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SMASH PRODUCTS AND COMODULES OF LINEAR MAPS

By

K. -H. ULBRICH*

Let G be a finite group and A be a G-graded algebra over a commutative
ring k. Consider the G-graded right A-module U= Ge% A(g) where A(o)=A has

grading shifted by ¢. Nistdsescu and Rodino proved that
(1) Endy-,-(U)*G=End,U), and A#k[G]*=End,-,.([U)

where End,-,-(U) denotes the algebra of graded A-endomorphisms of U, and *
means crossed product, [5], Theorems 1.2 and 1.3. The proofs are given by
some explicit matrix computations relying on a graded isomorphism End(U)=
M, (A), n=|G|, [5], Prop. 1.1. The first isomorphism of (1) has recently been
generalized to

@) Endy-,,(U*G=END,U), [2], Thm. 3.3,

for not necessarily finite groups G. The purpose of this paper is to give Hopf
algebraic versions of (1) and (2). Write H=k[G]. First note that the above
crossed products are also smash products. Furthermore, a G-graded k-module
is the same as an H-comodule, and the A-isomorphism

U_~, HRA, a(o)—> d7'Qalo), a(o)= A(o),
is H-colinear where H®A has coaction a: HQA—-HRARH defined by
3) a(h®a)=>3h1,QawQhwyaw , heH, asA.

Now let H be any Hopf algebra over %2 and set U=HQA for a right H-comodule
algebra A. Let End¥(U) be the algebra of right A-linear maps U—U which
are colinear with respect to (3). We shall generalize (1), for H finite over &, to

4) Endf(U)#H=End,U) and A#H*=End4¥U).

It was pointed out in that (1) implies the duality theorems of Cohen
and Montgomery [4]. Correspondingly, (4) may be viewed as an improvement
of the duality result for finite Hopf algebras [3], Cor. 2.7. Note that the second
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isomorphism of (4) gives a natural interpretation for an arbitrary smash pro-
duct by a finite Hopf algebra.

Comodules of the form HOM4(M, N) seem not have been considered yet for
Hopf algebras others than 42[G]. We introduce them here for arbitrary, pro-
jective Hopf algebras in section 2. We can then generalize (2) (and the first
isomorphism of (4)) to

Endf(U)# H=END,U)

for projective Hopf algebras. This turns out to be a special case of Theorem
2.4 which also includes [2], Thm. 3.6 (1), and shows that the finiteness condi-
tions assumed there are not necessary.

Throughout the following, H denotes a Hopf algebra over a commutative
ring k, and A a right H-comodule algebra. Recall that a Hopf A-module is a
right A-module M supplied with a right H-comodule structure a: M—-MQH
such that

5) ama)=3mwao@mauraa , meM, as A.

In case H=A, the descent theorem for Hopf H-modules says that the H-(co)-
linear map
MEQH — M, mQh — mh ,
is an isomorphism ([1], Thm. 3.1.8). Here M¥={meM|a(m)=m®1}. If H is
finite over k, a right H-module M is a Hopf H-module iff M is a left H*-module
satisfying
gmh)=3(gc>mXgwh), gEH* meM, heH.

As usual, H*=Hom.(H, k) denotes the dual Hopf algebra (for H finite over k),
and H is viewed as a left H*-module by gh=3h»<g, hy. For a left H-
module algebra B the smash product algebra B#H is BQH with multiplication
defined by

(b'QhNbRR )=2b"(h,b)RQh sk’

for b, b’ B, h, h"=H. The antipode and counit of a Hopf algebra willjbe de-
noted by A and ¢, respectively. We write @=;.

1. Let M be a left H- and right A-module such that
(6) (hm)a=h(ma), heH, meM, as= A.
For h=H and ¢<End (M) define h¢=End (M) by
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(7 (hp)m)=23 h > Pp(A(heay)m), meM.
Then End(M) is a left H-module algebra [6], and
End,(M)#H — End, (M), ORh —> Jh ,

is 2 homomorphism of k-algebras, where (¢h)(m)=¢(hm). Assume that M has
also a right H-comodule structure a: M—MQH satisfying

8 alhm)=23 hymop@Qh@me , heH, meM.
Let End§(M) be the k-algebra of A-linear and H-colinear maps M—M.

LEMMA 1.1. End%Z (M) is an H-submodule algebra of End (M).
The easy proof is left to the reader.

In the following we consider M=HXA=U with H-comodule structure de-

fined by (3); U is naturally a left H- and right A-module satisfying (5), (6)
and (8).

LEMMA 1.2. Suppose the antipode A of H is bijective. Then

9 x: EndZ(U) —> Hom,(H, 4),  x(¢)h)=(eQLp(hRI1),

is an isomorphism of k-modules.
PrRoOOF. Define Hom,(H, A)—End¥U), v—#, by

HhQa)=Z h A W(hw)w)R@u(ho)ma ,

for h&H, acA. 1t is easy to see that # is H-colinear. Clearly y(¥)=v. Let
¢<End4¥(U), heH, and write ¢(hQR1)=33h;Qa;. The colinearity of ¢ implies
for v=y(¢)

2ai0@hia:>=2v(h1n)Rh e .
Therefore

¢(h®1):2 ;A7 ()R a5 0
=23 h @A W(hw)w)Q@V(Aw)e . O

REMARK 1. If the comodule structure of A is trivial then (9) is an algebra

map where Hom,(H, A) has the opposite convolution product. (The bijectivity
of A4 is not needed in this case.)

Suppose now that H is finite over 2. For a=A and g=H* define a°, g°:
U—-U by
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a’(h@b)y=3h2 ' (aw)Pawb,

g (hQRb)=g(h)YRQb=2 h<g, ha»>)&®b,
for heH, be A. It is not difficult to see that a® and g° are H-colinear. Further-
more, (aa’)’=a’a’’, while (gg’)’=g’°g°. Note that g°%(h)=gh if H is cocom-
mutative.

THEOREM 1.3. Let H be a finitely generated and projective Hopf algebra
over k, A a right H-comodule algebra, and U=HQA with comodule structure

defined by (3). Then

(10) End¥(U)#H —> End,U), ORQh ——> oh ,
and
(11) A#H* — End§(U), aQg+—>a’A(g),

are isomorphisms of k-algebras.

PRrROOF. That (10) is bijective is a special case of Theorem 2.4 below. It
may be worth, however, to give here a separate proof for the finite case. We
claim that the right H-module End(U) is a Hopf module satisfying

(12) End#4(U)=End (U)® .
It suffices to exhibit a corresponding left H*-module structure. View A and U
as left H*.modules in the natural way. Then

gu=2gwh®gwa, for u=hQa, gEH*

Now End,(U) becomes a left H*-module by the formula (7), (with A replaced
by g€ H*). That g¢ is A-linear follows in the present case from g(ua)=
S{gou)gwa), uslU, acA. Furthermore, we have ghu)=>(gwhXgwu)
for h€H, ucU, and this implies g(¢h)=3(gw¢Xgwh), as is easy to see.
Thus End,(U) is a Hopf H-module. If ¢<End,(U) is H*-linear, then clearly
gop=ce(g)¢ for all g H*. Conversely, if the latter holds, then

glo(u)=33 EwP)gwu)=23 €(g(1))¢(g<2>u)=¢(gu) s

so that ¢ is H*linear. Hence (12) holds, and (10) is an isomorphism by the
descent theorem for Hopf modules.

The composite of and (9) gives the map

AQH* —> Hom,(H, A), a®g+—> (h—alA(g), h)).
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This is bijective, since H is finite over k. Hence [(11) is an isomorphism by
Lemma 1.2. That is an algebra map follows from

g'a'=2(A"(gw)a) g%,

which may be verified by evaluating on elements AX1.

2. We assume throughout the following that H is projective over k. As
before, A denotes a right H-comodule algebra. We want to define comodules
HOM/(M, N) which generalize those defined for graded modules.

Fix Hopf A-modules M and N. For ¢&Homu(M, N) define alp)=
Hom (M, NQH) by

(13) a(¢’)(m):2Sb(m(o))(o)@Sl’(m(o))(l)z(m(1)) ’ me M.
(That a(¢) is A-linear follows from (5).) Evidently,
(14) (1Re)alp)=¢, ¢HomuM, N).

LEMMA 2.1. Let ¢=Homu(M, N). Then ¢ is H-colinear if and only if
a(P)m)=¢(m)R1 for all meM.

PrOOF. “=”: This is obvious. “&”: We have, by (13) with m replaced
by Mcod,

22P(m ) QM= 2¢(m(o))co)®¢'(m<o))(1)2(7’1(1))771(2)

=3¢(M) > Q@P(m)cry . O

Define the k-module HOM (M, N) to consist of all ¢=Hom (M, N) for which
there exists an element X ¢ Q¢ EHom (M, N)RH such that

(P m)=2¢w(mSQpw, meEM.

Note that, since H is projective, Hom M, N)YQH may be viewed as a sub-
module of Hom (M, NQH), and we may simply write

aAP)=ZdwQ@Pw,  PSHOMLM, N).
Clearly, HOM4(M, N)=Hom M, N) if H is finite over k.

LEMMA 2.2. Let ¢=HOMu(M, N). Then a(¢p)=HOM4M, N)RH, and
HOM4(M, N) is a right H-comodule. Furthermore, END(M)=HOM, M, M)
is a right H-comodule algebra.

PrOOF. Let meM. We have by definition of a(¢»), and by (13) with m
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replaced by mip,

> a(¢co>)(7n>®¢c1) ZZ(/’(o)(m(o))(o)@‘/’(o)(m(o))(1)2(”1(1))@9[’(1)
=2Sb(m(o))(o)@ﬁb(m(o))mx(mcz))®¢(m<o))cz>7~(mm)
=21¢w(m)QP 1 R¢P e .

Thus (a@®1)a(¢)=(1Qd)a(¢p) for ¢ the comultiplication of H. This also implies

that a(¢) lies in HOM (M, N)YQH. For, HOM,(M, N) is the pull back for a

and the canonical map «: Hom,(M, N)YQH—Hom M, NQH), and (—)XH pre-

serves finite limits since H is flat. Thus HOM (M, N)RH is the pull back for

a®id g and kQid 4, and (a@Da(Pp)=Im (kQ1) implies a(p)cHOM(M, N)YQH.
Next let ¢, =END,(M). The definition of 3¢ y@¢> implies

Zsb(m(o))@l(mu)):2Sb(o)(m)(o)@Z(Sb(o)(m)(1))911(1) .
From this we conclude

a(¢¢)(m)= Z(¢¢(m<o)))(o)®(¢¢'(m<o)))<x>2(m(1>)
=23 ¢(¢(o)<m)(o))(o)®¢(¢<o)<m)<o))(1)1(1/’(0)(771)(1))917(1)
=X ¢<o)¢‘(o>(m)®¢m¢’<1) .

Hence a(g¢¢)=a(p)a(¢), and this completes the proof.

EXAMPLE. Let H=Fk[G] for a group G. Hence A is a G-graded k-algebra,
and M:EPMU, N=@N, are G-graded right A-modules. Let ¢ =Hom, (M, N) and

ms=M,. Then
a(Sb)(ma): %Sb(ma)p@pa_l: erb(mo)zv@f )

This shows ¢cHOML(M, N) iff ¢=P.=D H. (see (14)) with
H.={¢.cHom,(M, N)|¢p{M;)TN:s, <G},

and in this case a(¢)=X¢.Qr. Hence our definition of HOM,(M, N) coincides

for H=k[G] with the usual one for graded modules.

Suppose in the following that M is also a left H-module satisfying (6) and
(8); hence Hom,(M, N) is a right H-module with (Qh)Ym)=¢(hm).

LEMMA 2.3. Let cHOM4(M, N) and hH. Then

a(gbh)"—— 2¢(0)h(1)®¢(1)h(2) .
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In particular, ph=HOM(M, N).

PrROOF. From (8) (with & replaced by h,) one obtains
22 (h>m)@A(hcym))h =2 hmw@A(m) .
This implies
a(Ph)m)=ZP(hm ) @P(hMm o)A 1)
= P((h 1>M)0>) oy QPR 13m)03) > A (A cym) > o
=2w(hcom)QPwhey . O
THEOREM 2.4. Let H be a projective Hopf k-algebra, A a right H-comodule

algebra, and M, N Hopf A-modules. Suppose M is also a left H-module satisfy-
ing (6) and (8). Then

Hom#(M, NYQH —> HOMA(M, N),  ¢Qh+—> ¢h,

is an isomorphism of right H-comodules, where Hom¥§ (M, N) denotes the k-module
of A-linear and H-colinear maps M—N. Furthermore,

End#(M)#H —> END«(M),  ¢Q@h—> ¢h,

is an isomorphism of right H-comodule algebras.

Proor. HOM,(M, N) is a Hopf H-module by Lemma 2.3, and

Hom#Z (M, N)=HOMM, N)¥
holds by Lemma 2.1. Hence the result follows from the descent theorem for

Hopf H-modules.

REMARK 2. Assume that H is finite over k. Then HOMyM, N)=
Hom,(M, N), and the corresponding H*-module structure is
(gPXm)=23 g c>(A(g c2>)m)

for g& H* and ¢=Hom,(M, N). In this case theorem 2.4 may be proved entirely
in the same way as the bijectivity of (10).

Clearly, Theorem 2.4 applies to M=U=HXA. More generally, one may
consider U(M)=HXM, for any Hopf A-module M, with comodule structure
h@m— h>@moy@hymey. Then

End4(U(M))#H = END(U(M)).
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This shows for H=Fk[G] that [2], Thm. 3.6 (1) holds without any finiteness
conditions on G or M.

Acknowledgement. I am grateful to the referee who suggested some im-

provements on the first version of the paper.
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