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EXPONENTIAL AND SUPER-EXPONENTIAL LOCALIZATIONS
FOR ONE-DIMENSIONAL SCHRODINGER OPERATORS
WITH LEVY NOISE POTENTIALS
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§0. Introduction.

Let us consider the following random Schrddinger operator in L*(R; dt):
(0-1) H,=—d?/dt?+Qu),

where {Q.(t); —oo<t<-+oo} is a temporally homogeneous Lévy process and
Q.(t) is the “derivative” of its sample function. Intuitively speaking, {Q&(!)}:cr
is a continuous parameter family of i.i.d. random variables, which we will call
“1Lévy noise”, so that the above H, can be viewed as an idealization of the
Schridinger operator with random potential, and it may be of some interest to
analyze in detail such an idealized model of disordered system.

On the other hand, it is well known that almost every sample function of
a Lévy process is not differentiable (except the case of a trivial Lévy process
Q.(t)=ct, with a real constant ¢). Hence the expression has only a
symbolical meaning. The precise definition of H, was given by the present
author ([25]), and it was shown that H, can actually be realized as a random
self-adjoint operator in L% R;dt). Moreover, the exact location of the spectrum
of H, was determined.

The purpose of this paper is to study the properties of spectrum and
eigenfunctions of H, in more detail than in [25]. It will be shown that under
some condition on {Q,()}, almost every realization of H, has pure point spectrum
with exponentially decaying eigenfunctions (exponential localization—see Theo-
rem 5). A remarkable fact is that in some other cases, the .eigenfunctions
decay faster than exponentially (Theorem 6). We would like to refer to this
phenomenon as “super-exponential localization”. Moreover, it will be shown
that under some conditions on the Lévy measure of {Q,(t)}, the eigenfunctions,
in a rough sense, behave like exp[—|?]¢] with a>1, or even. like
exp[ —exp[exp[--- exp[1t]%] ---1] with a>0, as |¢|—co (Theorem 7).
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In the proof of localization, we follow the well-known idea of Carmona and
Kotani ([3], [16]), which relates in an elegant way the exponential decay of
eigenfunctions with the Ljapounov behavior of the transfer matrices. Thus, if
the transfer matrix associated to H, has the usual Ljapounov behavior as in
Theo , then we have exponential localization. The super-exponential
localization as in occurs simply because the Ljapounov exponent of
the transfer matrix becomes infinite (Theorems 2 and 3). Hence, in order to
obtain a more detailed estimates of super-exponential localization, it suffices to
replace Theorem 3 by Theorem 4.

Recently, Lévy and Souillard ([21]) conjectured that the discrete Laplacian
on the incipient percolation cluster should have eigenfunctions which decay like
exp[—|x|%], a>1, and called this “superlocalization”. The physical basis of
their conjecture is that the incipient percolation cluster is fractal within length
scale smaller than correlation length. Although Lévy and Souillard consider a
different situation from ours, our Theorems 6 and 7 may be considered as first
rigorous examples of superlocalization.

The outline of the present paper is as follows. In the first half of §1, we
summarize the results of the author’s previous paper [25], preparing at the
same time the necessary notation. In the rest of § 1, we state the main results
of this paper concerning respectively the Ljapounov behavior of the transfer
matrices and the localization. Theorems 1 and 2 show that the Ljapounov

exponent is finite or infinite according as the integral S log| x|v(dx) is
1 z1>1

convergent or divergent, where v(dx) is the Lévy measure of {Q.,(t)}. In the
finite case, we can apply the well known theorem of Oseledec, to obtain a
subspace of R? which is exponentially stable under the action of the transfer
matrix, whereas that general theorem does not seem to have a straightforward
extension to the infinite case. Therefore by an explicit analysis, we first prove
a theorem of Furstenberg-Kesten type (Theorem 2), and then using this, we
obtain the corresponding Oseledec type theorem (Theorem 3). The same line
of reasoning was recently exploited by Kotani and Ushiroya [18] in a different
problem. One gets Theorem 4 by replacing the use of Theorem 2 in the proof
of Theorem 3 by better estimates. In §2, we prove theorems on localization
assuming Theorems 1 to 4 for a while. 8§83, 4,5 and 6 are devoted to the
proofs of Theorems 1, 2, 3 and 4 respectively.

As was already mentioned, we follow the idea of Carmona and Kotani in
§ 2. This idea gives us a quite transparent proof of localization in some cases,
as one sees on comparing the original works of the Russian school ([10], [26])
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with recent papers such as [3], [16], [17], and [6]. But in order that this is

so, we must impose some kind of regularity condition on the probability distri-
bution of the random potential in a finite box. This is the reason of the rather
technical conditions of Theorems 5,6, and 7. On the other hand, Carmona,
Klein, and Martinelli ([5]), refining the method of Frohlich et al. ([7], [8]),
recently obtained a localization result for the one-dimensional difference
Schrodinger operator whose potential is a sequence of i.i.d. random variables
with singular distribution. An extension of their method to continuum systems
might enable us to drop most of the technical conditions of our results, though
we have not yet examined this possibility.

The mathematical study of Schrodinger operators with Lévy noise potentials
was begun by Fukushima-Nakao [9] and Kotani [14]. They treated respectively
the cases where {Q,(#)} is the standard Brownian motion or Lévy processes
whose sample functions are of bounded variation. At that time, their main
interest consisted in estimating the integrated density of states of H,, but later
Kotani [15] investigated the Ljapounov exponent associated to his former model,
and proved its absence of absolutely continuous spectrum. Our Theorems 1 to
4 and Proposition 3 in §2 are extensions of Kotani’s result [15].

§1. Preliminaries and the statement of the results. Examples.

1-1. Résumé of the previous paper [25].

Let Q(), —eco<t<+4 o0, be a real valued function which is right continuous
and has left-hand limits. For this Q, let us define the (non-random) Schrédinger
operator Hy, which is formally expressed as

Ho=—d*/dt*+Q"(2).

First let Co be the totality of complex valued functions u(f) on R which
satisfy the following two conditions:
(i) wu(t) is absolutely continuous and differentiable from the right. We denote
the right derivative of u(¢) by u*(®);
(i) there exists a ve L] (R) such that the following equation holds:

WO =1 (5)=QOuB—Q)u(s)— | 1R (I+u(x .

It is clear that v(+) is uniquely determined from u(-) up to on a set of Lebesgue
measure zero, and we will denote this v by Hou for each u=C,. We then set

Do={ucsCoeNLAR; dt); Hyus LAR; dt)} .
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Under these definitions, we can give an exact meaning to the initial value
problem Hou=2u, u(s)=a, u*(s)=p by the following pair of integral equations:
t
uy=a+{ ur()dy
(1I-1) .
ut())=F+ QOO —Q(u(s)— | (QIu(3)+2u()}dy.

Now let D(R: R) be the totality of real functions which are right continuous
and have left-hand limits. We endow D(R:R) with the Skorohod topology.
Consider 2={weD(R: R); »(0)=0} with relative topology and let § be the
topological o-field of 2. If we set Q,({)=w(t) (the coordinate map) then &
coincides with the smallest o-field with respect to which w—Q,(f) is measurable
for all teR.

On the measurable space (2, &), we define a flow {T,; t=R} by

(T.w))=0(-+t)—o(t), t=R, wc=f.
Under this setting, we can prove the following result:

PROPOSITION 1. ([25]) Let P be a probability measure on (2, F) which is
invariant under the flow {T.} and is ergodic. Then for P-a.a. w8, H, with
domain 9, is self-adjoint in L*(R; dt). Moreover there exists a closed subset
2=2%(P) of R such that the spectrum of H, is equal to X for a.a. w.

In the sequel, we assume that P is the measure of a temporally homogeneous

Lévy process. Then the conclusions of hold for this P.

As is well known, every temporally homogeneous Lévy process is decomposed
into a superposition of Brownian motion and Poisson processes in the following
way (Lévy’s canonical form):

(1-2) Qo) —Qu(s)=b(t—s)+v(B(t)— Bu(s))
+limgm>”n{wa((s, 11X dx)—(t—s)a(x)udx)) ,

n—oco

where b= R and v=0 are constants, { B,(f); —oo <t<+ oo} is a standard Brownian
motion with B,(0)=0, N,(dtdx) is a Poisson random measure on RX(R\{0})
with intensity measure dtv(dx), and a(x)=(xAl)\V/(—1). The measure v(dx),
which is called the Lévy measure of {Q.(t)}, satisfies

Smma(x)zu(dx)< oo,

Note that sample paths of {Q. (t)—vB.,()} are locally of bounded variation if and
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only if S 1[x]y(dx)< o, and that {Q,(¢#)} has only a finite number of jumps
lxls

in a finite interval if and only if v(dx) is a finite measure. In the following,
we assume that v and v(d x) do not vanish simultaneously, i.e. that true random-
ness exists.

For the location of the spectrum X=2X(P), we have the following results:

PRrROPOSITION 2. ([25])
(i) If v=0, v({(—co, 0))=0, and if S:xu(dx)<00, then 2=[c, o) with
c::b—-S:a(x)u(dx).
(ii) In all the other cases, we have X=(—oo, o),

1-2. Ljapounov behavior of the transfer matrices.
Let ¢o(t)=¢ai(t, ) and ¢(t)=¢.(t, ®) be the solutions of H,u=2Au such that
e(0)=¢*(0)=1, ¢*(0)=¢(0)=0, and consider the following random matrix:

U(t)=Uz(t;m)=(§;(t) sb(t))

@) ¢t
This is called the transfer matrix, since any solution » of H,u=Au is given by
u(t) u(0)
(1-3) B (t))ng(t;w)(u+(0) :

Moreover, it is a multiplicative cocycle in the sense that
(1-4) U,t+s;0)=U,t;Tw)U;(s;w), t sER, o=,

and we have detU ;(¢; w)=1 from the constancy of the Wronskian. Concerning
the asymptotic behavior of this transfer matrix, we have the following four
results, which we will prove in later sections. Below, for a vector x="*%x,, x),
|x]] denotes the Euclidean norm, and for a 2X2-matrix A, ||A| denotes its
operator norm:

|All=sup{l|Ax|; x| <1},

which is equal to the maximum eigenvalue of (A*A)' 2,

THEOREM 1. If S >1logl x|v(dx)<co, then for each fixed A=C, there exists

x|

a strictly positive number y(A) such that for P-a.a. w8,

lim - 1og1U(t5 )l =1(A).

Moreover, for P-a.a. =8, there exists one-dimensional subspaces Vi(w) and Vi(w)
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of C* such that if veVi(w)\{0} [resp. €Vzi(@)\{0}], then

(1-5) Im S log|U:(t; wwl=—1(),
t—+oo[resp. t—+—-o0] lt[

and if v& Vi(w) [resp. €Vi(w)], then

(1-6) lim L log UGt ; @l =+7(2).

t—+4co[resp, t—+-oo] l tl

The number 7(R) is called the Ljapounov exponent of U ,(¢t;w), and we will
say that U;(t; w) has Ljapounov behavior at + o if V}(w) exist and satisfy

and

In the following three theorems, we fix a A>inf Y, where X is the spectrum
of H,. In case (i) of this means A>¢. Otherwise A can be any

real number.

THEOREM 2. Suppose Sl I>lloglxly(dx)r—-—i-oo and A>inf Y. Then for each
fixed ve R*\{0}, we have

tlim l—i—llog]le(t ; @)v|| =+ o0

with probability one.

THEOREM 3. In addition to the condition of Theorem 2, assume that
S <llxlu(dx)< co, Then for P-a.a. @R, there exist one-dimensional subspaces
1z

T(w), Vilw) of R?® such that (1-5) and (1-6) hold with y(2) replaced by +oo, i.e.
for P-a.a. w=Q, U;(t;w) has Ljapounov behavior at & oo with infinite Ljapounov
exponent.

If we impose some stronger condition on the tail of v(dx), then it is possible
to obtain more precise estimation of the asymptotic behavior of U;(t;w). To
this end, set

M(x)::S wdy), x>0,

1y1>ef -1

and let e(t)=e*—1, A()=log(l+t) for t=0. The k-th iteration of &(-) [resp.
A(+)] is denoted by e¢u(t) [resp. Acy(®)]. Of course, ey(t)=2Aw({)=t. Recall
that a real valued function L(t¢) on [0, ) is said to be slowly varying if for
all ¢>0,

L{ct)

ST Tl

(for details, see Seneta [30]).
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THEOREM 4. In addition to the condition of Theorems 2 and 3, assume that
there exist an integer k=0, a real number B=0, and a slowly varying function
L(t) such that

M(e@)=t"2L(1),

where in case k=0, we further assume that 0=<B=<1. (Otherwise Slz»lloglxlu(dx)
would be finite.)
Then for each A>inf2, and for P-a.a. w, Vi(w) exist and satisfy the
following :
if veVi(w)\{0} [resp. €Vi(w)\{0}], then
im
t—+oo [resp. t--oo] | T %

AU 2t )| H)=0, for a>B"?,

and

L (Ut @0 Y=o, for a<B;

m
t-+oo[resp. to-oo] | ]
and if v&Vi(w) [resp. €Vi(w)], then
1

lim ———;R(k>(lle(t;w)vll)=0, f07’ a>18_1’
t—s+oo[resp. t—+—oo0] l tl
and
1
i “ra AUt wpl)=oo, for a<B.
t-s4oo[resp. t—+—oo] I tl

1-3. Exponential and super-exponential localization. Examples.
Using the four theorems in the previous subsection, we can prove the
following results on localization.

THEOREM 5. (exponential localization) Suppose Sl I>llog1x1y(dx)< oo, and

assume that one of the following three conditions holds:
a) v#0, i.e. {Q,(t)} has a non-trivial Gaussian part, and y(R)< o
b) v=y((—o0, 0))=0, and v((0, o))< oo ;
¢) v(dx) has a non-trivial component which is absolutely continuous with respect
to Lebesgue measure.

Then for P-a.a. w82, H, has only pure point spectrum, and if u(t) is an
eigenfunction of H, with eigenvalue A, then it satisfies

lim ﬁlog[ () |1 (0| T = — 7 () <0.

THEOREM 6. (super-exponential localization) Su;bposeS >1logl x| v(dx)=-+ o0,

x|
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v=yp((—o0, 0)=0, and S:xu(a'x)< oo, and assume further that either v((0, c0))< o

or v(dx) has a non-trivial component absolutely continuous with respect to Lebesgue
measure. Then for P-a.a. w82, H, has only pure point spectrum, and each of
its eifenfunctions u(t) satisfies
.1
lim ﬁ—llog[lu(t)l2+|u+(t)|2]"2=—°°.
t—++too
THEOREM 7. (super-exponential localization) In addition to the conditions of

Theorem 6, assume, as in Theorem 4, that there exist an integer k=0, a real
number =0, and a slowly varying function L(t) such that

M(e@))=t"2L),

where 0ZB<1 if k=0.
Then for P-a.a. w2, H, has only pure point spectrum, and each of its
eigenfunctions u(t) satisfies the following:

fim —2- Zaren(Cl 4@+ 0O F1 D=0,  for a>p",

teoo | 1] *

lim——l—
t—-ioo'tl a

Ace+n([lu@®*+u*D)|* 1) =+c0, for a<B.

Finally let us discuss some examples. First of all, we remark that most of
the well known Lévy processes satisfy the conditions of For
example, the standard Brownian motion, Poisson process, and stable processes
satisfy the conditions a), b), and c) respectively, and they all satisfy the

condition S >llog|x]v(dx)<00. The case of the Poisson process is a little bit
&l

delicate: a Poisson process {Q.(t)} satisfies the condition b) but {—Q,(¢)} does

not. tells us that the spectra of

H{=—d?/dt*+ Q)
and
Ho=—d*/dt*—Qu()

are [0, o) and (—oo, =) respectively. In the latter case, we know the absence

of the absolutely continuous spectrum of Hg from [Proposition 3, and we can

show that H; has pure point spectrum in [0, o), in the same manner as in
Theorem 5. Unfortunately, we were not able to determine the spectral nature
of H; in (—o0, 0). Such a problem does not arise in the case of H}, because
it does not have any spectrum in (—oo, 0) at all.
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Next we give some examples for super-exponential localization. Let &w)
={- <x4(W)<x(@)S0< x(W)< x,(w)< ---} be a Poisson point process on R,
and let v,(w)=0, n=Z, be a sequence of i.i.d. random variables with distri-
bution p(dv) which satisfy: (1) E[log(14+v,)]=+4 0 ; and (2) {v,(w)} is independent
of &w). The random Schrodinger operator

—d*/df+ 3 va@)(t— xo(@))

can be realized as
H,=—d*/d*+Qu(1),
through the Lévy process

Qu—Qu(9)=| xN(Gs, th xdx),

where N,(:) is the Poisson random measure on RX(0, o) such that E[N,(dtdx)]
=dtp(dx). Then we have super-exponential localization by If we
consider the special case in which

pldx)={x(log x)'}'dx, for x large,

with 1<7r<2, then H, satisfies the condition of with £=0, B=r—1,
and hence the eigenfunctions of H, decay like exp[—|¢#|¥“-P]. In the same
way, if for some y>1,

p(dx)={x(log x)(loglog x) --- (loglog --- log x)' ]!,

for x large, where loglog --- log x is the (n-1)-th iteration of “log”, then the
condition of holds with £=n and f=7—1, and we have eigenfunctions
decaying like exp[—exp[exp[---exp[|t|¥-P]-.-17], where “exp” .is iterated
n-times.

§2. Proof of the theorems on localization.

2-1. Some notions and facts from the spectral theory of Hj.

In this subsection, we will give a brief summary of the spectral theory of
singular Sturm-Liouville operators, which is often referred to as the theory of
Weyl, Stone, Titchmarsh, and Kodaira (W-S-T-K theory). The subject of this
theory is the investigation of the differential operator

L=—d?/dt*+q(t)

on a finite or infinite interval, and it is usually assumed that ¢(¢) satisfies some
mild regularity condition such as piecewise continuity, local integrability or the
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like. However, if one examines the detail of the theory (see e.g. [13], [20], or
references therein), it is easily understood that such kind of an assumption does
not play any essential role, and that the W-S-T-K theory extends to our Hj
defined in §1-1 as well. Indeed, the initial value problem Hgu=21u, u(0)=«,
u*(0)=p, which is defined by (1-1), is uniquely solvable by successive approxi-
mation, its solution u(¢, 2) and its derivative u*(¢, 1) are entire functions of 2
for each fixed ¢, and we have the Green’s formula: for each u, vEC,,

[} (Houw—u(H@)} dt=Tu, 210}~ [u, vX@),

where [u, v](O)=u@v+*@t)—u*@)v(t) is the Wronskian. Given these basic facts,
W-S-T-K theory can be reconstructed word for word. Hence, we will quote
its results without any proof.

To begin with, Hg is said to be in the limit point case at +oco [—oo] if for
some A=C\R (and hence for all A=C), Hou=Au has a solution which is not
square integrable near 4o [—oo]. Hy with domain 9, is self-adjoint if and
only if Hy is in the limit point case both at +c. We restrict ourselves to
this case.

Let {E¢(2)}icr be the resolution of the identity associated with the self-
adjoint operator Hg,. It is known that for each bounded interval 4=(4, g],
Eq(d)y=Ey(u)—E(2) has a continuous kernel E¢(4; x, y), and that there exists
a measure {0:;(Q;d¢§)}: ;-1 taking its values in the space of non-negative,
symmetric 2X2-matrices such that Eq(4; x, y) is represented as
@) Edix =], | 3 edx;0 00/00:Q 00uds; Q)

1t =1

where ¢, ¢, are the solutions of Hou==8%u with ¢,(0)=¢3(0)=1, ¢{(0)=¢,0)=0.
(i.e., ¢p1r=¢, @,=¢ in the notation of §1-2.) We set o(d§; Q)=0.,,(d&; Q)
+05,(d§; Q), and call this the spectral measure of Hy,. Further let 7,;(6; Q)
=0:;(d§; Q)/o(d§; Q) be the density of ¢,; with respect to g.

These measure, ¢4;’s, are obtained by taking the limit of the eigenvalue
problem on a finite interval as the interval expands to the whole line. More
precisely, let I=[—a, b], a, b>0, and consider the eigenvalue problem;

(2-2) (Hou)t)y=2u(®), t<l,
(2-3) u(—a)cosa—u*(—a)sina=0,
(2-4) u(b)cos B+u*(b)sin =0,

where a and B are arbitrarily fixed real numbers. Let
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AQ:D<Q ;D<K - <A,(Q ;<K -+

be its eigenvalues and v,(t; @Q, I), n=1, 2, --- its normalized eigenfunctions. We
may assume that v,’s are real valued. Set

(2-5) ou(4;0Q, 1)=2n26‘4vn(0)2,

(2-6) 01(A;Q, N=0u(4;0Q, I)=1EAvn(0)vZ<0)',
and

(2-7) 0:2(A;Q, I)= lTLZEAv“;(O)”-

Then as we let a—-+o0, b—+oo indenpendently, a;,(d&;Q, I) converges to
0:5(d§; Q) vaguely.
By the way, in our limit point case,

e P2t Q) = 11y L2(5 Q)
h+('2) Q)—tl—lar-ﬁo (pz(t; Q) ) and h—(zy Q) tl_l.l:_rl'g ¢'l(t; Q)

exist for each 2€C,={Imz>0}. They are holomorphic functions of i=C,,
with values in C,. If we set for 1€C,,

w.(t; 4, Q=¢a@; Qx£h.(2; Q)Pa(t; Q),

then w. [resp. w.] is the unique (up to multiplicative constants) solution of
Hyou=2u which is square integrable near +oo [resp. —co], and

81, 53 Q=—{h(A; Q+h-2; D} 'w(tVs; 2, Quw-(tAs; 2, Q)

is the Green function of Hy, i.e. the integral kernel of (Hg—A)"'. These ‘are
related to the above mentioned o¢;’s in the following manner: Let us define

Hu(; Q=—{h; Q+h-(2; D} '=2£20,0; Q),

H(A; Q)=Hu; Q)=h (A; Q){hs2; Q)+h_(A; O},
and

Hy(2; Q)=h(2; Qh-(2; Q){he(2; Q)+h-Q; )},

then for each finite interval 4=(2, p], we have
.1 .
(2-8) ICIETOI-ESZIHI Hj§+ie; Q)dé=0:((, p); Q)—i——;—{a“({ﬂ} s Q) +a:({p}; Q.

Finally let us see what changes the objects defined above undergo byTthe
translation Q—7.Q. First of all, we have

(2 9) ht(zy TtQ)_i wi(t; 2’ Q) ’
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whence we get

(2-10) Hu(A; T.Q)=g(0,0; T.Q)=g:(,t; Q),
and
(2-11) Hy(4; T.Q)=g200, 0; Qwi(t; A, Qwi(t; 4, Q).

Here we have set wi(t)=(0*/dt)w.(t; A, Q).
On the other hand, from ¢;;(d¢§; Q)=lim;.z0:(d&; Q, I), it is easily seen that

(2-12) 0u(de; TuQ)= 3 0ult; & Qpits & Qaude; Q),
and
(2-13) 0u(d§; TeQ)= 3 9145 & Q)pi(t; &, Qoi(dé; Q).

2-2. A priori estimates of generalized eigenfunctions. Absence of
absolutely continuous spectrum.

LEMMA 1. Suppose S >110g|x|x.a(afx)<00. Then for P-a.a. w, and o(- ; w)-
1z
a.a. AER, there exists a solution u(-) of H,u=2Au such that for all ¢>0,

S:e'e"'(lu(t)lz-k lu*(B)]?)*dt<co.

PROOF. In general, if A(4) is holomorphic on C, and has positive imaginary
part, then there exists a measure ¢(d§) and a constant §=0 such that
© Im2
Im A(2)= B Im A+ S

This ¢ is unique and is recovered from A(2) by

=72 0(dé).

hm IS Im h(E+ie)dé=0((4, p )—{-——{0({2})—!—0({#} ',
(See [12].)

From this fact and the results of the previous subsection, we get the
following two estimates:

e (3,0 005 6, 0)patt; & @)ode; o)
o 1

=" T onts; Tw)

<Img;0, 0; T,w)

=Img;(t, t; w)

=180, 0; )| lwst; i, )| w-(¢; 7, w)],
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and

S:, 1_|{_52 (1._%_,171145 w)pF(t; &, wpi(t; &, w))a(dg )

Sw 1+$2 UZZ(ds Ttw)
<Im Hy,(G; Tw)
<180, 0; w)| |wit; i, )| |wk(i; i, o).

At this stage, we apply for A=i. Then for P-a.a. w, there
exists a solution u(t) of H,u=:u such that |u(f)|?+|u*(t)|® decays expontentially
fast. This solution is square integrable near +o and hence coincides with
w4(t; 7, ). The same thing can be said about w._(¢; 7, w). Therefore we have

fim = log(1wa(t 4, @)l w3 4, )] )S7O—16)=0,

t—a+°°|tl

and

i g log(lwitts 4, @)l [wi(es 5, )] )<76)—160)=0,

for P-a.a. . These, combined with the above two estimates, show that for
Pa.a. w,

o 1
S_M -5I£IdtS_w 1.'_52 [ 2 Tjk(é Q)){@;(t &; w)sok(t 5, w)

T3, Wit & W)} |ade; 0)<oo,
for any &>0.
Now if we set

Ug),z(x):j,%__lfjk(é; w)p;i(t; &, wer(x; §, w),

then v¢.(-) is a solution of H,u=Au for each tcR. From the positive semi-
definiteness of the matrix {r;,(¢; w)} and Schwarz’ inequality, it is easily seen
that

S:e-nc!dt&le-umdxs‘;—lq_l—sz—(]v:e",t(x)] + ’%v;{t(x)l)a(dé; @< oo,

for all ¢e>0. Therefore for ¢(-; w)-a.a. & we can choose a t=R so that
o ot 2\1/2
[" erra(opeor+ | goone@| ) dx<o,

for all e>0. This v¢,(-) satisfies the desired condition.

LEMMA 2. If Q)= is such that Q(t)-ct is non-decreasing for some cE R,
then Hy is self-adjoint and for a(-; Q)-a.a. A, there exists a solution of Hou=Au
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such that

5:*13:11?17(' w4 | u* ()] dt <o,

for all a>1.

ProoF. We may suppose ¢=0. It is easy to see that for 2<0, ¢a(t; Q) is
not square integrable near *+oo, hence Hy, is in the limit point case both at
+co, whence follows the self-adjointness. It is also easy to see that the
spectrum of Hy is contained in [0, o).

In order to prove the second half of the lemma, let us fix a 4<0. A
simple comparison argument with H,=—d?*/d#* show that g.(t, t; Q) is bounded
in . On the other hand, if dQ(t)=0, and A<0, then g;(t, s; Q) itself has an
eigenfunction expansion (see [24]):

g1t 55 Q={7 s27(, 5 Fa@: Qpst; & Qpats; & Q)aldd; Q).

Therefore for any a>1,
> 1 .onl” 1 Q (= _ 1 .
o =goues @ rgeve0di=\" e e t; Q<.
Then by using the positive semi-definiteness of {r;;¢; @)} as before, we can

show that for ¢(-; Q)-a.a. &, there is xR such that

S" L ue.rdt<eo, for all a>1.

s 1+ [2]%
In the same manner as in (Lemma 2.1.), one obtains from this,
* 1 o+ 2
—_— v

as well. u(-)=vf,(-) satisfies the desired condition.

If we combine [resp. 2] with [Lemma 1 [resp. 2], we get the
following result by virtue of a well known argument (see e.g. Pastur [297]).

PROPOSITION 3. Assume that one of the following two conditions holds for
our Lévy process {Qu,(t)}:
(i) {esilog|xludn)<eo;
(i) S.x,>lloglx|y(dx)=oo, but v=u((—oo, 0))=0, and S:xv(dx)<oo.

Then for P-a.a. w, H, has no absolutely continuous spectrum.
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2-3. Proof of Theorems 5, 6, and 7.

In this subsection, we prove our main theorems on localization, assuming
Theorems 1, 2, 3, and 4. In fact, it suffices to prove Theorem 5 only, because
in order to prove Theorem 6, we have only to replace the use of Theorem 1
and Lemma 1 by that of Theorem 3 and Lemma 2 respectively. We get
Theorem 7 if we further replace Theorem 3 by Theorem 4. No alternation is
necessary in the other parts of the proof.

Before proceeding to the proof of Theorem 5, let us quote some notions
and facts from the deterministic part of the theory of Carmona and Kotani.
For details, we refer the reader to [4], [16], and [17].

Suppose that Hy=—d?/dt*+Q’(¢) is in the limit point case both at oo, If
we define for each <[00, «),

Dh={ul(-w01; uEDy, and u(0)cos § —u*(0)sin §=0},

and HYv=(Hou)| -, 01 if v=1|(-, 01D}, then the operator HH with domain 9%
is self-adjoint in L2%((—oo, 07; dt). If {E%(A)}.cr is its corresponding resolution
of identity, then as in §2-1, for each finite interval 4=(4, pl, E%4)
=E%u)—E%A) has a continuous kernel E%(4; x, y), x, y<0, which has the
following representation :

EBYd; x, »)=| ¢llx; Qply; Q)o’(d8; Q),

where ¥ x; Q)=sin8p¢(x; Q)+cosf¢P:(x; Q). We shall call the measure
a%(d¢; Q) the spectral measure of HY.
The following two facts are essential ([17], Proposition 2.5.):

(2-14) S:dosf f(z)ao(dz;Q)=S°_° F(D)da, for any feC(R);

(2-15) if o(dA; Q) is the spectral measure of Hy (see §2-1),
then
[" rwotaz; @=21im ['a6]” ywie; @I s 0725 @,

for each f&Cy(R), where U;(t; Q) was introduced in §1-2, and

. ¢sin @
0_(cos 0)'
We also use the following change of variable formula ([17], Lemma 2.4.): for

UsSIi(2; R) and <[0, ), define a new angle ¢<[0, ) by
Ub==x|Ud| ¢,



240 Nariyuki MINAMI
and denote this by U-8=¢. Then

(2-16) So FU- 0>d0=S:f(0)nU-lén 249,

Now let us turn to the proof of Theorem 5. We divide our argument into
three cases each of which corresponds to conditions a), b), and c) respectively.

CASE a). Suppose v#0 and y(R)<oo. Then Lévy’s canonical form of
{Q.()} takes the following form:
Qu()—Qu(s)=b(t— $)+v(Bu(t)— Buo(s)+(Qu®)—Quls)),

where
Qu—0u(s)=]"_xN((s, t1xdx)

is a “step process”, i.e. has only finitely many jumps in a finite interval, and
is constant between jumps.
If we set

Q.={weQ; sup |bt+vB,(t)|<e, and J.,®)=0 for t[0, 11},

then it is clear that P(2.)>0 for any ¢>0. For each finite open interval I, we
choose an ¢>0 so small that

Co=inf{||U.(1; 0| ; 050<x, 2], w=R2,}>0.

Further let us define
2=0[Q,()—Qu(s); t, s<0 or ¢, s=1].
¢ is the sub o-field of & generated by the random potential outside the interval
[0, 1]. We denote respectively by Pi(dw’) and EJ[-] the conditional probability
and the conditional expectation given 4.
At this stage, we claim that for P-a.a. w=£, the conditional expectation

taken on the set 2. of the random measure ¢(d4; w) is absolutely continuous
on I, i.e.,

E¢[lo,(@)o(dA; ')]KdA.

Indeed, if we set
0l(t; @, 0)=U1(t s (0)‘ 0 ’
then for each non-negative f=C, we have from '(2—15) and
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|,r@atdz; w

=L 1im [7d6{ DIV ToddaL; 0, OIIUAL; @bl 4025 w).
T t-2400JO I

Therefore by Fatou’s lemma,
Ef[ 10, fDa(di; )]

<~ lim E2[10,{a0] f@IU:¢; T a1 ', )1
| XIU4(L; @)0)-20%(d2; )]
lim ("26{ FQEL10,@)IU(t; T:0a(L; o, O)I-*107(d2; 0.

Note that ¢%(d2; w’) and U;(t; T.w’) are g-measurable, and that 1p (w’) and
0.(1; @ ; @) are independent of ¢. Hence our claim will follow from (2-14) as
soon as we have shown

(2-17) sup  Ef[lo@)U:(t; Tw"8:(1; e, 6)]7*1<co.

tz20,2el,0s0<x

For this purpose, let
| I={wsQ; §.(H=0, for t=[0, 1]}.
Then 2.c &, and it is easy to see that the process
{0:(t; 0, 6); 0<t<1}

is a nice diffusion process on the circle R/xZ under the measure Pi(dw’|$)
(see [9], and by a standard method, one shows that it has a transition density
pa(t; x, y) which is jointly continuous in (x, y, ). Let C, be its bound as
(x, ¥, A) varies in [0, 7)*XI: ‘

Ci= sup pi(1, x, ).

0sz, y<=x, el

Then we obtain from (2-16), v
Elllg (U 1(¢t; T10"6:(1; o', 0)17%]
SE[15(NU (¢ ; T10"0:(1; o', 0)1172]

=C.{1Uat; Tiwd) a0

Z”Cl)

proving [2-17), and consequently our claim.
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Now let
A={(w, HE2XR; U,(t; w) has Ljapounov behavior at +oo},

i.e. let A be the totality of the pair (w, 2) for which there exist V$(w) satisfying
the conclusion of By examining the proof of Oseledec’s theorem
(see e.g. [19]), it is easily seen that A belongs to ¢X 8(R), where B(R) is the
Borel field of R. The assertion of is that for each AR, the set

AQ)={wef; (w, HEA}
has full probability measure. Hence by Fubini’s theorem, the set
Alw)={A=sR; (0, H)=A}

has full Lebesgue measure for P-a.a. w. Therefore from what has been proven
above, follows

E[lge(a))gllﬂ(w, Do(dA; w)]

= B[ | Lucwr WELL L @)a(d; 01]]=0,

which shows that for P-a.a. wsf., ,\A{w))=0. But since P(£2.)>0, the
ergodic argument in the Appendix of shows that actually ¢,(/\A(w))=0
with probability one. Finally fix an ® satisfying this and the conclusion of
Lemma 1. Then we must have Vi(w)=V3(w) for o(-; w)-a.a. AcI. Therefore
the solution of H,u=Au whose initial condition *(x(0), ©*(0)) belongs to Vi(w)
=V7(w) satisfies

lim ilog[|u(t)|2+ [u*(@®|2]'2=—r@).

ta:toaltl

In particular it belongs to L*(R; dt) and we have shown that ¢(-; w)-a.e. A=l
is an eigenvalue of H,. Letting I 1 R, we finish the proof.

CASE b). Suppose v=uv((—o0, 0))=0, and v((0, o))< oo. In this case, without
loss of generality, we can assume that {Q,(f)} is a step process, i.e. is constant
between its jumps. Then the spectrum X of H, is [0, oo) almost surely. Set

r(w)=inf{t>0; 4Q,({)>0},

where 4Q,)=0Q,t)—Q.,(t—). Then z(w)>0 almost surely.

Now let us fix an arbitrary finite open interval I such that inf />0, Cor-
responding to £2., ¢, and 8;(t; w, ) in the preceding case a), we introduce the
following objects:
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Q'={we2; 0<r(@=1};
@'=a[Q.(), t<0; Qu,(r(@)+1)—Q.(r(w)), t=0; 4Q.(r(w))];
Oiw; 0)=U (zr(w)— ; §)-80.
Then noting that
U@ +7(@) ; @)= Ut ; Tecar(@)dU 1(z(w) ; @)@ ; O] U 2(z(w)— ; 0)d],

where
AU 1(7(w) ; @)=U 3(t(w) ; @)U ;(t(0)— ; ®)™*

_( 1 0
T \4Q,(z(w)) 177
and that

Co=inf{|U;(z(0)—; @) ; 0=0<x, 2], 0=2'}>0,

we get as in case a),

E§[1a@), fada; w)]

A

< %1% ES [lgf(a)')S:dOSIf(i)lle(t; w)0iw’ ; )]
X U 1(e(@)— ; 0| -*a%(d2; co')]
o lim ("6 FOESTIW a5 0’ ; 0110’2 a,

IA

where we have set
Wat; @)=U;(¢; T @)U i(t(w) ; ®).

Note that this and ¢?(d2; ) are g’-measurable.

It remains only to prove that the random variable @(w’; @) has, under the
probability measure P2 (dw’), a distribution density which is uniformly bounded
in (8, A)=[0, #)XI. Indeed, if this is true, then in the same manner as in
case a), we will obtain

Ef[o(dAd;w')]<dA, on I,

and from this, the conclusion will follow.

Now 7(w) is independent from ¢’, and it obeys the exponential distribution
with parameter B=y((0, «©))>0. Hence by the definition of @%w; #), we have
for any Borel function F=0,

ESTFO@' ; 0)1=| FWU1(z; @)-0)ePedr,

where w,(1)=0. By a direct calculation, we can show without difficulty that the
right-hand side is bounded by
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C,S:F(ﬁ)dol,

C,; being a constant which depends only on 1. (The assumption inf7>0 is
important in this respect.) Therefore the distribution density of 0j(w’; @) is
uniformly bounded, as was claimed.

CASE c¢). Let v(dx)=v,(dx)+v,.(x)dx be the Lebesgue decomposition of the
Lévy measure v(dx), where we assume v;(x)#0, and let S be a Borel set of
zero Lebesgue measure which supports v,(dx). If we set

J=J©, M)={x&S5°; | x| >8, 0<v,(x)SM},

then J has positive Lebesgue measure for § sufficiently small and M sufficiently
large. Fixing such 8 and M, let us decompose {Q.(f)} as

QuH=QL0+QL(®, QLO=( xN(O, 1xdx).
Then {Q2%(t)} is a step process. Let '
| -+ <T(@) <t(@) S0<7 () <to(@) < -
be the points at which Q5L(¢) jﬁmps, and set
 0,=0[QL), tER; {T0(@))3mmn; {4Qi(ta(@)}nss], JEZ.

Then under the conditional probability PSi(dw’), only AQﬁ,(r,-(m’)) is random, and
its distribution is proportional to 1,(x)v..(x)dx. Now let us define the mapping
D;: Q-2 by .

Q.®), for t<tiw)
Q¢J(t)={ '

Qm(t)—AQw(TJ(w)) ’ for tgtj(w) ’

i.e. @,(w) is obtained from w by removing its j-th jump. Then from the con-
struction of the Green function of H, and Hp ) (see §2-1), we see that-

81(tiw), 70); ®)=—{—gi(rw), Tiw); D) —4Qu(z (@)}
holds for 2=C,. If we set
Lw)=¢)+in(w)=—gi(rw), t{0); D) eC,,
then { is a ¢;-measurable random variable. Therefore, with some constant M,

Edi[Im gi(ri@), ti0’); w)]

<(Im(5 =) P (@) =d )

= 7(®) _
gMS_w C@—xry@y =M
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Hence from (2-8),
Egj[:O'u(I; Tz'j(w’ )w,)]

1.
<—lim ng[g,xm Gevna( (@), T ; af)]ng I,

for any bounded open interval I, namely

E3l01u(dA; Ty Hw)]KdA.
This implies, as in case a), that for P-a.a. weQ,
(2-18) ou(A@)°; Tejmw)=0, jEZ.

The proof will be finished if we have further shown that c(Alw)*; w)=0. To
this end, fix an @ for which holds. Then from [(2-12),

(2-19) Vel 27135 @it 2, )yt 2, @} o(dd; 0)=0,

=1

for t=7w), j=Z. Let pr(A;w), k=1,2, be the eigenvalue of the matrix
(i;(1; W), K(A; ) the orthogonal matrix which diagonalize (z;;), and set

[l 0N_ 4. (eit; 4, @)
'(fz(t;l, w) —K(l’w)(soz(t;l, w)/’

means that for ¢(-; w)-a.a. A€ A(w)¢, one has
2
2@ 0)fs(ef@); 4 ©)=0, jEZ.

Then for such A, one and only one of the following two cases is possible:

(i) for every j=Z, F)=X7-1¢:(A; 0)f(t; A, w) does not vanish identically on
(ziw), Tj+1(®));

(i) F@)=0 on R.

For suppose (i) does not hold. Then F(¢) vanishes identically on some open
interval. But f, is a solution of H,u=Au. Hence F(f) must vanish entirely
on R.

Now let 4 ,(w) be the totality of eigenvalues of H,| [ (@) 7j41(0)] with Dirichlet
boundary conditions. It is clear that if (i) holds, then A€ A(w)=\;4{w). On
the other hand, if (ii) holds, it is also clear that p,(4, w)f:(; 4, w), k=1, 2,
vanish for all t. In particular, ' '

2:(A; 0)f:(0; 2, @)=p:(4, @)f#0; 2, =0, k=12,

and we get
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2
. 2 + . 2 .
L iescny 21 011203 2, @4+ £1(05 2, )} 0(d2; @)
2
= ety SHTUR 003 2, 09,05 2, @)
+¢1(0; 2, 0)7(0; 2, w)}a(di; w)

{1u.(4; ©)+72:(4, w)}o(dA; w)

SA(w)C\A(w)
=0(Aw)\4d(®) ; @)=0.

Thus we have proved that the spectral measure ¢(d4; ) is concentrated on
A(@)\U A(w). It should be noted that this already proves that H, has only point
spectrum because A(w) is at most countable, and because for ¢(- ; w)-a.a. A€ A(w),
one can show the existence of exponentially decaying eigenfunctions as before.
However some additional probabilistic considerations show that we have actually
A(w)=@ for P-a.a. w. We will show in fact that 4,(w)"\A4,(w)=@ almost surely.

First note that 4,(w) is determined from {Q,(t)—Q.(7;(®)) ; t= [t jw), Tj+1(®)]}.
Therefore A,(w) and A,(w) are independent (set-valued) random variable because
of the strong Markov property of {Q,(¢?)}. Hence it suffices to show P(A€ 4,())
=0 for each fixed 4. Now let 0<s,(w)<s,(@)< --- be the positive zero’s of the
solution of H,u=24u, u(0)=0. Then A€ 4,(w) if and only if $,(T @) =71(T¢;c)®)
for some n=1. On the other hand, s,(w)=7,(0w) is equivalent to s,(@)=5,T (w))
=7,(w), where we define ¥(w) by Qu»(#)=QL(t). From the statistical independ-
ence of {QL(#)} and {Q%(#)}, we see that s,(¥(w)) and 7,(w) are independent.
Since 7,(w) has a continuous distribution, we finally obtain

PREA@NS T P(su(Te @) =0T+ o))

Il
Ms

P(s(w)=1(w))

n=1

8

= lP(sn(l”(w)):n(w)):O,

n

completing the proof.

§3. Proof of Theorem 1.

Except the assertion 7(1)>0, the theorem follows from the well known
theorem of Oseledec (see e.g. [19] and [28]) as soon as the condition

(3-1) E[ sup logllU(t; @)l | <o

is verified for some 7>0. But if {e,, ¢,} is the standard basis of C?,
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IUI=Ueil+Ues.ll,
so that in order to prove [3-1), it suffices to prove
(3-2) E[ sup log|[U(t; w)vH]<oo
0st=sT

for each fixed v="%a, B)=C? |a|®*+|B|*=1.

Now let u(¢) be the solution of H,u=A4u, u(0)=a, u*(0)=F8. Then we have
WUt ; owl*=u@)|®+|ut@)|% On the other hand, Lévy’s canonical form can
be rewritten as (see [11])

Qm(t):cat—l»vBc,,(t)—i—Slx‘>5wa((0, z]><dx)+S:+Sm§5xﬁ,,,(dsdx),

for each 6>0. Here we have set c(;——-b—gl I>(;a(x)u(dx). Then for each fixed

a and 8, the random equation H,u=24u, u(0)=a, u*(0)=p can be considered as
the following pair of stochastic integral equation:

u(t):a-l—gzu*(s)ds
ur(t)=B+(cs— D u(s)ds+o{ u()d Buts)

+0.7] | rueNadsdn+ [T vuofdsd.

lxl=

Hence from the generalized Ito’s formula ([11], Chapter I, §5), we obtain

(3-3) log(1u(®1*+ | u*®) )= p(a(sNds+MB+S®),
where we set
3-4) zO=u*/u)eCUfco},
@-5) p=2+ e ReAREDH R D2

s 1—(R§i)2l:—l(zlmz)2

s R - T,
(3-6) Mwy=20{ ~ +T"’<(S))lz dBy(s)

+§Z+S,x,§a e udsdn,
37 so=" 1+("+Rl‘f(li E;)):)T I | Ndsdn).
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For each 0>0, it is easily seen that p(z) is a bounded continuous function
on CU{e}, and that {M(#)} is a square integrable martingale with right
continuous paths. Therefore

(3-8 B[ sup |{} ptas)ds| | TIple<eo,
and
(3-9) E[ sup, | M®)] |<oo,

by martingale inequality.
On the other hand, it is elementary to show

2 2
s |lo{ ORI LERD <5 t0g(1-4+1 1),
so that
T+
(3-10) B[ sup 1501 |<E[[)] 310+ x)Ndsdn)]

:3TS log(14| x| )u(d x) < oo,
>0

1zl

from the assumption.

Combining [3-8), [3-9), and [3-10) with [(3-3), we arrive at

It remains to prove 7(A)>0. Having established the almost sure existence
of the limit, it suffices to let +—oo through some discrete set, namely it suffices

to prove that for some a >0, we have
lim%logllU;(na ;o||>0, a.s.

for each v=C*\{0}. But U;(na; w) is a product of independent random matrices ;
U:na; @)=Ui(a; T -10U(a; T 0w Uila; ).

Hence it suffices to verify that for some a>0, U,;(a; w) satisfies the condition
of the following Furstenberg’s theorem:

Furstenberg’s theorem—two dimensional version ([1] Part A, Chapter I,
Theorem 3.6, Theorem 4.1, and Proposition 4.3.)

Let {Y.}..1 be a sequence of independent, identically distributed random
variables in Si(2, C), and let p(dY) be their distribution. Further, let G, be
the closed subgroup of S/(2, C) generated by the topological support of p. If
p¢ and G, satisfy the following three conditions;

(i) E*#[log|Y.]]<eo;
(ii) G, is not compact;
(iii) for any ¥=P(C?), {M-x; M=G,} contains at least three different points,
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then for each v=C*\ {0},

Li_r.rolo—%l—logllYnYn_l---Ylvll>0, a.s.

Here the definitions of the notation in (iii) are the following: We identify
two elements x, y of C?\{0} if x=Ay for some A=C. This defines an equiva-
lence relation ~ in C?\{0}. We set P(C*)=[C*\{0}]/~. The equivalence class
to which xC?*\{0} belongs is denoted by X%, and we define M-z=Mx for
MeSi2, C). ,

Now for each a>0 and A€C, set Y,=U.(a; T r-1n.w), and let p;(a) be
the distribution of Y, in Si(2, C). We have already seen that E[log|Y,[]<e
holds for all >0 and A=C. Let us show that for each fixed A=C, we can
find an @>0 such that Gp,,, satisfies the conditions (ii) and (iii).

Verification of (ii). First consider the case A>inf2, which is the most
important. _ :

Let Supp(P) be the topological support of the probability measure P on £.
As we already noted, @={wsD(R—R); w(0)=0} is endowed with the Skorohod
topology. In order that condition (ii) holds for a given a>0, it is sufficient
that there exists an w,=Supp(P) satisfying the following two conditions:

(1) () is continuous both at t=0 and t=a;

2) |trUa(a; o) >2.

Indeed (1) implies that the correspondence w—U ;(a; w) is continuous at w=w,
(see [25], Lemma 2). Hence U;(a; w,) belongs to Supp(ui(a)). On the other
hand, (2) implies that ||[Ui(a; @y)"||—cc as n—oo, so that G, cannot be
compact (see the argument of Matsuda and Ishii [23], p. 67).

- In order to show the existence of such w,, we divide our argument into
four cases.

CAsE 1. v=y((—o0, 0))=0, and S:xu(dx)<oo in the Lévy’s canonical form,
in which case we may assume that {Q.(?)} is of the following form:
Quy={ xNu((0, 1xd).
Then ¥'=[0, ) and we consider only 2>0. Fix an a=(0, «o)"\Supp(v), and set
ws(t)=alcg, =),

for each $>0. Then wgz=Supp(P), and an elementary calculation gives

(3-10) gB)=trU.(B; ws)=2 cos(~/ A B)+ j‘%sin(x/—[ﬁ) ;
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in particular g(0)=2, g’(0)=a>0. Hence for a sufficiently small B3>0,
trU(B; ws)>2. Since t—trU;(¢t; wg) is right-continuous, trU;(a; wg)>2 still
holds for a>B which is sufficiently close to SB. These ws and a satisfy the
desired conditions.

In the next three cases, we have 2 =(—o0, =), so that we shall consider
an arbitrarily fixed 1>0.

CASE 2. v=y((—0, 0))=0, but S:xv(dx)z—%-oo. In this case, if we rewrite
Lévy’s canonical form as
Quity=cyt+| ZNL(O, 11xdx)+QL),
where
cﬂzb—S:a(x)v(dx),
then ¢, | —co (9 | 0) from the assumption. Choose 7>0 so small that c¢,<4
and y((y, «))>0, and fix an a=(yp, «)N\Supp(v). If we set for each 8>0,
wgt)=cyt+alip =),

then as in [25], one shows wz=Supp(P). The rest is the same as in case 1.

CASE 3. v#0. In this case, w,(t)=rt belongs to Supp(P) for any yeR. It
suffices to take y>A4, because then we have

trUa(a ; o,)=2cosh(v7—1a)>2,
for all a>0.

CAsE 4. v»=0 and y((—oo, 0))>0. As in [25], it can be shown that there
exists a y€ R and an a<0 such that wg, defined by

ws()=pt+alcs, (1),
belongs to Supp(P) for any 8>0. We shall assume g#=0 for simplicity.
Consider first the case 2>0. Then g(8)=trU:(8; wp) is given by
with a<0. Then g@rn/+/2)=2, and g'(2x/+/ A)=a<0. Hence we have
g(B)>2 for B<2n/+/2 sufficiently close to 2x/+/ 2. As before, we choose an

a<(B, 2rn/+/ 2) sufficiently close to B, to obtain trU;(a; @wg)>2.
Secondly let A&(—o0, —a?/4)U(—a?/4, 0]. Then

g(B)=trU (B ; ws)=2 cosh(Bv/12])+a/+/[A]sinh(B+/]A]).

In this case, we have limg..|g(B)| =40, so that we have to choose a B>0
sufficiently large and then an a>f sufficiently close to S.
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Finally in case A=—a?/4, we consider wg,,, defined by

@5, ()= {1g, > F1pry, (D)}
with 8, r>0. Then

trUZ%,,(B+7; wg,,)=(coshb—2 sinh b)(cosh c—2 sinh ¢)—sinh b sinh ¢,
where b=|a|B/2, c=|al|r/2. Let B>0 be such that cosh 8—2sinh §=0. Then

lim trU:(8+7; ws,,)=lim (—sinh b sinh¢)=—c0,
7= 7—oo

so that it suffices to pick a sufficiently large y>0 and an a>f-+47 which is
sufficiently close to B+7.

Now that we have verified condition (ii) in the case 2>inf 2, let us consider
the case A=€C\R or A<inf2. For this, it suffices to show that for P-a.a. o,
there exists a solution u(¢) of H,u=Au such that

(3-11) E(Iu(na)lz—l-lu*(na)lz):%—oo-

Indeed, since we have
(;E(ZGJQZY"Y"* Y‘(:Jf((o(i) '
implies that Y, Y., - Y,€Gu, 0y, n=1, 2, --- are not bounded as n— oo,
contradicting the compactness of G, ca>.
Now suppose A=C\R, and a>0. For Pa.a. w, H, is in the limit point
case at +oo. Hence there is a solution u of H,u=Au such that

S:| u()|2dt=—+co .

But from the Green’s formula (§ 2-1),
(2 Im ,2)S:“|u<t)12dt=[u, al(na)—Lu, 2J(0),
so that {(u(na), u*(na))},., cannot be bounded.

If AZinf23Y=c¢, then H,=—d?/dt*+¢c, and by a simple comparison argument,
we can show that for the solution ¢ of H,u=Aiu with ¢0)=0, ¢*(0)=1,
{¢(na)} nzo is unbounded for any a>0.

Let us pass to the verification of the condition (iii). In fact, we will prove
that for all >0, A€C, and X=P(C?), {M-% ; M=Supp(pi(a))} already contains
more than two points. To this end, we will find, each time we fix a, 4, and
X, three elements w;, w;, and w; of Supp(P) of which t=0 and t=a are

continuity points, and such that U;(a; w;)-%, j=1, 2, 3 are different from each
other,
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But if x=%a, B), Ui(t; w)x=4u,2), ul(t)), and if we set z=f/a and
z:(t; @, 2)=ui(®)/u,t), then it is clear that the last condition is equivalent to
saying that z:(a; wj, 2), j=1, 2, 3 are different from each other.

In order to show the existence of such w,’s, we divide our argument into
two cases. First fix >0, 2€C, and z&C\U{x}.

Case 1. v+#0, Let us define w,,.s by

0 ISt
Wy, ., )=1 1(t—7); t<t=t+0,
70 ;tHost

where 7, 6>0 and 7+d<a. Clearly ,,.;=Supp(P). First choose a 7€(0, a)
such that {=zi(r; ®,.r.5, 2)# 0. This choice does not depend on 4 and 7. At
this stage, we note that z;(f; w, z) satisfies the equation

(3-12) 2)=2(8)+Qu()— Qu(s)— | (A+2(a))do
provided z;(¢; w, z2)# oo for all ¢<[s, t] (see §4-1). Hence
2;(t; Wy, 5 2)=C+r(t—r)—§:{2+21(s ;W00 2)°}ds,

for =7 sufficiently close to r. By differentiating this with respect to 7, we
can show without difficulty that for each compact interval I', there is a
0(0, a—17) such that

%Z}(T"l‘t; Wy, 2,55 Z)qto,

for all (7, )el'x[0, 8]. In particular z:(z+0; 0,5 2) takes various values as
we vary y</I’. Finally, if we note that z—z,;(f; w, 2z) is a bijection from C\U{}
onto itself for any t=0 and w=2, we see that

z2:(a; @55 2)=22(a—7—0; Tr450;, 1,5, 22(T+0 ; Wy, 2,5, 2))
takes different values as one varies re/l". It suffices to choose suitable three

values of 7.

CaseE 2. v=0. In this case, we choose a p=R and an a<Supp(v)\{0} so
that for every sequence S={a;}}: with 0<e,< -+ <@,

wst)=pt+a ]E_J: LIeo . e(t)

belongs to Supp(P). Again we may assume pg=0. First let S,=@ so
that ws,(1)=0. Choose a o0<(0, a) such that {=z:(¢;ws,, 2)#00. Let
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K={zeC; |z—{|<3]a]}. Then it is easy to see that one can choose a
0€(0, a—o) such that for any z€K, z;(t; ws,, 2) remains in the disk of radius
la|/6 centered at z for t<[0, ). If S;={g}, S;s={o, ¢'}, 6<o’'<o+0, then
from (note that 4z(t)=4Q.,(t) when z(t)# o),

z(0; ws,, 2)=2:(0—; ws,, 2)+a=C+a,
z:(0"; ws,, 2)=z2(0"'— ; ws,, 2)=a
=z;(0"—0; ws,, {+a)+a,
and consequently it follows that
|z2(0+8; ws,;, 2)—22(0+0; ws,, )1 21al/3, for i+#j].

Therefore z;(a; ws,, 2), j=1, 2, 3 take different values as well. The proof of
is now complete.

§4. Proof of Theorem 2.
4-1. Outline.

Our problem is to show, under the condition S Dlloglx]»(dx):oo and
|z

A>inf X, that the solution u(¢) of H,u=2u, u(0)=a, u*(0)=4, (a*+p2=1) grows
up faster than exponentially, i.e. that '

4-1) ¥§3%10g<u(t>2+u+(t)2>
=11§1-1—{S:p<z<s>>ds+M<t)+ Sthl=+, as.

(see [3-2)). Since everything is real-valued in this case, p, M, and S above
take the following forms:

(4-2) Z)=ur/u)eR=R\U{x};
4-3) P@=21+ cr= Dy +0° (11::)2 |
+{,, o llo8 TR — T ven;
(4-4) M(t)=2v52%d3(s)
] s RS s

and
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(et 1+(x+2z(s—))?
(4-5) so={"{ __log{ Ty Nidsdz).

As we noted in §3, for any >0, p(z) is bounded continuous on R, and
{M(t)} is a square integrable martingale. In fact, it can be shown at the same
time that

(4-6) E[M@®"]=0(t), as t—co.
Therefore we have, first of all,

@-1) iim | = plats)ds| S plasos,
and next, from and Lemma 1.2 of [15],

lim— M(t) 0, a.s.

t—oo t

Thus, the sole thing which is not trivial is to prove that for some suitable
choice of >0,

(4-8) : %im%S(t)z—l—oo, a.s.

We do this by analysing in detail the asymptotic behavior of the process {z(t)}
defined by (4-2) and the Markov chain associated to it.
First suppose that u(r)#0 for r<[s, t]J. Then from (1-1), it is easily seen

that
u*(r) u*(r)
dr( u(g Qulr )> ( u(‘:) )

In other words z(¢) satisfies

(4-9) 2)—2(5)=Qu(t)—Q(s)— | (A+2(e)dr,

provided z(r)# oo for v<[s, t]. In particular, 4z(t)=4Q,(t) whenever z(t)# co.
Moreover it is clear from (1-1) that u*(¥)=u*(—) whenever u(¢#)=0. Hence
z(t)=z(t—)=oco whenever z(t)=oco.

Keeping these in mind, we proceed as follows. Let us define a sequence of
random variables ¢,(@)=0<0,(w)<0o,(w)< --- by

Oani(@)=inf{t>0c.(w); 14Q.(1)| >0}, n=0,
and set

S-(=_3 log(l+2(a.—)"),

Si=_3 log(l+2(a.)),
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with the convention that log(l+<0?)=0. Then from and z(¢,)=z(6,—)
+4Q,(¢,), we have the decomposition

SE=S+®)—S_().

Hence it is sufficient to show that

%im—l—S_(t)<oo , a.s.,

oo T
.1
and %1m75+(t)—_—+oo, a.s.

Our plan is the following.

In §4-2, we prove that
1) {z(®)} is a strong Markov process, and if A>inf2, it has an invariant
distribution n(dz);
2) {z(t)} satisfies the individual ergodic theorem, i.e. for any bounded Borel
function f on R, and for any starting point z=2z(0), one has

lim -1—St fe)ds=| f(m(d2), a.s.
two [ JoO E
In particular, can be strengthened so that

1;;3—H:mz(s))ds:Sﬁp(z)n(dz), as.

In the next §4-3, we prove the following;
3) if we set (Cn, ¢go)=(2(0.—), 4Q(c,)), then it is a Markov chain in RXR;,
where R;=R\[—9, 0]; ,
4) if 2>inf2Y, then {({,, ¢»)} has an invariant distribution p(d{dg). Moreover,
the individual ergodic theorem holds as follows: for any Borel function
0<F, )< on RXR; and for any starting point (£, ¢),

.1 a2 c
tim—- 3} FC,, qj)—_—gsl_waF(c, Qdldg), a.s.

N—sco

5) u¢ is a product measure: u(dfdg)=m(d{)v(dqg).
Concerning this m(df), we prove in § 4-4, that for a suitable choice of >0,

6) SﬁlClﬁm(dC)<oo for any 0<8<1,

in particular

| Jog(1-+gom(an)<co.



256 Nartyuki MINAMI

From (1)-(6), (4-8) can be deduced without difficulty. Indeed, if we set
n(t)y=max{n; ¢,=t},
then noting that ¢,—o,.,, n=1, are i.i.d. which obey the exponential distri-
bution with parameter v(R;)>0, we see that

"(’) —lim(+ 2(0,——0,_1))":15[01 = y(Ry).

t—voo t—oo

Therefore from 4) and 6),

n(t) 1

t (t)
n(t) 2
=lim —t—lln;lo; j};l log(14¢3)

t-ro00

lzim_}s'(t):l 2 log(142(a;—)%)

=u(R5)SRIog(l+C2)m(dC)<oo . as.

On the other hand, we have from the assumption,

n(t) 1
t (t)

"(t) llm E log(1+@&;+9,)®

}£§%S+(t)=l S log(1+2(a,))

=lim—=

{0

=»<R5>SR§Ralog<1+<c+q>2>u<dq>m<da

=-4o0, a.s.,,

and this completes the proof of
In fact, the assertions 1)-6) (hence as well) seem to hold without
the assumption 2>inf %, but we did not investigate this because it is not neces-

sary for our final purpose. We also remark that the conditiong >1loglxly(dx)
x|

=+ oo is not used until the very last step of the proof.

4-2. Analysis of {z(?)}.

To begin with, let us fix our basic notation. On our probability space
(2, &, P), define the increasing family {F;};», of sub o-fields of F by
F,=0[Qu.(s); —o<s<t]. It is well known that if 0=Z7r(@)<o is an {F.s}-
stopping time, where F..=(\¢>:Fs, then the process {Qr, ,,o(D); t=0} has the
same distribution as {Q.,(?); t=0}, and is independent from &, This is the
strong Markov property of Lévy processes. (See e.g. [2].) Note that T,
does not preserve the measure P itself in general. We set W=RXxQ, its
element being denoted by w=(z, w), and 8=8(R)XF, B,=BR)XF,,. For



Exponential and Super-Exponential Localizations 257

a, )= R*\{0} and for the solution u(t) of H,u=A4u, u(0)=a, u*(0)=4, set
zZ)=u*@®)/u@)eR. =z(t) is determined from z=a/Bf and {Q.(s); s<t}, hence
{z(1)}:20 is a stochastic process on (W, 8) adapted to {#.;}. We shall also
write z(t; w) (=z(t;z, w), z:(f), or z;(t; w) whenever it is necessary to
emphasize the dependence of z(¢) on each of its variables. For w=(z, w)eW
and for =0, we define 0¢w=<z(t;z, ), T;w)eW. Finally, note that from

we have z(t+s; z, w)=2(t; 2(s ; w), T ;) for t,s=0, i.e. z(t+s; w)=z2(t; 6,w).

PROPOSITION 4. Let P,(dw)=0,XP. Then the triple (z(t; w), {B:}ezo, {P,},eg)

is a strong Markov process in the following sense:

a) z(t;:)is B,-measurable for each t=0;

b) for any B B(R), z—P,(z(t; w)=B) is B(R)-measurable;

c) Puz0; w)=2z)=1;

d) let ©(w) be a finite {B.}-stopping time, f(w) be bounded and B.-measurable,
and g(z) be bounded and Borel on R, then

Ez[f(w)g(z(t s 0rw))]=Ez[f(w)Ez(t<w): w)[g(z(t»]:l .

PROOF. Obvious from the construction and the strong Markov property of
the Lévy process {Q.()}.

REMARK. Let 7(w)=1(z, w)=0 be such that z(z, -) is an {F,.}-stopping time
for each zeR. If (z, w) is, as a function of z&R=(—c0, 4+ ], non-decreasing
[resp. non-increasing] and left-continuous [resp. right-continuous], then z(w) is
a {B.}-stopping time. Indeed, if we define

+o0
Ta(2, w)=j;2_wlc;/n,<j+1>/n>(2)‘r(j/n, @)+ 1i(2)t(c0, W),

[resp. 7a(2, ©)=27Zw Lijin, G0 A2)T(F+1)/ 1, @)+ 1w(2)7(c0, )], then 7,’s are
{3B.}-stopping times and 7,(w) 1 7(w) as n—oo.

Now let us define
To(w)=1(w)=0,
Tan(W)=thn(w)=inf{t>7,(w); z2(t; w)=c0}, nz0.
Then since 7,’s are zero’s of the solution of H,u=Au, we have 7,<t,4+ and

2(ta(w) ; w)=2(t.(w)— ; w)=co whenever 7,(w)< co.

LEMMA 3. For each zeR, t,.(z, -)'s are {F.}-stopping times. For each w,
7.(2, ) 1s non-decreasing and continuous as a function of z&(—oo, o0]. In
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particular, t,(w)'s are {B.}-stopping times. Finally, if A>p and if v4(w)<co,
then tiw)<ti(w).

Proor. The first assertion is obvious. The monotonicity and continuity in
z, as well as the monotonicity in A can be shown in the same way as in
Kotani (Proposition 1.5 and Proposition 1.3).

LEMMA 4. Assume 2>infX. Then for each zER, we have ti(z, w)<oo for
Pa.a. w. Moreover, we have E[t{(z, w)*]1< oo, for all k>0.

PROOF. Consider the eigenvalue problem (2-3)-(2-4) with I=I,=[—I, [],
B=0, and cota=z. Since H, is self-adjoint almost surely, we have for P-a.a. w,

0(d§; o, [)=(01110:)d§; 0, I)) —> 0(d§; w),
vaguely as [—oo, and
Supp(e(- ; w))=2".
In particular, for A>inf %,
lli_mo((—oo, Ao, [[)za((—, 1); )>0, a.s..

Hence

lim Pk ; 1)<DZP(lim (o] ks [)<2})=1,

or what is the same, for any ¢>0, we can choose / so large that
Pw; IN<H=1—e.
Next, consider the eigenvalue problem on the interval J,=[0, 2/] with the

same boundary conditions as above. Then by the stationarity of the random
potential Q(¢), we still have

PA(w; [HN<D=1—e

with the same choice of 4, &, and /. On the other hand, if A(w; J;))<A, then
from Lemma 3,

z; @) <71, 1@ I0(z; w)=2I.
Therefore for any >0, one has
Priz; @)<2)=1—s¢,

for [ large enough. Letting ¢ |0, we arrive at the first assertion of the lemma.
Now from the monotonicity of 7,(z; w) in z, there exists a 7>0 such that

0= p=sup,crP(t:i(z; @) >T)=P(r\(c0 ; ) >T)<1.
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Using the Markov property of {z(¢)}, we can show inductively that
P(zy(c0; 0)>nT)<p", for all n=1,

whence follows the second assertion of the lemma.

PROPOSITION 5. Assume 2>inf Y. For any bounded Bovel function f on R
and any zER,

hm Sf(z(s w))ds—S f(2)r(dz), P,almost surely.

Here, w(dz) is the unique invariant distribution of {z(t)}, which is given by

(4-10) [ f@ma=—2r o Eof | plawydt].

PrROOF. By Lemma 4, we see that the right-hand side of defines a
probability measure on R. For a bounded Borel function f, set

71(w)
@, w)={"" featt; wyat.
Then since 7,4, (w)=7.(w)+7,(0.,w), n=0, one has
Tr41(w
[ et wdt=0,(0.,

Since z(r,)=co, from the strong Markov property of {z(f)}, it follows that
Ds(0.,w), n=1, are i.i.d., and that
E.[9:0.,w)]=E.[D (w)].

In particular, T, (W)—7.(w)=P.(0.,w), n=1, are i.i.d.. Hence from the law
of large numbers, we have

11m Sf(z(s w))ds=lim 1 é D ((t;w)

oo n<w) n &
[T] A rewnat],
1
as desired.
Having shown such an individual ergodic theorem, it is now easy to see by
general considerations that the probability measure m(dz) is the unique invariant
distribution of the Markov process {z(?)}.

4-3. Analysis of {({., ¢.)}-

For w=(z, )W, set {,(w)=2(d.(0)— ; w), go(w)=4Qu(d:(@)), n=1, 2, ---,
where ¢,(w)’s were defined in §4-1. (We do not define {,(w) and g.(w).)
Since ¢,’s are {F,}-stopping times which do not depend on z, they are also
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{B.}-stopping times. Set

II¢, ¢; AXB)=PQG:({+q, w)€EA, q.(w)EB)
=Pc+q(2(0'1"")EA, AQ(GI)EB)r

for A= 3(R) and BE 3(R;). Finally set 3,=3,,.

PROPOSITION 6. {(C., grn)}nzo is @ Markov chain in the sense that for any
bounded Borel function F(, q) on RXR; and for each z<R,

(4-11)  E.[FGn+, Qn+l)|3n](w)=§ st11'(Cn(w), qa(w); dRdQF (¢, q), Pra.s..

Bx
The transition probability /I is given in the following manner:
@12 ¢, g; Ax By=({ dte-> " PiC+q; A))xu(B),

where (i) A€ 8(R), B€ 8(R;); (ii) {Q%(@®)} is the Lévy process obtained from
{Q.@®} by removing all of its jumps such that |4Q.(t)| >d; (iii) {2%¢; 2z, w)} is
the Markov process constructed from {QZ(¢)} in the same way as {z(t 32, W)}
and (iv) Pi(z; A)=P(2(t; z, w)E A). |

ProOOF. (4-11) follows from Let us verify [[4-12). From the
definition of 2%(¢), it is clear that
2%(0:(0) ; z, ®)=2(0(®)—; 2, W).

On the other hand, (¢,(w), 4Q.(0:(w)) is independent from {Q%(#)}, and hence
from {2%(t; z, w)}. Moreover, as is well known,

P(o(w)edt, 4Q.(0,(w)Edgq)=e " F2dtu(dg).
Therefore by the definition of 17,
IIC, g; AXB)y=P(z%0.(w); {+q, ®)EA, 4Q.(0.( )< B)

_—.SBS:P(zb(t; L+, @€ AP0, ()Edt, 4Q.(0,(@)Edg)
:(S:dte_”m‘”f’ iC+q; A)Xu(B).

PROPOSITION 7. Suppose A>inf 2, then the transition probability II has a
unique invariant distribution p(dCdq). For any Borel function 0 F(L, q)<oo and
for any zeR,

. 1 =
lim-- 33 ), g@)=\{, =FC udidy), Pras.

Rx
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The measure p is a product measure:
(4-13) p(dEdg)=m(dQv(dg),

where m satisfies

(4-14) m(d)={ ()| wdq)| dte®2PIC +q'; D).

PROOF. Since ¢,—c and 7,—o (n—), P,-almost surely, we can define
an integer valued function J(n, w), n=1, so that ¢,<[Tswmy, Tsmr+1). Clearly
J(n)—oo as n—roco,

If we set

Y=Yz 0)= >3  Flow)—;w), 4Q.(c:(w))),

P ()<Ti(w)

then

@15 = BFC, =7 B O )+, D Feleo), 46,

isn, 9i2T 7 (n)

As in we see that ¥'(0.,w), n=1, are i.i.d. with E,[¥(0.,w)]
=FE.[¥(w)], and the last term on the right-hand side of (4-15) is bounded by
?I"(ﬂ,Jcn)w)/n. Hence by the law of large numbers,

Gn Tymy J() 1 J
111_1.12 ZF(CJ; g)= hm P (e g 0., w)
e
E[Erlx:l] E [GZTIF(ZfU,——), AQ(ai))] P,-a.s..

The right-hand side defines a measure p(d{dq) on RX R;, and it is a probability
measure as one sees on setting F=1 on the left-hand side. It is clear that this
g is the unique invariant measure of our Markov chain. In particular, we have

wAxB=||udtdplc, ¢; 4xB)

Z(SS w(dLdq)|dte=o® PiC+q; A))u(B)

by (4-12), whence follows [(4-13) and [(4-14).
Finally we remark that from and

S?l(m,(z"(t : w)dt=0, P,a.s..

it follows m({eo})=0.
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4-4. The moment condition for m(d().

For 6>0, set HS=—d?/dt*+ Q% (¢), and let 2 be the spectrum of (P-almost
all) H. In this subsection, we choose and fix a 6>0 so that 2°=2. This is
possible: When »=0 and y((—oo, 0))>0, we shall take a >0 (possibly large)
so that »([—4, 0))>0, and in all the other cases, 6>>0 may be chosen arbitrarily.
(See Proposition 2.) In any case, we have a=v(R;)>0, because we are assuming

S log | x | v(dx) =+ oo.
|x1>1

PROPOSITION 8. If we chose 6>0 as above, and if A>inf 2, then

SR|c|ﬂm<dc><oo, for any 0<B<L.

PRrROOF. Define 73(w)=0, and 7, (w)=inf{t>7(w); 2%(t; w)=o0} for n=0.
From the assumption and the choice of 6>>0, we have A>inf3% and hence

2 (w)<oo, a.s. by It suffices for our purpose to prove
]

J= supE[Sr(W)lza(t;w)lﬂdt]<oo,

2ER
for each 8=(0, 1). Indeed if this is the case, then using the strong Markov
property of {z%(%)},

[Tate-{Prc+q; atnic?

=E<+Q[S°°e-at |22 ﬁdt]

= 2, [S et 2()] 4]
§0Ec+q[sr1wrnw’ —al nCWg-at| (¢ g 5w)l'9dt]

— B[ et 201p e (3 B oo D[] ooty 01 pa]

/(14 § B ).
But r‘?,(w)zz;?;o‘rf(t?,?w), and pEEw[e‘“’f]<1, so that we have

Ec+q[e-ar‘;]__.Ec+q[e—ar‘ls:|pn—1§pn—1 .
Therefore from [(4-14),
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B — ” -a 3 . ’ 1B
[ e1Eman=] m(@|, wdo) dte=|PiC+q; dIT
gm(R)u(Ra)](l—i- n§=}l p"‘1)<oo .

Let us fix a<0<b. a and b will be suitably chosen in the sequel, but for
the moment we assume 6<|a|Ab. Then to prove J<oo, it is sufficient to
prove the following inequalities:

I

3
Jo=sup E[S 12| ﬁdt}<oo ;
zsa 0
and
— LEPENY:
Jy=sup EU 1 20)| dt]<oo,
z2>b 0

where we have set
or(w)=inf{t>0; 2°(¢t; w)<{}.

Indeed if we note that o;(z, ®)<7i(z, w) for any {<z, and that {—d=2%(g;)<(,
then for a<z<b,

EzB:flzﬁ(t) 12at]=E.[ |71 ﬁdt]+Ez[Eza(oa>[S:zlz"(t) Pat||< ks

for z>b,
E{Sf!z&m Pat|=E[ (120174t |+ B[ B | | 12001 20|

+E2[Ez5(aa)[s:?|25(t) | ﬂdtjﬂ =Ltht)..
and finally
EC,C.[S:f | 25(8)] ﬁdt] ~lim EOQU 4 | 2] ﬁdt]
2 E=),,
=lim Ew[Eza(qc{S:? EOIA | EVEIEY A

Therefore J<max{ /[, Ji+ ]z Ji+Jo+Js} <co.
Now let us proceed to the proof of J,<eco, k=1, 2, 3.

PROOF OF J;<<co. For notational convenience, we assume d<1 in the fol-
lowing. Define

se(w)=inf{t>0; 2°(t; w)>{}.
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Then we have

(4-16) [ 12010ae|=E|{120)12at; 0.<5.0.]
+ 2 B[ 120174t si<oa<siim]

é( sup le”’)Ez[aa;aa<sz+1]

a-0sxrsb+1

+§1 a-asi‘i%;“'x]ﬁ)E’[““; $:+1<0a<Spsr41].
But we have
E.[oc; 5:41<0a<S:111]S(E LoDV (P (5:41<0a<Sz414))'*
by Schwarz’s inequality, and
E[oi]<E.[(eD ]S Eo[(z))?]< 0,
E.[04; 0.<$:41]SEu[7i]<00
by CLemma 4 Hence if we have shown that for some 0<r<1,
(4-17) P(5,41<0.<54140)= P (s, St all 120,

then the series on the right-hand side of converges uniformly in z€(a, b],
and J;<oco follows from this. On the other hand, [(4-17)is a simple consequence
of the following

LEMMA 5. sup,er Py(s.+: <)<, for any k>0.

PROOF. Let P’ be the distribution of {Q%(#)} in £. We will find an
@, =Supp(P?) such that for some neighborhood U of w,,

(4-18) S.+1(2, ©)>7(2, )
holds for all zeR and w<=U. Then
irelfe Py(seex(w) >t (w))= P°(U)>0,

which is equivalent to the assertion of the lemma.
We divide our argument into four cases.

CASE 1. Lévy’s canonical form reduces to
s
L0={ xN.(©, t1xdx),

and 2>0. In this case, we choose w,(t)=0. Since z(})=2%¢; z, w,) satisfies
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z(t)zz——S:(X—{-z(s))st,

z(t) is monotone decreasing in t<T=7i(c0, we)<oo. Let 0<e<k, and U=
{weQ; |w(t)—w,t)| <e, for 0<t<T}. A simple comparison argument shows
that for w€U and z=R, one has 2%(t; z, w)<z(t; z+¢, w,) for t<73(z ‘w). Hence
holds for all zeR and weU.

CAsE 2. v+0 and A= R is arbitrary. In this case, it suffices to take
w,(t)=7rt, with y<4. The rest is the same as in case 1.

J
CASE 3. v=1((—,0))=0 and Soxu(dx)zoo. In this case, let 7&(0, 5)N\Supp(v)
be so small that

[
c”Eb—-S a(x)u(dx)< 2.
7
Then, w(t)=c,t suffices for our purpose.

CaseE 4. v=0 and v((—4, 0))>0. Fix an a<[—4d, 0)N\Supp(yv). Then for
some <R,
of®)=pt+alt/B]

belongs to Supp(P?) for all 8>0. It is not difficult to see that z%(¢; o, w?) hits
oo in a finite time for sufficiently small $>>0. Fix such a >0 and a T >7%(co, w?).
Finally let

[T/$1 )
U={o0+ Z ailo,-0; la—al<e, [b—if| <s}

i=
with sufficiently small ¢>0. This U and w,=w?” satisfy the desired condition.
Now let us verify [(4-1I7). Set £=1—4d in and let
r=sup Py(s,+1-s<tH)<1.
2R

If we assume
SUP Pz(5z+z<2'f)<7’l ’
z&eR

then by the strong Markov property of {z%(¢)},

Pz(sz+l+1<7§):Pz(sz+l<T§: sz+l+1(0sz+lw)<7f<032+1w))
=E,[5.41<7; Piocs,, pLSia1+1<73]]

5. 5
SE[s:0<t]; P, plSides,, pr1-6<r2]]
L+l
<r s

where we have used the fact z+I1<2%s,4)<z+/+4.
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PROOF OF J,<co. To begin with, note that for each z=R, we have
0,-2(2,w) 1 t3(z,w), n—oo, P-almost surely. Then by the strong Markov property,

g

(4-19) EZ[S:6|25(t)|ﬁdt]:Ez[S:z_llz"(z)lﬂdt}+ i E[S z'"”|za(t)|ﬂdt]

92-n
7

:EZU:Z-1| 20 ﬂdt]—i— ;:31 Ez[Ezaca,_n)[S z

0

2| ﬂdt]].

Let a<—2(~/(—A)V0+1). We want to show that the series in (4-19) converges
uniformly in z<a, and to this end, we will estimate

Ean:"""llzﬁ(t)xﬂdz], n=0,

for an arbitrary z,€[z—n—29, z—n].
Now for each n,

%2-n-1
Ezn[go |25(t)[ﬁdt]§ |z—n—2|PE, [0sn-1; Go-n-1<Se-n>2]
+ lz_n_2|ﬁEzn[az-n—1 ; S(Z_n)/2<al—n—1<s—z+n]
+ ]go ] _-Z+n+]'+1 | 'BEzn[az—n_l ; s“3+n+j<az—n-1<3-z+n+j+1]

=I,(n, 2)+1,(n, 2)+1,(n, z).

First let us estimate I,(z, n). To this end, note that on the set
{G,-n-1<Sc¢z-nys2}, One has for 0<t<a, 0oy,

2(=2a+Q(O)— | (A+21s1)ds

1
<2+ QO—{a+ g z—nyht.
Hence if we define

S(A)=inf{t>0; Q°(t)—At<—1},

then oz_n_1<S(2+%(z——n)2) on the set {0,-n-1<S¢:-ny2}. Therefore,

(4-20) Iz, m=|2—n—21°E[S(2+ %(z-—ny)] .
Next consider I,(z, n). By Schwarz’s inequality and Lemma 5, we can fina
an r<(0, 1), so that
Ezn[oz—n—l; S(z-n)/2<az—n-1<s-z+n]

gEzn[az-n—l 5 szn+[|z—nl/2]<rf:l

<(BuL@)?) (PuoSegstiomnim<d)

1/2
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<(EL@r1) roeme,
Consequently

(4-21) I(z, n)<const. |z—n—2]Fyliz=n1/21,

In the same way,

1/2

@22 I W= 5 Izttt L A(ELEDD) (Prlsiprniecnins<ed)

<(EL1) " 5 | =zt ntj4115reman,
=
Therefore, if we have shown
1 2 -2
(4-23) E[S(i—}—z—(z—n) )]gconst.|z~n1 ,
then the supremum over z<a of the right-hand side of (4-19) is bounded by

sup 3 (L(z, m+1(z, m+1z, m)

zsa n=0
<const. sup >} (Iz—~n[ﬁ"2+lz-—-nlﬁr'z'”'/z-l—lz—nlﬁr‘z‘"‘>,
zsa n=0

which is finite provided f<1.
Now is an immediate consequence of the following lemma.

LEMMA 6. For any g=1, E[S(A)Y]=0(A"9), as A—co,

PROOF. Since |4Q%(t)| <49, |Q%()| has moments of all order ([2]). Without
loss of generality, we shall assume E[QZ(#)]=0, so that {Q%(¥)} is a martingale.
Noting

AT

—(QX(T)H—AT)+Q%T)
<— inf (QUH—AD+ sup | QLDI,
we see that

P(S(A)>T)=P(oisrtlsz(QZ(t>—At>;—1>

(g, 08012471

{ =1if T<A™
<(AT—-17*?E[|Q%T)|®*?, for any p=1, if T>A",

by martingale inequality. Hence
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n+1
A

n+1)

(-26)  E[S(AMIS@/APPSA=2/ A+ 3 ( Y\

)"P(% <S(A)<

a0

Now we claim that for every integer p=1, there is a constant C,>0 such
that

(4-25) E[1QMIPPI=SCpt?.

Indeed, since we are assuming E[QJ()]=0, {Q%(f)} has the expression

4ot 3 (n+1)"(n—_11)—2p E[ I ()

t+
]

‘z,<t)=va(t)+S S i Rudsdn).

Hence by Ito’s formula,

Q217 =2pv( QU714 B(s)+ p2p— 10| Qe(s >~
0] Q2 07— Qus =) Rudsd )

+.[_, Q)+ 27— Qa7 —25 Qs x} dsud ),
0Jr-4,d3

so that
(4-26) E[Q"(t)“’]=1>(2.b—DUZS:E[Q"(S)Z“"”]ds

+{.ds{ _, , BIQs)+ 77— Qs1?—2pQ%s)xTu(d ).
Setting p=1, we first obtain E[Q%?)*]1=C,t, with

—2 2
C,=v —I—S ; alx v(dx).

[-o,

Suppose we have shown E[|Q%#)|*]<C;t’ for j<p. Then noting that

ELIQ*01 1= (ELQiwr-21) (EL@®1)

S(CjCV2@i-ndiz - i< p,
we obtain from (4-26),

E[QU***D1=(p+1)2p+ 10" C,s7ds
¢ 2(p+1) 2(p+1) eDa1ym i

é C‘p+l.tp+1 ’

with some constant C,4;.
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Letting p=¢-+2 in and substituting this into (4-24), we finally get

©o +2
ELS(AY]< A2+ Cuua= 3 IR

& (n—1p@®

=0(4-),
completing the proof of the lemma.

PROOF OF Jy<oo. We assume b>+/[AA0|. Let z>b and N=MNz)=[z—b]—1.
Then as before,

(4-27) E[So" 12| ﬁdt]:E,[S”"‘ 1 25(8)] ﬁdt]

0

+ 8B Baco,| | 12010t ]

n=1 0

+E | Euco, | [* 122001241 ]].

Since 2%(g,-y)E[b, b+1], one can show

E,[E,a(,,z_m[gzb|za(t)lﬁdtﬂ§ sup E,Uab]<00,

bszsb+l 0

‘as in the proof of J;<<oo.
As for the second term of we have, for some p<(0, 1),

B, (72w pat]
<1z—n|PE, [01n-1} Oron-1<S;-n]

+ éo lz—n+7+1PE, [0:-n-1; Se-n+i<0son-1<Sz-n+s+1]
<|z—n|?E[SQA+(z—n—1)"]

+ B lz—n+j+112p( BISG+—n—17)1)
<const.|z—n|#-2,

Here we have set 2%(g,-,)=z2,. Similar estimation being valid for the first term

of [(4-27), we finally obtain
s (e[ wrorals . [ o]

N(2)-1
<const. sup |z—n|f-2<oo.
b

n=0

The proof of is now complete.
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§5. Proof of Theorem 3.

For notational simplicity, we shall omit 4 and @ from our notation in the
most part of this section. Hence for example, we write U(?) instead of U;(¢; w).
Moreover, we consider the Ljapounov behavior at -+oco only.

By [Theorem 2, we have |U(t)|>1 for P-a.a. o and for t>0 large enough.
Hence the matrix U@)*U(t) has two different simple eigenvalues [U(#)|* and
IU@®)| "2 Let P() be the projection belonging to the eigenvalue |U(f)]|%. Then
there is an orthogonal matrix K(#) such that

(6-D U=KO{IUDOIA—=PE)+IU®|P®)}

Now suppose we have shown that for P-a.a. w, the following two statements
hold :
(1) lim;.eP(t)=P(c0) exists;

(ii) limhm%log{ TN P(e0)—P()||} =—oo.

Then Vj(w)=P()(R? satisfies the conditions of Indeed, for
v=P(c0)w with ||w] =1, we have from [5-1),

(5-2) 1U@vl=H{IUON(1—P@E)P(oo)+ U@ P(#)P(e0)} wl|
SNIUGOINA—=PE)P()|+IUB]
SN P()—=POI+HIUBN .
Since implies in particular that Iimtﬂm—i—logllU(t)H:—}—oo, (ii) and
show

lim%logllU(t)vH:—oo .

On the other hand, if v&Vi(w), then
lim [|(1—P®)vl|=(1—P(e))v] >0.
Hence

lim < log Ul 2lim + log { [T 11— P@)wl} =+co.

Below, we will prove (i) and (ii) by explicitly analysing the asymptotic
behavior of P(f). To this end, let us introduce the polar coordinates r,(f)
=rit; 3, 0)>0, 0,0)=0,t; 2, w), j=1, 2, by

(O +ipt)=ri(Hexp[i0.(1)],
P Fig()=r.(t)explif(t)].

This determines 6;(t) only with modulo 2z. But if we start with 6,(0)==/2,
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0.(0)=0, and if we define §,(t)=2nxr when we have 6;(1)=0 (mod.2x) for the
n-th time, we obtain a well-defined real valued function.
Some elementary calculations give
1 1 B®
5-3 Pl)=— ]
=3 O=Tgar s o

where

_ 1 ) ~7;1_ 72 i 2_— 4 I/Z:I
p)= 2cos(0,—805) [( 1 r2> (( ry + e r%ré) ’
Since 4r,()~%r,(t)-?2—0, a.s. by [Theorem 2, (i) follows from the lemma below.

LEMMA 7. Under the condition of Theorem 3, r,(t)/ry(t), r(t)/ri(t), and
0.(t)—0,() have limits as t—+oo, for P-a.a. .

PrROOF. We shall show that for a.a. w, the limit
%gorol Llog(p*(®)+ip(f))—1log(P* () +id(1))]

exists. But if u(t)=¢() or ¢(t), then by Ito’s formula,
10g {1*(8)+-iu(t)} —log {u*(0)+iu(0))
___S‘ ut(s) u(s)

o u*(s)F7uls) o ut(s)+rus) °°

2

¢ u(s) v (t u(s)?
+”So w(s)+iu(s) dB(S)"i'go (w+(s)+iu(s)?

ds+(cs—2)|

-+ :“Slxl>6[log{(u+(s—)+xu(s))+z-u(s)} _log(u+(s—)+iu(s))]N(dsdx)

|
+.7] __Dog{(urts—)+ xuls)-+iu(s)} — log(u*(s—)+iu(s)1N(dsdx)
+§f,+dSS .z.sa[k’g((u+(sﬁ(§)ﬁ2¢):)iu(8))' u+(:)bii(-2¢(s) ]”(d %)
=AM+ A O+ MO+ A +SUO+ M+ ALQ@).
Noting ¢(H)¢*(t)—@*(t)(t)=1, one obtains first
! 1 ds
o (@*(s)+ip(sN(P*(s)+i¢d(s))

Ax— At =|
and
t 1
TG PN L
But |(@*(s)+ip(s))(*(s)+ip(s))| ~*=r(s)"'ry(s)~! decays faster than exponentially
as s—oo by [Theorem 2. Hence A%(t)—A%(®), j=1, 2, have limits as t—co almost
surely. The same reasoning is valid for

A"é(t)—A‘g(t)-"-(Ca—'l)S
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— VRt p(8)Pt(s)+eh(s)p*(s)+2ip(s)d(s)
Agt)—A%(t)= 2 _go (@* () Fig(S)APH(S)+igh(s))? ds.

Now Re(M4(#)—M¥4%(t)) and Im(M%(t)—M%(t)) are square integrable martin-
gales, and their quadratic variational process satisfy

lim {<Re(M§—M9)>(®)+<Im(M§—M9)>®)}

=tim o*| (0*(9)+ip(N @) +ighs)) | *ds <oo.

Hence by martingale convergence theorem,
gim (M(BH—M4®))

exists almost surely.
Next consider M4(t)—M%(#). We have

<Re(M%— M%&) +<Im(M 45— M%) (@)

_( (p*(8)+x(s))+igp(s) dH(s)+id(s) 2
=f,as , ., |1os( o (5)1i0(s) (¢+(s)+xgb(s))+igb(s))l (@x).

It is easily seen that the quantity inside log{ } remains on the same branch
such that log 1=0. Therefore

(¢++x<p)+zgo Pttip  \_

with

x
7S 2= B O T 2o T @ () i)
is small if |9(s, x)| is small, namely it is O(|%n(s, x)|). On the other hand,

B & (s)+id(s) 1 1
(s, x)|=|x| (PF(s)+x¢(s))+ih(s) | ri(s)ra(s) =Cl=l ri(s)rs(s)’

where C is a constant not depending on x, s, and w. Hence for P-a.a. o,

Slxlsallog(l+1}(s’ X, w>>12v(dX>é°°nSt-(S. xvid x))r,(s)zrz(s)z

for s sufficiently large, and we get
<Re(M %—M%)»(c0)+<Im(M §—M%)>(c0) < oo

Again by martingale convergence theorem, M4(f)—M%(t) has a limit as f—o

almost surely.
As for A%(t)— A%(t), we have
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Ag(H)— A4
_{° (p*(s)+xp(s))+iep(s) G (s)+id(s)
Sodsgmsa[log( 0" () +ip(s) (¢+(s>+x¢<s»+z¢<s>)
_ xp(s) x(s)
o7(5)Hig(s) ¢+<s>+z¢<s>]”(d")

(¢ (P (s)+x¢(s)) +i(s) x
[, ol log(1+ () +ig(s) (¢*(S)+2'¢(S))(so+(8)+z'90(3)))

X
PTG 14

As before, for P-a.a. w and for s large enough, the integrand above is estimated
from above by

((¢*(S)+x¢(8))+i¢(8) —1) x 4 ( x* )
&r(s)+ig(s) 7 (H(s)+ig()(p*(s)+ig(s)) r1(s)*r¥(s)?
_ O(s) x? %2
TP Fig(s)  (PH(s)+id(s)p*(s)+ig(s)) +0(r1(8)2r2(s)2)'
Hence
. 1
SIIIS&[o--]u(dx)gconst.(Slx[sax y(a’x))————-——rl OHOL

for s large enough, which implies the existence of lim,...(A%(t)—A%®)).
Finally, let us consider S¢(#)—S%(f). As was already considered in §4, let

o, be the n-th time at which |4Q3(¢)| >4. Then

[ @*(a.)+ip(an) P*(en)+id(an) ]

L Pt (an)+iglarn) @ (oa)+ip(as)

— [ i4+0*(04)/¢(@x) i+P*(a.—)/P(03)
—_"nzﬂlog B i+¢+(0‘n)/¢'(an) Z+$0+<0'n"‘)/50<0'n) ]

B o 1
=28 = T e elan) ]

1
o [1 . ]
B o I G S Fipte e
We consider the first summation only, the other one being treated similarly. In

order to prove that the limit

S‘”(t)—-S‘ﬁ(t):aE;tlog

. 1
lim 33 log [1" (¢+(an)+z'¢(an)>go<an)]
- 1
—-ngl log [1_ (¢+(0'n)+1¢(0'n))@(0'n) ]

exists, it is sufficient to show that with probability one,
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| (¢*(a ) +id(an)) ' plan)"|?
converges to 0 faster than exponentially as n—oco. To this end, note that
cot 8,()==z(t; 0, @)=¢*()/¢(t), and @(t)=r,(t)sin#,(). Then
log |¢*(a4)+ig(aa)) (o) |2
=—log{rs(04)"r1(d2) (1 +2(d4)")}
=—log 7(d.)*—l0g r:(a.)"+log (1-+2(04)) .
But from §4, we have

—log 7,(a,)*+log (1+2z(c,))=—log (6, —)*—log (14+2(a,.—)*),
and

hm—l— log (14+2(6,—)»)=0, a.s..

n—»00

Hence applying

glﬂ% log |(¢*(0 ) +igh(@a)) " p(a) " |2

=—lxm-1—log rl(on——)z—hm —1—10g ro(@p)=—o00.

n—0

This completes the proof of Lemma 7.

When f(t) and g(¢) are positive real function on (0, o), we shall write

X g@) if
40 g
0<lim 170) <lim O

Then implies in particular »,(t) < 7,(tf). From this and [5-3), we see
that (ii) follows from the lemma below.

LEMMA 8. Let S.()=3,,<c10g (142(0,)), where z({t)=¢*(t)/@(t) or ¢*(t)/P(D).
Then under the condition of Theorem 3, we have for any &£>0,

:’jgg —<£—?)(°°)\=O(e‘“—5>s+(z));
:;Eg ,,2 ( )‘—O(e‘(l D54D)

1(0,(5)— Q1) — (01— 0:)(e0) | = O(e~ -8+ |

Iu particular, for j=1, 2,

0 (DYoo=

nm—log( ol

t—oco t
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and similar relation holds when we replace vy/r, by ry/r, or 6,—0,.
PROOF. Let r(t)=r.(t) or r,(¢). The results of §4 tell us that we can write

(5-4) r(t)=exp [X<t>+—;:-s+<t>],

where X(#)=0() and (1/t)S,(t)— a.s. as t—oo. Therefore the second part of
the lemma is a direct consequence of the first one. This, in turn, reduces to
proving

‘ log(ziggj—_“;g;)— g Z:i:;) l =g~ 8+

Indeed,
[ 71(8)/7 () — (71 /72)(0)]

=|exp [log (#.(t)/7:(t))]—exp [log ((r1/72)(=))]|

=0( l10g (r,()/r2(t)—l0g (rs/72X=o)))

=0 1os(Grgrane) s (o))
= (e~ 1-8+)

gives the first estimate of the lemma. The second one is obtained in the same
way. Finally
1(0.()—6:())—(0,—0:)(0)|
_ er(O+ip)y pr+ip
“Im (log<¢+(t)+z¢(t)> log ((¢++i¢)(°°>))|

=O(e-(1-s)8+(b))

gives the third estimate.
Now let A;=A¢—A%, j=1,2, 3, 4, MO=Ms®—M%®), j=1,2, and S(t)=
S¢(t)—S%(t). We will estimate the rate of convergence to zero of these processes.
First from and its proof, there is a constant C, for P-a.a. w such
that

| A=Ayl =Cu| rits)ds
Since S.(¢) is non-decreasing, we have
Sooh(s>_2dsée—(x—e)s+(t>S°"e_zx(z)—ss+(c)ds ,
t 0

for any ¢>0. The last integral being convergent almost surely, we get
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| Au(t)— Ax(c0)| =0(e0-08+2)
In the same manner, we can show
| Aj(t)—A(0)| =0(e~ -5+ j=2,3,4.

Next consider M,(). Since {Re(M,(#))} and {Im (M.(?)} are continuous
square integrable martingales, we can construct two Brownian motions { ﬁ,(t)},
7=1, 2, such that

Re M,(t)=B,(KRe M,3(®)) and Im M,(t)=B,(Im M,>?)).
But from the local Hélder continuity of the Brownian motion, we have

sup | B.(t)—By(s)|/|t—s|"V*¥< o, a.s.,
t,8cr0,T]

for any 6>0 and T>0. Hence on the set {<{Re M(0)<T}, we have

IRe M.(t)—Re 1,(2)| < O( | Re H,X(t)—(Re H,3(0) | 1*-2)

§O((S:°rl(s)“ds)m_a)

— —-(1-g)(1/2-8)S . (¢t
___O(e( e/ I8 4+C )),

for any &>0. Since the same result holds for {Im M.}, and since
Urso{(Re M, 3(00)< T} =Ugrso{<Im M,Y(c0)<T}=2 up to null sets, we finally
obtain, for any £>0,

| M(£) — M ()| =0(e=¢-95+®) | a5,

As for {Mz(t)}, we could not find out how to use its martingale property,
because, being discontinuous, there is no good representation theorem like that

for {M,(£)}. But if we assume S| l<1|xlv(dx)<oo, then {M,®)} is locally of

bounded variation, and we can treat this in the same manner as Z,-(t)’s. Indeed,
under the assumption,

1Q°10=] __ 1xIN(©, Ixdx)

is well defined, and it is an increasing process with ergodic increments. Hence
lim 2 1Q°1(0=E[1Q°I(V], a.s.

From this we obtain, using the notation in the proof of

| i) —BE01 (7| log (L+n(s, 2) Mdsdx)

)
t+Jix
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=Cu| ri(9)*d1Q1(s)

o0

Scwe—(l—s)s.(.(t)s e"zX(”_ES"'(x)d l Qﬁ'(s)
== 0

=0(e~ -5+ for P-a.a. o.

Finally let us consider S(#). Again using the notation in the proof of Lemma
7, we obtain without difficulty the following estimates: for ¢ large enough,

3, log[1- <¢+<an>+z‘jz:<on>>q><on>} |

<const. 2>trz(on)"rl(an)‘l(l~i—21(0n)2)”2

<const. Z>, ria) ri(on—) "1+ 2z, (0, —))?

<const. e—(l—-e)sn(c) i e-—X(o',,,)-X(an)—ssn(an_l)(1+zl(o.n__)2)1/2

n=0

ZO(e—(1-s>S+(c)) ,

for any ¢>0. Here we have set z,(t)=¢*(t)/¢(). Similarly we can show

1 — ~(1-e)8 ¢t
3, log[1+ <¢+<an>+z¢<on>>¢<an>] |=0Gea-os),

and consequently
| S(00)—S(t)]| =0(e= =95+ +

This completes the proof of Lemma 8, and hence of

§6. Proof of Theorem 4.

Let Vi(w) be the one-dimensional subspace of R? which was constructed in
§5, and let v,=P(c)wesViw\{0} with |w|=1, v,&Vi(w), ||v:]]=1. Our pur-
pose here is to obtain more precise estimate of the asymptotic behaviors of
\U@v, )l and JU(t)v,]| than those in §5. This, on the other hand, reduces to
estimating the growth of S.(#) which appeared in In fact, we have

from [5-1),
[U@vl| S [ UDIP(e0)—=POI+ UMD,

IW@vil 2 IUGOI 1 P®wal

and
IUOINA—=P@wl SN U BN U@ -
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But as we have already seen, it holds that

lim | P(t)v ]| =] P(e0)v:[ >0.
lim [[(1—=P(®)w,l| =[(1—P())v2] >0,

12D AOR

and

const. ¢! /2=25+M <y (f) <const. eI+

the constants depending on ¢>0 and w.

Combining these, we see that for each >0, there are positive constants
Cjeu 7=1,2,3,4, for P-a.a. ® such that

Cre.we™ BSOS U O | S Cooe, e ™25+

Ci,e, 025+ O U)ol £ Cy, e, 02 M2FOS+E
Therefore follows immediately from the lemma below.
LEMMA 9. Under the conditions of Theorem 4, we have

11m Z(k,<S+(i)) 0, a.s., for a>p,

umtazm(&(o) too, as., for <a<pt.

For the proof of this lemma, we need the following

LEMMA 10. Let X,=0, n=1, 2, 3, ---, be a sequence of i.i.d. random vari-

ables with the common distribution function F(x). Suppose that for some k=0
and =0,

1—F(e(x)=x"FL(x),

where L(x) is slowly varying at +co. In case k=0, we shall further assume
B=1l. Then

— 1 n

6-1 lnl.r.?o—rz?)’(“(;—l X,-)=0. a.s., for a>p',

and

(6-2) lim—l—x (max X~)=+oo a.s., for 0<a<p™!
e n® (k) 1sj5m J ’ o Oey .

PRroOOF. First suppose k=0, 0<B<1. Them for any a>f"', we have
E[X!/*]<co with 0<1/a<1. Hence (6-1) for £#=0, namely
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Tm—L 3 X,=0, a.s.

nwoo N° j=1

is a consequence of a well known theorem (see Neveu [27], Proposition 4.7.1.).
Next consider (6-1) for £=1 and $=0. From the elementary inequality

Ar(x ) Z2aw)+Aa(y), x, y=0,
we get

2(k)<jé=1Xj élm(n- max X,)

1sjsn
<A(n)+ max A (X)) .
1sjsn

Hence (6-1) is reduced to proving

ﬁ—n—li& max Ac,(X;)=0 a.s..
isjsn

n-ow N

On the other hand, for any sequence a,=0, B,>0 of real numbers such that
B, 1 o, one has

h—m—l— max a;= lim —-1-—a
N Dy lsjasn T Bn "
Hence the problem is further reduced to showing
6-3) m‘nzl—a-/u,,,(xn)_—.o, a.s..
But for any ¢>0, we have
3 P( A X > €)= B (1~ Flen®)= T s~ =¥ L(x)<oo
provided a>fB-'. Therefore by Borel-Cantelli’s lemma,

mﬁ%&k)(Xn)§e , a.s..

Letting ¢ | 0, we arrive at [(6-3).
Now let us turn to the proof of [6-2). For each K>0, we have from the
assumption,

5 P( 2 2o s X) < Kn) =2 (PR K05 K’
= 2] exp [nlog F(Kn*)]
< Jexp [—n(1—F(Kn")]
= 3lexp [—K-#n'"*PL(Kn®)]<eo,

whenever 0<a<fS-'. Hence again by Borel-Cantelli’s lemma,
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.1
h_mZ&'Z(k)(fls'l]a.s)Sl X]>>K, a.s..

N -0

Letting K1 oo, we obtain

Now we can proceed to the proof of First note that
log(14-14Q(a,)|), n=1, are i.i.d. with distribution function F(x) given by
1=F(®)=P(14Q(e)| >e*~D=u(Ro)*|  u(dy).

Hence the assumption of implies that we can apply to
Xn=log (14+14Q(¢,)|), n=1, with given % and B.
It is clear that

Rax(Su(t)=2en( 33, 108 (1+(z(0—)+4Q(a))")

< 3 An(10g (14220, —)))+ 3 Aens(log (1+2(4Q(a.))).

The first term on the right hand side is O(f) by virture of the results of §4.
Hence the first part of follows from (6-1). On the other hand,
2
RS+ 2 2cxs(log {1+( max | 2(a0—)+4Q(@n1) }).

nigpst

Again noting that max,., . log (1+2(¢,—))=0(), we have
.1 .1
lim oz 2cxs(S+ () =lim 5 2x>(max log (1+ | 4Q(a,)))
tooo L two 1 anst

=-4o0, a.s.

from [6-2), showing the second part of
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