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ON THE NEUMANN PROBLEM FOR SOME LINEAR
HYPERBOLIC SYSTEMS OF 2ND ORDER WITH
COEFFICIENTS IN SOBOLEYV SPACES
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Introduction.

Let 2 be a domain in an n-dimensional Euclidean space R™, its boundary I’
being a C* and compact hypersurface. Throughout the present paper, we assume
that n=2®. Let x=(x,, ---, x,) denote points of R" and ¢ a time variable,
For differentiations we use the symbols: d,=0,=0/dt and 0;,=d/dx; (=1, -+, n).
In this paper, we consider the following mixed problem:

POLa)1=83a() —0( A8, a(t)+ A1) a®)=F o®)  in (0, T)XL2,
(N) QL) 1=y, A¥(1)d,i(t)+ B (1)d,a(t)+ B°®)d.at)=F r(t) on (0, T)XT,
12(0)—_—'?20 , atﬂ(O)_—'ﬂl in .Q,

where T is a positive constant and @#="(u,, ---, un) (=the row vector of length
m and ‘M means the transposed vector (resp. matrix) of the vector (resp. matrix)
M). Here and hereafter, the summation convention is understood such as the
sub and superscripts 7, ¢/, 7, j° (resp. p, ¢) take all values 1 to n (resp. 1 to
n—1). For any vector valued function #="%u,, ---, un), wWe put 05024 ="(070%u;
e, 090%un). The yv;=v(x) are real-valued functions in CP(R™) such that the
vector y(x)=(v,(x), -, va(x)) represents the unit outer normal to I" at x&[r.
In the present paper, functions are assumed to be real-valued, unless ortherwise
specified. Below, I will always refer to the closed interval containing [0, T]
strictly, say, I=[—rz, T+7] (>0). And also, K will always refer to the fixed
integer =[n/2]4+2, which represents the order of regularitiy of solutions and
coefficients of the operators P(f) and Q). The A@#)=A'(, x) and B'(t)=
B'(t, x) ({=0,1, ---, n;i=1, ---, n) are mXm matrices of functions satisfying the

(1) When n=1, excepting the notations, we can treat the same problem without essential
change. However, for the notational simplicity, we shall only treat the case where
nz=2, below.
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following five assumptions,

(A.1); The A% are decomposed as follows: Ai'=A#+ AY¥ where Al< XX Q)

and A¥eYX-2Y[, 2); the B'eYX-Lvx[ I,
Here, we should explain the notations for some function spaces used in
the present paper. Let B%(G) be the set of all v&C¥(G) such that v and all
derivatives of v up to K are everywhere bounded in G. For any time interval
J and Hilbert space X, CY(J, X), L=(J, X) and Lip (J, X) denote the sets of all
X-valued functions which are /-times continuously differentiable in J, measurable
and bounded everywhere in J and Lipschitz continuous in J, in the sense of the
strong topology of X, respectively. Since X is a Hilbert space, if u(t)sLip(J, X),
then the strong derivative of u(f) exists almost everywhere. Usually, L~-func-
tions mean the measurable and almost everywhere bounded ones. However, to
make may proofs as short as possible the functions are assumed to be bounded
everywhere in the definition of L=-functions. Let H7(G) denote the usual Sobolev
space over G of order r& R defined exactly in the section of Notations below.
Put

Xtr(J, G)= kf;\oCk(], HY=%G); Y7 (J, G)=L=(], H"(G));
YHrr(], G)={usX""(G)|du@®)s L=(J, H** - (G)NLip (J, H*"~4G))
for 0<7<1).

For any function space S, we denote a product space SX --- XS by also S.
The second and third assumptions are the following.

(A.2); ‘tA"®=A" and ‘A"=A’" on IxJ;
‘B°=B° and ‘B*+B‘=0 on IXI (i, j=1, ---, n).
(A.3);.5 There exist positive constants d, and J, such that
(AY(8)0;9, 0;0)+< B’ ()00, 9>=d/|0]}—0. 5]}
for any te] and 9= H¥Q).

Here and hereafter, we use the following notations:
(u, V)——-Sgd(x)-z?(x)dx; <a, 5>=Srﬂ(x)-z7(x)df; lali= X2 (05a, 0%)
la|sL

where “-” denotes the usual innerproduct of R™ and dI” is the surface element
of I'.
The fourth and final assumptions are the following.
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(A.4); yi(x)Bt, x)=0 for all (¢, x)eIX[",
(A.5); (—vi(x)A™@, x)+2Bt, x)n-n<0 for all (¢, x)eIXI and n=R™.

It is essential that all the assumptions are valid on whole I containing
[0, T] strictly. Because, in proving our main results, we use the results ob-
tained by Shibata [9]. In that proof, it was used essentially that the coefficients
are defined on some closed interval I containing [0, T] strictly and the assump-
tions (A.2)-(A.5) are valid on whole I with respect to {. Below, if no sub-
scripts occur on the numbers of assumptions, (A.3) and (A.N) are understood to
be (A.3);.; and (A.N); (N=1, 2, 4 and 5), respectively. In fact, excepting Theo-
rems 2.1, 2.2 and 5.3 and [Lemma 2.3, we always state that (A.1)-(A.5) are
valid.

The reason why we must consider (N) under the assumptions (A.1)-(A.5),
especially (A.l), is the following: When we solve the Neumann problem for
the nonlinear hyperbolic system of 2nd order, as the linearized problem, we
meet the present problem. And, the key of solving the nonlinear problem lies
in proving the unique existence theorem of solutions to (N) and sharp energy
inequalities stated in Theorems [.2 and .3 of §1 below. Of course, such linear
systems have their own interests. And also, in proving main results, we need
some new technique which can be applied to treating many other problems, for
example, Schrédinger equations, heat equations and so on.

T. Kato treated the same linear problem in his abstract frame work
and applied his linear theory to solving the Neumann problem for nonlinear
hyperbolic systems of 2nd order, which was first done by Shibata [8] and Shi-
bata and Nakamura [10]. Especially, the result due to Kato [4] attained some
improvements of that due to and regarding the minimum order of the
Sobolev space in the solutions to the nonlinear problem exist. But, Kato [4, § 14]
treated only the case where nonlinear functions do not contain ¢t and 0.%. But
using the results on the linear theory in the present paper, Shibata and Kikuchi
got the same improvements as in Kato [4] in the case where nonlinear
functions do contain ¢ and 9,i. Our proof is elementary and completely different
from Kato’s one. The advantage of our approach is that the assumptions:
9L-17 o()Lip ([0, T), H-X(R)) and 8417 r()=Lip([0, T), H-'/*(I")) are not needed,
while it seems that these assumptions are essential in the Kato’s approach (cf.
below and [4, Theorem 12.4]); that some hyperbolic-parabolic
coupled systems of 2nd order containing the thermoelastodynamic as an im-
portant physical example can be treated in the same manner as in the present
paper.
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In solving the nonlinear problem, if we know the unique existence theorem
to (N) under the assumption (A.l), especially, the coefficients are Lipschits con-
tinuous (not in C?') in ¢, it is very easy to show the regularity of solutions to
the nonlinear problem. One can find this approach since Kato’s Cortona Lec-
ture [3].

Our idea of proving the existence of a solution #< X?° to (N) is as follows.
First, approximating the coefficients of the operators P(¢) and Q(t) by smooth
functions and using the existence theorem in the case of the operators with
smooth coefficients, which was obtained by Shibata [9], we can prove the ex-
istence of a solution # in Y*° Our main task is to prove that #e X?*°, i.e.,
the continuity of second derivatives of # in . To prove this, we use the idea
due to lkawa (originally goes back to Mizohata’s work on the Dirichlet
problem in 1966). Namely, we mollify # with respect to ¢ by Friedrichs’ method
and prove that the sequence of mollified functions converges to @ uniformly in
t. The key of proving the convergence lies in obtaining the right continuity of
the second derivatives of # at t=0. By employing the arguments due to Majda
[5, pp. 44], we can get this right continuity.

Our idea of proving the further regularities of solutions in X2° to (N) is
the following. Differentiate (N) / times (0<I/<K—2) in ¢ formally and consider
the resulting equations as the K—1 systems: 8} {P(t)[#(t)} =0} f o(t) with boundary
conditions: 8{Q()[a(t)])=0if r(t) (=0, 1, ---, K—2) for unknowns &, d,i, -,
0F?a. The system: 9F-*{P()[a(t)]}=0K-2fo(t) with boundary condition:
0K {Q)[@(t)]}=8K-*f r(t) can be regarded as a hyperbolic system for unknown
0¥ %4(t), and other equations can be regarded as an elliptic system for unknowns
@, -, 0F*u. These systems forms a “hyperbolic-elliptic” system. With the
help of the existence theorems obtained in §§ 2.3 and 5, we can solve this system
by the method of successive approximations. And then, we can prove that
#es X¥-° It is first for Shibata and Shibata-Nakamura to treat such a
“hyperbolic-elliptic” system. Kato also treated this system in his abstract frame
work.

Notations.

Now, we shall explain our basic notations. To denote differentiations of
higher order, we use the symbols:

D*D¥4=(0i0%4 ; j+|a| < L+M, j<L); DEDa=Da; D'D¥a=D"4i .

For any rR, we put
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llvllﬁn,fzgnnlﬁ(5)12(1+]EIZ)’dE; HY(R")={veS"|[v]gn, » <oo}

P

where 9 is the Fourier transform of v. For any domain GCR", we put

H (G)={u|u(x)=U(x) in G for some U=cH"(R")};

lulle,»=inf {|Ullgn.»|u=U on G}.
As is well-known, if » is a non-negative integer and G=R", R? or £, then
lvlle. » is equivalent to the usual norm:

> SGIG%v(tzdx,

la|sr
where R?={x=(x4, -, x2)|x.,>0}. For the notational simplicity, we use the
abbreviation: ||v],=|lv]¢.,. For any integer (=0 and ¢<(0, 1), put 8"*9(G)=
{vE BUGC)| V] w,140.6<0}, Where

[V]w1,6= 2 sup |0%v(x)];
rxeG

laisl

0] is0.6=10]wr 6+ 2 sup{lozv(x)—05v(N)| 2~y |x, yEG, x#y}.

Especially, we write [|*]lw,i40=|"lw 140,02 80d |*|e 140, 1=]" w140, 1x0 (00 <1).

Since I' is a C* and compact hypersurface, we may assume that there exist
finite number of open sets ©; in R", @, in R"*"!, p,=C>(w;) and integers d({)&
[1, n] (=1, ---, N,) such that O,N['={xsq,=p:(x") for x'cw;} and O,N2=
{xaay>pix’) for x'=w,} where x'=(x,, -+, Xaar-1, Xawr+1, ***» Xa). Letus de-
fine @,,.(x), k=1, ---, n, [=1, ---, N, as follows: @, (x)=x, for 1Zk<d()—1;
D1:(x)=x44, for d)Sk<n—1; @1(x)=x4a>—pi(x’). Then, we may assume
that @,(x)=(D(x), ---, Dia(x)) are C=-diffeomorphisms of ©@; onto Q(o;,)={y=
(Y1, =, Y)ER™| |y =¥y, =+, Ya-0] <01, |¥a] <o} such that @,(0,N2)=
Q(o)={y€Q(e))|y,>0} and &,(0.N[)={y=Q(0:)|y.=0}. There will be no
confusion as to whether Q(-) denotes the boundary operator or the set defined
just now, because this will always be clear from the context. Note that the
Jacobian of the change of variables: y=@,(x) is equal to 1, i.e., dx=dy. Let
¥, be the inverse map of the @,. Let @, and ¢; (=0, 1, ---, N,) be functions
in C3(R™) having the following properties:

(No. 1) supp ¢oCsupp ¢4 82 ; supp ¢, Csupp ¢;C0O; for [=1, ---, N,;

Ny 0 —
kg(]gﬁk(x)z:l and :’;q};(x):l on 2.

Put
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Ng
<(v>)3=k2=}‘ lvellgn-1,»  where vy=vT (¥’, 0))@: T r(y’, 0)).
Note that there exists a constant C >0 such that
coms| Juwrarscen,

and that each H"(I') is a Hilbert space equipped with norm: {-»,. For any
functions v(x) and w(t, x) defined on I’ and IXI', we put

(<‘l)>>°° 40— 2 lvk loo 1+0.Q4Cap) H <w>oo l+0,1— 2 |wk |°° 140, IxQuCop)

where vi=v(T +(3’, )T (3, 0)) and wr=w(t, T+(y’, 0PT (y’, 0)).
Now, let us define the norms of X%-"(J, G) and Y "(J, G). Put

lvlo,r.s.a=sup [[v)le.r;
tedJ

for L=1.

-
1012 s 7.6=100.Lar.s. 6+ 2 |0%v(t)—0%v(s)lle. L+r-1-2
=0 utse.l |t—s|

Let us use |-|z r.s.¢ as the norms of both X% 7(J, G) and Y% "(J, G). If ve
Y. 7(J, G), from the definition of the derivatives, we have

(No. 2.2) |lo%wWle.z+r-2=|v|1.r,s.¢ for almost all t=J and 1<k<L.

If veXX7(J, G), obviously we have
L

(No. 2.b) vz r,0.6= 2 sup |0fv@)lle.L+r-% -
k=0 teJ

Put |v]|z.r.0=|v|z,+.s.¢ and <v>; ,.s=|v|z.+.s.r. Let us use the same notations
to denote various norms of vector or matrix valued functions.
For the operators P(t) and Q(t) we use the following notations:

(No. 3.2) [P(M]ez=3] 3} 3 IBALWDmon

l i=1 k=

o

(No. 3.6) [POIQWIs.za=33 T { 3 10844l ew-2+@BOVzsu-s-aa}.

1 k=0

Let M. (K) and Mg(K) be constants such that

(No. 3.c) jz | A | o . 1 SMo(K);

i, j=1

(No. 3.d) 2 { 2 lAY | ko1 1, 1 H<BY k12 1} SMs(K) .

We use the same letter C to denote different constants depending on the same
set of arguments. C=C(---) denotes a constant depending essentially on the
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Now, let us prepare some notations to define the first energy norm of (N).

Put
a}za/ayj, ¢z(y)=¢z(?lfz(y>), Yﬁ'z(}’)=(a¢zi/axj)(wz(y)),

Ji(y)= {EY (7, 07}
Note that
(No. 4) dI'=Ji(y")dy"; vi(x)==Y2(y’, 0/ ] (")
for x=V,(y’, 0)eo,NI". Since
(No. 5) Bi(t, T\(y’, 0)Y (y’, 0)=0
as follows from (A.4) and (No. 4), we can write

{Bi(t)o;i, v

S i) B¢, Tu(y", ONY 3(y’, 00,4 () 9T (9NN i(y")dy

If we put
(No. 6) QF(, y’)=Bj(t Ty, Y2’ OJ(y"), p=1, -, n—1;

No.7) 3,3, =3 JEONQIE, 00T -0 ()
QP 05T I GV}

No. 8 ctt, &, 0)= 3 ([OH@HOIQNE, YD HIT ) 5T ()
(@91 QPE, Y05 T () 3 (Y)Id

then by integration by parts with respect to y, (p=1, ---, n—1), we have

(No. 9) <B/(t)a;i, v)=B(t, @, )+C(E, i, v) for any a=H*Q) and sH Q).

By the assumption: *B/+B7/=0 on IxI', we see that
(No. 10) B(t, @, 0)=93(, 7, @).

Furthermore, we have

(No. 11) | 8(t, @, 9)| =CMs(K)lal:ld].;

(No. 12) |c(t, @, D) SCMs(K)llal ]9 lle

for all tel. In fact, since (n—1)/2<K—(3/2) and the dimension of I" is n—1,

we have

(No. 13.2) {A)w,0=C{AVk-rny for any AeHX-CI"(["),
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By (No. 13.a) and (A.l) we see that (BY(#))e1<CMs(K) for j=1, ---, n and
tel. Noting this and applying Schwarz’s inequality to (No. 7) and (No. 8), we
have (No. 11) and (No. 12). For the further references, we give the following
inequality :

(No. 13.b) ||Allw,o<C|lAl|g-, for any AcH¥-}(Q2);

This follows from the assumption: K=[n/2]+2 and Sobolev’s imbedding Theo-
rem, too. Put

(No. 14) B;[t, @, 31=(AY(t)0,i, 0:9)+ B¢, @, D)+C(t, 4, D)+ A(#, D).
In view of (No. 11), (No. 12) and (No. 13.b), we have
(No. 15) |B;[t, @, #]| S[C{MSK)+Ms(K)}+ (A1 1llal,ldl,,

which implies that B; is a continuous bilinear form on H(Q)XH'(£). Since
H?*(2) is dense in HY(R), by (No. 9) and (A.3) we have

(No. 16) B,[t, @, a]=0,||#l} provided that 4=0,.

Furthermore, since |C(¢, @, @) <(0,/2)| |+ {(CMs(K))*/20,}|%||3 as follows from
(No. 12), by (No. 15) and (No. 16) we have

(No. 17) @/l ali=llalf ;<c.lali for any a=H'(2) and t<l,

where ¢,=C(M«(K), Ms(K), 8,);

(No. 18) |l#llf,c:=Bs,[t, @&, a]—C(t, 4, @);

(No. 19) 80=0,+(CMs(K))*/20, .

In view of (A.2), (No. 10) and (No. 17), H'(£) is a Hilbert space equipped with
norm: [|-[l;,. and the norms ||-||, and [[-]l... are equivalent for any ¢t<I. Since

(BI(t)— B(8))e, 0= C{BI()— BN k- s>y SCMs(K) |t =51 ;
JA¥@)— A¥(S)]|w, 0= CI AY(O)— AY (Sl k-1 S CMs(K) |t —s]|
as follows from (No. 3) and (No. 13), and since
AL (#)— AZ($)]|w. 0 = CMAK) |t —s]|

as follows from the mean value theorem, we have

(No. 20) [l e —Mallz. s | < C{M(K)+Ms(K)} [ i—s| ljall}

for any s HY(2) and ¢, s=1.
Now, let us define the energy norm E(f, #(s)) for the operators P(t) and

Q) by
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(No. 21) E(t, a(s)=l0.a(s)3+a(If.. for any tel, a(s)=X"(], Q).

By (No. 17) we see that there exists a ¢,=C(0,, 0,, M(K), Mg(K)) such that
(No. 22) ¢3'E(t, a(s)Z|ID'a(s)i<c.E(t, a(s))

for any a(s)e X% J, 2) and t<I. In view of (No. 20), we have

(No. 23) |EQ, a(r)—E(s, a(r)| S C{MAK)+Ms(K)}|t—s|lla()|}

for any ¢, s/ and a(r)es X:°(J, Q).
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§1. Compatibility condition and statements of main results.

First, we shall define the compatibility condition for (N). To do this, we
define iy=ay(x) 2Z<M<ZL<K) successively by the following formula:

) a=arF a8 (MR AN s+ AKOB 2},

If a=X%%[0, T), Q) is a solution to (N), noting (Ap. 14), we see that 0¥u(0)
=1dy. Here and hereafter, (Ap. N), Ap. N’ and Ap. N” (N
1-18; N’'=1,2,4 and 6; N”=4,5,7 and 8) can be found in Appendix below.
We begin with
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LEMMA 1.1. Assume that (A.1) is valid. Let L be an integer<[2, K]. If
G EHXQ), #, € H-Y(Q) and D -2F o(0) LYRQ), then dysHYM(Q) for 0<M<L.

PrROOF. By induction on M we prove the lemma. Assume that i, HE-*(Q)
for 0sks=M—1. Let 0</<M—2. Applying (Ap. 1) with a=K—I(—1, B=
L—M+1+1 and y=L—M+1, we have

1040, AR(0)s 3y 1- )| -+ 110:(0L AF (0008 pg—2-1) || - n

< C{ B 10540 kst sl 2t

+ 33 1BLAYOl k-1t caerons}

i, j=1

Since 0{A¥(0)csHX-'-{R2) for 0<I<K—2 as follows from (A.l1), we see easily
that @y HL"¥(2), which completes the proof.

If a()eX™([0, T); 2) 2<L=<K)is a solution to (N), in view of (Ap. 14),
we have that 0¥ {Q()[ @)1} |.co=0Yfr(0) on I" for 0SN<L—2. Keeping this
in mind, let us define the compatibility condition of order L—2 to (N) as fol-
lows: We say that the data @,c HXQ), #,c HE-Y(Q), focXt-2%[0, T), 2) and
prXL‘Z-‘/Z([O, T), I') satisfy the compatibility condition of order L—2 if the
equalities:

¥y /N ”
12) 3 () )it -1+ B0y +0 BN O 111} =0F 7 1(0)

hold on I' for all N[0, L—2]. For the sake of simplicity, by DX(J) let us
denote the set of all systems (#,, %, fg, 7r) of data for (N) satisfying the con-
ditions:

(1.3.2) % €HYQ); s, €H*Y(Q); facXP (], 2); freXt2vy], I);

(1.3.b) 3F-*fgeLip(J, LX(Q); 8F~*freLip(J, H'*T);

(1.3.¢c) o, @y, fg and f r satisfy the compatibility condition of order L—2 to (N)
where J is a time interval containing 0 and contained in 1.

Our main purpose of this paper is to prove the following two theorems.

THEOREM 1.2. Assume that (A.1)-(A.5) are wvalid. Let L be an integer
(2, K]. Then, for a given system (it,, @, fg, fp)eD"([O, T)) of data for (N),
(N) admits a unique solution i< X% ([0, T), Q).

THEOREM 1.3. Assume that (A.1)-(A.5) are wvalid. Let L be an integer
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e[2, K1 and a=X5%[0, T), Q). Put 7o@)=P®[a®)] and frt)=Q)[at)].
Assume that

(1.4) 0r-2focLip ([0, T), LXR)) and 8:-*freLip([0, T), H'*I")).

Then, there exists a constant C(T)=C(T, 8, 6., L, T, I', M(K), Ms(K)) such that

the follo-wz'ng two inequalities are valid for any t<[0, T):

(@ IDRWI3S CTID A0+ Fal L-s.o.t0.0H<Frddosamne
+{ 1087 o) 8+(@F Fr(sMtds}
() B, () Sec ™| B, 0 a0)+C(D{ID O+l L-s.o.t0.
+<F bt {108 Fa()IEH@F T roMta) KD OIS

+1?g|z-m.[o.n+<fp>z_2.m.m.ﬂ>+SZ(ua;«-lfg(s)n%+<<a£-*fr<s>>>%,z>ds}”2].

REMARK. (1) By (Ap. 14) we know that P()[a(t)]e XL-*([0, T); £2) and
QWa)]e XL-21¥[0, T); I') provided that #(t)eX*°[0, T); 2). Hence, in
we see that foe XL-2%[0, T), ) and freXt-=%[0, T), I).

(2) Since L* Q) and H'*(I") are Hilbert spaces, (1.4) implies that AL f o(d)
and 9F-'fr(t) exist in the strong derivative sense of L¥2) and H'*I") for
almost all t[0, T'), respectively. Furthermore, by (No. 2.a) we know that
10517 o®lle and (8E-1f (1)1, are bounded for almost all t<[0, T). Hence,
917 o(t) and 0F-'f,(t) are L*® functions in t&(0, T) having their values in
L) and HY*(I"), respectively.

§2. The first energy inequality.

The goal of this section is to prove

THEOREM 2.1. Assume that (A.1);, (A.2);, (A.3);.5 (A.4); and (A.5); are
valid. Let u=X*°([0, T), ) and put

F(t, ae)={ (IPOLaE]I+ Qa0 s

Then, there exists a constant C(T)=C(T, 8,, 0:, I', M(K), Mg(K)) such that the
following two estimates are valid for t<[0, T):

2.1) E(t, a@)=2e°T*H{EQ, a(0)+C(THF(t, at)};
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(2.2) E(t, @(t)<e®P'[EWQ, a(0)+C(THID @0)3+F(t, at)}*F(¢, at)'*].

If the coefficients of the operators P(¢) and Q(t) belong to ®% then (2.1)
and (2.2) were already obtained by Shibata [9]. Namely,

THEOREM 2.2. Let I'=[—7/2, T+(z/2)]. Instead of (A.l);, we assume that
(A.1); A, x)e B*(I'X2) and BYt, x)e 8*I'xI")
for [=0,1, -, n and i=1, -+, n.

In addition, (A.2);, (A.4); and (A.5); are valid. Furthermore, we assume that
there exist positive conmstant 0; and &; such that (A.3); .5 is valid. Let p be a
small number=(0, [n/2]4+1—(n/2)) and A be a constant such that

@9 zgo{{a IA“I"°'1+I"1’+<Bl>w,1+p.1’}§./1.

Then, there exists a constant C(T)=C(T, o1, 03, A, I', p) such that (2.1) and (2.2)
are valid for any s X*°([0, T), 2) and t<[0, T) with this constant C(T).

REMARK. The estimate (2.1) of was first proved by Miyatake
in the scalar operators case (i.e., m=1). But, Miyatake assumed that the
coefficients of the operators are sufficiently smooth and did not show how the
constant C(T") in (2.1) of depends on the coefficients of the opera-
tors. It is first for Shibata [9] to prove that the constant C(T) depends essen-
tially only on 4, which implies that the constant C(T) in depends
on M.(K) and Mg(K). This fact is quite important to solve the corresponding
nonlinear problem. The results due to [9] did not follow from directly.
Because, to prove that C(T)=C(T, 4, ---), to the auther it seems that one needs
more ideas, in particular, sharp estimates for L%-boundedness of pseudo-differ-
ential operators developed recently.

To prove [Theorem 2.1 by using we use the following lemma
concerned with the approximations of the coefficients of the operators P(¢) and

Q(@).

LEMMA 2.3. Assume that (A.1);, (A.2);, (A.3);.5, (A.4); and (A.5); are valid.
Then, there exist a number >0 and sequences of matrices: {Ail,}C B(I'X0);
{A%.}CC=(I", H(); {BiycC=(I', H>(I")) (I'=[~7/2, T+(z/2)] and 6= (0, X))
having the following properties: (a)-(f).

(a.1) ljn})IA:;’a—-AZJIM.x-I,p=0; 13rf(1)|Af§t:x“A}§l!K—z.x.1'=0;
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(a.2) ljr_g (Bi—B'5k-2,12.1=0;
b)) B B NAL ek SCMK); 3 3 1Al kos 1S CM(K);
(62)  R<BOxosue r SCMs(K),

for any c<(0, X,).
(¢) There exists a sequence {k(a)} of positive numbers which tends to zero as
0—0 and has the following property: If we put

AP, x)=AL, 2)+AS(E, x)—£(0Wwi(x)n

where I, is the mXm unit matrix, then A, x) and BXt, x) satisfy (A.5); for
any a=(0, 2).

(d) If we put

Ai(t, x)=AYt, x)+ALE, x)

then there exist constants 0; and 6, depending only on 6., 0, M(K) and Ms(K)
and independent of o such that AY(t, x) and Bi(t, x) satisfy (A.3);.s for any
o<=(0, 2y).

(&) wvi(x)BUt, x)=0 for any (¢, x)I' XI" and 6=(0, %), i.e., (A.4); is valid.

(f) A& and B! satisfy the (A.2);: for any ¢=(0, 2,) and i=1, -+, n; [=0,
1, -, n

Deferring the proof of Lemma 2.3, we shall first give a

ProOOF OF THEOREM 2.1. Let A%, A%, Bt %, and k(o) (=1, -, n; [=0,
1, -, n) be the same as in [Lemma 2.3 Let g be a small positive number
(0, [n/2]+1—(n/2)) and ¢<(0, X,). Since 1+p<2<K, by (b) of
we have

(2.4.2) |AY o1 p 1+ 1AL — k(O Wilm | o, 14, 1 S C{M(K)+1}.
By Corollaries Ap. 7 and Ap. 8 and (b) of we have also that

(2.4.b) | A%, 14, 1r SC LA k=10, 1 SCMs(K) 5
(2.4.¢) (Bw,14p 1 SCLB k-1,112, 1 SCMs(K) .

From these points of view, let us put A=C{M(K)+Ms(K)+1}. Then, Lemmal
2.3 implies that for each ¢<(0, %,), A and B! satisfy all the assumptions of
Note that 4 and constants 0] and 8, depend on M(K), Ms(K),
0, and J,, but independent of ¢. Put
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P,0)[a(t)]1=07u(t)—0:(As(t)0.a(t)+ A¥()d,a(t)) ;
(2.5)
Q. (OLa()]=v: AF ()0 ;a(t)+ Bi()d a(t)+ B0, a(t) .

If we denote the energy corresponding to P,(t) and Q,(f) by E,, then by Theo-
rem 2.2, we see that there exists a constant C(T)=C(T, 0., 05, I, M(K), Ms(K))
independent of ¢ such that

(2.6) Eolt, aD) 265D E (0, #(O0)+C(TIFlt, a(t)};
@.7) Eolt, ) <e"®HE (0, a0)+CTID AOE+Folt, &) Folt, a®))},
where Fy(t, #(0)= (I P I3H(Qu() () DT)ds.
Now, we shall prove that
(2.8) E,(t, a(t)) — E(t, a)); Fo(t, a(t)) — F(t, #(t)) as d—0 for all t<[0, T).

Noting the definition of energy (cf. (No. 21)) and using the definitions (No. 7)
and (No. 18), we have

2.9.2) |E (¢, a(t)—E(, @) gc{ E (BXt)— Bt o

+ tél(”Agz(t)“Ag(t)”w.o‘F | A%()— AY ()], o}“ aOli=CUMa®)}
where
(2.9.b) U ()=[Ps(t)—P(t)]ew, -1+ [ Ps(t)—P()| Qo() —Q($)]s. x-2.1 (cf. (No. 3)).
Here, we have used (No. 13). Thus, by (a) of we have the first
part of (2.8). Applying (Ap. 1)-(Ap. 3) with a=K—1 and S=y=1, we have
|Fut, a(t)—F(t, a®)] SC| UAID's)ids (C=CMK), MK,

Since 2= X> %[0, T); Q), by (a) of we have the second part of (2.8).
Hence, letting ¢—0 in (2.6) and (2.7) and using (2.8), we have [Theorem 2.1.
To complete the proof of [Theorem 2.1, we give a

Proor oF LEMMA 2.3. First, we shall discuss about the approximations of
B! (I=0,1, ---, n). Let ¢, be functions satisfying (No. 1). Put
SXT(y’, ONBYL, Tr(y’, 0)) for |y'|<0s,

By, y’)={
* 0 for |y'| >0,

for k=1, ---, N, and (=0, 1, ---, n. By (No. 1) we have

No
@210) Bt x)= 3 $i0)BU, D=S'$iT ', B, Tay', 0),

where the summation X’ is taken over all £ such that x=¥,(y’, O)cO.NI.
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Since supp ¢.C 0O, without loss of generality, we may assume that supp @(¥ :(y))
CQ(o;) with some ¢.=(0, 0:). As a result, since BleYX-tv¥(] M), Bie
Yyx-t1ux(J R™') and supp ﬁ,@,(t)c:{ly’l<o,;} for all tel. Furthermore, we may

assume that Y7(y’, 00#0 on {|y'|<0o,} for some 7, say 7=n. By (No. 5) we
have

~ n-1 ~
(2.11) Bt yr=—v 10y, 0 { S Brt, 7Y puly’, OO}
Let p(t, ") be a function in CF(RXR"™!) such that supp pC{|t|*4+|y"|2<1},
p=0 and SSp(t, y)dtdy'=1. Put p(t, y')=a-"p(ta"", y'a"*) and

[Bi1.¢, 3")=SSp.,(t——s, y'—2BYs, 2)dsdz’ for 1=0, 1, -, n—1

(i.e., we mollify each component of ﬁ,ﬁ by means of the usual Friedrichs’
method). In view of we put

(2.12) [BR1t, 3)==Y 10", 0 { Z 1B 3)Y 10y, 00}

Since 0<o}<o:, there exists a 3,>0 such that [ﬁ,ﬁ],(z‘, y’) are well-defined for
(t, y)eI’x R and supp [BLl.(t, y'){|y’'| <.} for any tcI’ and e<(0, X,).
Furthermore, [ﬁ,ﬁ]aeC‘”(I', H=(R™-')). From the second part of (A.2) it follows
that

(2.13) (LB, y)=[B31.@, v"); ‘[BL.¢, y)+[Bil.(, v)=0
for all (¢, y)eI’XR** and ¢=(0, 2,). Put
BL.(t, x)=[B41.(t, Ds(x)) for x=O.NI" and =0 otherwise.

Since [ﬁ,ﬁ],(t, y")=0 for |y'|=0:, and tel’, Bl,(t, x) are not only well-defined
but also in C=(I’, H*(I")). Put

No
By, X)=k}:‘_41 Bi.(t, x).

Then, by and we see easily that *By(t, x)=B(t, x) and *Bi(¢, x)+
Bit, x)=0 (=1, ---, n); v; B«t, x)=0 for any (¢, x)eI’xI". Namely, the third
and fourth parts of (A.2);» and (A.4);. are valid for any ¢<(0, 2,). Obviously,
we have that (Bis>x-1,172. 1 SCLPEB D k1,112, 1 SCM(K) and < Bio — B Dk -2.112. 1
—0 as ¢—0 for =0, 1, ---, n—1. With the help of and [2.12), we see
also that <B>x-1,1/2. 1 SCMs(K) and <(BEL—@iB">k-1.1/2.r—0 as ¢—0. Noting
by these results we see easily that (a.2) and (b.2) of are valid.

Now, we consider the approximations of A*. In view of (A,1) and (A.2),
without loss of generality we may assume that



298 Yoshihiro SHIBATA

(2.14) A=A} and ‘AY=A} for U= and S and ¢, j=1, ---, n.

By well-known Lions’ method of extending functions defined on £ to whole
R", we have that there exist [A¥]e 8X(IXR") and [A¥]eYX-+Y(I, R*) such
that AY=[A%] and A¥=[A¥] on IX 82, and
(2.15) ILAL ] oo k. 1 xrn SCl AL o, k. 15

LAY k-1.1, 1. -a=C| A% k11,2 (C=C(K, I)).
Furthermore, in view of we may assume that
(2.16) ‘[AP1=[A¥] and ‘[A{]=[A¥] for U= and S and ¢, j=1, ---, n.
By using Friedrichs’ method mentioned previously we mollify [A%7] and [A¥%]
with respect to (¢, x). Then, noting we see that there exist a small
constant 3, and sequences {A%}C B~(I'XR2); {A¥}cC=I', H*(R)) (¢<(0, 3,))
such that
2.17) AL —Alw k-1, 1—0 and |AY,—AY | k5.1, 1 —0 as ¢—0;

(2.18) =

=0

33 1A% | ko, 10 SCMs(K)
for 0=(0, 2y).

é | Al k. 1 SCM(K) and Z.?

[ i

In view of (2.16), obviously we have
(2.19) tAR =A%, and ‘AY,=A}t, for U= and S and 7, j=1, -, n.

In particular, (2.7) and (2.18) mean that (a.1) and (b.1) of are valid.
Hence, we have proved (a), (b), (e¢) and (f) of Lemma 2.3 if we choose X, so
that Yo<min (2,, 2,).

Now, we shall prove (c) of Lemma 2.3, Noting (A.l) and (A.5), we have

{—vi(x)(AL(L, x)+AGE, x)+2BY(t, x)}n-7
=(—vi(x)A"Q¢, x)+2B, x)n-n—r(a)|n|*=—x(a)|n|*

where

£(0)=CViYeo, o | Aly— AL o0, 1' + | Ay — AR | 0,0, 1) +2{B3— B>, 0, 1 .

Obviously, by (No. 13) and (a) of we know that x(¢)—0 as ¢—0.
Since the y(x) is the unit outer normal of I at x<I', |v(x)|*=1 for x&[l.
Hence, if we put A, x)=AL(E, x)+ALE, x)—k(o)vi(x)],, then we see that
(¢)is valid for any ¢<(0, 2;). Furthermore, putting A(¢, x)=AY(t, x)+ AY, @, x),
from (2.19) it follows that the first and second parts of (A.2),. are valid for
(0, 2,).

Our final task is to prove (d) of Lemma 2.3l Let 8,(¢, #, ¥) and C.(¢, @, D)
be bilinear forms defined by replacing B’ by Bj in (No. 7) and (No. 8), respec-
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tively. In the same way as in (2.9), we have

(2.20) | Bo(t, @, 0)— B, @, )| SCUM|al.l ol

for any tel’, 6<(0, 2,) and @, s H'(L2). Noting (No. 8), we have
(2.21) 1Colt, 2, 91SC 2 <Bddes et 1o
for any tel’, ¢=(0, X,) and #, 9= HY(L2). Furthermore, we have

(2.22) {Bit)0i, Dy=B,(, @t, D)+C.(t, @, D)
for acs H*(R) and s=HY(2) (cf. (No. 9)).
By (A.3);, (No. 9) and we have
(2.23) (AY(9;t, 0:)+<B{t);it, ay=d|ali—dlla|i—I,—I, for acH*RQ),

where I,=|((A¥(@)— AY())0;i ‘i) +| B2, @t, t)— B(t, &, #)| and I,=|C,(¢, @, D)
—C(t, @&, )|. Noting and (No. 12) and using (No. 13) and (b.2) of
Lemma 2.3, we have that I,<CU,(®)||#|2? and [,<CMg(K)|all|@ll,. In view of
(a) of there exists a X, such that I,=(d,/4)||#|? for c<=(0, 2,).
Since I,=(d,/Dllali+{(CMs(K))*/o,}|@llj, combining these facts and (2.23) im-
plies that (A.3);..s is valid for any ¢=(0, X;), where 0;=0,/2 and 0;,=0,+
{(CM4(K))*/0,}. Note that J; and J; are independent of ¢. If we take X,=
min (X,, 2,, 2,), the we have completed the proof of

§3. On some fundamental results on elliptic boundary value problems.

In this section, we shall prove some results on elliptic systems, which will
be used in later sections. In the paragraphes 3.1 and 3.2, we shall discuss the
fundamental principles from which the differentiability of weak solutions in the
interior of £ and near the boundary follows readily. These two paragraphes
are independent of other sections, but to prove results stated in the rest of §3,
the theorems in §§3.1 and 3.2 play an essential role. In the paragraph 3.3, we
shall investigate a unique existence theorem of solutions to some elliptic boundary
value problems in 2. In the final paragraph, we shall prove the unique exist-
ence theorem and time-dependence of solutions to some elliptic boundary value
problem with parameter ¢ as a time mentioned in the final part of Introduction.

3.1 Differentiability in the interior of 2. Let a¢%(x) be mXm matrices of
functions satisfying the following properties:

(a.1.1) Each of a%(x) is decomposed as follows: a*(x)=a¥(x)+a¥(x), where
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e XY (2), a¥ysHX™M(Q).
Here and hereafter, K(n)=max ([n/2]42, K—1).
(a.1.2) There exist constants d, and d;>0 such that
(a¥0;9, 0;9)=d,||0]3—d.| 9|3 for any v Hn(Q).
Here and hereafter, we put
H%,(2)={s=sHYR") | dist (suppv, I')=¢ for some &¢>0}.

First, we consider the differentiability of #< H'(Q) satisfying the variational

equation:
(3.1) (a'99;@, 0,;9)=(F, ) for all s=HYR™).

In this and next paragraphes, we use the notations: [ =(d(x+her)—d(x))h*;
|4 =0(x+he,) where ¢,=(0, ---,0, 1, ---, 0) are the k-th coordinate vectors
of R".

THEOREM 1.3. Assume that (a.1.1) and (a.1.2) are valid. Let L be an integer
€[2, K]. Let acH: Q) satisfy (3.1) and
3.2) dist (supp #, I')=¢ for some ¢>0,.
If fEH"(Q), then acHX(2) and
(3.3) | S C(ds, day Yoo k-1 Ts.kewrs LI F sl z-a).

Here, 7w x-1 and s x> are constants such that

(3.4) 33 108l k1 S7e 15 3 0¥ e STs.

i, j=1
PROOF. Let 6=(d,, ---, 0,) be any multi-index such that |d|=L—2. Then,
024 satisfies the variational equation:

(3.5) (a*9,0%@), 8,9)=(Fs, #) for any s H'(R")
where
- ) _ )
Fy= -3 (w)az—wawa,.agu

(w=(w,, -+, w,) are also multi-index and w<d means that w;<d; for all =1,
-, n and |w|<|d]). In fact, if sHL(R"), from we have that
(a'99;i, 8(—8.)°9)=(f, (—8,)*3). Noting by integration by parts we see
immediately. As will be seen soon, Fs=L% ). Hence, since H L-11Q) is
dense in H'(Q), (3.5) follows immediately.
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Now, we shall prove that F;= L) and

(3.6) 1ol 171 st CCL) (T ks T, koo i 2os -

Recall that |d|=L—2. Let w<d. Applying (Ap. 1) with a=K(n)—|é—w|,
B=L—2—|w| and y=1, we have that [0,(0% “a¥0,024)|,=Clla¥| x> )| L-1
From this, follows immediately.

Now, we shall prove that dd# = H?* Q) and

B.7) 0%l <Cl fll-at @l 21} Where C=C(dy, da, L, Tor k-1, Ts. xcn3) -

Since 4 is any multi-index such that |§|=L—2, the theorem follows from (3.7)
immediately. For the notational simplicity, we write w=d%#. Let h be any
number satisfying the condition: 0<|h|<d/2. Since (a*0,;w, 0;[9]1%,)=
(F;, [91%,) as follows from by the change of variables: x+he,—x, we
have that (a%0,[w1%, 0:9)=—([a*/140,®, 8:9|ts)—(Fs, [9],). Note that |8, ],
<llz-1; 10:0|2nllRn, o= 1llpr.15 1[0]2n]lRn. o= | Dllgn... Since |[a*I}|=Zla]w. =

C{Yw,x-1+7s. x>} as follows from (No. 13.b), by Schwarz’s inequality and [3.6)
we have

3.8) |(a*0,L@]4, 0:9)| < C{Ifll -2+l -1}l BllRn. s

where C=C(Yw, x-1, Is.kw) L). Since dist (supp [@]}, [')>e/2 provided that
0<|h|<e/2, by (a.1.2) we have »
3.9) 1L 141 (d) 7 1(a"0,L@34, B,L@ 1)\ +da L 1AI3).

Since |[@14llo=|lit|z-,, combining with 9=[w]% and we have that
@151 C{Ifll-2+l@lz-1} where C=C(di, d2, L, Yoo k-1, I's.xw>). From this
it follows that w=0%# < H* Q) and (3.7) is valid, which completes the proof.

As an easy corollary of Theorem 3.1, we shall give a theorem on further
differentiability of # satisfying the equation:

(3.10) —0.(at(x)0;a(x)=F(x) in 2.

COROLLARY 3.2, Assume that (a.l.l1) and (a.l.2) are valid. Let L be an
integer<(3, K], acsHL Q) and feH-Q). If @ satisfies (3.2) and (3.10),
then acHXQ) and (3.3) is valid.

PROOF. Multiplying (3.10) by #, integrating over R™ and noting by
integration by parts we have that i satisfies 3.1} Hence, Theorem 3.1 implies

immediately
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3.2 Differentiability in R?. In this paragraph, first we consider the differentia-
bility of a solution to the variational equation:

3.11)  Bla, 91=(F1, 8Y+<fa, 8(-, 0’ +(F% 8,8) for any s€H'(R?).

Here, fl, ,72 and fé are given functions; B is a bilinear form of the form:
Bla, 91=(a"0;it, 0:9) +(b?0,4, 0,5) — (b0, 0,7) .

Here and hereafter, for the notational simplicity, we use the following abbre-

viations:

(@, oY=\ atx)a(x)dx; <@, oy =, 00z (/= o, Taei))s

ll'||$=ll'||31_r s G =l-lgn-1,r.

Let a*/ and b* (7, j=1, -+, n; p=1, -+, n—1) be mXm matrices of functions

satisfying the following assumptions:

(a.2.1) The a®/ are decomposed as follows: a*’=a¥+a¥y where aYe @E-Y(RD)
and ay=sHX™(R?).

(a.2.2) bP=HEM™(R?Y).

(a.2.3) ‘ta¥=a’l.

(a.2.4) Let o be a positive constant. There exist positive constants d; and d,
which may depend on ¢ such that

B(9, 91=d«(|9[1’—d(I9])* for any d=HKRY).
Here and hereafter, we set
HL{RD={v=HYR?) | suppvCQ(e)} (Q(e)={xER" | |x'|<e, | xal| <e}).

As a corresponding theorem to Theorem 3.1, we shall prove

THEOREM 3.3. Assume that (a.2.1)-(a.2.4) are valid. Let L be an integer
e[2, K]. Assume that f,€HL¥R?), focHE¢D(R*1) and ficHXYRT) (i=
1, -, n). If acHLY(R?) for some e<(0, ¢) and satisfies (3.11), then ac HX(R?Y)
and

(3.12) 1l < CHIFalli st Fodimcomt 2 1 T8t zmn)

where C=C(ds, dy, L, 15 . 51, 5. kny). Here, Y& k-1 and 75 xm> are constants

such that

n L. 7 . n-1
2 ¥ o k-1, RSV 0, k-1 E "ay“}((n)‘}‘pgl 167 k=75, K> -

i, j=1 i 1
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PROOF. Let k be any integer €[1, n—1] and a’=(a,, -*, @n-,) be any
multi-index such that |a’|=L—2. First, we shall prove that 0,0% #=0,0;" -
0, 7' HY(R?) that

(3.13) [0:05ali=C4.

In the present proof, for the notational simplicity we use the same letter C to
denote various constants depending at most on L, ds, d4, 7% k-1 and 75, x> and

put A=”fl”i~2+<<f2>>’L—<3/2)+i:EI 17l +ll@l_.. To prove we shall use

the fact that 0% 4« satisfies the variational equations:
(3.14) Blw, 91=(F,, 3)+<(Fy, #(-, 0’ +(Fi, 8,8) for any s€HY(R?)
where F,=0% F1; F,=0% f»; w=0%14;

(44

B
F1=0373— 3 (al){azi-ﬁ'a“fa,-aéia—agi'ﬂ'b‘"apaéfa}.
Bl \B’

Fp=03f2— %’( 0% 5 a?90,08 a5 P 609,084} (p=1, -, n—1);

In fact, if s=HL"(R?), replacing 9 by (—0,)* % in (3.11) and applying inte-
gration by parts, we have (3.14). As will be seen below, FicH'(R?). Further-
more, F,eH'*( R ') and F,= L*R?). Since H:"(R?)is dense in H'(R?), (3.41)
is also valid for any s H(R?).

Applying (Ap. 1) with ¢=K(n)—|a'—p'|, B=L—2—|p’| and r=1 for
B'<a’, we have

102 ~# a¥0,05 4l i< Cr5, kensllttll -1 5 105 7' 670:02:alli < CTs, kemlldtl Loy

for /=1, ---, n and p=1, ---, n—1. From this it follows immediately that
(3.15) IFli+(Fadint 2 1Fili<C4.

Now, we prove Let 4 satisfy the condition: 9<|h|<oc—e. By the
change of variables: x-+he,—x, from (3.14) we have

(3.16) BL[w1h, 91=—([a"1448;8, 0.5 %) — ([0 1210, 0,5 |%1)
+([6P 1210, @, 00 |20) —(F,, [9155)
—<(Fy, [9(-, 0018, +([F§14, 8:9) .
By Schwarz’s inequality and Ap. 2-(1), we have
(3.17) |<Fa, [O(-, 0)1nY" | SCF)e(LH(-, 0)1Ea) 1re
S(F) sl 9(-, 0N CEF )il ol .
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Hence, applying Schwarz’s inequality to other terms of the right-hand side of
and using [3.15) and [3.17), we have

(3.18) | BL[w]1}h, 911 =C4| o] .

Here, we have also used the facts that [0, <] z-:;
ILaEnls)aY o rpS|ad e rn+Clal ks 1[6P12n] S ClbP % n>

(cf. (No. 13.b)). Since [w]% vanishes for |x|=0 as follows from the assump-
tions: #=HL'(R?), by (a.2.4) we have
(3.19) (LIl =(ds) " {B[[w]1}, [w]13]+d(IL@w1415)%}.

Substituting the inequality: (|[@14l0)?*<)#llz-.I[@]%]s into putting 9=
[#1% in (3.18) and combining the two resulting inequalities, we have that
ILwlilli=<C4. From this it follows immediately that 9, =0,0% #=H*(R?) and

is valid.
Now, by induction on N we shall prove that d%d¥a< L*(2) and
(3.20) 030y allo=C4

for any integer N=[0, L] and multi-index a’=(a,, -+, @,-;) such that |a’'|=
L—N. As was already proved, is valid for N=0 and 1. Thus, assume
that 2<N<L and that the assertion is valid for smaller values of N. First,
we prove that a”"(x) is a nonsingular matrix for all x€Q,(g) (Q.(¢)=Q(a)NR™)
and

(3.21) la"(x)'|<C for all x€Q.(0).

To prove this, we need

LEMMA 3.4. Let G be a domain in R™ and P%(x) be mXm maritces of
functions in C°(G). Assume that *PY=P’ and that there exist positive constants

¢; and ¢, such that ReSGP”(x)ajﬁ(x)-am(x)dx;csllﬁllé.l—allﬁllé,o for any v
CH(G) which may be complex-valued. Then, P (x)&:&;=cs|&|*n for any xEG
and §=(§,, -, §)ER™.

This lemma is well-known and for its proof, see Shibata [9]. Since

(3.22)  <b*d,a, w:—S n(bP0 it 5)d x =—(bPB ik, Bn)+-(bPBnit, Bp5)’

A2
+((apbp)ana: f’)'—((anbp)ap'ﬁ: 7))’

as follows from the integration by parts with respect to x, (p=1, :--, n—1),
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we see that for any 9= C(Q.(a))
B[d, 91=(a%0;0, 0:9) —((0,b7)0.D, §) +((0.67)0,D, ¥

=(a"9;9, 0:9) +Crs. k> BlI1 9115 .

Combining this and (a.2.4) implies that

(a'70,m, 0,) =(dqo/2)1| @ 11)*—di(ll@w][s)°

for any w e C(Q (o)) which may be complex-valued where di=d,+(C7%. xcny)?/2ds.
Applying Lemma 2.4 and noting that a%/ is continuous on Q.(s) (cf. Sobolev’s
imbedding theorem), we have that a*(x)&:&;=(ds/2)|€|*I, for any x=Q.(¢) and
&=, -+, &r)eR™. In particular, if we put £=(0, -+, 0, 1), we have that a™"(x)
=(ds/2)I, for any x<Q.(¢), which means that a”*(x) is non-singular for all

x=Q.(c) and that all eigenvalues of a”" are bounded by d;/2 from below.
Since

a™(x)"'={det (a™"™*(x))}* cofactor matrix of a™"(x),

we have ,
Let 3=C%(Q4(0)) and replace % by (—0d,)°d in (3.11) where d=(a’, N—2).
Then, by integration by parts we have
(3.23) (a™02d%u, 9) =(G, D)
where
G =—(0,a"")0,0% 0 —~0,(a""0,0%1)—0p(a?’0,0%1)— 0 ,(b?0,0% i)

—8,(0%8,3%0)— 3 2 )10.0% 040,020, *b330))

—0,(0k *b?ogm)}+01F 1+ 21040179,

Note that |d|=L—2, because |a’'|=L—N. Applying (Ap. 1) with a=K(n)
—|0—w|, p=L—2—|w| and 751 for w<d, we have

10,05 ©a¥0,022)lls+110,(05 “b*05@) s+ 10(0% “0P05) i< Crs. k m> @l 21 -

Hence, by the inductive assumption we have that Ge L R?) and |G|;<C4.
Accordingly, since is valid for any 3€C%(Q.(¢)) and supp #CQ(o),
la®™02034|s<Cd4. Thus, implies that 020%#< L?*(R™) and that |020%:|;
<C4. Since 020%#=0%0Y#, we have proved which completes the proof
of the theorem.

As an application of we shall prove further differentiability
of a solution # to the boundary value problem:
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(3.24.2) —d,(ati(x)d,a(x)=Ff(x) in R?,
(3.24.b) —a™(x’, 0)0,a(x’, 0)+c?(x")0,a(x’, 0)=g(x’) on R™!.
Here, a*/(x) and c¢?(x’) are mXm matrices of functions satisfying the following
assumptions:
(a.2.5) (a.2.1) and (a.2.3) are valid;
(a.2.6) cPeHEM-QAB(Rn-1);
(a.2.7) there exist positive constants d; and d, such that
(a"90;9, 9:9) +<c?0,0(-, 0), 8(-, 0)>' = ds(18]1)* —d([1511)*

for any 9= HYR?).
Note that the unit outer normal of the boundary of R? is (0, ---, 0, —1). The
following theorem can be deduced form which is corresponding
to It is independent of the text, but for the further references
we state and prove it

THEOREM 3.4. Assume that (a.2.5)-(a.2.7) are valid. Let L be an integer
(3, K], a=HL'(R?}) for some e<(0, o), feH¥R?) and GeHL-GIB(Rr-Y),  [f
@t satisfies (3.24), then a=H(R?) and

(3.25) 112 S CUF I met (@it Nl Lo,

where C=C(ds, dg, L, 7o, x-1, 78 . x(n>)- Here, 75 x-1 is the same as in Theorem
3.3 and 1% k> 1S a constant such that

n
>
7=t

. n~1
; Ha‘j“}((n,-{—p@l (V- =714 kcny -

PROOF. We shall reduce (3.24) to (3.11). Let b?(x) be mXm matrices of
functions such that bP(x’, 0)=c?(x’) for almost all x’=R""! and

(2.26) 0P |y S C@XePDrnr-ary=C7%. kn> -

The existence of such b? is assured by Ap. 3. Since {c?Pd,u(-, 0),
o(-, 0)>'=<bPa,u(-, 0), #(-, 0))’, by employing the same argument as in (3.22)
we have

(3.27) c?0p(+, 0), B(+, 0)Y' =(bPntt, 0pD) —(b*0pth, Bn, D)’
(@507 )00k, D) —((0nb7)0p, D) .

Multiplying (3.24.a) by ¥ and integrating over R?, by integration by part and
we have
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(3.28)  BLa, 51=(Ff, ) +<{Fs v(-, 00’ +(f4, 8:8) for any s=H'(RY)

where
Bla, 9]1=(a%¥0,it, 0;0)+(bP0rit, 0,0) —(b?0pit, 0,D) ;
flzf_l'(anbp)apﬁ'—(apbp)anﬂ; fz=§; f§=0 .
To apply we must prove thathEHL‘z(Rﬁ) and (a.2.4) is valid.
Applying (Ap. 1) with a=K(n)—1, f=L—2 and y=L—2 and using (3.26), we

have
00:67)0;6 || L2 < C 6P| k ms % -1 S CTE, ken>ll @] L1

for 7, j=1, ---, n, from which we have immediately that f.eH¥R?) and
1Filtoe < CLIF bt 74 kewoll@tllz-1}.  Since HXRZ) is dense in HXR?Y), to prove
that (a.2.4) is valid in the present case, it is sufficient to show that there exists
a d;>0 depending only on ds, d; and 7% x> such that

(3.29) Blv, v1=(ds/2)||18]11)*—de(l9lls)* for any s€HHR?Y).

In the same way as in (3.22) (or [3.27)), we have that for any s€HXRY),
B9, 91=(a%9,8, 0,8) 4+<cPd,5(-, 0), (-, 00>’ —((0,bP)0.D, D)’ +((0.b7)0,7, ¥’). Since
| —((0,bP)0nD, D) +((0,07)0,0, D) | SCy4, k> |9ll1l15]l; as follows from Schwarz’s
inequality, (No. 13.b) and (3.26), by (a.2.7) we have with di=d,+
(Cr% km»)?/2ds. Thus, the present bilinear form B satisfies all the assumptions
of Theorem 3.3, and f,, 7., fi and @ do, too. implies
3.4 immediately.

3.3 Unique existence theorem of solutions to some elliptic boundary value
problem.

In this paragraph, we consider the following boundary value problem of elliptic

system of 2nd order in £:

(3.30.2) —0,(P"(x)0,a(x))+ Ph(x)0,1(x)+ P3 (x)a(x)+Aa(x)=Fo(x) in £,
(3.30.b) wi(x)P¥(x)0;5(x)+ Pf(x)0;4(x)+ P+ (x)it(x)=Zr(x) on I'.

Here, P¥(x), Pix) and PKx) (i, j=1, ---, n; [=1, -+, n+1) are mXm matrices
of functions having the following properties (a.3.1)-(a.3.5):

(a.3.1) P% and P} are decomposed as follows: P¥/=PY¥+P¥ and P{=P} «+ P} s
where Piée @X-Y((0); PhosB5%2); PYSHE™(Q); P} scHX ™(Q)
(K(n)=max ([n/2]+2, K—1) and K'(n)=max ([n/2]+1, K—2)).

(@.3.2) PieHEM™-am () (j=1, .-, n); PReHEeD([).
(a.3.3) tPY=P¥,
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(a.3.4) There exist positive constants d, and d; such that

(PY0,it, 0:4)+<Pfo;it, 4>=d,||@t|l3—dsl|%]§ for any acHXRQ).
(@.3.5) v(x)P{x)=0 for xI. '
Since the operators P(¢) and Q(¢) of the original problem (N) are homogeneous,
it suffices to consider the case whereP j=P?*'=0. But, to the auther it seems
that there are no litratures of treating with (3.30) exactly even in the case where
PY=P} s=0 and Pte 8% (2) (namely, the smooth coefficients case). Thus, we

dare to treat with the general operators for the further references. Let 7w, x-;(2)
and 7s, x(£2) be constants such that

3 1P e ks B 1Pl k-157m (D)5

%, j=1

3 1PYlkest Z1Ph sl et 3 (PR xens-cam+(PE Vx-oim 75 £(2).

%, j=1

The purpose of this paragraph is to prove

THEOREM 3.6. Let L be an integer [2, K]. Assume that (a.3.1)-(a.3.5)
are valid. Then,'there exists a 2,>0 depending only on d,, ds, 7w x -(£2) and
75, k() such that for any A>2A, Bo=H'*(2)and grsHL-*»I"), (3.41) admits
a unique solution w=H(Q) having the estimate:

(3.31) Nl <C{Z8allL-2+(B8rdr-carer}
where C=C(dq, ds, I', L, Yoo, k-s(8), 75.x(8)).
The following is an easy corollary of and will be used to

derive the “a priori estimate” of derivatives with respect to x in the original
problem (N).

COROLLARY 3.7. Assume that (A.1)-(A.4) are valid. Let L be an integer
€[2, K] and at)ys L=(]J; HX)) where ] is a time interval CI. Then,
(3.32) Ol L < C{110:(AY()0,a(t) L-2
+ (v A ()0 0(t)+ BI ()04 L - cs s>+ 1A (D) -1}
for any t=J, where C=C(d,, 0;, M(K), Ms(K)).
PROOF OF COROLLARY 3.7. If we put PY/=A%(t); Pt=DB%t); P}=0; Pp+**=0
@ j=1, -+, n; =, -+, n+1), the assumptions: (A.1)-(A.4) implies that (a.3.1)-

(a.3.5) are valid for each t=J. Furthermore, put Zg=—0,(A"(t)d,a(t))+Au(t);
Zr=v,AY(1)0;a(t)+ BI(®)0,;4(); Tw x-1(@)=M(K); 75 x-:(2)=Ms(K). Note that
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the present constants 7. x-;(2) and 7s x-.(2) are independent of z. Hence,

follows from immediately.

PROOF OF THEOREM 3.6. For the notational simplicity, we use the same
letter C to denote various constants depending on d, ds, I, L, 7w, x-1(£2) and
rs.k(&). First, we shall prove the existence of a unique weak solution in
H'(£2). To do this, let us define the bilinear form corresponding to (3.30). Us-
ing the notations defined in the section of Notations, noting (a.3.5) and employ-
ing the same arguments as in (No. 5)-(No. 9), we have

(3.33) KPpo;i, oy=2P(a, 0)+Q(a, v)
for a=H* Q) and 9= HY(), where
- RI)=PITL, OV, OJ(y), p=1, -, n—1;
2, )= 3| ORI BAW )05 ()
T R8GO () DT (I
0@, 5 =3 [ L O GRORE DITAT ) 3T ()
— RN RE 8 4(3))- 5 4 (3)]d 3.

By Schwarz’s inequality and (No. 13.a) we see that
(3.30) |2, DI =Clalill,;
(3.35) 10, DICllal 5.

In particular, ¢ and Q are continuous bilinear forms on H(2)x HY(R) and H Q)
X L*(82), respectively. Keeping [3.33) in mind, let us define the bilinear form
P, corresponding to (3.30) as follows:

P&, 9]1=(P0;i, 0:0)+ (P04 +P%*'a, o)+ A(#, 9)
+2(@, 9)+Qa, 0)+<PFa, ).

Obviously, by Schwarz’s inequality, [(3.34), [3.35), (No. 13) and Ap.
4~(1).

(3.36) | P;[&, 91| <{C+|Al}al.liol, for @, 9eH D),

from which it follows that P, is a continuous bilinear form on HYQ)x HY(Q).
Let us prove the coercivity of the P;. Namely,

(3.37)‘ P,la, #a]1=(d./2)|#|? for any #=H' () provided that 2=2,

with some 4, which is a constant depending only on d,, ds, 7w~ x-1(2) and
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rs.x(2). Since H¥2) is dense in H'(82), it suffices to show that is valid
for any d€H* ). Since

I<PpHa, ay| SCaYiselalli+C(n, e)lla|§ for any ¢>0
as follows from (No. 13.a) and Ap. 4-(2), noting [3.33) and [3.35), we

have
P:la, a]=(P"0;i, 0;4)+<{Pfo;i, ay~+Al |}

—Cllallllallo—ell@ll}—C(n, e)ll@ll§

for any acH*). Since Cllal.lalo=(d./Dlali+(C?/d)al}, taking e=d./4,

from (a.3.4) we have [3.37). In view of and the P, is a coercive
bilinear form on HY(2)x H' ). By well-known Lax and Milgram theorem we
know that there exists a unique solution z=H(2) of the variational equation:

(3.38) P;la, 91=(8 o, 9)+<&r, 9> for any s€H ().
Especially, putting #=# in [3.38) and using [3.37), we have
(3.39) @], =C{lgallot+{&8rhin}=C4d

where 4=|gollL-2+{&rdz-c/m-
Now, by induction on N&[1, L] we shall prove that 2= H¥(f) and

(3.40) laln<C4.

As has been seen, when N=1, the assertion is valid. Assume that 2<N<L,
#asHY Q) and

(3.41) laly-1=C4.

We shall use Theorems 3.1 and Let ¢, k=0, 1, ---, N;, be the functions
satisfying (No. 1). First, we shall prove that #,=¢,a=H"(2) and

(3.42) laolln=C4,

by using Theorem 3.1. To do this, we shall prove that
(3.43) (PUd,ity, 8:0)=(f,, @) for any wH(R™);
(3.44) 17elly-2<C4,

where fo=—0,(P(8,60)it)— P70, $o+ o8 o — Po(PE0 4+ P3* s+ Ai). First, we
note that

(3.45) @@, w)+Q@®, w)=0 for any s HY(Q) and w<Hy(2)

where HE\(R) is the same as in §3.1. In fact, since {P’0;5, w)>=0 for any v &
H?*() and weHy(2), (3.45) follows from when € H?*2). Since H* )
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is dense in H(2) and ¢ and Q are continuous, is also valid for any &
HY(Q) and weHY,(2). Let wesHYR™). Since

(3.46) (PY0,dt,, 0,0)=(P%0;1t, 0;(Poit))—(0:(P¥(0;00)it), w)—(P"0;510;¢o, i),

noting that @, Hy(2), (Za, ¢o®)+<&r, Poi0>=(¢o&, w) and (Pp+'u, @it y=0,
by [(3.38), and (3.46), we have
Applying (Ap. 1) with a=K(n) and §=y=N-—1, we have

(3.47.a) 10:(P¥(0;00)) | v -2 < CIIP¥ | kcnsll il -1 -
Applying (Ap. 1) with a=K(n) and f=y=N—2, we have

(3.47.b) | P¥0,i0:¢ol v < C| P¥ |l xcn>ll ]l w-1 -
Applying (Ap. 1) with a=K'(n) and f=y=N-—2, we have

. n+1
(3.47.c) P2, saﬂ“t-I—P?zTéﬁHN-zéClg 1P, sz cnslldtll vz .

3.44) follows immediately from (3.47) and
To use Theorem 3.1, we must check the conditions (a.1.1) and (a.1.2). How-
ever, in this case, (a.l.1) follows from (a.3.1) obviously. If d=H%,(f2), then

from (a.3.4) it follows that

(3.48) (PY0,9, 0:9)=d, |93 —ds|D]F,

because <{P’0;4, 5)=0. Since H?%,(f2) is dense in H%,(2), (3.48) is valid for any
7= H,(2). Hence, in the present case, (a.1.2) is also valid. Applying Theorem
3.1 to and using and we see easily that #,=H"(2) and
is valid.

Now, we consider @:(y)=¢: T :()a@+(»)) (k=1, ---, N,). By
3.3, we shall prove that #,=HY(R?) and that

(3.49) laelv<=C4.

Here and hereafter, for the notational simplicity, we use the same abbreviation:
[-+ as in §3.2. Likewise for (-)., (-, -), <+, ->’. For given #(x) and W(y),
we write V()= :(y)) and @(x)=W(@4(x)). For the notational simplicity,
put HX(R)={V eHXR?)|supp VCQ(0)} and HXD)={s=HX2)|supp VCQ(a)}.
Since supp #,CQ(g:), We may assume that supp %, CQ(a}) for some d;=(0, gz).
Let p.(y)=C5(Q(a})) such that p.(y)=1 on Q(of) for some o7 (a4, 0:). Recall
that the Jacobian of the transformation: y=®,(x) is equal to 1, i.e., dx=dy.
Noting and (a.3.5), for any d€H (2) and weH'(2) we have
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(PY0;5, 0,10)+ L@, w)+Q(®, )=(P'0,5, 8,i)+<{ P05, &>
=(a"9;V, ;W) +<c?d,V (-, 0), W(-, 0)>’

where 0;=0/0y;; a"(y)=p (MY ie(MY ie(MP*" " @(y)); ¥ =1 =) Ya-1);
c?(y)=pr(y’, OPAT (3’, ONY Z(y’, 0)Je(y’, 0). In view of Ap. 3 and
(a.3.2), there exist b?(y)eHX™(R?) such that b?(y’, 0)=c?(y’) for almost all
y'eR" ' and

(3.50) 16711k = CLePVrcnr-iy=C7s. x(2).

And also, we have
(3.51) |03|w.x-1.ngéc7’w.x—1(g)i la¥ %> =Crs. x(2)

where al/(3)=p:(M)Y 1 :()Y 4 o(y)PE7 (T () for U= and S. Put
BV, W1=(a'3,V, W) +(b?3,V, 3,W) —(b*3,V, a,W)’ .
From we have '
(3.52) B[V, W1=(P"d,8, 0,w)+ P, w)+Q®, W)
—(@pbP)0nV, WY +((0,b7)0,V, WY |
for any V<H (R2) and WeHRY). In fact, if VeH%(R?) and WeH RY),

employing the some arguments as in from we have Since
H%(R?) is dense in H% (RY) (0<0;<0{<04) is also valid for any Ve
H},rk(Ri‘.) and WeHY(R?Y).

Employing the same arguments as above, from and (a.3.4), we have
also

BLV, V1=(P'3,5, 8:0)+< P .5, o>—({0,b7}8,V, VY +({8,b7}8,V, VY
>d,||9)2—dllB 13— Crs. IV 11V |ls for any VeHz(R?).

where we have used (No. 13.b) and [(3.50). Since H(R?2N\Q(o:)) and H((2)N\O:)
are homeomorphic by the transformation: y=@,(x), i.e., there exists a constant
¢;>0 such that

eIV lpnece .1 =100 2n0, S ol P lRpnace 0.1 »
and since H%,(R%}) is dense in H.‘,'k(RZ:) (cf. oi<o}), we have

(3.53) BLV, V1zd,(IV 11 —do(IV s for any VeHY (R?)

with some positive constants d, and d,, which depend only on d,, ds, 7w x-1(2),

rs.x(2) and I'. Combining [3.50), [3.5I), [3.53) and (a.3.3), we see that the
present bilinear form B satisfies (a.2.1)-(a.2.4) of §3.2.
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Now, we shall prove that
3.54)  Blas, VI=(Fy, VY +<Fs, V(, 0 +(F4, 87y for any VeH (RY);
3.55)  [filv-e=C4;
3.56)  (foMv-em=Cd;
(3.57) 1 filv.=c4,

where

Fi)=(8+8 )T () —($4(P4dsa+ P+ a+2))T 4(3)
—(P*(0;91)0,;2)¥ (¥)— {0507 (910084 (y)+{0207(¥)}05 % () 5
Fo3)=@eZ )T (3, O+(P/@:9)0) T (y", 0)— (s PR a)T u(y’, 0));
F)=(P"H@98)@)T (DY b 4() -
To prove (3.54), we use the formula:
(3.58) (PY0 (1), 0:70)+P(P D, W)+Q(PsD, W)
=P;[D, ¢»w]+(P(0;0:)8, 0:i0)—(P(0:44)0,0, i)
+<{PHO;$4)0, W>—(P2{ PLOO+PE'9+20}, )—< P PF*'d, @)
for any # and weHY(Q). Noting the definition of P; and for 9= H¥(Q)
and weH(2) we can check easily. Since H* ) is dense and since the
both hand sides of are continuous bilinear forms on HYQ)xX HYQ) (note

Ap. 4-~(2) and (No. 13.a)), (3.58) is also valid for any & and W= H(2).
Since #4(3)=¢: T :(y)a(y))=H} (R?), combining [(3.52), and and
making the change of variables: x=¥,(y), we have (3.54).

Now, we check (3.55)-(3.57). Employing the same arguments as in (3.47)
and using and we have (3.55) easily. Applying (Ap. 2) with =
K—1 and B=y=N-—1, we have

<<Pf"ﬂ>>lv—(3/z)§C«P}’»K-(sm”ﬂ”N-x for /=1, -+, n+1.

(3.56) follows immediately from this fact and [3.41). Applying (Ap. 1) with
a=K(n) and f=y=N—1 and using we have (3.57).

Hence, applying to (3.54) and using (3.55)-(3.57), we can con-
clude that #,=HY(R?) and that is valid. Noting (No. 1) and combining
[(3.42) and [(3.49), we see easily that = HY(2) and is valid.

Finally, we shall prove that # satisfies (3.30). First, noting that a=H* )
“and taking 3 C%(R) in by the divergence theorem we see that @ satisfies
(3.30.a). Then, applying the divergence theorem to again and substituting
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(3.30.a) into the resulting equations, we have
wiPH9 i+ PPosii+ PRra—g,, 9>=0 for any s H'(Q).

In view of Ap. 5, for any weHY*I"), there exists a 9 H(2) such
that d(x)=w(x) for almost all xI'. Combining these two facts implies that
# satisfies (3.30.b). This completes the proof of

3.4 The time dependence of solutions to some elliptic boundary value problem.
In this paragraph, we consider the following problem :

(3.59.a)u ﬁM“(t):PN(t)[ﬁo(t), Tt zjN+1(t)]‘i‘'Z‘Mi}M(t)zfll(t) in ]X‘Q ’
(3.59.b)y  Qu([Bo(?), -+, Durs(®)]=Fu(t) on JXI.
for 0OSM<N,, where JCI; N, is an integer [0, K—3];

M /M )
Pu® o, -+, Wasi1= T (), )@ A D sess-a+ A0 B0

Qu®)[@o, -, Wyt )= éo(jf){”ialtzAij(t)ajwM-k‘+afBj(t)ajwM-k+a§Bj(t)wM+1-k} ;

Dyya(®), Bnyaalt), Fu(t) and Zu(t) OSMZN,) are given functions; o(t), -+ , v, ()
are unknown functions. The following theorem will be used in proving the
further regularities of solutions to (N) with respect to x.

THEOREM 3.8. Assume that (A.1)-(A.4) are valid. Let N, and N, be inte-
gers such that 0SN,<K—3 and N,+2<N,<K. Then, there exist constants Ay
(0=M=<N,) having the following properties: Let t be any fixed time in J. If
FucHY=H-2(Q), g,cHYe¥-cm([) 0=M=N,), dya€HY YD) (=1, 2),
then (3.59) admits a unique system (Do, -+, On )EHYH(Q)X -« XH¥2"Vy(Q) of
solutions having the estimate: "

N, 2 Ny o,
(3.60) 3 19ullvy-w S C{ 2 10w,y st Z U sl st (B vy carno))

where C=C(A, >+, An,, 01, 02, M(K), Ms(K)).

Furthermore, in addition to what we have assumed, assume that N,+3<N,
=K. If fu(l‘)EX"Nz'””(], D), By)eX N M-G(J Iy (0ZMZN,), dn,())
eXNemNimt=y(] Q) (I=1, 2), then (3.59) admits a unique system (Dy(t), -+, Dn (D))
SXUNe (L X o X XN NNl [ Q) of solutions satisfying the estimates:

Ny
(3.61) 5 10Ol vy 24 SC B { S 1089w, Oll vy vycin
M=1 T r=0 \1=1 .

Ny v :
+ B0 Oy s-n -2t (OPB D vy -ncom>)
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for any t€] and k=0, 1, where C=C(Zo, -+, An,, 01, 02, M(K), Ms(K)).

PRrROOF. By induction on N, we shall prove the first assertion. When N,=0,
(3.59) can be written as follows:

(3.62.2) —0:(AH(1)D D)+ Ado=fo—Ds+0:(A()d,) on 2,
(3.62.b) v, AY(1)0 By + B ()0,90=8,— B°(t)d, on I.

Since [[A¥(O)llw, x-1=Mo(K) and [AYOl x>+ (B OV kn>-amSMs(K) for any
te] (K(n)=max [K—1, [n/2]+2]), if the right-hand sides of (3.62.2) and (3.62.b)
belong to H¥2-%() and H¥1-¢/»(I"), respectively, then by we see
that there exists a 1,>0 depending only on §,, d;, M(K) and Mg(K) and inde-

pendent of t<J such that for any A=A, (3.62) admits a unique solution ¥,&
H7:(Q) and _

(3.63) 190l 3y < C{Il Foll wymat CB o) 4o corer+ 1Be]l vy -
H10:(A" (D)l wy -2+ (B 01 Y w - cs12>}

where C=C(d,, 8, 8:, M(K), Ms(K)). Since 3, H¥2-Y(Q), applying (Ap. 1) and
(Ap. 3) with @=K, B=y=N,—1, we have |

10:(ARDI)| w,-2 = CIIARDO k1911 ¥p-13
(BB N xy-csiy= CABY N k- curms 11l g

From this it follows immediately that the right-hand side of (3.62.a) and (3.62.b)
belong to H¥2~%(Q2) and HY: ¢/»(["), respectively. And then, noting we
see that the first assertion is valid for N,=0.

Now, let us assume that 1<N,<K—3 and that the first assertion is valid
for smaller values of N,. Then, for any N such that M,+1SMZK, fMe
HY-M-%Q)  FycHV-Y-&() (0<M=<N,—1), oy, €H" ¥(2) and oy <
HY-N1-1(Q) there exist constants 2, -, Ax,-1>0 independent of fM, Zu, U
and dy,4, such that there exist i, H¥ ¥(2) 0<M=<N,—1) satisfying the equa-
tions (3.59.a),, and (3.59.b)y (OSM<ZN,)). Furthérmore, these solutions are
determined uniquely and satisfy the estimate:

Ni-1
(3.64) 2 18- S LI, v, 10 sl

Nyg-1oo
+ MEO WSl v-s—2tHCE M) v -r-csr20)}

where C=C(A, **+, Ax,-1, 01, 02, M(K), Ms(K)). Let us denote solutions, ob-
tained by putting fx=8x=0 O<M=<N,) and #y,+,=0, by Ry=Ru(iy). And
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also, let us denote solutions, obtained by putting é»,=0, by Su=Sx(Fo, -, fo_l,
&0, =, &x,-1» Dn,+1). Since the equations are linear, the uniqueness of solutions
implies that each Ry(dy,) is a linear map from HY-¥1(Q) to H¥-¥(Q). Further-

more, by we have

Ni-1
(3.65) 3 IRu@x)lv-uSCliow,l-n,;
Nyi-1 o
(3.66) P ISu(fo, -, fzvl-u Bo, *, BNy-1, Uny )| lv-n

Ny-1
<CHliowlly-wit 2 UFullwvosatCZudr-w-corm)h

Here, C=C(4, -+, An,-1, 01, 82, M(K), Ms(K)). Note that general solutions &,
can be written as follows: dy=Ry+Sy. Substituting 9, (0<M<N,—1) into
the equations: (3.59.a)y, and (3.59.b)x,, we have the equations for unknown @y,
as follows:

(3.67.a) — Py (OLRoGw), -+ » Ryy-sBn,), 9w, 01+2Ay vy, =Fgo in 2,
3.67.b)  Qu,([Ro@x), -, Ry,s(Bny), By, 01=Fr on I,
where

(3.68.2) Fo=Fy,~0nuetPu(®[So, -, Swi-1 0, Da,0];

(3.68.b) Fo=8y,—Qun,®LSs, ) Swy-1, 0, Ix,ui].

Our task is to find a solution 5, €HY2"¥1(2). As a first step, by the varia-
tional method we prove the existence of a weak solution 9y, €H (2). Keeping
this in mind, let us consider the following variational equation:

(3.69) Vi, a]l=(Fgq, a)+<Fr, %> for any acH Q)

where

3.70.a) V[0, al=B.[t, v, al—C\(t, 9, #)+Cu(t, 0, @)

(3)70°b> cl(tr 1}: ﬂ):NI(al(atAw(t)i})’ a)+(PN1(t)[RO(')>r Sty RNl-l(ij); 0: 0]; ﬁ);
(3'70'C) cz(t, 17; ﬁ)=N1<atBo(t)ijy a>+<QN1(t)[R0(73>; Tty RNl-l(i}): O) 0]) ﬁ>;

B, is the same bilinear form as in (No. 14). Here, note that Py ()[R®), ---,
Ry ,-:®), 9, 0] = 0,(A%(1)0,0 + N, A*(t)D) + Py (D[ Ro(®), ---, Ry,-1(#),0,0] and
Qux,O[R®), -+, Ry,-1(®), 9, 0] = v A¥()0;0 + B (1)d,0+ N,0. B°(t)0 + Q v (D[ R (D),

-+, Ry,-1(9), 0,0]. Let us prove that V, is coercive for large A>0. For the
notational simplicity, we shall use the same letter C’ to denote various con-
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stants depending on Ao, -, Ax,-1, 01, 0z, M(K) and Ms(K). To estimate €, and
C,, we use the following facts: Let L be an integer €[1, N,—N,]. If v
HL(Q), then

B.7La)  [0:@, A L1+ | Py (DLRo@), -5 Rvy-s(®), 0, 01| 2-a S C'[15]2;

B.71.a) (0. B'®)0) -y +LQ N, (OLRD), -+, Ryy-1(®), 0, 0D z-c/;v = C7 17 2 .
In fact, since M,+1<N,+L=<K, by with N=N,+ L we know that

Ni-1

(3.72) = 1Ru@llwr-u=C 0] -

Hence, letting 1<k<N,, applying (Ap. 1)-(Ap. 3) with a=K—k, B=L~1+k
and y=L and using we have

(3.73.a) 10 {0 ASOR v y41-x @ H -1 = C7 Dl 5
(3.73.b) 10:{0t AY(1)0;R - @)}H -1 = C" 1915
(3.73.c) (w0t AYB0;R w2 -y = C' 0] 15
(8.73.d) (tBI)0;R N -1 @ z-c1i> S C' 1Dl 25
(3.73.¢) @B OR N 11-#@Ni-am=C'lolL,

where we have put Ry,(#)=d for the notational simplicity. In particular, by
(3.71) with L=1, (No. 11), (No. 12) and (No. 12.b), we have

(3.74) \Valo, @]l <C'I8]:ll@l; for any &, acH Q).

Recall (No. 16). Namely, we know that B;[t, d, #1=4,[[?]|? for 2>0d,. On the
other hand, by (No. 12), Schwarz’s inequality and (3.73.b) and (3.73.a), we have
for any ¢>0

(3.75.2) [Ci(t, 3, D) = C' 1ol ]19]o<elld|F+{(C)*/4e}[B]I5 -

And also, noting Ap. 4-(2), by Schwarz’s inequality and (3.73.b) we
have

(3.75.b) |Ca(t, B, 0)| < C'@N=C"{eldll}+C(e, n)al}.

Combining (No. 16) and (3.75) and taking &>0 so small, we see easily that there
exists a AM>0 depending only on A, ‘-, Awn,;, 01, 02, M(K) and Ms(K) such
that

(3.76) V.ild, 91=(8,/2)I9]12 for any s€H'(2) and 2>4V.

Combining [3.74) and [3.76) implies that V; is a coercive bilinear from on H(2)
X HY Q) for A>AM,
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Now, we shall prove that
(3.77) IF gl g w2t 4P Y wymy-cam <C7 A
where
' 2 Ny

4= ;21 ”171\71+1HNg-Nl-L‘FMZ:o(“,?M”Nz-M-2+<(§M>>N2-M—(a/2>) .
Recall the definitions of Fg and Fr (cf. (3.68)).‘ Applying (Ap. 1)-(Ap. 3)Jwith
a=K—Fk, B=N,—N,—1+Fk and y=N,—N,—1, we have for 2<kE<N,,
(3.78.2) 10:@5ARMS v +1- )| v -y e S CMSEO|S ¥ ysr-2l v g vy -1k 5
(3.78.b) 0.0 A¥()0;S vy il -1 e SCM(KIS w <t | v g3y 3
(3.78.¢) «l"ia'fAisj(t)ajSNl-k>>N2-N1-<3/2)§CMS(K)||SN1-k” NZ—N.1+k ’
(3.78.d) (0%B (1)0;S N -2 wy-N1-csir SCMs(FEOIS vyl v y= w41 5
(3.78.¢) ((akBo(t)SNl;l-l—k»Ng—Nl-(slz)SCMS(K)IISN1+1—k”Nz—N1—1+k

And also, applying (Ap 1) and (Ap. 3) with a=K—-1, B=r=N,—N,—1, we
have ‘
(3.79.a) 10:(0: AR n 4 )| wo-v -2 SCM(K)On 41l v g-y-1 3

(3.79.b) (0. B (Yo N 410 Ny-w1-si> S CM (K| 0w 11l vg-n -1«

Combining (3.78), (3.79) and with N=N,, we have In particular,
since N,—N,—1x=2, applying the well-known Lax and Milgram theorem to
we see that there exists a unique & satisfying provided that A>4M,
Furthermore, combining and with #=9, we see that |§],<
' A. | o
Now, by induction on L&[1, N,—N,] we shall prove thal_: VeHY Q) and
that ‘ : - .
(3.80) 18] .=<C" 4.

As has been seen, we know that the assertion is valid for L=1. Thus, we
assume that ZSLSNz N, 9<HYY(2) and |8].-.<C’A. Let us prove that

P HY2) and [(3.80) is valid. Keeping (3.67) and [3.69) in mind, let us con-
sider the boundary value problem:

(3.81.2) —8:(AY()0,w)+Aw=CGo in 2,
(3.81.b) ' v AY0)0 @+ B 1d,8=Cr on I,
where ' ‘

Go=F g+ N3,0,A°t)9)+ Py (DL R(®), -+, Ry,-1(9), 0, 01;
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Go=Fq—N,3,B"®)0—Q y,()[Ro(®), -, Ry,-:1(9), 0, 0].

Since L—2<N,—N,—2 and L—(3/2)<N,—N,—(3/2), by (3.71) and we know
that Go=HL Q) and GreHE- ("), Furthermore, we have

(3.82) I1G allz-s+ 4G rYr-csim»<C'4.
Hence, applying [Theorem 3.6 to (3.81), we see that there exist a 1*>>0 depend-

ing only on 9,, d;, M(K) and Mg(K) such that for any A>41®, (3.81) admits a
unique solution # having the estimate:

(3.83) _ lwll<C(L, 4, 8, 8s, Mu(K), Ms(K))C' 4.

- Final task is to prove that @=% for large 4>0. Since weH‘(Q)CH“(Q),
multiplying (3.81) by #, integrating the resulting formula and using (No. 9), we
have ' ' -

(3.84) B;[w, @]=(G o, #)+<Cr, @) .

Since (G g, #)=(F g, &)+C\(t, , #) and (Cr, a>=(F r, ad+Cat, 3, @) as follows
from the definitions of Go and Gr and (3.70.b and c), combining (3.70.a)
and we have :

(3.85) _ B;[w—v, 12]=O for any acH'(Q).

—

Hence, putting #=w—% and using (No. 16), we see that @W=9 provided tha_t
2>3,. Summing up, we have obtained that s H%(2) and [3.80) is valid pro-
vided that A=Zmax (0., A, 2®). Accordingly, if we take Ay,=max (1", 1®, d,),
then we have the first assertion of the theorem. _

Now, we shall prove the second assertion, i.e., the dépendence on ¢ of solu-
tions. From the first assertion it follows that for each t=J (3.59) admits solu-
tions dy=HY2 %(2) (0EM<N,. From now on, we write ¥y=0y(). First,
Iy C(J, HY"¥(2)) OSMZN,). Lett and s be any points in J such that
t#s. Putting @y=>0y({t)—0u(s) for 0OXM<N,+2, by (3.59) we have -

(3.86.a) @ sgra— Pu@®L o, -+, W11+ Auilx
=7 u(t)— F u(8)+(Pu(t)— Pu(s)Bo(s), ++ , Daras(s)] in 2
(3.86.b) Qu(t)@o, -+, Barar] |
=Zu()—Zu()—(Qu(8)— Qu(t)Fo(S), -+, Dusr(s)] on T’
for 0O=M<N,. Applying (3.60) to (3.86) implies that
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Ny
B8N SO ul vy xS C{ B N, O, (S wyeycs

Ny
+ S0 F = Fu vy -a (B OB (Mo w-s)+ R, 9},

where
Ny
R(t, S)=M§o(II(Pu(t)—PM(S))[ﬁo(S), oy Dyar(S) ]l vy-2-n

+(Qu()—Qu(SNLIKS), 5 Darsr(S)I v p-r-csrey)-
Recalling the notations (No. 3. a and b), let us put
(3.88) Ux(t, s)=[P(t)—P(s)]w x-1; Us(t, s)=[Pt)—P(s)|Q()—Q(s)]s. k2.1 -

Applying the mean value theorem to U. and noting the definition of Lipschits
continuous functions, by (A.1) we have that

(3.89) Ux(t, s)SM<(K)|t—s|; Us(t, s)SMs(K)|t—s].

On the other, by (3.60) we know that

N
(3.90) DIl usCA,

where
A'= z—zx |On, 41 |o,Nz_Nl_z,J+Mgo(|fM|o.Ng-u-z.J+<gu>o.N,-M—(s/z)..r) .

Applying (Ap. 1)-(Ap. 3) with a=K—k—1, f=N,—M—1+4+k and y=N,—M—1
(0<ksMZN,), we have that

BI) R, HSCLULL )+Uslt, ) 3 1oa(lnn S CLUE 1+Uslt, )4

Here, we have used Combining (3.87), [(3.89) and (3.91), we see that
Du()sC(J, HN¥:-¥(Q)) for 0S<M=<N,. Furthermore, follows from (3.60)
when k=0.

Finally, we shall prove that d,()C(J, H¥2"¥1~¥(Q)) for 0SMZN,. If
Iy XN ¥-1(J Q) applying (A.7)-(A.9) with M,=K—2—k, My=N,—M—2+Fk
and N=1 and noting that M,+M,=K+N,—M—4=K—-1>n/2 (M+3<N,+3
<N,), we see that Py(t)[#4(), -+, a4 ()]1EX"(J, 2) and Q u(D[Do(t), -+ , Far4a(t)]
eX¥v2(J, I'). Thus, differentiating (3.59) once in ¢ and putting 0.9 x(t)=1 x(t)
(0EM<L N, +2), we have

(3.92.2)x W y+o(8)— Pu@[#o(D), -+, Wa+1(D)]
=ath(t)+PA{l(t)[i}0(t)’ Tty ﬁM+l(t)] in ]XQ ’
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(3.92.b)x Qu(OLWo(®), -, Wy (D]=

0:8 u(t)+QuO[do(D), -+, Iy  on JXI',
where

4 B e — ¥ M JAR+1 450/ 4\5 k+1 Atj 5 .
PiO)ds, -+, Daad= 2 (7, J0:(08 A W1 s+ A,Dn-01}

qu(t)[ﬁo, ftt, 5M+1]= éO(AZ){vi3§+‘A‘f(t)ajﬁy_k

+0¢r B/ ()00 -2 +0t B W0 41-2 )

From this point of view, first we shall prove the existence of solutions @ y(t)=
CY(J, HY* Q) 0 M=N,) where @ y,4i()=0,9x,4()€ C*(J, H¥+¥1-1-4(Q)) are
given (/=1 and 2); secondly, we shall prove that

Ny
(3.93) ‘1112% ME__w”'_Z)M,At(t)_wM(t)”Nz—Mq:O

where Zy, 4:(8)=(@ u(t+4t)—0 () A1) " — 0 4 (2).

To prove the first assertion, we use the part already proved of the second
assertion of Applying (Ap. 4)-(Ap. 6) with a=K—-2—Fk, B=
N;—M—1+k and y=N,—M-—2 and noting that d}**A¥()eC'(J, HE*"*(Q));
FHBY)ECJ, HE-CD- ")) ; By _i(t) and 0,0y n()SC(J, HY 2~ ¥7175(82)) (1=
1, -, n;1=0,--,n; 0SESM<N,+1), we see that Py()[0.(1), -, dxm()]=
C(J, HY=#=%Q)) and Qiy(D[Ds(t), -+, Dyn()]EC(J, HY2¥-([")) for 0=M
<N,. Furthermore, we have

Ny
G99 X NPxDOFe(®), s DarssD] wp-s-sH(Qu @), -, DapsOwp-ne-corr}

Ny+1

S CAMAE)+MSKO} 3 193]y

Hence, there exists a unique system (io(t), -+, Wx,@)EC(J, H¥2"N1-Y(Q)) of
solutions to (3.92) having the estimate:

Ny 1 2
(3.95) S BuOly 02 SC S { 5100w, Dll e vy-1-8

Ny
+Eo(”a’ffu(t)” No-M-2-k +((a’fgu(t»)Nz—M-(s/z)-k)} .

Here, we have used (3.94) and with k=0.

Now, we shall prove[3.93) For the notational convenience, we put TANO,
=(Ft+4D)—F@O)At)1—8,F (1) and | 4(t)=F(t+4)—f(t). Combining (3.59) and
and (3.92), we have
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(3.96.a) 4 Zarsz, 2eO)— Pu()[ 20, 2:(5), =+, Zagar, 2]+ AuZ s, 2:(F)
=[Ffudse®+Ho. o 4(t) in 2,
(3.96.b) 5 Qu(t)[ﬁo,dt(t), vooy Zapan, a6 ]1=08ulse+Hr, u 4(t) on F,

where Zy 1 2(D=[0n w1 12(t) U=1, 2);

M M
Ho.u.2®)= 3, J0{[BALaObssr-s(t+ A= A OFscr1-1 ] 1)
+[OFAM] 0000, D10-4(t+ AD— 0 AYDOD B0 4D}

. M M
Hrp, y, 4:(1)= k2=o( b )[Pt{[a’fAij]At(t)aﬂ)M-k(t+Af)*a'f+1Aij(t)aj17M-k | 2¢(2)

+[4B7] 4 (DB D 4(t+A8)— 5+ BHOI a1 | 2:(2)
LB L4014 (t+ A=+ B s | D)] -
Then, applying (3.60) to (3.96), we have

N, 2
(3.97) I ERPRGIEe > | I RO Py
| . |
+ 3 U7 ad Ol vy s+ (LZad ey -cor

+1Ho. a0 06Ol y-ss+CHr. a0, OV, a-cno)) -

Sincedy, p()EX ¥ N1ty [ Q), Fy(®)E X Ve ¥-3( ] Q)and Gy X1 Ve - T)
for [=1,2 and 0SM<N,, the first, second and third terms in the brace of
tend to zero as dt—0. Since FAY<=CH(J, HX**¥(Q2)); 0¢BY e
CYJ, HE-SID- (")) Dyryy_4(t) and 00, 2()=CO(J; NV M-1+k(Q)), we see that

(3.98) 1004 AY 14| k-2-2—05 ([OEB T2t k-cs12>-»—0;
1D s41-2 1 2.l Nz—M-1+k“*0; 10Ba-2 1 2:D]] No-s-142—0

as 4t—0. Applying (Ap. 1)-(Ap. 3) with a=K—2—k&, ,B=N2—M—1+k‘ and
y=N,—M—2 and using and [(3.90), we see that

(3.99) I Ha.m, O v y--5—0; KHr . 2O 5 y-p1- 51250

as t—0 for 0SM<N,. Combining and and letting 4¢t—0 in the
resulting estimate, we have [3.93). Since means that a,5(¢) exists every-
where in the strong topology of H¥2~¥-1()and 0,9 ()= »(t)= C(J, HY:~%-Y(Q)),
we see that dy()eX'¥e-¥-1(J Q) for 0SMZN,. Furthermore, substituting
0.0 y(1)=1w y(t) into [3.95), we have with £=1. This completes the proof
of the theorem.
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§4. The energy inequalities of higher order
In this section, we shall prove First, we assume that 2

C=(J, HX(2)) where J=[0, T—e¢] and ¢ is any number (0, T). In view (Ap.
10), we can differentiate (N) L—1 times in . Thus, we have

4.la) POOFa@)]=0t"Fo)+F g, .-.(t) in JX&,
(4.1.b) QU a(t]=04F r(t)+Fr.1a() on JXI',
where TR e

Fo.uatty= 5 (57 Yoo A%080 a0+ 4400 9100

Froam= 517 ) b1 400 ptate)+05 - B0 Biact)

+af-1—135<t)a§+lzz<t)} .

Note that the equalities in (4.1.a) and (4.1.b) hold for almost all te J as elements
in L*9) and HY*('), respectively., Applying ,(Ap.rl)—(Ap. 3) with a=
K—(L—1—1), B=L—I—1 and y=1, we have for almost all t=J

lé% l0:{0F L A%(1)0: 0 uD} o= Cké) [0F A%l k- z-1-0 110205 - 141> 3
 F T AYOR AN S C B IF T AY D -t r-o 0Dl st

3 @ B 00,412 S C B OF B OV s-casoo-u 080D o

where 0,=0d,. From - (No. 2.a) it follows that Haf""Ais”(t)llK_cL_l-l_,,
(@F ' 'B¥(t)) k-cr-1-v-am>=Ms(K) for almost all t€] and for any i=l, -+, n;
k=0,1, .-, n; [=0,1, ---, L—1. Combining these results, we see easily that

(4.2) IF @, 2@ I3+CF 1. 1-1(D)212 < C{M(K)+Ms(K)} | DRa(t)|3
for almost all t=J. Applying to (4.1) and using we have

(43.2) B, 08 a)=2e°TH BQ, 8 o)+ (D) | Dslids

+ ()| (1087 a() 8+ P (M }



324 Yoshihiro SHIBATA

43.2)  E(t, 0 a)=e"™| BO, 9 a0)+C(D{1D (013

+SZ("af“lfﬂ(s)"g‘*‘«a{‘-l}"p(s)))fm)ds +S:|lﬁLa(s)"%d3}”z
x{[0E17 a(o)1+@FFremis + 1D isas) .

for any t€J. In the present proof, C(T) denotes various constants depending
only on T, d,, 0:, L, M(K) and Mg(K).
Now, we shall prove that

43.0)  ID=A®IS CD{ID O+ 17 a1 2-s.0.t0.3% <F rIb-s.1n 0.0

+{ @05 7o+ @ Fr(sMtds - tor any te .
If follows from (4.3.a) and (No. 22) that
@y 3 ol sc{IDtao+ | 10k kds
+{ (1087 o) 5+(@ Fr(sMiwds} - for any te/,
4.5) 104221 = CHI0F 9Ol 21 H(OEF P 2-camr -t
+ 21 A1 0+ 1D a D)o}

for teJ and 0</< L—2, where C=C(0y, 0z, L, Moo(K), Ms(K)). Let 0=I<L-2.
Differentiating (N) / times in #, we have

(4.6.2) —d(AY(D(BAD))=0}] a(t)—04*A()+B( AR A1) +GC 9.4() in £,
(4.6.b) v, AY(1)3,@a(1)+ BX1d,@1a®)=8:] r(t)— B3 a()~Gr.(® on T,

where

C o ()= ,:2:(,i)Eh-{6%"‘A*°(t)a’z“a(t)+az-kAU(t)&ﬂ:a(t)} for =1,

0 for l..—_O’

b3 ( zi){”faf’”Aif(t)aﬁ’m(twaz-*Bf(t)a,-afzz<z>+ag-k B"(t)a’f“ﬁ(t)}
e for (=1,
0 for [/=0.

Since a=C=(J, HX(R) and 0</<L—2<K—2, it follows from (Ap. 10) that the
equalities of (4.6.a) and (4.6.b) hold in the sense of L% Q) and HY*(I") for all
t€H, respectively. Applying (Ap. 1)-(Ap. 3) with a=K—(—Fk), f=L—2—F
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and y=L—1—/, we see easily that

4.7) I1G 2.1 2-2-1+4G 1. 1OV 1-ca125-1 = C{MAK)+ MK D *a(t)]}o
for all t<J. On the other hand, we have

(4.8)  10.(A*B @) -2-1, KB ()Y 121
< C{M(K)+Ms(K)H 0 4B o114+ | D Ma(t)lo} - for all <.
In fact, we can write symbolically
10 AR®FH A o1 = i‘ZZ{ |AS@®)DE- 13+ at)]o

+oL) S S 1DE-- Y A DA Ao -

i=1 N=0

By (No. 13.b) we have
IALBDE 10 () o S | ARD oo, o0 (1)) -1 S M s(K || (8| -1 -

Let 0OSN<L—2—/. Applying (Ap. 1) with a=K—(L—1—[—N), B=L—1—
(N+{+1) and y=1, we have

1DE1--¥ AQ) DYoL+ a(t) o< C Ms(K) I D *a(t)lo -

Combining these facts, we see easily that the first part of (4.8) is valid. In
view of Ap. 5, there exists Bl ()Y EX-tY(I, 2) such that B, ()=
B°(t) almost everywhere on I" and | B, | x-1.1, 1 SC<{Bx -1.172. 1 <CMs(K). Since

(B )0 () - car2>-1= (B0t 4 ()N 1-cs125-1 = C | B0 @(D)| £-1-1

as follows from Ap. 4-(1), by employing the same arguments we see
that the second part of (4.8) is valid. Hence, applying [Corollary 3.7 to (4.6)
and using and (4.8), we have [4.5). Repeated use of implies that

) 2 105011215 C{ S5 107 2l -a-1-H @ rE-cormr—s

+ 3 18a®lg-+1 D5 ace)
where C=C(L, 9, d;, M.(K), Mg(K)). Since
ID* @3S 1D* aO)5+2| |1 D*acs)lds

combining and we have
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410)  ID*a@BSICTHID O+ F o1 E-2.0.0. 0+ PEo2 0.0

+{ @17 o) 18-+@ Frismuads + IDFaslids}
To get (4.3.c) from (4.10), we use the well-known

Gronwall’s inequality: Let a(t) and b(t) be non-negative functions in L'(a, b).
If b(t) is non-decreasing and the inequality: a(t)gcgt a(s)ds+b(t) holds for any

t=(a, b) with some constant c¢ independent of t, then a(t)<e°“~¥b(t) for any t&
(a, b).

Applying Gronwall’s inequality to (4.10), we see easily that (4.3.c) is valid.
Furthermore, substituting (4.3.c) into (4.3.b), we have that the estimate (b) of
Theorem 3.1 is valid for any t=J and asC>(J, H()).

Now, we shall remove the assumption: a<C=(J, HX(2)). To do this, we
use the following lemma.

LEMMA 4.1. Let L be an integer <[2, K] and pst) be a function in
C3([—2, —1]) such that Sp(t)dt=l. Put ps(t)=0""p(07't), v,;(t,x)::gpa(t——s)v(s,x)ds

and I (t, x)=(av)st, x)—a(t, x)vst, x). Then, the following four assertions are
valid.
1° If a=8%([0, TI1x®2) and veY 2y [0, T), 2), then |Islz-21.10.:1—0 and

S:1|ag~-11,5(s)||fds—>o as 80 for any t(0, T).

2° If ac BX(0, TIxI") and v=Y L2120, T), I'), then Isdp—s'st0.—0 and
S:«af"h(s)))f,zds—»O as 30 for any t=(0, T).

3° If acY 140, T1, ) and veYL* [0, T), ), then |Is|i-s.1.c0.c—0 and
S:naf-ll,,(smds—»o as 80 for any t(, T).

4° If acyE-112[0, T], T) and ve¥YE22[0, T), I'), then <Is>i-2.1/200.e-0

and S:«af-va(s)»f,zds—»o as 8—0 for any te(0, T).

Defering the proof of Lemma 4.1, we shall complete the proof of
1.3. Let the notation v; be the same as in and put 9;=((vy)s -+,
(vm)s) for 9=%(v,, ---, vm). Let 6,>0 be a number<(T—e)/2. Note that ;<=
C=(J, HX(2)) for 0<d<d, and satisfies the equations:

(4.11.a) POLaO1=(F 2)s®—Rsa() in Jx2,
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(4.11.b) QWLast)]=Fr)s®+Ssa® on JxI,

where

(4.12.2) Raa(t)=l=§o O { AMH()3, it s(t)— (AT, 0)s(t)} ;

(412.)  SsO=v( AUDDaO)— (A0, + 2 B O0:ot)—(BBd)D).

Applying (4.3.c) to (4.11) implies that

@13 1D aORSCTHID 3O+ F ¥l oo, o, 65H<F s srn oo
+ 18 F )8+ @ AN s+ Rk E.o.10.0

(St -a, i t0. 097 | (108 Rois() 3+ (0% S5}

As was stated in Remark after [Theorem 1.3, we know that f o= X220, T), Q),
frext-euyqo, T), I'), and 8517 o(t) and 8F~*7r(t) are L® functions in (0, T)
having their values in L%Q) and HY*(I"), respectively. Thus, we see easily
that

w1 I DE(its— ) 13—0; 1(Fa)s—F 2l z-20.00. u+<<fr>,§—fp>L-2,m. t0,67-0;

[ 1057 22— F XN+ @F rYo— Fr)XMEi)ds—0

as 6—0 for any r<[0, T) and t=(0, T). And also, applying Lemma 4.1 to (4.12),
we have easily that

| R3] 1-2,0,00, 63 <Ss%> 12, 172,100,430 ;
(4.15)

{108 Rt 18+-(08~Sa(sME)d s—0

as 0—0 for any t=(0, T), because 0,z XL-:%[0, T), Q)Y L-%Y[0, T), 2) and
s Xrt-v[0, T), NcYyr-=v¥[0, T), I') for (=0, 1, ---, n (the second asser-
tion follows from Ap. 4-(1)). Letting 6—0 in (4.13), using (4.14) and
(4.15) and noting that & is chosen arbitrarily, we have the estimate (a) of Theo-
rem 1.3. In the same way, we can obtain (b) of

PROOF OF LEMMA 4.1. The assertions 1° and 2° were essentially proved by

Ikawa [2]. Noting Ap. 5, by 3° we have 4° immediately. Hence,
we will prove 3° only. Noting (Ap. 15) and (No. 2.b), we have

L-2 1 l
|I¢$|L-2.1,Eo,t]§§, kg.«;(k)l(afaaé_kv)o‘“ faaﬁ—kvdld.L—x-t.Eo,z]-
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Let 0<0<6,<(T—1)/2. Applying (Ap. 1) with a=K—1—k, f=L—-1—({—Fk)
and y=L—1-—I/, we have ‘

(0% ad}*v)s(s)—0%a(s)0; *va(s)liL-1-1

<C sup{ldta(s—r)—0ta(s)llx-1-x10=s=t, r&[—2, —11}H v L-r0.t0.1> -

Since dta(s)eYX-1-#Y[0, T), Q) X X-1-¥[0, T), 2), the uniform continuity of
0%a(s) on [0, t+25,] ([0, T)) in the strong topoloty of HX-'-*() implies that
| I5)2-2.1.10.e3—0 as 0—0 for any t<[0, T).

Next, we shall prove the second assertion of 3°. Noting (Ap. 15), we have
for any multi-index a such that |a| <1,

00 L= 5 5 (- ,‘2)(2){(aeazaaz-ﬁas-z-‘v>5<s>—aﬁaza<sxa;-ﬁa§~2-lv»(s)}.

First, we consider the term where 1<|B8|+4+/<K—1. Applying (Ap. 7.a) with
M,=K—-1—|8|—I, M,=I—|a—pB| and N=0, we have

10:{(0804a02~POL 2" )s(s)— 0804 a(s)(@2PAE 2~ w)s(s)} lo S TH(s)+T3(s)
where
Ks)=/(040:+ a0z ~Fak -2~ tv)y(s)—080L  a(s) (0% ~PAE 2 w)x(S) ]l 5

TY(s)=|/(080:ad5~FaLE~*~tv)s(s)—050ka(s)(@2~PE " tv)s(s)llo -
Applying (Ap. 1) with a=K—|8]|—I—1, B=i+1—|a—B]| and y=1, we have

IXs)< CSpa(s—r)llﬁK“‘ﬁé(a(r)—a(S))IlollﬁL“v(r)llodr-
Then, by Schwarz’s inequality we have

S: s)ids= CS:{[SPO')HD-K“D'}c(a(s-—ar)— a(s))llﬁdr]

S oD - tu(s—on)li3dr}ds .

Let 0<0<8,<(T—t)/2. Since veY 1[0, T), 2) and
(4.16) s—or<T provided that 0<s<t, —2<r<—1 and o0<(T—1)/2,

we have that Sp(r)||5"“v(s—5r)llﬁdr§leL_l,o,[o,T) (cf. (No. 2.2)). Hence we

have
1357 ds=Clvlsosntons|o(r)dr| |D*Diats—0r)—a(s)lids .

Since acYX-1Y[0, T), 2), DX-'Dias L¥(0, T)X2). Noting (4.16), by the Rie-
mann-Lebesgue theorem, we have
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lim S:nEK-lm(a<s—-ar>—a(s))ugdspm:o for all r&R.

And also, we have
155D i(ats—dr)—a(sNlidspr)s 4o, 1D~ Diats)ltds s LAR).
Hence, by Lebesgue’s dominated convergence theorem, we have
lim Sp(r)drS:[lﬁl"lﬁé(a(s——ar)——a(s))[lﬁdszO .
As a result, we have obtained
417.2) tim | Ts¢ds=0 for all t<[0, T).
Applying (Ap. 1) with a=K—|B8|—!, f=I—|a—B| and y=1, we have also
I‘%(S)é'CSpa(s—r)HﬁK"ﬁé(a(r)—a(S))IIollﬁL"v(r>Jlodr.

Employing the samle arguments,‘ we have
(4.17.b) lim S: Ksy'ds=0 for all t[0, T).

Now, we consider the term where |B]4/=0, i.e., the term: J;=(aw);—aws
where w=0%05"%. Note that we L=([0, T), L*(2)). We can write d; =]+ 7:
where

=0, {pss—r)als, m—alr, DHHwlr, H—u(s, 2)dr;

h={psts—r(aw, m—as, Wi, dr@s, H=d.ats, %).

Put Ii(s)=|/Jille and I} (S)—-“]z”o Let 0<s<Zt<T, 0<o<(T—1t)/2 and s—re
[—28, —0]. In view of [Corollary] Ap. 7, a(s, x)e 8% ([0, T1x2). Hence, by the
mean value theorem we have . :

|0-{ps(s—7)a(s, x)—a(r, x)}| | alm,i,:o.n{pa(s—r)-i—ﬁ“ls-rl'llp,’s'(s—r)i }
where pj(s)=0"'p’(07's).. By Schwarz’s inequality we have
¥ =Clald (| 20)dr) | ) wis—on—w(s)lar

where p(r)=p)+I|r||p’()|. Since we L=([0, T), LZ(Q))CLz((O T)x ), by the
Riemann- Lebesgue theorem, we have

.S:IIW(S—ﬁr)—w(s)llﬁdép(r)ﬁo as 6—0 for all reR.
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As also, we have

[[ (s —on—w(ladsprr=al lwldspre LR).

t
Hence, by Lebesgue’s dominated convergence theorem we have that So 3(s)¥ds

—0 as —0. On the other hand, since |d(s—0r)—a(s)|w o= Clla(s—0r)—a(s)|l k-1
as follows from (No. 13.b), by Schwarz’s inequality we have

13657 = | lwts—onlitetridr x {lats—ar — (g o(r)dr
Noting (4.16) and the fact that we L=([0, T), L¥2)), we have
[ 1557 ds SClwloo.rl {105 ta(s—ar—DE-1a(s)ltptridr}ds

Since a(s, x)eY%-2Y[0, T], @) c L=([0, T], HX-(Q)), DX-a(s, x)= L*(0, T)X Q).
Hence, employing the same arguments mentioned previously, by the Riemann-
Lebesgue theorem and Lebesgue’s domined convergence theorem we have

lim S:dssHﬁf"d(s—5r)—5§"c’t(s)ll§p(r)dr=0 .

From this it follows that S: 4(s)?ds—0 as d—0 for all t=[0, T). Combining

these results, we have

(4.18) lim S:na, Ji(s)lzds=0 for all t<[0, T).

From (4.17) and we have [Lemma 4.1.

§5. An existence theorem of solutions to (N) in X%°([0, T), 2)

In this section, we shall prove

THEOREM 5.1. Assume that (A.1)-(A.5) are valid. Then, for a given system
(i, @1, f 9, Fr)EDX[0, T)) of data, (N) admits a unique solution i< X>°*([0, T), ).

As a main step of our proof of [Theorem 5.1, we shall prove

LEMMA 5.2. Let & be any number (0, T) and put J=[0, T—e]. Assume
that (A.1)-(A.5) are valid. Let (i, #;, f o, fr) be data in D*J) such that i,
H*(). Then, there exists a unique a(t)sX*°(J, 2) satisfying the equations:

POLal=Fa(t) in JxR; QWLa®Wl=fr@® on JxTI,
72(0):720 and azz?(O):iZ; Z.n AQ .

(5.1)
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REMARK. In our proof of below, we use the existence theorem
of solutions to the problem for P,(t) and Q,(t) defined by (2.5) (cf. [Theorem 5.3,
below). To do this, the compatibility condition for the operators P,(¢) and Q,(t)
must be satisfied by (i,, ., fg, fp). By using the assumption: #,=H?*{Q), we
shall reduce (5.1) to the problem with zero Cauchy data and fp(O):O on I,
where the compatibility condition for P,(t) and Q,(t) is satisfied for any o.

Deferring the proof of and assuming that is valid,
we give a »

PROOF OF THEOREM 5.1. The uniqueness of solutions follows from
2.1. To prove the existence of solutions, it is sufficient to prove that for any
closed interval [0, T—e¢], (N) admits a unique solution #.=X*%[0, T—e], ) to
(56.1). For, if we put #(t)=i.(t) for 0<t<T—e¢, since it ()= (t) for 0=<i<T—¢
provided that 0<e’<e<T as follows from the uniqueness of solutions, #(f) is
well-defined, belongs X2°([0, T), 2) and satisfies (N). Put J=[0, T—e]. In
view of we shall prove that there exist sequences {it.,} CH*(2) (k
=0 and 1) such that

(5.2.a) lds—dti—0 and  ||Ges—dbol:—0 as 6—0;
(5.2.b) v AY(0)d, 805+ BH(0)0 jtos+ B°(0)it5=f r(0) on 2.

If we know that (5.2) is valid, since (5.2.b) means that i,, #,, f,q and fp satisfy
the compatibility condition of order zero (cf. (1.2) with N=0), applying
5.2 implies that there exists a solution ;)= X%/, ) to the equations:

(5.3.a) PO ast)1=F o@t) in JxQ; QW[ax)I=Fr@) on JxI';
(5.3.b) #5(0)=#, and 0,%;0)=4#, in Q.
Applying with L=2 to @;—#s implies that

1
|dts— s lz.o.JéC(T)kZ:]o Ntrs—rs |2-n -

Combining that and (5.2.a), we have that {#,} is a Cauchy sequence in X*°(J, ).
Since [ is a closed interval, by the cmpleteness of X*°(J, 2) we see that there
exists a limit @, of {#;} in X2°(J, 2). Applying (Ap. 1)-(Ap. 3) with a=K~-1,
B=r=1, we have that I P Las(t)— ()Mo +4 QO s(t)— ()12 = C | D[ 5() —
i1l for all teJ. Hence, letting 6—0 in (5.3), we see that i, satisfies (5.1).

Since H=() is dense in HY(R), there exists a sequence {i;;}H=(2) such
that the first part of (5.2.a) is valid. Let iw; be solutions to the equations
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(5.4.a) —0:(A%(0)0;w;)+Aw;=0 in 2,

(5.4.b) v; A*(0)0;i;+ BY0),0w:;=8; on I,

where g,;:fp(O)-,—piA”(O)aja.,—Bf(O)a,.ao—B%O)am. If A is chosen so large that
we can apply with P*=A%(0), P/=B%0), P4=Pp*'=0 (i, j=1, -,

n;l=1, ---, n+1), we know that (5.4) admits a solution w;= H?*2) having the
estimate: ||@;].<C(Zs)1/» for each & where C is independent of 8. Since f r(0)
=v; A*(0)0,4,+ B/(0)0;,+ B°(0)#t, as follows from (1.2) with N=0, g;=
B°(0)(@,—#5). Then, applying (Ap. 3) with a=K—1, B=r=1, we have that
€@a)1e=C|@,—a,5ll;. Since the first part of (5.2.a) is valid, we have

(5.5) lws.—0 as 6—0.

If we put @,;=d,+w; then by (5.4.b) and [5.5) we see that the second part of
(5.2.a) and (5. 2 b) are Vahd which completes the proof of [Theorem 5.1l
To prove we shall use

THEOREM 5.3. Let I'=[—7/2, T+7t/2]. Assume that (A.1)}, (A.2);:. (A4,
and (A.5); are valid, where (A.1)} is the same assumption as in Theorem 2.2.
Assume that there exist positive constants 8, and 0, such that (A.3); .5 is valid.
Let (tio, @, fa, fr) be data in DX[0, T]) such that fo=CX[0, T1, L¥Q)) and
fpe CX[0, T], HY*I")). Then, there exists a unique #<X*°([0, T], ) satisfy-
ing (N).

Theorem 5.3 was proved by Shibata [9].

PrROOF OF LEMMA 5.2. First, we shall reduce (5.1) to the problem with
zero Cauchy data and f’p(O)=O on I". Put U(t)=id,+t@,. Then, the assumption:
@, H(Q) implies that U(t)e C=(R, HX(2)). This assumption is used here only.
In view of (Ap. 10), we have that P()[U(t)]€Y *°(J, 2) and Q)LU@) Y /2], I).
If we put Fot)=Fot)—P@LU®] and Fr)=Frt)—QmLU®] by (1.2) with
N=0 we see that F r(0=0 on I'. If #@) is a solution to the equations:
PWOLo@)]=F () in JxR; QWO[#t)]=Fr() on JXI'; $(0)=0d,5#(0)=0 in 2, then
a(t)=U@)+5(t) obviously satisfies (5.1). From this point of view, it is sufficient
to prove Lemma 5.2 in the case where #o=u,=0; f ()Y %J, 2) and Fr(t)

eyt 1/2(} [’)

(5.6) fr(=0 on I'.

The uniqueness of solutions follows from [Theorem 2.1. Hence, we shall
only prove the existence of solutions to (5.1). Let P,(t) and Q,(¢) be operators



Neumann problem 333

defined by (2.5). By we know that P,(f) and Q,(t) satisfy all the
conditions of To use [Theorem 5.3, we must approximate /g and
7r by functions smooth in ¢. Recall that J=[0, T—e]. Put

FoT—e), t>T—e,
=1 Fu(t), 0<t<T—s¢,
Fu(0), t<0,

for U=R and I'. In view of (5.6), we see easily that go(t)eY " (R, £2) and
grieY Y (R, I'). Let ut)eCy([—2T, 3T]) such that 0<pg=1 and u(f)=1 on
[~T,2T). Put Zo()=p(OZit) and r()=p(®)gHe). Then,

(5.7.2) Fo)EY (R, Q) and Zo(t)eY V¥R, I);
(5.7.b) Zot)=0 for t&£[—2T,3T] and ZGr(#)=0 for t&£[0, 3T];
(5.7.c) Zo)=Fo® and ZrO=Fr@ for te].

Let £(t)e C=([1, 2]) such that x(H)=0 and Sx(t)dt::l. Put

ng(t)=Slc,,(t-s)§U(s)ds for U=Q and I".

where k,(t)=0"'k(c7'). Since Zr(s)=0 for s<0 and x,(—s)=0 for s>0, we
have

(5.8) frs(0=0 on I' for any ¢>0.
Obviously, we have
(5.9) Fo.()eC3(R; L¥R)) and fr,()eC3(R, HT)),

where CS(R, X) is the set of all functions in CS(R) having its value in X.
Furthermore, we have

(5.10) |Fae—Balo.ort<fro—8riuinr
+ (107 00 =2 )OI+ (@ Fra—BrXNT)dt—0 as 6-0.

From (5.7.a) and (5.7.b) it follows immediately that |Zole0r+<8r 0. 1/2.8
-I—SR(Ha:é‘g(t)ll%+<(3z§r(t)>>%/z)dt<oo. Thus, from we have

6D 1Faoloont Frodosmat| (10700 s+@F ra@tdt C

for any ¢<(0, 2,) where X, is the same as in In the present proof,
we use the same letter C to denote various constants independent of . '
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Now, let #, be solutions in X*°([0, T, £) to the equations:

(5.12.a) P.(O[a.)]=Ff 2. in [0, TIXQ,
(5.12.2) Q.M #,®)]=Fr.t on [0, TIXI,
(5.12.c) 1,(0)=0,2,(0)=0  in Q.

Here, note that we use that &, is defined on [0, T] with respect to { in prov-
ing that the limit of #, belongs to X*°(J, 2) below. In view of [5.8) and [(5.9),
applying implies that (5.12) admits a unique solution #,<
X2%[0,T], 2) for each ¢=(0, 2,). Furthermore, using with L=2
to and noting (b) of we have

(5.13) ID*a,(OI3<C;

6.14) E.@, 0:2,(1)<e®{E,(0, 0:i%,(0))+Ct'/?}

for all t<[0, T], where E, is the energy norm for the operators P,(¢) and Q,(2).
The main step of the present proof is summarized as follows:

LEMMA 5.4, Put J'=[0, T]. Assume that (A.1)-(A.5) are valid. Let i,(t)
be functions in X*°(J’, 2) satisfying (5.12). Then, there exists a a<Y*°(J’, 2)
such that

(5.15) L1_r_1;1 ldo—d]1,00=0;

(5.16) #(0)=0,4(0)=0 in 2;

(5.17.a) io(t)—a(t) weakly in H¥ () as 6—0 for all t]';
(5.17.b) 0.1t ,(t)—0,u(t) weakly in H'(R2) as a—0 for all t]’;
(5.18) QW[a@®)]=&r() in the sense of HY*(I") for all t<]’.
Furthermore, if we put

(5.19) 9()=F o(1)+0:,(A**(1)3. u(t)+ A ()0,;a(D)) ,

then

(5.20) 2a0()—0(t) weakly in L¥2) as 6—0 for all t<]’;
(6.21) ta(t)=ov(t) for almost all t<]';

(5.22) Jim {15(t)— 7 2(0) 13+ 18, () 13+ [ (D [13{=0 .

Deferring the proof of we shall prove that the 4 in
belongs to X%°(J, 2) and satisfies (5.1). From and (5.21) we see easily
that
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(5.23) PO[a(t)]=go(t) in the sense of L% ) for almost all t=[0, T].

If we prove that = X?*°(J, ), by [5.18), (5.23), (Ap. 14) with L=2 and (5.7.c)
we see that # satisfies (5.1). Hence, we shall prove that z=X*°(J, £). To do
this, we use the mollifier with respect to t. Let p(f) be the same function as

in and put ﬁa(t)=gp5(t—s)ﬁ(s)ds where ps(s)=0"'p(d7's). Since s

Y=oy, Q) L], HXQ)) (J'=[0, T]), #s=C=(J, H*R)) provided that 0<d<
(T—e)/2. Furthermore, noting and (5.23) and applying [Theorem 1.3 with
L=2 to @#;—iy, we have

(5.24) |dhs—tig |30, 5 < C {1 D*(t50)— sty (0)) |3+ 5,5 }

where
15'5’ = | (é!))&“‘(gf))ﬁ' |o,0. J+<(§I‘)6—<§F>5' >0. 1/2, J

+SJ(II<%((§ 2)a(0)— (8 @) N3 +€0:((& r)s(t)— (& r)s ()N 12)d 1
+l Raﬂ—'Ra' u | 0,0, J+<5577t—55' ﬁ)o. 1/2,J
+SJ(”az(Raﬂ(f)—R5' AEN|3+€0:(Sset(t)—Sa a()Ni/2)dt .

Here, Rs;i and S;# are the same as in (4.12). Since a<Y*%J', ), 0,a<
Yo, 2) for =0, 1, ---, n. Hence, we can apply Lemma 4.1 with L=2. As
a result, noting (5.7.a) and applying Lemma 4.1 with L=2, we see that I; ;—0
as 0, 0'—0. And then, if we prove

(5.25) I1D%(@5(0)— ity (O)ll,—0 as d, &0,

letting 4, 6’'—0 in we see that {#,;} is a Cauchy sequence in X?%*(/J, Q),
which implies that the limit @ of {#&;} exists in X*°(J, 2). However, we
already knew that a<Y?°(J, )CX°(J, 2). This implies that #;—a in
X2 J, 2). Hence, we have that a=w<X?°(J, Q).

To obtain (5.25), it is sufficient to prove that

(5.26)  lim [|9is(0)]ls-=0 for /=0, 1 and lim 1825(0)— £ 0(0)l1s=0..

By (5.21) we know that 6%12,;(0):Spa(——s)aﬁz‘t(s)ds:Spa(——s)ﬁ(s)ds. Hence, by
5.22) we have

ua%aaw)—fg(omoggm—s>uﬂ<6s>—fg<0>||ods~0 as 80,

where we have used the fact that supp p(—s)C[1, 2] (cf. Lemma 4.1). In the
same way, by we can easily prove other assertions of (5.26). Hence, if
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we prove Lemma 5.4, then we can complete the proof of

PrROOF OF LEMMA 5.4. First, we shall prove and (5.16). Since
(5.27.a) Py o()— o (DI=(Poe(t)—Po ()[do ()] in J'X2;
(5.27.b) QeOLas(D)—doM]I=(QsM)— QoMo ()] on J'XI';
G.21.0) (O —ite (0)=0,,(0)—B:is(0)=0 in 2
as follows from (5.12), applying to (5.27) and noting (b) of
2.3, we have
(5.28) (o= or 11,005 C | (IPor(s)=Pols)[ (]
+{(Qo ()= Qo(sNLi o (s)IN12)d s
Applying (A. 1)-(A. 3) with a=K—1 and f=r=1, and using we have
| (Pgr(8)—=Po(s)Lit o ($)IN5+K(Q o ($)—Qo(sN[hor (8)IN} /= CUs, 4+(5)
where
Us, o/ (8)=[Po(s)—Ps:() ], -1+ [ Po($)— Po: ()| Qu(s)— Qo (s)1s. k2.1

(cf. (No. 3 a and b)). Substituting this into (5.28) and using (a) of

we see that {#,} is a Cauchy sequence in X"°(J’, 2). By the completeness of

Xt°(J’, ), we can conclude that there exists a limit z=X"°(J’, ) satisfying

In particular, combining (5.12.c) and implies that (5.16) is valid.
Now, we shall prove that (5.17.a) is valid and that

(5.29.2) la@®l.<C for all te]’;

(5.30.a) #(t) is continuous on J’ in the weak topology of H*(Q);
(5.31.a) la®)—a(s),.<Clt—s| for all ¢, s€]’;

(5.32.a) aye L=(J’, H¥}2))NLip (J’, H(2)).

By Pettis’ theorem, we know that (5.30.a) implies that #(¢) is measurable in the
strong sense of H?*2). Hence, (5.29.a) and (5.31.a) implies (5.32.a). (5.17.a)
implies that

la®l.= lirPﬁ(i,nf sl .

Combining this and [(5.13) implies (5.29.a). Since #,()eX*°(J’, 2), by the mean
value theorem we have that ||i,(t)—#.(s),=|t—s IS |04 s(s+8(t—s)),d@. Com-

1

0
bining this and implies that |#.(t)—#.(s)|,<C|t—s|. Hence, (5.31.a)
follows from immediately. Now, we shall prove (5.17.a). Let a be any
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multi-index such that |a|<2, we L3(2) and k£ be any positive number. Since
C3(8) is dense in L*Q), there exists a 2&C(2) such that ||@—2|,<<x. Hence,
we have
10584 (8)— 0% o+ (1), @) | < (054 (F), W—2)| + | (0% o (t), W—2)]|
+ (@ e(®)—tg (), (—05)2)|
=Cr+la.—ae Ooll(—02)20,

where we have used Schwarz’s ineqdality and Letting ¢, ¢’—0 and us-
ing and the arbitrariness of the choice of k, we see that {0%2#.} is Cauchy
sequence in the weak topology of L2%(Q). Since ¢ is any multi-index such that
la| <2, we can conclude that {#,} is a Cauchy sequence in the topology of
H®(£2), which implies that #,(f) converges to some #'(t)e H¥(Q2) weakly as ¢—0
for all t=J’. On the other hand, implies obviously that #,(f) converges
to #(t) weakly as ¢—0 for all t=J’. Thus, a(®)=a'(t)eH*Q) for all t=J’ and
(5.17.a) is valid.

Now, we prove (5.30.a). Note that (5.29.a) is now valid, because (5.17.a)
has been proved. Let a, x, @ and 2 be the same as above. For ¢ and s&]’,

we have
|@5a()—03a(s), @) < (@3a(t), W—2)| + | (034(s), W—2)| + | (@@ —a(s), (—0:)*2)]
= Cr+la®—as)ol(—a:)*2l,,
where we have used Schwarz’s inequality and (5.29.a). Since #{(t)eX"°(J’, Q),

letting t—s and noting that k- is chosen arbitrarily, we have (5.30.a).

By employing the same arguments, we can prove that (5.17.b) and the fol-
lowing four assertions are valid:

(5.29.b) lo.a®,=C for all t<]’;
(5.30.b) 0,i(t) is continuous on J’ in the weak topology of H'(2);
(5.31.b) 10, 4(t)—0,@(s)|o<C|t—s| for all ¢, s€];

(5.32.b) o.atys L=(J', H()NLip (J', L¥(2)).

In particular, combining (5.32.a) and (5.32.b) implies that zY>°(J’, Q).

Now, we prove ‘and (5.20). First, note the following facts: If we
define the operators A@)[@,, iW,1=0:;(A®)w,+A()d;w,) and B[, w,]=
v A¥()0;i,+ BY(1)0;i0,+ B*(0)iw, | r, then A(¢) and B(t) are bounded linear operator
from H*(@Q)XHYQ) into L*) and HY*(I"), respectively. Then facts follows
immediately from (Ap. 1)-(Ap. 3) with ea=K—1 and B=r=1. By (5.17) and
these facts we see easily that A®)[#,(?), 0.%.(&)]—=>A@)[a(?), 0.4(t)] and B()[i.(2),
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0.1 ,(t)]—->BM®)[a(t), 0.4(t)] weakly in L*£2) and HY*I') as ¢—0 for all t=]’.
On the other hand, since

(5.33) ;20 10:((A @) — A* (#0017 o (D) o+ Qo) — Q%o () D12 S C U,(2)

as follows from (Ap. 1)-(Ap. 3) with a=K—1 and B=y=1 and where
U,(t) is the same as in (2.9.b), using (a) of we have that the left-
hand side of tends to zero as ¢—0. Combining these two results, we
have

(5.34.a) z% 0:((AL ()0, ,(2)) — 1120 0.(A*(1)du(t)) weakly in LX(Q);

(5.34.b) Q.(O[#,()]1-Q@W[a()] weakly in HV¥I")

as ¢—0 for all t=J’. Combining (5.34.b), (5.12.b) and implies [5.18). And

also, combining (5.34.a), (5.12.a) and [(5.10) and noting we have (5.20).
Now, we shall prove that

(5.30.c) #(t) is continuous on J’ in the weak topology of L%*(Q).

In the same manner as above, (5.30.a and b) implies that A(s)[#(¢), d.a(t)]—
A(s)[a(s), 0,i(s)] weakly in L%*(2) as t—s. On the other hand, applying (Ap.1)
with a=K—1 and B=y=1 implies that

ICA@—A(sHLa@), 0:a®) o= C{Ux(t, s)+Us(t, )}([10: @Bl + [a®)ll)

where U.(?, s) and Ug(t, s) are the same as in (3.88). By and (5.29.a and
b), we see that (A(@)—A(s))[#(t), d,4(t)]—0 strongly in L*2) as t—s. Combin-
ing these two facts and noting and the fact that Zo()eY %R, 2)C
C(R, L¥£2)), we have (5.30.c).

Now, we prove (5.21). Since d(t)eL=(J’, L)), the Bochner integral

S:ﬁ(s)ds exists and belong to L*2) for each t<J’. Fyrthermore, we have
t t
(5.35) (Soﬁ(s)ds, w):So(ﬁ(s), w)ds for any we L¥Q).

Since (9:4.(1), m:S:(B%ﬂ,(s), w)ds as follows from (5.12.¢) and the fact that #,(f)
eX»(J’, 2), letting ¢—0 and using (5.17.b) and (5.20), we have
(5.36) @.a(), 1,T))=S:(z7(s), #)ds for any we LYQ).

Combining and (5.36) implies that 6,ﬁ(t)=S:17(s)ds for all t€J’, where the
equality holds as functions in #<J’ having their values in L% Q). Since L*2)
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is reflexive, by Lebesgue’s theorem we have (5.21).
Finally, we shall prove [5.22). To do this, we only prove that

(6.37) zli?l 1513410, 2. 0= f 2013 -

In fact, since L¥(Q)XHY Q) is a Hilbert space equipped with the norm: {-[*+
[lI-1%,0 (cf. (No. 17)), and (No. 17) implies that

(5.38) lim 15— 7 o O)l13+ 18, a(1) =0 .

On the other hand, applying [Corollary 3.7 with L=2 and noting and
(5.19), we have

(5.39) la® 3= C{115(t)— & oI5+ 110:(A™ () aENNT+(E i+ 2D}

Applying (Ap. 1) with a=K—1 and B=r=1, we have that [0;(A*(®)0.;a()|i=
Clo.a®)|;. Hence, noting that ”f’(l‘)—gg(l‘)lloé”ﬁ(f)—fg(())llo—i-IIEQ(t)—fn(O)llo, by
(5.7.2), (5.7.c), (5.6), the fact that a=X"°(J, ), (5.16), (5.38) and we
have that |#(?)],—0 as t—0+. Combining this and implies

Our idea of proving is due to Majda [5, p. 44] essentially. First, we
shall prove that

(5.40) an(O)Ilﬁélitrgoinf B@I3+No.a®IE. o) -

Note that the norms of |-||; and ||-|l,,, are equivalent (cf. (No. 17)) and that
5(0)=§g(0)=f9(0) and 0,#(0)=0 (cf. (5.16) and (5.7.c)). By (5.30.b and c),
we have [5.40).

In view of to obtain it is sufficient to prove that

(5.41) }g}l sup (o248 @D =1 F 2013 .
By and (2.9.a), we see that |E(¢, 0,i.,()—E(t, 0:4,#)| <CU,(t). And

also, by (No. 23) we see that |E(t, 0,i.()—E(0, 0.4,()| <Ct. Noting that
E(0, 0,4 ,())=10%% ()30, DII2, o (cf. (No. 21)), from we have

(5.42) 1028 (1341102 o (ONE, 0 < e EQO, 0,4(0))+ C{Us(O)+ Us(O)} +R(1)

where R()=eC#/24+Ct. By (5.12.a and ¢) we know that E(0, 8.4 ,(0))=0.4,(0)]3
=17 24(0)]2. Letting ¢—0 in [(5.42) and using (a) of (5.7.c) and

we have
(5.43) lirtrlosgp (1828, O 13+110. s (DD < e8| F 2O I3+ R(D) .

With the help of (5.17.b) and (5.20), from we have
(5.44) 1534+ 18:aDIE 0 < e f 203+ R(2) .
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Since ¢®*—1 and R({)—0 as t—0-+, (5.41) follows from [5.44), which completes
the proof of Lemma 5.4.

§ 6. Further regularities of solutions

Let L be an integer [3, K]. In this section, we prove that for a given
data (., #,, fg, fp)EDL(]), (N) admits a solution #€XZ%-°(J, 2), where J=
[0, T—e] and ¢ is any number (0, T). If a(t)eXL°(J, Q) satisfies (N), by
(Ap. 14) we know that P()[a(t)]JeXt 2% J, 2) and Q)[a®)]eXL2(J, I).
And then, differentiating (N) L—2 times in ¢ and putting 0¥ (t)=vx(t) (OSM=<
L—2) and V(#)=@(t), -+, D1-2(t)), we have

(6.1.a) P(t)[0,-o(t)]— Ro)[V(H)]=0F"2f o) in JXQ,
(6.1.b) Q)91+ Rr(OLV(1)]=0E2F p(t) on JxI,
(6.1.c) D1-20)=dz s, 001 o(0)=iir, in 2,

where #;., and #r_, are functions defined in (1.1);

Ra01V1= 5 (1 2 oot A Do+ AW 1001,

L-2/L—2 ) . "
Rrt[V1= S (7, “ ) widtA 00,02 0 s+ BAD D1 0 s +OB D24},

Furthermore, for 0<M< L—3, differentiating (N) M-times in ¢, we have

(6.2.2)x Oa+2(D)— Pu(DLDo(D), -+, Darer(8)]+2AnDu(2)
=07 o+ Ax(du+| Duri(s)ds) in Jx2,
(6.2.b)y Qu(OIou(2), -+, Dusn(]=0F r(2) on JxI,
where 9,_,(t)=0,9._»(t); Py(t) and Qx(t) are the same as in (3.59); Ay
(0S<M< L—3) are constants given in with Ny=L—3 and N,=L;

iy (OSM<L—3) are functions defined in (1.1}l From this point of view, we
shall split our proof into two stages. First, we consider the equations (6.1) and
(6.2) for unknowns ¥, (0EM<L—2). And then, we shall prove that there
exist ¥._,()eX>°(J, 2) and i) XL %], 2) (0EM<Z L-3) satisfying (6.1)
and (6.2). Secondly, we shall prove that 0,5 y(t)=,,.(f!). Then, if we put 9,(¢)
=a(t), we see easily that a(t)e X%/, 2) and satisfies (N).

1st step. We shall solve (6.1) and (6.2) by the method of successive appro-
ximations. Before defining the iteration scheme, we prepare the function space
and some estimations. Let Z be the space of all functions V(&)=(d,(t), ¥._.(t))
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such that
(6.3.2) Iu()S XV M ], 2) OSM=L-3); i..(0)eX>°(J, 2);
(6.3.b) ﬁM(O):ﬁM (0___<_M§L—2) and 3¢ﬁL_2(0)=12L_1,

By (1.2) we see easily that

(6.4)  wiAYU(0)d,0 1o+ BH0)0,0i 1o+ BY0)iz-,=0F"*F r(0)—Rr(O)V(0)] on I’
for any V(t)eZ. Furthermore, for any V(¢) and V’(tjeZ, we have

(6.5)  RoOIV(HIEY™J, 2); Rr(OLV(O]eY (], I');

(6.6) |Ré(')[V(')]—RQ(°)[V’(')]|o,o.J+<R1*(')[V(')]‘~Rr(')[V'(°)]>o,1/z.J

+SJ(II3¢R 2OV ()]—0:Ro(OLV D]

+{0. Rr(OLV(®)]—0.Rr([V' ()M p)dt< C SJ((V(t)—V’(t)))idt
where C=C(M(K), MS(K)); ‘
V=3 3 100uDI st 1 DD

In fact, applying (Ap. 7)-(Ap. 9) with M,=K—k—1, M,=%k and N=1 for 1<k
<L—2 and noting that AY@)YV E-*-Y(], Q2); viB (@)Y K- -] [');
Vp1-x()ESXVE(], 8); 05,2 2()=X"*(J, ) in the definitions of Rp and R,
we have (6.5). Furthermore, by (Ap. 7.b)-(Ap. 9.b) we have

(6.7) 18:R oLV ()]0 +€0: R r(OLV () Ih1/2 < C(M(K), Ms(K))(V (D)2

for almost all ¢=J. .Since V(0)=V’(0) as follows form (6.3.b) we have that

Ry(O)[V(0)]=Ry(0)[V'(0)] for U=R and I'. Noting this, we see that
ReOLV()] =RV (0] =| 9 Ru(SXV(s)=V'(s)]}ds for U=Q and T,

where we have used the fact that Ry(-) is linear in V. Hence, applying
implies (6.6).

Now, let us define the iteration scheme. In view of (Ap. 18), there exists a
(e X (R, 2) such that @w(0)=d,_, and 8,w(0)=4,_,. Let us define V() by:
Vo(t)=C(ito, ++- , th1_3, W(t)). Obviously, V(t)eZ. For k=1 and V* (t)eZ, let
us define 9,_,()&X*%J, 2) by a solution to the equations:

(6.8.2) P(O[94-o(8)]=02F o)+ R ([ V* ()] in JX,
(6.8.b) Q4 -o(D]=0F2F r(O—Rr(t[V*~*®)] on JXT,
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(6.8.c) 04 20)=ty_s, 0,0%_2(0)=dr, in Q.

In view of (6.4) and (6.5), by we know the existence of #%_,(1)&
X% J, 2). Let us define #%()eX"L-¥-1(], ) OSM<L—3) by solutions to
the equations:

(6.9.2) B o= PulOLBD), -+, DheO) 1+ At
=0t 7 o)+ Au(ia+| 952(5)ds) in Jx 8,

(6.9.b) Qu(OLAE), -, Py ai()]=0¥F r(t) on JXT,

for 0SM<L—3, where #%_,(t)=0.9%_,(f). Since #i_,=X>(J, Q) cX*(], 2);
X1, Q); M Foe XLt Ho(] )T XL M3 ], 2); 3?',?FEX"’2'”'”2(], I
CXH N, T3 i | Birh(s)ds€ X2 %(], @) (cf. Lemma LI), by Theo-
rem 3.8 with N,=L—3 and N,=L, we see that #%(¢) exist in X"Z"¥-1(], Q)
for 0<M<L—3. Hence, if we put V*@)=@%®1), ---, v%_.(t)), then we see that
V*t)eZ and we can define an iteration scheme.

Now, we shall prove that the present sequence {V*(¢)} is a Cauchy sequence
in the product space X" (J, @)X - X X *(J, @)X X*°(J, 2). Applying Thor-
rem 1.3 with L=2 and using (6.6), we have

(6.10) [vh =08 0,0 S C (VA4(5)=VA-*s))3ds
Applying we have also

L-3 | . . .

S 05— 1 1w s SC{19 0= 950 0.0

+ 32 (I O— AN s+ | P E =P o2,
Since #%1,(0)=9%2,(0)=1i,, wWe have
|05t — 052 8 om0, s S2 ;10 SJIlaiﬁ’ﬁil(t)—aiﬁﬁiﬁ(t)ll2-M-sdt .
Combining these two estimates and using [(6.10), we have
(6.11) (((V"—V"“)))i.JéCSJ((V""(t)—V"'z(t)))?.dt

where (V).,,=sup{(V(®)).1t=J}. Recall that J=[0, T—e]. Repeated use of
implies that

(VE=VE DL L SH{CT =} /(k—DI(V =V DL, .

From this we see that {V*} is a Cauchy sequence in X*L-!(J, @)X -+ X X**(J, 2)
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XX®(J, 2). As a result, there exists a limit V()=(®@(f), ---, 9,_.(t)) of the
sequence {V*@)}. In particular, @)X L] Q) OEMZL-3), ¥,
X=°(J, 2), and by (6.3.b) we have

(6.12) Iu0)y=idiy OSMSL—2); 0,01,(0)=dir,.
Letting £—co in (6.8) and (6.9) and using (Ap. 1)-(Ap. 3), we see easily that
Do(2), -+, Dr_s(t) and Or-o(t) satisfy (6.2) and (6.1).

2nd step. Now, we shall prove that 8,0,(t)=by+.,(t) for 0SM<ZL—-3. Ap-

plying (Ap. 7)-(Ap. 9) with M,=K—k—2, My=L—M-2+k and N=1 0<k<M),
we have that Py()[9:(8), -+, ur(DI€X"°(J, 2) and Qu(O)[do(t), -+, Fusr(t)]E
Xue(J, I') for 0OSM<L-3. Differentiating (6.2) once in ¢, we have
(6-13-3)M atﬁM+2(t)_PM(t)[ati}0(t)y Tty atﬁM+1<t)]+2MatﬁM(t)

=¥ f o(t)+ Aud s+ Py(O[06(t), -+, D] in JX2,
(6.13.b)y  Qu(t)0:Ds(), -+, sV 4:(t)]

=017 o(t)— QUDIBD), ++ , Fasa(®)] on JxTI’
for 0M<L—3, where Pf(#) and Q/(t) are the same as in (3.92). When M=
L—3, noting that 9,9,_,(t)=0%._(t) and using the using the identity: (L;Z —

L-3 L-3

( b )-(k—l)’ from (6.1) and (6.13),_;, we have

(6.14.2);_, —Pp_s(OLWo(L), =+, Wr-s(t), 01+2A1-sW1_5(t)=0 in JXQ,
(6.14.b)1_s QL-s(OL W), -+, Wr_s(t), 0]=0 on JxI,

where we have put wy(#)=0,0x{)—Dys,(t) OSMZL—-3). When 0= M L4,
in the same way, from (6.13), and (6.2),, we have

(6.14.2) 5 W ar42(8)— Py (OLWo(t), -+, War1() ]+ A0 4 (2)
=2M+IS:wM+,(s)ds ih JxQ,

(6.14.b)x Qu(OLwo(®), -+, Wy ()]=0 on JXTI,

where @z _,(1)=0,01_(1)—d_,(t)=0. Appiying (3.60) with Ny=L—3 and N,=L~—1
to (6.14) and noting that @,_,()=w._.(1)=0, we have

L-3 _ L-4 (¢t .
(6.15) S 10ulo. w1002 C [ 132l

M=0 M=0J0

t L-3
§CS 2 | @alo L-m-1,00,2dS
0 M=o
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for any t<J. Applying Gronwall’s inequality to implies that
L-3

S | @ulo r-s-1.00..3=0 for any t&].
M=o

From this it follows immediately that 0,7 y(t)=Dy4,(f) for all teJ and 0= M
L—3. Put #(t)=d(t). Then, daa@)=v,H)=X"L%(], ) OSMLL-3) and
0 a()=0,_ () X>°(J, 2). Accordingly, a(t)eX%°(J, ). Substituting 0}#(t)
=9,(t) for [=0, 1 and 2 into (6.2),, we see that P(t)[d(t)]::fg(t) in JX2 and
QW[a@)]=fr() on JxI'. From it follows that #(0)=9,(0)=4#, and 9.#(0)
=3$,(0)=#, in 2. Noting that ¢ is chosen arbitrarily, we have [Theorem 1.2
when 3<L<K. This completes the proof of [Theorem 1.2.

Appendix. Estimates of a product of functions and trace theorem.

First of all, we state the Sobolev’s imbedding theorem. To do this, we
prepare some notations. For 1<p< o, we put

lehan,r.p={] | F LA+ 197 g @XOI0 P } s

Hy(R")={usS (R")||ullgn, r.p<oo},

where F(u) is the Fourier transform of u and g~ is its inversion formula. Let
G=R? or Q. Put

Hi(G)={u | u(x)=U(x) in G for some U= Hy(R")};

Nulle. r.p=inf{| Ullzn. +. | u(x)=U(x) in G}.

As is well-known, if 7 is an integer=0 and 1<p<oo, then ||u|3.,, , is equivalent
to the usual norm:

> §G|agu(x>1vdx for G=R", R? and .

lajsr

In fact, if G=R", this is well-known (cf. [1, Theorem 7]). If G=R? or £,
we can extend functions defined on G to whole R™ (it is well-known that under
the more general assumption on the boundary of the domain we can extend
functions, cf. [1]). Thus, the equivalence of two norms follows immediately
(cf. [1, Theorem 12]).

Sobelev’s imbedding theorem. Let G=R™, R or . (I) Let 1<p<g<®
and put 1=n(1/p—1/q). Then, H%(G) is continuously z'nibedded into LYG) and
lullg.0.e<C(p, q, n, Gllullc.2.p for any usHYG).

(II) Let &, and &, be numbers such that 0<e, <&, <l. Put A=n/p-+¢&,. Then,
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every function u in H)G) coincides almost everywhere with a Holder continuous
function v with exponent &,. Furthermore,

lv(x+h)—v(x)| SC(p, &1, €, G)lulle.2.01R]*.

In the same way as in the proof of Theorem 7.1 of Mizohata [7], by using
Sobolev’s imbedding theorem we have

THEOREM Ap. 1. Let 1<p<Zoco. Let ry, -+, 7s (k22), M be non-negative
numbers and L a non-negtive integer such that M>n/p and M=r,+ --- +r,+ L.
Then, for w;,cHY¥ "i(G), j=1, -+, k, a product TIu;=HEG). Furthermore,

ko k .
“JI;Il Usle.z.,<C(n, G, M, p, k)j].;I1 ”uj”G,M-rj.p .

From now on, we consider L? spaces only. For the notational simplicity,
we write |-llg.r..=|"llc.» and H}(G)=H"(G). Next theorems are concerned with
the trace operator. ' ’

THEOREM Ap. 2 (cf. Mizohata [7, Proposition 3.6]). Let usH'(R?). Then,
the following are true. ” {

@ lul-, Ollag-1.12=Cllullzn.s .

(2) For any arbitrary >0, there exists a constant C(n, ¢€) satisfying

luC-, Ollrn-1.0=ellullzp. . +C(n, llullag.o.

THEOREM Ap. 3. L’et L be a non-negative integer. For any us HE+/D(R™-1),
there exists a U= HE(R™) such that U(x’, 0)=u(x") for almost all x'=(x,,'---‘,
%n-)ER™™ and |Ullgp, s SC(D)ullpn-1. s0+ase> for any integer Me[0, L].

PROOF. In view of Ap. 2, since C5(R""") is dense in HI+/(R"-1),
it suffices to prove the theorem for u=C2(R™""). Put

Un=(5)"" ... explix'& = 2 TFTETHFwE

(t=+/—1 and &' =(&,, -+, &,-,)). Then, we see that U(x’, 0)=u(x’). Let a=
(a’, a)=(ay, -+, an_1, @) be any multi-index such that |a|<L+1. Since

0:0G)=(5)" | XDl & — xa THTE T~ VIFETH ()™ F)EHdE,

by Parseval’s formula we have
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105 Ullag. o=\ .. €XP(—xaV IFTETULH 1§ 1) 1§'1%1 | F(w)E") '€ d 5

S| o (L 1819110 | F@E) 1" S Nullmns, ar-cros -

From this we have the theorem.

Using the partition of unity near the boundary, from Theorems Ap. 2 and
Ap. 3 we have the following two corollaries.

COROLLARY Ap. 4. Let ucH' (). Then, the following are true. (1) {u)ys
=Cllull,. (2) For any arbitrary €>0, there exists a constant C(n, ¢, I') satisfy-
ing (uh=Zelul,+C(n, &, Dlul,,

COROLLARY Ap. 5. Let L be a non-negative integer and ucsHL+&/¥(]I),
Then, there exists a U= H**'(2) such that u(x)=U(x) for almost all xI' and
Ul as1=CEudys+crse> for any integer M<[0, L].

Now, we shall investigate the Holder continuity of functions in Y ¥-1.2,

THEOREM Ap. 6. Let | be a closed interval and usY***)(J, R™). Then,
for any €<, [n/2]4+1—(n/2)), usB(JXR™). Furthermore, |ul|w, s sxrn<
Cluli.tns21, v, rn where C=C(n, ¢).

Proor. For the notational simplicity, we write ||-||zs,»=]-]l,. Let us de-
note the Fourier transform of (¢, x) with respect of x by #@(t, &). Let r>0
and €<(0, 1) and put 7'=(r—¢[n/2])/(1—e). By Hoélder’s inequality we have

1ae, o—acs, & 12a+1¢17 a8
=18, O—ats, 17U+ 18197} 186, ©—als, 1A+ 1§11 dg

<(|1act, o—acs, o1+ 1e1memde) ((1a, H—ats, o1ra+18197dg) ™.
By the definitions of the norms of HI*/?J(R™) and Y '[*/2)(J, R™), we have
J1a, ©—a(s, 11+ 1819 de = 1O~ u(S) 1S 1 .o g, mal = %

On the other hand,

Slﬁ(t, )—als, HI* A+ 1§17 dEZ u®)—u(S)IF =(u@®lly +luls)l)? .
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Combining these estimates, we have
lu®—uls)y=lulf tnrer g, ralt—sUu@®lly +luls)ll) e
Choose 7y and e so that y>n/2, 0<e<1l and 7'<[n/2]+1. If e=(0, [n/2]+
1—(n/2)), then such a 7 exists. Thus, by Sobolev’s imbedding theorem we have
lu(t, £)—uls, x)| SClu®)—u()Il=2""*|uli tnrea, 7. rolt—s]*.

On the other hand, by the Fourier inversion formula we have
(s, Dy—u(s, N1 =|{e = t—evocs, Hae| .

Note that |e*®f—eiv:¢|<21¢|x—y]|¢|€|. In fact, |e** ¢ —ev < |x—y]|&].
Noting that |e?**¢|=|e'¥*¢|=1, we have that |e*®¢—e®V¢|<|x—y|¢|&]2' .
Hence, we have

|us, B)—uts, )21 x—y1*{1811Cs, ©)1dg

<2< x—yle((at1gmrag) (la+ g 1ac, o1re)”

=Clx—y*ulS)l+e

where C=C(n, s, 7) provided that y>n/2 and y+e<[n/2]+1. Since ec=
0, [n/2]+1—(n/2)), we can choose such a 7. Combining these two estimates, we
see easily that

lult, x)—uls, YI=|ul, x)—u(s, x)|+|uls, x)—uls, y)|
SC@|ulicnren g re(lt—s|*+|x—=y|)=C(e)| ul1, tnren, 7. rn |, x)—(s, ¥)|?,

which implies the theorem.

COROLLARY Ap. 7. Let e=(0, [n/2]+1—(n/2)). If veYX-1i(], Q), then
us B*e(Jx Q). Furthermore, |V|w, 1ve.0<Cn, )|V g-1.1. -

ProoF. Since K=[u/2]+2, K=3. Then, YEX-2Y(J, Q)Y E-%(]J D
yrme( g 2). Namely, dweY*t*2(J Q) for [=0,1, -, n (0,=0,). By using
well-known Lions’ method of extending functions defined on £ to whole R”,
we see that there exists a u(t, x)eY**/2)(J, R™) such that u(t, x)=0,v(t, x) for
x€2 and t<], and |ulitn/22,5.8e<C|0W] 1 tns21. 5. Applying [Theoreml Ap. 6
implies that 9,v(¢, x)E B*(JX 2). Furthermore, we have that |0,0}w,c,0=|%]cwc s

S tlewe,sxrnSClUlitnien 7. rn=Cl0| 1 tnr21, 7= Clv| k-1,1,5, Which completes the
proof.

Combining Corollaries Ap. 5 and Ap. 7, we have
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COROLLARY Ap. 8. Let ¢=(0, [n/2]+1—(n/2)). If veYE-L1Y2(J Q) then
veE B"I(IXIT). Furthermore, {Ubw, 14e.s<C(n, eXVPx-1.1/2, -

Now, we shall summarize the results on products of two functions in
Sobolev spaces used in the text. Let G=R", R" or Q.

(Ap. 1) lA-Blle.;<ClAl6.allBlle.s for any AcH*(G) and BEH?(G)

provided that @, 8, 7 are integers such that a, 3=7=0 and a+8—r>n/2.
Let G'=R? or 2. For the notational simplicity, we write

I-loe . r-cr>=l"llra-1.7-cre>  OF  -Dp-cusay; G'=R""* or I'.
(Ap. 2) ”A'B”aG’.r-(1/2)§C”A“G'.a”B”G'.ﬁ for any A€H*(G’) and BEH#(G")
provided that a, B, 7 are integers such that @, $=r=1 and a+8—y>n/2.
(Ap. 3) IA-Bllae'. -y = CllAllaer . a-armll Bller, s

for any A= H*/»(9G’) and B€H#(G’) provided that @, B8, 7 are integers such
that @, B=y=1 and a+B8—y>n/2. In fact, (Ap. 1) follows immediately from
Ap. 1 with k=2, L=y, M=a+p+r, ri=B—r and ry=a—y. By
Ap. 4-(1), we know that IIA-Bllaar,r_nmgCllA-BIIG',,.j Hence, (Ap. 2)
follows from (Ap. 1). By [Corollary] Ap. 5, we know that there exists an A’
H'(G’y such that A’=A almost everywhere on dG’ and ||A'|lc.,<CllAllac’.r-c1r25-
Since [[A-Bllag’.r-cii>=|1A"* Bllag’.7-c112>, (Ap. 3) follows from (Ap. 2).

Now, when A=A(t) and B=B(¢) depend on ¢ continuously, we give the
results corresponding to (Ap. 1)-(Ap. 3). Below, J always refers to a time
interval. -

(Ap. 4.2) A@®)-BeC(J, H(G));
(Ap. 4.b) IA®- BOlle., =ClIA®lc.all BM)c.

for any A(HeC(J, HXG)) and B(t)eC(J, HAG)) provided that a, B, 7 are
integers such that a, B=y=0 and a+8—r>n/2.

(Ap. 5.a)  A®-B®OECYJ, H-9@G"));
(Ap. 5.b) LA@) - B®)lser .- SCIA® N6 | BOll6r. 5

for any A(t)eC°(J, H*(G")) and B{t)=C%J, H?(G’)) provided that a, B, 7 are
integers such that a, f=y=1 and a+B8—r>n/2.

(Ap. 6.a) A Bty C(J, HT-»@G"));
(Ap. 6.b) LA®): B®lser. ey < CIA® la6r. a-cures | BO . 5
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for any A@®)=C(J, H*~*/»(@G")) and B(H)=C’(J, H¥(G)) provided that a, B, 7
are integers such that «, B=y=1 and a+B8—r>n/2. In fact, by (Ap. 1) we
see that

IA®-B®—A(s)-B(s)le.,=
C{HABO—A 6. all BDll6., g+ 11 A6, ol BO—B(s) e, 5}-

From this, (Ap. 4) follows immediately. Employing the same arguments, we
see that (Ap. 5) and (Ap. 6) follow from (Ap. 2) and (Ap. 3), respectively,

Now, we give the results on differentiability in ¢. Let M,, M, and N be
integers such that M,, M, >N and M,+M,+1—N>n/2. Let ZL¥=XL¥ or
YZ-¥,  ‘Then,

Ap. 7.2)  A®-BOSZ"Y(], 2);
(Ap. 7.8)  10A®- BO)wSC( S I0EADay01-1)( Z 108BO 1)

for any A@®)eZ*¥1(J, ) and B@)sZ»¥(], Q).
(Ap. 8.a) A(t)-Bityez ¥-am(J, I');

(Ap. 8.5)  (OA®: BONWy-am=C( Z 105D y0-1)( 2 10BOlaryor-)

for any A(f)eZ¥:(J, @) and B@t)eZ ¥x(], Q).
(Ap. 9.2)  A®)-ByeZ¥-am(], I');

(Ap. 9.6) (AW BONWy-am=C( 2 @A ram-i) Z 18BOaysi-t)
for any A(H)eZ"#1-n(J ')y and B{)eZ (], 2). In fact, since

1 A®)- B(t)— A(s)- B(s)| v = I(A®)— A(s)- BOll v+ A(s)- (BO)— B(s)ll»

applying (Ap. 1) with a=M,, =M,+1 and y=N to the first term of the right-
hand side and with a=M,+1, 8=M, and y=N to the second term of the right-
hand side, we have

IA@- B()—A(s)- B(s)ll v = C{I| A®)— A(S)lar | BN a1
A 41| BE— B(s)ll e, }-
From this it follows that A@)B@{)<Lip([J, H¥(2))NX°(J, H¥(2)). Since 0,(A®)
- B(#))=0.A(t)- B(t)+ A(t)-0.B(t), by employing the same arguments, we have
10.(A@®)- BUNI v = C{10. AD N ar I BON g1+ | A 3,411 B ae, )
Applying (Ap. 1) with a=M,+1, =M,+1 and y=N-+1, we have also
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IA®) - B wsr = CLIADN sty 41| BOl st yir},

which implites that A(t)B(t)e L=(J, H¥*Y(2). Therefore, we have proved A(?)-
B@t)eY' (], 2). Furtheremore, we have

I(A(t+h)- B(t+h)— A®)- Bt)h ™' —0.(A(t)- B@t))ll »

=10:A®)-(B@+h)— By +IH{(A®+h)— A®O)r =0, A(t)} Bt+h)| v
+ I AD{(BE+h)—BE)A ™ —0. Bt} | »

< Cl0. ADNu, | B(t+h)— Bl srpsr+ (At +h)— AR =0 AW) |, | B+ 2 s 41
FHIADN s, +1I(BE+h)—B®)h ™' =3 B(B)ll u,} -

From this we see easily that A(f)- B{)e XV (/J, ). Hence, we have (Ap. 7).
With the help of Corollaries Ap. 4-(1) and (Ap. 5), we have also (Ap. 8 and
(Ap. 9) by the same arguments.

In the text, we need the following facts:

(Ap. 10.a) P®[a@®]1eC**(J, L (2)) and or*(P([at)])ELip(J, L (2));
(Ap. 10.b) QW[at)]eCrt*(J, HY¥I")) and or~*QM)[at)])eLip(J, H* 1)

provided that a(t)eC=(J, H'*(2)) and 2< L<K, where JCI. (Ap. 10) follows
immediately from the following facts:

(Ap. 11)  A@®-BOECH™(J, HY(Q)) and 0 *(A®®)- B®)sLip((J, H(Q));
(Ap. 12)  A@)-B®eCE™(J, HVYI")) and @ %(A(t)- B@)eLip(J, HVXI)
provided that A(HeYX-1'(J, Q) and BE)eC=(J, H:}(R)).

(Ap. 13)  A@W)-BOECE™(J, HV*I")) and 0;~*(A(®)- B(t)Lip(J, H/*(I")

provided that A@®)sY*-1Y*(J, ') and B@)eC=(J, H:"'(2)). By induction on
Le[2, K] and using (Ap. 1) and (Ap. 4) we see easily (Ap. 11). With the help
of Ap. 4-(1), (Ap. 12) follows from (Ap. 11). With the help of Corol-
lary Ap. 5, (Ap. 13) follows also from (Ap. 11).

In the text, we also need the following facts:

(Ap, 14) POLa®]e X (], 2) and QW[a®)leXt > (], I')

provided that a()e X% %*2%(J, Q) for 2L L<K, where JCI. (Ap. 14) follows im-
mediately from the following facts:

(Ap. 15) A®)-BheXt (], 2);
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(Ap. 16) A@M)-Bye Xt I')
provided that A@)e X¥-2(J, ) and B{t)e X (], Q).
(Ap. 17) A(t)- BtyeXL213(J, I

provided that A()eXX-212(J, I') and B()eXt23(J, 2). By induction on L
[2, K] and using (Ap. 4), we have (Ap. 15) easily. With the help of Corollaries
Ap. 4-(1) and Ap. 5, (Ap. 16) and (Ap. 17) follows from (Ap. 15) immediately.

Finally, we shall prove that for any w,cH?*R) and w,cHYQ) (scalar-

valued functions now being considered), there exists a w(t, x) X* (R, R™) such
that

(Ap. 18) w(0, x)=wsx) and J,w(, x)=w,(x) in Q.

By well-known Lions’ method of extending functions defined on £ to whole R”,
we know that there exist W,(x)eH? *(R") for k=0 and 1 such that w.(x)=
Wi(x) for x=Q. Then, let us define w(, x)X*°(R, R") by a solution to the
Cauchy problem of the wave operator :

2wt x)—-j:EI 2w, x)=0 in RXR"; w(0, x)=W(x)
and 0.w(0, x)=Wx) in R™.

Obviously, the w(¢, x) has the desired properties.
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