End_{A}(U)$ and $A\# H^{*}\cong End_{A}^{H}(U)$ .

It was pointed out in [5] that (1) implies the duality theorems of Cohen
and Montgomery [4]. Correspondingly, (4) may be viewed as an improvement
of the duality result for finite Hopf algebras [3], Cor. 2.7. Note that the second
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isomorphism of (4) gives a natural interpretation for an arbitrary smash pro-
duct by a finite Hopf algebra.

Comodules of the form $H0M_{A}(M, N)$ seem not have been considered yet for
Hopf algebras others than $k[G]$ . We introduce them here for arbitrary, pro-
jective Hopf algebras in section 2. We can then generalize (2) (and the first
isomorphism of (4)) to

$End_{A}^{H}(U)\# H\cong END_{A}(U)$

for projective Hopf algebras. This turns out to be a special case of Theorem
2.4 which also includes [2], Thm. 3.6 (1), and shows that the finiteness condi-
tions assumed there are not necessary.

Throughout the following, $H$ denotes a Hopf algebra over a commutative
ring $k$ , and $A$ a right H-comodule algebra. Recall that a Hopf A-module is a
right A-module $M$ supplied with a right H-comodule structure $\alpha:M\rightarrow M\otimes H$

such that

(5) $\alpha(ma)=\Sigma m_{(0)}a_{(0)}\otimes m_{(1)}a_{(1)}$ , $m\in M,$ $a\in A$ .

In case $H=A$ , the descent theorem for Hopf H-modules says that the $H_{-}(co)-$

linear map

$M^{H}\otimes H\rightarrow M$ , $m\otimes h-mh$ ,

is an isomorphism ([1], Thm. 3.1.8). Here $M^{H}=\{m\in M|\alpha(m)=m\otimes 1\}$ . If $H$ is
finite over $k$ , a right H-module $M$ is a Hopf H-module iff $M$ is a left $H^{*}$-module
satisfying

$g(mh)=\Sigma(g_{(1)}m)(g_{(2)}h)$ , $g\in H^{*},$ $m\in M,$ $h\in H$.
As usual, $H^{*}=Hom_{k}(H, k)$ denotes the dual Hopf algebra (for $H$ finite over $k$ ),

and $H$ is viewed as a left $H^{*}$-module by $ gh=\sum h_{(1)}\langle g, h_{(2)}\rangle$ . For a left H-
module algebra $B$ the smash product algebra $B\# H$ is $B\otimes H$ with multiplication
defined by

$(b^{\prime}\otimes h)(b\otimes h^{\prime})=\Sigma b^{\prime}(h_{(1)}b)\otimes h_{(2)}h^{\prime}$ ,

for $b,$ $b^{\prime}\in B,$ $h,$ $h^{\prime}\in H$. The antipode and counit of a Hopf algebra willlbe de-
noted by $\lambda$ and $\epsilon$ , respectively. We write $\otimes=\otimes_{k}$ .

1. Let $M$ be a left H- and right A-module such that

(6) $(hm)a=h(ma)$ , $h\in H,$ $m\in M,$ $a\in A$ .

For $h\in H$ and $\psi\in End_{A}(M)$ define $h\psi\in End_{A}(M)$ by
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(7) $(h\psi)(m)=\Sigma h_{(1)}\psi(\lambda(h_{(2)})m)$ , $m\in M$ .

Then $End_{A}(M)$ is a left H-module algebra [6], and

$End_{A}(M)\# H\rightarrow End_{A}(M)$ , $\psi\otimes h-\psi h$ ,

is a homomorphism of k-algebras, where $(\psi h)(m)=\psi(hm)$ . Assume that $M$ has
also a right H-comodule structure $\alpha:M\rightarrow M\otimes H$ satisfying

(8) $\alpha(hm)=\Sigma h_{(1)}m_{(0)}\otimes h_{(2)}m_{(1)}$ , $h\in H,$ $m\in M$ .
Let $End_{A}^{H}(M)$ be the k-algebra of A-linear and H-colinear maps $M\rightarrow M$ .

LEMMA 1.1. $End_{A}^{B}(M)$ is an H-submodule algebra of $End_{A}(M)$ .

The easy proof is left to the reader.

In the following we consider $M=H\otimes A=U$ with H-comodule structure de-
fined by (3); $U$ is naturally a left H- and right A-module satisfying (5), (6)

and (8).

LEMMA 1.2. Suppose the antipode $\lambda$ of $H$ is bijective. Then

(9) $\chi:End_{A}^{H}(U)-Hom_{k}(H, A)$ , $\chi(\phi)(h)=(\epsilon\otimes 1)\phi(h\otimes 1)$ ,

is an isomorphism of k-modules.

PROOF. Define $Hom_{k}(H, A)\rightarrow End_{A}^{H}(U),$ $v\mapsto\tilde{v}$ , by

$\tilde{v}(h\otimes a)=\sum h_{(2)}\lambda^{-1}(v(h_{(1)})_{(1)})\otimes v(h_{(1)})_{(0)}a$ ,

for $h\in H,$ $a\in A$ . It is easy to see that $\tilde{v}$ is H-colinear. Clearly $\chi(\tilde{v})=v$ . Let
$\phi\in End_{A}^{H}(U),$ $h\in H$, and write $\phi(h\otimes 1)=\sum h_{i}\otimes a_{i}$ . The colinearity of $\phi$ implies
for $v=\chi(\phi)$

$\Sigma a_{i(0)}\otimes h_{i}a_{i(1)}=\sum v(h_{(1)})\otimes h_{(2)}$ .
Therefore

$\phi(h\otimes 1)=\Sigma h_{i}a_{i(2)}\lambda^{-1}(a_{i(1)})\otimes a_{i(0)}$

$=\Sigma h_{(2)}\lambda^{-1}(v(h_{(1)})_{(1)})\otimes v(h_{(1)})_{(0)}$ . $\square $

REMARK 1. If the comodule structure of $A$ is trivial then (9) is an algebra
map where $Hom_{k}(H, A)$ has the opposite convolution product. (The bijectivity
of $\lambda$ is not needed in this case.)

Suppose now that $H$ is finite over $k$ . For $a\in A$ and $g\in H^{*}$ define $a^{0},$ $g^{0}$ :
$U\rightarrow U$ by
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a $(h\otimes b)=\Sigma h\lambda^{-1}(a_{(1)})\otimes a_{(0)}b$ ,

$g^{0}(h\otimes b)=g^{0}(h)\otimes b=\Sigma h_{(2)}\langle g, h_{(1)}\rangle\otimes b$ ,

for $h\in H,$ $b\in A$ . It is not difficult to see that $a^{0}$ and $g^{0}$ are H-colinear. Further-
more, $(aa^{\prime})^{0}=a^{0}a^{\prime 0}$ , while $(gg^{\prime})^{0}=g^{\prime 0}g^{0}$ . Note that $g^{0}(h)=gh$ if $H$ is cocom-
mutative.

THEOREM 1.3. Let $H$ be a finitely generated and projective Hopf algebra
over $k,$ $A$ a right H-comodule algebra, and $U=H\otimes A$ with comodule structure
defined by (3). Then

(10) $End_{A}^{H}(U)\# H\rightarrow End_{A}(U)$ , $\phi\otimes h-\phi h$ ,

and

(11) $A\# H^{*}-End_{A}^{H}(U)$ , $a\otimes g-a^{0}\lambda(g)^{0}$ ,

are isomorphisms of k-algebras.

PROOF. That (10) is bijective is a special case of Theorem 2.4 below. It
may be worth, however, to give here a separate proof for the finite case. We
claim that the right H-module $End_{A}(U)$ is a Hopf module satisfying

(12) $End_{A}^{H}(U)=End_{A}(U)^{H}$ .

It suffices to exhibit a corresponding left $H^{*}$-module structure. View $A$ and $U$

as left $H^{*}$-modules in the natural way. Then

$gu=\sum g_{(1)}h\otimes g_{(2)}a$ , for $u=h\otimes a,$ $g\in H^{*}$ .

Now $End_{A}(U)$ becomes a left $H^{*}$-module by the formula (7), (with $h$ replaced
by $g\in H^{*}$ ). That $ g\psi$ is A-linear follows in the present case from $g(ua)=$

$\sum(g_{(1)}u)(g_{(2)}a),$ $u\in U,$ $a\in A$ . Furthermore, we have $g(hu)=\sum(g_{(1)}h)(g_{(2)}u)$

for $h\in H,$ $u\in U$ , and this implies $g(\psi h)=\Sigma(g_{(1)}\psi)(g_{(2)}h)$ , as is easy to see.
Thus $End_{A}(U)$ is a Hopf H-module. If $\phi\in End_{A}(U)$ is $H^{*}$-linear, then clearly
$ g\phi=\epsilon(g)\phi$ for all $g\in H^{*}$ . Conversely, if the latter holds, then

$g(\phi(u))=\Sigma(g_{(1)}\phi)(g_{(2)}u)=\Sigma\epsilon(g_{(1)})\phi(g_{(2)}u)=\phi(gu)$ ,

so that $\phi$ is $H^{*}$-linear. Hence (12) holds, and (10) is an isomorphism by the
descent theorem for Hopf modules.

The composite of (11) and (9) gives the map

$A\otimes H^{*}-Hom_{k}(H, A)$ , $a\otimes g-(h\rightarrow a\langle\lambda(g), h\rangle)$ .
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This is bijective, since $H$ is finite over $k$ . Hence (11) is an isomorphism by

Lemma 1.2. That (11) is an algebra map follows from

$g^{0}a^{0}=\sum(\lambda^{-I}(g_{(2)})a)^{0}g^{0_{(1)}}$ ,

which may be verified by evaluating on elements $h\otimes 1$ .

2. We assume throughout the following that $H$ is projective over $k$ . As
before, $A$ denotes a right H-comodule algebra. We want to define comodules
$H0M_{A}(M, N)$ which generalize those defined for graded modules.

Fix Hopf A-modules $M$ and $N$. For $\psi\in Hom_{A}(M, N)$ define $\alpha(\psi)\in$

$Hom_{A}(M, N\otimes H)$ by

(13) $\alpha(\psi)(m)=\Sigma\psi(m_{(0)})_{(0)}\otimes\psi(m_{(0)})_{(1)}\lambda(m_{(1)})$ , $m\in M$.
(That $\alpha(\psi)$ is A-linear follows from (5).) Evidently,

(14) $(1\otimes\epsilon)\alpha(\psi)=\psi$ , $\psi\in Hom_{A}(M, N)$ .

LEMMA 2.1. Let $\psi\in Hom_{A}(M, N)$ . Then $\psi$ is H-colinear if and only if
$\alpha(\psi)(m)=\psi(m)\otimes 1$ for all $m\in M$.

PROOF. $\Rightarrow$ : This is obvious. $\Leftarrow$ : We have, by (13) with $m$ replaced
by $m_{(0)}$ ,

$\Sigma\psi(m_{(0)})\otimes m_{(1)}=\Sigma\psi(m_{(0)})_{(0)}\otimes\psi(m_{(0)})_{(1)}\lambda(m_{(1)})m_{(2)}$

$=\sum\psi(m)_{(0)}\otimes\psi(m)_{(1)}$ . $\square $

Define the k-module $H0M_{A}(M, N)$ to consist of all $\psi\in Hom_{A}(M, N)$ for which
there exists an element $\sum\psi_{(0)}\otimes\psi_{(1)}\in Hom_{A}(M, N)\otimes H$ such that

$\alpha(\psi)(m)=\Sigma\psi_{(0)}(m)\otimes\psi_{(1)}$ , $m\in M$ .
Note that, since $H$ is projective, $Hom_{A}(M, N)\otimes H$ may be viewed as a sub-
module of $Hom_{A}(M, N\otimes H)$ , and we may simply write

$\alpha(\psi)=\Sigma\psi_{(0)}\otimes\psi_{(1)}$ , $\psi\in H0M_{A}(M, N)$ .
Clearly, $H0M_{A}(M, N)=Hom_{A}(M, N)$ if $H$ is finite over $k$ .

LEMMA 2.2. Let $\psi\in H0M_{A}(M, N)$ . Then $\alpha(\psi)\in H0M_{A}(M, N)\otimes H$, and
$H0M_{A}(M, N)$ is a right H-comodule. Furthermore, $END_{A}(M)=HOM_{A}(M, M)$

is a right H-comodule algebra.

PROOF. Let $m\in M$ . We have by definition of $\alpha(\psi_{(0)})$ , and by (13) with $m$
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replaced by $m_{(0)}$ ,

$\Sigma\alpha(\psi_{(0)})(m)\otimes\psi_{(1)}=\Sigma\psi_{(0)}(m_{(0)})_{(0)}\otimes\psi_{(0)}(m_{(0)})_{(1)}\lambda(m_{(1)})\otimes\psi_{(1)}$

$=\sum\psi(m_{(0)})_{(0)}\otimes\psi(m_{(0)})_{(1)}\lambda(m_{(2)})\otimes\psi(m_{(0)})_{(2)}\lambda(m_{(1)})$

$=\sum\psi_{(0)}(m)\otimes\psi_{(1)}\otimes\psi_{(2)}$ .
Thus $(\alpha\otimes 1)\alpha(\psi)=(1\otimes\delta)\alpha(\psi)$ for $\delta$ the comultiplication of $H$. This also implies
that $\alpha(\psi)$ lies in $H0M_{A}(M, N)\otimes H$. For, $H0M_{A}(M, N)$ is the pull back for $a$

and the canonical map $\kappa;Hom_{A}(M, N)\otimes H-\succ Hom_{A}(M, N\otimes H)$ , and $(-)\otimes H$ pre-
serves finite limits since $H$ is flat. Thus $H0M_{A}(M, N)\otimes H$ is the pull back for
$\alpha\otimes id_{H}$ and $\kappa\otimes id_{H}$ , and $(\alpha\otimes 1)\alpha(\psi)\in{\rm Im}(\kappa\otimes 1)$ implies $\alpha(\psi)\in H0M_{A}(M, N)\otimes H$.

Next let $\phi,$ $\psi\in END_{A}(M)$ . The definition of $\Sigma\psi_{(0)}\otimes\psi_{(1)}$ implies

$\Sigma\psi(m_{(0)})\otimes\lambda(m_{(1)})=\Sigma\psi_{(0)}(m)_{(0)}\otimes\lambda(\psi_{(0)}(m)_{(1)})\psi_{(1)}$ .

From this we conclude

$\alpha(\phi\psi)(m)=\Sigma(\phi\psi(m_{(0)}))_{(0)}\otimes(\phi\psi(m_{(0)}))_{(1)}\lambda(m_{(1)})$

$=\Sigma\phi(\psi_{(0)}(m)_{(0)})_{(0)}\otimes\phi(\psi_{(0)}(m)_{(0)})_{(1)}\lambda(\psi_{(0)}(m)_{(1)})\psi_{(1)}$

$=\Sigma\phi_{(0)}\psi_{(0)}(m)\otimes\phi_{(1)}\psi_{(1)}$ .

Hence $\alpha(\phi\psi)=\alpha(\phi)\alpha(\psi)$ , and this completes the proof.

EXAMPLE. Let $H=k[G]$ for a group $G$ . Hence $A$ is a G-graded k-algebra,
and $M=\bigoplus_{\sigma}M_{\sigma},$ $N=\bigoplus_{\sigma}N_{\sigma}$ are G-graded right A-modules. Let $\psi\in Hom_{A}(M, N)$ and

$m_{\sigma}\in M_{\sigma}$ . Then

$\alpha(\psi)(m_{\sigma})=\sum_{\rho}\psi(m_{\sigma})_{\rho}\otimes\rho\sigma^{-1}=\sum_{\tau}\psi(m_{\sigma})_{\tau\sigma}\otimes\tau$

This shows $\psi\in H0M_{A}(M, N)$ iff $\psi=\sum_{\tau}\psi_{\tau}\in\bigoplus_{\tau}H_{\tau}$ (see (14)) with

$H_{\tau}=\{\psi_{\tau}\in Hom_{A}(M, N)|\psi_{\tau}(M_{\sigma})\subset N_{\tau\sigma}, \sigma\in G\}$ ,

and in this case $\alpha(\psi)=\sum_{\tau}\psi_{\tau}\otimes\tau$ . Hence our definition of $HOM_{A}(M, N)$ coincides

for $H=k[G]$ with the usual one for graded modules.

Suppose in the following that $M$ is also a left H-module satisfying (6) and
(8); hence $Hom_{A}(M, N)$ is a right H-module with $(\psi h)(m)=\psi(hm)$ .

LEMMA 2.3. Let $\psi\in H0M_{A}(M, N)$ and $h\in H$. Then

$\alpha(\psi h)=\Sigma\psi_{(0)}h_{(1)}\otimes\psi_{(1)}h_{(2)}$ .
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In particular, $\psi h\in H0M_{A}(M, N)$ .

PROOF. From (8) (with $h$ replaced by $h_{(1)}$ ) one obtains

$\Sigma(h_{(1)}m)_{(0)}\otimes\lambda((h_{(1)}m)_{(1)})h_{(2)}=\Sigma hm_{(0)}\otimes\lambda(m_{(1)})$ .
This implies

$\alpha(\psi h)(m)=\Sigma\psi(hm_{(0)})_{(0)}\otimes\psi(hm_{(0)})_{(1)}\lambda(m_{(1)})$

$=\Sigma\psi((h_{(1)}m)_{(0)})_{(0)}\otimes\psi((h_{(1)}m)_{(0)})_{(1)}\lambda((h_{(1)}m)_{(1)})h_{(2)}$

$=\Sigma\psi_{(0)}(h_{(1)}m)\otimes\psi_{(1)}h_{(2)}$ . $\square $

THEOREM 2.4. Let $H$ be a projective Hopf k-algebra, $A$ a right H-comodule
algebra, and $M,$ $N$ Hopf A-modules. Suppose $M$ is also a left H-module satisfy-
ing (6) and (8). Then

$Hom_{A}^{H}(M, N)\otimes H-H0M_{A}(M, N)$ , $\phi\otimes h-\phi h$ ,

is an isomorphism of right H-comodules, where $Hom_{A}^{H}(M, N)$ denotes the k-module
of A-linear and H-colinear maps $M\rightarrow N$. Furthermore,

$End_{A}^{H}(M)\# H\rightarrow END_{A}(M)$ , $\phi\otimes h-\geq\phi h$ ,

is an isomorphism of right H-comodule algebras.

PROOF. $HOM_{A}(1lf, N)$ is a Hopf H-module by Lemma 2.3, and

$Hom_{A}^{H}(M, N)=H0M_{A}(M, N)^{H}$

holds by Lemma 2.1. Hence the result follows from the descent theorem for
Hopf H-modules.

REMARK 2. Assume that $H$ is finite over $k$ . Then $H0M_{A}(M, N)=$

$Hom_{A}(M, N)$ , and the corresponding $H^{*}$-module structure is

$(g\psi)(m)=\Sigma g_{(1)}\psi(\lambda(g_{(2)})m)$

for $g\in H^{*}$ and $\psi\in Hom_{A}(M, N)$ . In this case theorem 2.4 may be proved entirely
in the same way as the bijectivity of (10).

Clearly, Theorem 2.4 applies to $M=U=H\otimes A$ . More generally, one may
consider $U(M)=H\otimes M$, for any Hopf A-module $M$, with comodule structure
$h\otimes m\vdash\rightarrow\Sigma h_{(1)}\otimes m_{(0)}\otimes h_{(2)}m_{(1)}$ . Then

$End_{A}^{H}(U(M))\# H\cong END_{A}(U(M))$ .
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This shows for $H=k[G]$ that [2], Thm. 3.6 (1) holds without any finiteness
conditions on $G$ or $M$.

Acknowledgement. I am grateful to the referee who suggested some im-
provements on the first version of the paper.
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