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Iutroduction.

A submanifold $M$ of a Kaehlerian manifold $\overline{M}$ is said to be totally real if
each tangent space to $M$ is mapped to the normal space by the complex structure

of $\overline{M}$. Many subjects for totally real submanifolds were studied from various
different points of view, as ones of which Naitoh [9] and Naitoh and Takeuchi
[10] classified an n-dimensional totally real submanifold with parallel second fun-
damental form in $P_{n}C$, and Ohnita [11] and Urbano [16] showed recently that
the second fundamental form of such a submanifold of non-negative curvature is
parallel, independently. Besides, the study for 3-dimensional totally real sub-
manifols of $S^{6}$ by Mashimo [8] is also interesting.

In this paper the reduction of Allendoerfer type for the codimension of totally
real submanifolds of a complex space form is treated with. As for all sorts of
studies mentioned above, it is important that the dimension of the submanifolds
is half of that of the ambient space. The purpose of this article is to show that
the fact is essential, namely, to verify the following

THEOREM. Let $\overline{M}$ be a complex space form of complex dimension $m$ , and
$M$ an n-dimensional totally real submanifold of M. If the induced f-structure in
the normal bundle is parallel, then there exists a totally geodesic comlex space
form $M_{0}$ of complex dimension $n$ of $\overline{M}$ in which $M$ is totally real.

In the first section, preliminaries about totally real submanifolds of a complex
space form are prepared for and the theorem is proved in the case where the
ambient space is complex Euclidean. In \S 2, a $(2m+1)$ -dimensional anti-de Sitter
space $H_{1}^{2m+1}$ and the Sasakian structure on such a manifold are recalled. Loren-
tzian submanifolds of $H_{1}^{2m+1}$ are treated with in the next section and the theorem
is proved in \S 4 provided that the ambient space is hyperbolic. In the last section
the proof in $P_{m}C$ will be sketched.
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1. Totally real submanifolds of a complex space form.

A complete and simply connected Kaehlerian manifold of constant holomorphic
sectional curvature is called a complex space form. By $M_{m}(c)$ a complex space
form with constant holomorphic sectional curvature $c$ and of complex dimension
$m$ is denoted. The complex space form consists of a complex projective space
$P_{m}C$, a complex Euclidean one $C^{m}$ or a complex hyperbolic one $H_{m}C$, according
as $c>0,$ $c=0$ or $c<0$ . Let $J$ and $g$ be an almost complex structure and a Hermitian
metric which are equipped with in $M_{m}(c)$ . Let $M$ be a real n-dimensional
Riemannian submanifold immersed isometrically in $M_{m}(c)$ . By the same symbol
$g$ the Riemannian metric induced on $M$ from that of the ambient space is denoted.

Let $X(M)$ and $X\perp(M)$ be the set of all vector fields tangent to $M$ and the
set of all vector fields normal to $M$, respectively. Manifolds and submanifolds
which are discussed in this paper will be assumed to be connected and the smooth-
ness of any geometric objects is also assumed to be of class $ C\infty$ . Liner mappings
$P$ and $F$ of $X(M)$ into $X(M)$ and $\chi 1(M)$ are defined as follows: for any vector

field $X$ in 21‘ $(M),$ $PX$ is the tangent part of $JX$ and $FX$ is the normal one of $JX$.
Namely, $JX=PX+FX$. Similarly, other two operators $p$ and $f$ of $X\perp(M)$ into
$X(M)$ and $X\perp(M)$ are defined as follows: for any normal field $\xi,$ $ p\xi$ and $ f\xi$ are
given by the tangent part and the normal one of $ j\xi$ , respectively. That is, $J\xi=$

$ p\xi+f\xi$ . Then it is well known [18] that the following relations between these
operators hold true: for any tangent vector fields $X$ and $Y$ , and any normal fields
$\xi$ and $\eta$ ,

(1.1) $\left\{\begin{array}{l}g(PX,Y)+g(X,PY)=0,\\g(FX,\eta)+g(X,p\eta)=0,\\g(f\xi,\eta)+g(\xi,f\eta)=0,\end{array}\right.$

(1.2) $\left\{\begin{array}{l}P^{2}=-I-pF,FP+fF=0,\\Pp+pf=0,f^{2}=-I-Fp,\end{array}\right.$

where $I$ denotes the identity mapping.
An n-dimensional submanifold $M$ of $M_{m}(c)$ is said to be totally real if $JM_{x}$

$\subset M_{x}\perp$ for any point $x$ in $M$, where $M_{x}(=T_{x}M)$ and $ M_{x}\perp$ denote the tangent
space of $M$ at $x$ and the normal one to $M$ at $x$ , respectively. The submanifold
$M$ is assumed to be always totally real at the rest of this paper. Accordingly,
$JX$ is the normal field to $M$, provided that $X$ is tangent to $M$ This implies that
$m\geqq n$ and the operator $P$ is zero, and moreover $F$ is the linear isomorphism. The
orthogonal complement of $JM_{x}$ in $M_{x}\perp is$ invariant under the operator $f$ and hence
the orthogonal sum decomposition $ M_{x}\perp=FM_{x}+fM_{x}\perp$ is obtained. This yields
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that the linear transformation $f$ satisfies $f^{3}+f=0$ and its rank is equal to $2m-7l$ .
A non-null tensor field $\phi$ of type $(1,1)$ on a Riemannian manifold $N$ is called an

f-structure of rank $r$ on $N$ if it satisfies $\phi^{3}+\phi=0$ and rank $\phi=r$ . It means that
$f$ becomes the $f$-structure of rank $2m-n$ in the normal bundle of $M$

Let $\nabla$ and $\overline{\nabla}$ be the Riemannian connections in $M_{m}(c)$ and $M$ respectively,
and $\nabla^{\perp}$ the normal connection in the normal bundle of $M$. Let $\beta$ be the second
fundamental form on $M$ and $B$ the shape operator of $X\perp(M)\times X(M)$ into $X(M)$

defined by $g(B_{\xi}X, Y)=g(\beta(X,Y),$ $\xi$). Since $M$ is totally real, it follows that $FZ$

$=JZ$, which means that for any vector fields tangent to $M$

$g(\beta(X,Y),$ $FZ$) $=g(\beta(X,Y),$ $JZ$) $=g(\nabla xY,JZ)=-g(Y_{\overline{\nabla}x}(JZ))$

$=g(JY_{\nabla x}Z)=g(FY,\beta(X,Z))$ .
This implies that $g(\beta(X,Y),$ $FZ$) is symmetric with respect to $X,$ $Y$ and $Z$.

The covariant derivatives $\nabla xP,$ $\nabla xF,$ $\nabla xp$ and $\nabla xf$ of $P,$ $F,$ $p$ and $f$ are defiend
by

$\nabla xp(Y)=\nabla x(PY)-P_{\nabla x}Y,$ $\nabla^{F(Y)=}x\nabla x^{1(FY)-F_{\nabla x}Y}$,
$\nabla xp(\xi)=\nabla x(p\xi)-p\nabla x^{\perp\xi},$ $\nabla xf(\xi)=\nabla x^{\perp(f\xi)-f_{\nabla x}\perp\xi}$ .

Then it follows from the Gauss and Weingarten formulas that the following equa-
tions hold true:

(1.3) $p\beta(X,Y)=-B_{Fx}Y,$ $\nabla_{X}^{F(Y)}=f\beta(X,Y)$ ,
$\nabla xp(\xi)=B_{f\xi}X,$ $\nabla xf(\xi)=-F(B_{\xi}X)-\beta(X,\phi\xi)$ .

The $f$-structure $f$ in the normal bundle is said to be parallel if it satisfies $\nabla f=0$ .
The operators $F$ and $p$ are also said to be parallel, provided that the covariant
differentials of $F$ and $p$ are $0$ respectively. For the parallelism of $f$ one finds the
following property, which was pointed out by the referee.

PROPOSITION 1.1. Let $M$ be a submanifold of $M_{m}(c)$ . If there exists a
totally geodesic submanifold $M_{0}$ of $M_{m}(c)$ , in which $M$ is totally real, then the

f-structure in the normal bundle is parallel.

PROOF. For any point $x$ of $M$, the assumption gives the direct sum decom-
position of the normal space $ M_{x}\perp$ of $M$ in the ambient space $\overline{M}$

$M_{x}\perp=JM_{x}\oplus T_{x}(M_{0})^{1}$ .
Since $M$ is the totally geodesic submanifold of $M_{0}$ , it follows $B_{\xi}=0$ for a normal
vector $\xi$ of $ T_{x}(M_{0})\perp$ , and moreover since $ T_{x}(M_{0})\perp$ is J-invariant, it follows that
$p\xi=(j\xi)^{T}=0$ , where $(j\xi)^{T}$ denotes the tangent part of $ j\xi$ . It implies that

$\nabla xf(\xi)=-F(B_{\xi}X)-\beta(X,p\xi)=0$ for any $\xi$ in $ T_{x}(M_{0})\perp$
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by the last equation of (1.3).

Next, for any vector field $Y$ it follows

$g(F(B_{JY}X), JZ)=g(J(B_{JY}X), JZ)=g(B_{JY}X,Z)=g(\beta(X,Z),$ $FY$)

$=g(\beta(X,Y),$ $FZ$),

because $g(\beta(X,Y),$ $FZ$ ) is symmetric with respect to $X,$ $Y$ and $Z$, and thus we have
$F(B_{JY}X)=\beta(X,Y)$ . Consequently it follows from (1.2) and (1.3) that

$\nabla xf(JY)=-F(B_{JY}X)-\beta(X,pJY)=-\beta(X,Y)+\beta(X,Y)=0$ .
These imply that $\nabla f=0$ .

LEMMA 1.2. Let $M$ be a totally real submanifold in $M_{m}(c)$ . If the f-
structure $f$ in the normal bundle is parallel, then so do operators $F$ and $p$ .

PROOF. The first equation of (1.3) implies $Fp\beta(X,Y)+FB_{FY}X=0$ . By means
of (1.2) the assumption of the parallelism of the structure $f$ yields $f^{2}\beta(X,Y)=0$

and it follows that $f\beta(X, Y)=0$ by the property of $f^{3}+f=0$ , which means that $F$

is parallel. This is equivalent to $\nabla F=0$ in [1].

REMARK. (1) Lemma 1.2 holds true in the case where the ambient space is
only a Kaehlerian manifold. In general, it is also seen in [1] that $\Delta F=0$ is
equivalent to $\nabla p=0$ in a CR-submanifold in $M_{m}(c)$ .

(2) Pak [14] proved that in a totally real submanifold of $P_{m}C$, if the second
fundamental form is parallel, then so do the operators $F,$ $p$ and $f$

The distribution $\emptyset$ in the normal bundle of $M$ is said to be $pa?^{-}allel$ with
respect to the normal connection, if for any normal field $\xi$ in $X$ the vector field
$\nabla x^{1\xi}$ is contained in $X$ for any vector field $X$ in $X(M)$ .

PROPOSITION 1.3. Let $M$ be an n-dimensional totally real submanifold in $C^{m}$ .
If the f-structure $f$ in the normal bundle is parallel, then there exists a totally
geodesic submanifold $M_{0}=C^{n}$ in which $M$ is totally real.

PROOF. Let $\zeta \mathcal{D}$ be the distribution consisting of subspaces $FM_{x}$ in $ M_{x}\perp$ at

each point $x$ in $M$ Then it is of dimension $n$ and $\zeta \mathfrak{O}(x)=Ker_{x}f$. From Lemma
1.2 it follows that the operator $F$ is parallel and hence $\nabla x\perp(FY)=F_{\nabla x}Y$ in $\emptyset$ ,

which means that $\emptyset$ is parallel with respect to the normal connection. The first
normal space $M_{x}^{1}$ at $x$ is defined by the orthogonal complement of the following
subspace $\{\xi\in M_{x} : B_{\xi}=0\}$ in $M_{x^{1}}$ . Accordingly the first normal space $M_{x}^{1}$ is iden-
tified with the linear subspace in $M_{x^{1}}$ spanned by $\beta(u,v)$ for any vectors $u$ and
$\prime u$ in $M_{x}$ . The parallelism of the operator $p$ together with the property $\zeta \mathcal{D}(x)=$

$Ker_{x}f$ implies that the first normal space $M_{x}^{1}$ is contained in the subspace $\emptyset(x)$ .
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By means of the reduction theorem of Erbacher [4], there exists a $2n$ -dimensional
totally geodesic submanifold $M_{0}$ of $C^{m}$ in which $M$ is a submanifold. This means
that $M_{0}$ is a complex Euclidean space equipped with the complex structure $J|C^{n}$ ,

which is denoted by the same $J$. Then $JM_{x}=FM_{x}=\mathfrak{X}$) $(x)$ , which implies that $M$

is totally real in $M_{0}=C^{n}$ .
This concludes the proof.

2. Odd dimensional anti-de Sitter spaces.

In this section, the Sasakian structure on a $(2m+1)$ -dimensional anti-de Sitter
space is recalled [15]. In an $(m+1)$ -dimensional complex Euclidean space $C^{m+1}$

with standard basis, a Hermitian form $F$ is defined by

$F(z,w)=-zo\overline{w}_{0}+\Sigma_{k=1}^{m}Zk\overline{w}k$ ,

where $z=(z0, z_{1},\cdots, z_{m})$ and $w=(w_{0}, w_{1},\cdots, w_{m})$ are in $C^{m+1}$ . The space $(C^{m+1}, F)$

is called an $(m+1)$ -dimensional complex Minkowski space, which is denoted by
$C_{1}^{m+1}$ . A non-degenerate symmetric bilinear form $g$ of a real vector space $V$ is
called a scalar product and the index of the scalar product $g$ is by definition the
largest number that is the dimension of a subspace $W$ of $V$ on which $g|W$ is
negative definite. A metric tensor $g$ on a smooth manifold $M$ is by definition a
symmetric non-degenerate $(0,2)$ tensor field on $M$ of constant index $r$, and a smooth
manifold $M$ furnished with a metric tensor field $g$ is called a semi-Riemannian

manifold with semi-Riemannian metric $g$ of index $r$ . The common value $r$

of the index $g$ on a semi-Riemannian manifold $M$ is called the index of $M$

The scalar product given by ${\rm Re} F(z,w)$ is a semi-Riemannian metric of index
2 on $C_{1}^{m+1}$ . Let $H_{1}^{2m+1}$ be a real hypersurface in $C_{1}^{m+1}$ denoted by

$H_{1}^{2m+1}=\{z\in C_{1}^{m+1} : F(z,z)=-1\}$ ,

and let $G$ be a semi-Riemannian metric on $H_{1}^{2m+1}$ induced from the complex
Lorentzian metric ${\rm Re} F$ in $C_{1}^{m+1}$ . Then $(H_{1}^{2m+1}, G)$ is the Lorentzian manifold
with constant curvature $-1$ , which is called the anti-de Sitter space of constant

curvature $-1$ ([3] and [17]). For any point $z$ in $H_{1}^{2m+1}$ the tangent space $\tau_{z}$

$H_{1}^{2m+1}$ can be identified through parallel translation in $C_{1}^{m+1}$ with the subspace
$\{w\in C_{1}^{m+1} : {\rm Re} F(z,w)=0\}$ of $C_{1}^{m+1}$ . In particular $iz$ is a point in $H_{1}^{2m+1}$ where

$i$ denotes the imaginary unit, and moreover it is contained in the tangent space
$T_{z}H_{1}^{2m+1}$ . For any point $z$ in $H_{1}^{2m+1},$ $\xi_{z}=z$ can be regarded as a unit normal
time-like vector to $H_{1}^{2m+1}$ up to translation. For the almost complex structure $J$

in $C_{1}^{m+1}E_{z}=-J\xi_{z}=-iz$ is the unit time-like vector of $H_{1}^{2m+1}$ , i.e. $E\in X(H_{\iota^{m+1}}^{2})$

and $G(E,E)=-1$ .
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For the orthogonal projection $\pi:T_{z}C_{1}^{2m+1}\rightarrow T_{z}H_{1}^{2m+1}$ the linear transformation
$\phi$ of $X(H_{1}^{2m+1})$ into itself is defined by the composition of $J$ and $\pi$ , and let $\omega$ be
a l-form on $H_{1}^{2m+1}$ defiend by $ JX=\phi X+\omega(X)\xi$ for any tangent vector field $X$ on
$H_{1}^{2m+1}$ . Then it is seen in [15] that

(2.1) $\left\{\begin{array}{l}\omega(X)=-G(X,E),\omega(E)=1,\\\phi E=0,\omega\circ\phi=0,\\G(\phi X,Y)+G(X,\phi Y)=0,\\\phi^{2}=-I+\omega\otimes E,\\G(\phi X,\phi Y)=G(X,Y)+\omega(X)\omega(Y).\end{array}\right.$

Let $\alpha$ be the second fundamental form for the hypersurface $H_{1}^{2m+1}$ of $C_{1}^{m+1}$ and
$A_{\xi}$ the shape operator with respect to $\xi$ . Then $H_{1}^{2m+1}$ is the totally umbilical
hypersurface and $A=-I$. Let $\overline{D}$ be the semi-Riemannian connection of $H_{1}^{2?n+1}$ .
By making use of the Gauss and Weingarten formulas, the following relations are
obained:

(2.2) $\left\{\begin{array}{l}D_{U}\phi(V)=-\omega(V)U-G(U,V)E,\\\overline{D}_{U}\omega(V)=G(\phi U,V),d\omega(U,V)=G(\phi U,V),\\\overline{D}_{U}E=-\phi U\end{array}\right.-$

for any vector fields $U$ and $V$ on $H_{1}^{2m+1}$ .
Let $N$ be an odd dimensional manifold equipped with the set $(\phi, E, \omega, G)$ ,

which consists of a tensor field $\phi$ of type $(1,1)$ , a unit time-like vector field $E$ , a
l-form $\omega$ and a Lorentzian metric $G$ . The set is called the Sasakian structure if
it satisfies properties (2.1) and (2.2) [15]. The anti-de Sitter space $H_{1}^{2m+1}$ admits
the Sasakian structure.

3. Lorentzian submanifolds of $H_{1}^{2m+1}$ .
Let $H_{1}^{2m+1}$ be a $(2m+1)$ -dimensional anti-de Sitter space of constant curvature

$-1$ and $(\phi, E, \omega, G)$ its admitting Sasakian structure on $H_{1}^{2m+1}$ . Let $N$ be a semi-
Riemannian submanifold of $H_{1}^{2m+1}$ tangent to the structure vector field $E$ . By the
same $G$ the semi-Riemannian metric induced on $N$ from that of $H_{1}^{2m+1}$ is denoted.
Each tangent space $N_{p}$ is by definition a non-degenerate subspace of $T_{p}H_{1}^{2m+1}$ ,

and hence a property of the linear space with indefinite scalar product gives the
direct sum decomposition $ T_{p}H_{1}^{2m+1}=N_{p}\oplus N_{p}\perp$ , and the subspace $ N_{p}\perp$ which is
called the normal space at $p$ to $N$ is also non-degenerate. Its dimension is equal
to $2m-n$ , where $\dim N=n+1$ . The index of $G$ restricted to $N_{p}$ is called the
co-index. In fact, the co-index of $N$ is independent of the choice of the point $p$

and it is easily seen that ind $H_{1}^{2m+1}=indN+co$-ind $N$. Accordingly ind $N=1$

and co-ind $N=0$.
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Now, by the similar definition to that of 2-sets $(P, F)$ and $(p, f)$ of operators

defined for the submanifold $M$ of the Kaehlerian manifold $\overline{M}$, operators $P^{\prime},$ $F^{\prime},$ $p^{\prime}$

and $f^{\prime}$ are defined as follows: for any vector field $U$ in $X(N)$ and any normal
field $\tau$ in $X1(N),$ $\phi U=P^{\prime}U+F^{\prime}U$ and $\phi\tau=p^{\prime}\tau+f^{\prime}\tau$ , where $P^{\prime}U$ and $ p^{J}\tau$ are
tangent parts of $\phi U$ and $\phi\tau$ respectively, and $F^{\prime}U$ and $ f^{\prime}\tau$ are also normal parts

of $\phi U$ and $\phi\tau$ respectively. Then it is easily seen that for any vector fields $U$

and $V$ on $N$ and any normal fields $\tau$ and $\sigma$ on $N$, the following relations hold
true:

(3.1) $\left\{\begin{array}{l}G(P^{\prime}U,V)+G(U,P^{\prime}V)=0,\\G(F^{\prime}U,\sigma)+G(U,p\prime\sigma)=0,\\G(f^{\prime}\tau,\sigma)+G(\tau,f^{\prime}\sigma)=0,\end{array}\right.$

(3.2) $-\left\{\begin{array}{l}F^{\prime 2}+p^{\prime}F^{\prime}=-I+\omega\otimes E,F^{\prime}P^{\prime}+f^{\prime}F^{\prime}=0,\\P\prime p\prime+pf=0,f^{2}=-I-F\prime p\prime,\\P^{\prime}E=F^{\prime}E=0.\end{array}\right.$

Let $\overline{D}$ and $D$ be the semi-Riemannian connections on $H_{1}^{2m+1}$ and $N$ respectively,
and $ D\perp$ the normal connection in the normal bundle of $N$. Let $\alpha$ be the second
fundamental form of $N$ and $A$ the shape operator of $X\perp(N)\times\chi(N)$ into $X(N)$

defined by $G(A_{\tau}U,V)=G(\alpha(U,V),\tau)$ . The Gauss and Weingarten formulas are
also given by $\overline{D}_{U}V=D_{U}V+\alpha(U,V)$ and $\overline{D}_{U}\tau=-A_{\tau}U+D_{U}\perp\tau$ . For example, see
[13]. For the vector field $E$ the last equation of (2.2) gives

(3.3) $\left\{\begin{array}{l}D_{U}E=-P^{\prime}U,\alpha(U,E)=-F^{\prime}U,\\\alpha(E,E)=0,\\A_{\tau}E=p^{\prime}\tau.\end{array}\right.$

The covariant differentials $DP^{\prime},$ $DF^{\prime},$ $Dp^{\prime}$ and $Df^{\prime}$ of these operators are defined
similarly. Then it follows from the Gauss and Weingarten formulas that the
following relations are given:

(3.4) $\left\{\begin{array}{l}D{}_{U}P^{\prime}(V)=A_{F^{\prime}V}U+p^{\prime}\alpha(U,V)-G(U,V)E-\omega(V)U,\\D_{U}F^{\prime}(V)=-\alpha(U,P^{\prime}V)+J\alpha(U,V),\\D_{U}p^{\prime}(\tau)=A_{f},\tau U-P\prime A_{\tau}U,\\D_{U}f(\tau)=-FA_{\tau}U-\alpha(U,p\prime\tau).\end{array}\right.$

A submanifold $N$ tangent to the structure vector field $E$ in $H_{1}^{2m+1}$ is said to

be totally real, if $\phi N_{p}$ is contained in the normal space $ N_{p}\perp$ at each point $p$ in
$N$. In this case, the operator $P^{\prime}$ satisfies $P^{\prime}=0$ , and therefore $f^{\prime}$ makes the f-
structure in the normal bundle, because of (3.2). The structure $f^{\prime}$ is said to be
parallel, provided that $Df^{\prime}=0$ . The others $F^{\prime}$ and $p^{\prime}$ are said to be parallel, if
$DF^{\prime}=0$ and $Dp^{\prime}=0$ respectively. Similarly to Lemma 1.2, the following property
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holds true:

LEMMA 3.1. Let $N$ be a totally real submanifold tangent to $E$ in $H_{1}^{2m+1}$ .
If the f-structure $f^{\prime}$ in the normal bundle is parallel, then so do the others $F^{\prime}$

and $p^{\prime}$ .

$PR\infty F$ . First of all, the operator $F^{\prime}$ is verified. Since $N$ is totally real, the
first equation of (3.4) gives

$F^{\prime}A_{F^{\prime}V}U+F^{\prime}p^{\prime}\alpha(U,V)-\omega(V)F^{\prime}U=0$

for any vector fields $U$ and $V$, which together with (3.2) and the assumption
yields $f^{J2}\alpha(U,V)=0$ . This means that $f^{\prime}\alpha=0$ , namely, it is equivalent to the fact
that $F^{\prime}$ is parallel. The second assertion is easily given by the third equation of
(3.4) and the total reality.

PROPOSTION 3.2. Let $N$ be an $(n+1)$ -dimensional complete and totally real

submanifold tangent to the structure vector field $E$ in $H_{1}^{2m+1}$ . If the f-structure
$f^{\prime}$ in the normal bundle is parallel, then there exists a totally geodesic submanifold
$N_{0}=H_{1}^{2n_{+1}}$ in which $N$ is totally real.

PROOF. For the given distribution $\emptyset$ consisting of each tangent space $N_{p}$ at

each point $p$ in $N$, the distribution consisting of each subspace $\phi N_{p}$ of the normal
space is defined by $\phi\emptyset$ . By (3.2), $F^{\prime}E=0$ and because of $G(F^{\prime}U,F^{\prime}V)=G(U,V)$

for any vector fields $U$ and $V$ on $N$ orthogonal to $E$, the dimension of the
subspace $F^{\prime}N_{p}$ is equal to $n$ for each point $p$ in $N$, which implies $\dim\phi\emptyset=n$ .
Since the parallelism of the operator $F^{\prime}$ induces $D_{U}\perp(F^{\prime}V)=F^{\prime}(D_{U}V)$ for any
vector fields $U$ and $V$ in $X(N)$ , the distribution $\phi\emptyset$ is parallel with respect to

the normal connection.
On the other hand, the parallelism of the operator $p^{J}$ reduces to $A_{f^{\prime}}\tau=0$ for

any normal $\tau$ in $X\perp(N)$ , which means that $f^{\prime}N_{p}$ is the subspace of the subspace
$\{\sigma\in N_{p^{\perp}} : A\sigma=0\}$ of the normal space $ N_{p}\perp$ . Because the normal space $ N_{p}\perp$ has
two kinds of orthogonal sum decompositions

$N_{p^{1}}=F^{\prime}N_{p}\oplus f^{\prime}N_{p}\perp=N_{p}^{1}\oplus\{\sigma\in N_{p}\perp:A_{\sigma}=0\}$ ,

the first normal space $N_{p}^{1}$ at $p$ is contained in the subspace $F^{\prime}N_{p}=\phi(\mathcal{D}(p)$ . Thus
the reduction theorem due to Dajczer [2] and Magid [7] in the anti-de Sitter
space can be applied to this situation, and hence there exists a $(2n-1)$ -dimensional
complete and totally geodesic submanifold $N_{0}$ of $H_{1}^{2m+1}$ such that $N\subset N_{0}$ and $\tau_{p}$

$(N_{0})=N_{p}\oplus F^{\prime}N_{p}$ for any point $p$ of $N$. Fix a point $p$ in $N$ and put $R_{2}^{2n_{+2}}=T_{p}$

$(N_{0})\oplus R_{p}$ . Then $R_{2}^{2n_{+2}}$ is a complex linear subspace of $R_{2}^{m_{+2}}=C_{1}^{m+1}$ and $H_{1}^{2n+1}$
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which is defined by the intersection of $R_{2}^{2n+2}$ and $H_{1}^{2m+1}$ is the $(2n+1)$ -dimensional
anti-de Sitter space with the metric induced from that of $H_{1}^{2m+1}$ . Since the geo-
desics of $H_{1}^{2m+1}$ are just the intersections of $P$ and $H_{1}^{2m+1}$ , where $P$ is a plane
through the origin $O$ in $C_{1}^{m+1}$ which meets $H_{1}^{2m+1}$ , the anti-de Sitter space $H_{1}^{2n+1}$

is a complete and totally geodesic submanifold of $H_{1}^{2m+1}$ . Obvious it follows $\tau_{p}$

$H_{1}^{2n+1}=T_{p}N_{0}$ . Apart from this viewpoint, it is seen in [13] that for complete and
totally geodesic semi-Riemannian submanifolds $N_{1}$ and $N_{2}$ of a semi-Riemannian
manifold if there is a point $p$ in $N_{1}$ and $N_{2}$ at which the tangent spaces coincide,

then $N_{1}$ coincides with $N_{2}$ . This implies that $N_{0}=H_{1}^{2n_{+1}}$ . Moreover, since $H_{1}^{2n+1}$

is invariant under the multiplication by $e^{i\theta},$ $N$ is totally real in $H_{1}^{2n+1}$ .
This concludes the proof.

The argument developed in this section can be applied to the case where the
submanifold in the unit sphere $S^{zm+1}$ is totally real. Accordingly the following
property is verified. The proof is omitted.

PR0POSITION 3.3. Let $N$ be an $(n+1)$ -dimensional complete and totally real

submanifold tangent to the structure vector field $E$ of $S^{2m+1}$ with the Sasakian
structure $(\phi, E, \omega, G)$ . If the f-structure in the normal bundle is parallel, there
exists a totally geodesic unit sphere $S^{2n+1}$ of $S^{2m+1}$ , in which $N$ is totally real.

REMARK. When the proof of the above Proposition is checked carefully, it
$j\llcorner\sigma$ seen that the condition that the $f$-structure in the normal bundle is parallel can
$oe$ replaced by the apparently weaker one that $ f^{\prime}\alpha$ vanishes identically.

REMARK. Under the additional condition that the mean curvature vector field
is not trivial and parallel in the normal bundle, the compact $N$ is minimally
contained in a hypersurface of positive curvature in $S^{2n+1}[5]$ .

4. Lorentzian circle bundles over a submanifold of $H_{m}C$.
Let $H_{1}^{2m+1}$ be a $(2m+1)$ -dimensional anti-de Sitter space of $C_{1}^{m+1}$ equipped

with the Hermitian form $F$ on $C_{1}^{m+1}$ . Let $U(1,m)$ be the set of matrices $A$ in
$GL(m+1,C)$ such that $F(Az,Aw)=F(z,w)$ for each $z$ and $w$ in $C_{1}^{m+1}$ . Then the
group $U(1,m)$ acts transitively on $H_{1}^{2m+1}$ and the group $S^{1}=\{e^{i\theta}\}$ acts freely on
$H_{1}^{2m+1}$ by $z\rightarrow e^{i\theta}z$ . The orbit $\{e^{i\theta}z\}$ lies in negative definite plane spanned by $z$

and $iz$ . Let $\overline{M}$ be the base manifold of the principal fiber bundle $H_{1}^{2m+1}$ with
the structure group $S^{1}$ . For any point $z$ in $H_{1}^{2m+1}$ let $T_{z}^{\prime}$ be the subspace of $\tau_{z}$

$H_{1}^{2m+1}$ defined by $T_{z}^{\prime}=\{w\in T_{z}H_{1}^{2m+1} : {\rm Re} F(iz,w)=0\}$ . Then the restriction of $F$

to $\tau_{z^{\prime}}$ is positive definite and the orthogonal sum decomposition $ T_{z}H_{1}^{2m+1}=T_{z^{\prime}}\oplus$
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span $\{iz\}$ is given. Moreover we have a connection in $H_{1}^{2m+1}$ such that $T_{z^{\prime}}s,$ $z$

in $H_{1}^{2m+1}$ , are the horizontal subspaces. The natural projection $\pi:H_{1}^{2m+1}\rightarrow M$

induces a linear onto isomorphism $d\pi:T_{t^{J}}\rightarrow T_{\pi(z)}M$ The complex structure $ w\rightarrow$

$iw$ in $T_{l^{\prime}}$ is compatible with the action of $S^{1}$ and induces the almost complex

structure $J$ on $\overline{M}$ such that $ d\pi\circ i=J\circ d\pi$ . A scalar product $g$ on each tangent space
$\overline{M}_{x}$ at each point $x$ in $\overline{M}$ is defined by $g(X,Y)=-{\rm Re} F(U,V)$ , where $U$ and $V$

are elements in $T_{t^{\prime}}$ such that $\pi(z)=x,$ $d\pi(U)=X$ and $d\pi(V)=Y$. Then $(\overline{M},$
$g$,

$J)$ is the m-dimensional complex hyperbolic space $H_{m}C$ with constant holomorphic

sectional curvature-4 ([3] and [17]). It is well known that $H_{1}^{2m+1}$ is the principal
$S^{1}$ -bundle over $H_{m}C$ with the projection $\pi:H_{1}^{2m+1}\rightarrow H_{m}C$, which is the Riemannian
submersion in the sence of O’Neill [12] with fundamental tensor $J$ and totally
geodesic time-like fibers. For any point $z$ in $H_{1}^{2m+1}$ we put $E_{z}=-Jz$ in $T_{l}H_{1}^{2m+1}$ ,

and then the orthogonal sum decomposition $T_{z}H_{1}^{2m+1}=T_{\pi(z)}H_{m}C\oplus span\{E_{z}\}$ is
given up to identification. Let $(\phi, E, \omega, G)$ be the Sasakian structure equipped

in $H_{1}^{2m+1}$ and $(J, g)$ the Kaehlerian structure in $H_{m}C$. Let $*be$ the horizontal
lift of the Riemannian submersion $\pi:H_{1}^{2m+1}\rightarrow H_{m}C$. By the construction.

(4.1) $(JX)^{*}=\phi X^{*},$ $G(X^{*},Y^{*})=g(X,Y)$

for any vector fields $X$ and $Y$ on $X(H_{m}C)$ . The above decomposition gives the
following relationships between the semi-Riemannian conncetion $\overline{D}$ of $H_{1}^{2m+1}$ and
the Riemannian connection $\nabla$ of $H_{m}C$ :

(4.2) $\overline{D}_{x^{*}}Y^{*}=(\nabla xY)^{*}-G(\phi X^{*},Y^{*})E,\overline{D}_{x^{*}}E=-\phi X^{*}$ .
For an n-dimensional submanifold $M$ of $H_{m}C$, one can construct the Lorentzian
submanifold $N=\pi^{-1}(M)$ which is the principal $S^{1}$ -bundle over $M$ with time-like
totally geodesic fibers and the projection $\pi[6]$ . Moreover, $\pi$ is compatible with
the fibration $\pi:H_{1}^{2m+1}\rightarrow H_{m}C$, that is, the diagram

$ N\rightarrow H_{1}^{2m+1}ii^{\prime}\downarrow$

$M\rightarrow H_{m}C$

is commutative, where $i$ and $i^{\prime}$ are the respective immersions. This shows that
$N_{z}=(M_{(z)})\oplus span\{E_{z}\}$ . The Gauss formulas for the immersions $i^{\prime}$ and $i$ and the
equation (4.2) yield

(4.3) $\left\{\begin{array}{l}D_{x^{*}}Y^{*}=(\nabla xY)^{*}-G(\phi X^{*}Y^{*})E,\\\alpha(X^{*},Y^{*})=\beta(X,Y)^{*},\end{array}\right.$

while the Weingarten formulas for the immersions $i$
‘ and $i$ give rise to the fol-

lowing relationships between the shape operators $A$ and $B$ :
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(4.4)
$\left\{\begin{array}{l}A_{\xi}^{*}Y^{*}=(B_{\xi}Y)^{*}+G(A_{\xi}^{*}Y^{*},E)E,\\D_{x}^{*\perp\xi*}=(\nabla x^{1\xi)^{*}}\cdot\end{array}\right.$

On the other hand, for orthogonal operators $(P,F),$ $(p,f)$ and $(P^{\prime},F^{\prime}),$ $(p^{\prime},f^{\prime})$

of the immersions $i^{\prime}$ and $i$ respectively, (4.1) means that

(4.5)
$\left\{\begin{array}{l}(PX)^{*}=P^{\prime}X^{*},(FX)^{*}=F^{\prime}X^{*},\\(p\xi)^{*}=p^{\prime}\xi*,(f\xi)^{*}=f\xi*,\end{array}\right.$

and using (3.3) and (4.4), we have

(4.6) $(B_{\xi}X)^{*}=A_{\xi}^{*}X^{*}+G(F^{\prime}X^{*},\xi*)E,$ $A_{\epsilon^{*}}E=p^{\prime}\xi*$ .
From (4.5) it follows easily that $N$ is totally real in $H_{1}^{2m+1}$ if and only if $M$ is

totally real in $H_{m}C[18]$ .
Now, for the diagram mentioned above, the relation between the parallelism

of the operators $f$ and $f^{\prime}$ is investigated.

LEMMA 4.1. If the f-structure $f$ in the normal bundle of $M$ is parallel, then
so does the operator $f^{\prime}$ .

PROOF. Under the assumption that the operator $f$ is parallel, for any vector

field $X$ in $\chi(M)$ and any normal field $\xi$ in $X\perp(M)$ , it follows from (4.4), (4.5)

and the above equation that $D_{x^{*}}f^{\prime}(\xi*)=0$. Since $d\pi:X\perp(N)\rightarrow X\perp(M)$ is an
isometric isomorphism, it means $D_{x^{*}}f^{\prime}=0$ .

On the other hand, for any normal field $\tau$ in $X\perp(N)$ , the last equation of
(3.4) is reduced to $D_{E}f^{\prime}(\tau)=-F^{\prime}(A_{\tau}E-p^{\prime}\tau)$ , which together with (3.3) gives
$D_{E}f^{\prime}=0$ . This means that $f^{\prime}$ is parallel.

THEOREM 4.2. Let $H_{m}C$ be a complex m-dimentional complex hyperbolic

space of constant holomorphic sectional curvature $-4$ , and $M$ an n-dimensional
complete and totally real submanifold of $H_{m}C$. If the f-structure in the normal
bundle of $M$ is parallel, then there exists a complex n-dimensional totally geodesic

submanifold $M_{0}=H_{n}C$ of $H_{m}C$ in which $M$ is totally real.

PROOF. By means of Proposition 3.2 and Lemma 4.1, there exists a $(2n+1)-$

dimensional totally geodesic anti-de Sitter space $H_{1}^{2n+1}=N_{0}$ of $H_{1}^{2m+1}$ , in which $N$

is totally real. The restriction of the projection $\pi:H_{1}^{2m+1}\rightarrow H_{m}C$ to $H_{1}^{2n+1}$ is de-
noted by the same $\pi$ , and let $M_{0}$ be the image of $N_{0}$ under $\pi$ . Then, since $N_{0}$

is invariant under the multiplication by $e^{i\theta}$ , the image $M_{0}$ is a submanifold of
$H_{m}C$. Induce a metric on $M_{0}$ so that the projection $\pi:N_{0}\rightarrow M_{0}$ is a Riemannian

submersion. For the isometric immersion $i_{0}^{\prime}$ : $N\rightarrow N_{0}$ and the totally geodesic im-
mersion $i_{1}^{\prime}$ : $N_{0}\rightarrow H_{1}^{2m+1}$ , smooth mappings $i_{0}$ (resp. $i_{0}$) of $M$ into $M_{0}$ (resp. $M_{0}$ into
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$H_{m}C)$ can be chosen in such a way that the diagrams are commutative. Then $i_{0}$

and $i_{1}$ make both isometric immersions, because $\pi$ : $N_{0}\rightarrow M_{0}$ is also the Riemannian
submersion. On the right diagram, let $\alpha_{1}$ and $\beta_{1}$ be the second fundamental forms
for $i_{1}^{\prime}$ and $i_{1}$ . By the similar way to (4.3) we get $\alpha_{1}(X^{*},Y^{*})=\beta_{1}(X,Y)^{*}$ for any
$X$ and $Y$ in $X(M_{0})$ , which implies that $\beta_{1}$ vanishes identically, i.e., $M_{0}$ is also
totally geodesic. Since $M_{0}$ is a Kaehlerian submanifold of $H_{m}C$, it is the complex
hyperbolic space $H_{n}C$ and $M$ is totally real in $H_{n}C$.

This concludes the proof.

5. Principal circle bundles over a submanifold of $P_{m}C$.
Let $M$ be an n-dimensional totally real submanifold of a complex m-dimen-

sional complex projective space $P_{m}C$. Then one can construct a principal circle
bundle over the submanifold $M$ with the projection $\pi$ in such a way that $\pi$ is
compatible with the Hopt fibration $\pi$ : $S^{2m+1}\rightarrow P_{m}C$. Namely, the following diagram
is commutative:

$\pi^{-1}(M)M\downarrow\rightarrow s_{I_{m^{m+1}}}\rightarrow P^{2}C$

By the similar verification to that stated in the previous section, the following
theorem is proved.

THEOREM 5.1. Let $M$ be an n-dimensional complete and totally real subma-

nifold of $P_{m}C$. If the f-structure in the normal bundle on $M$ is parallel, then
there exists a totally geodesic submanifold $M_{0}=P_{n}C$ of $P_{m}C$ in which $M$ is totally
real.

The proof will be sketched. Let $(\phi, E, \omega, G)$ be the Sasakian structure

admitted in $S^{2m+1}$ and $(J, g)$ the Kaehlerian structure in $P_{m}C$. By these struc-

tures, the set $(P, F),$ $(p, f)$ and $(P^{\prime}, F^{\prime}),$ $(p^{\prime}, f^{\prime})$ of orthogonal operators are
defined for the isometric immersions $M\rightarrow P_{m}C$ and $N=\pi^{-1}(M)\rightarrow S^{2m+1}$ . As is well
known, $M$ is totally real in $P_{m}C$ if and only if $N$ is totally real in $S^{2m+1}$ , the
parallelism of the $f$-strucure $f$ derives that $F$ and $p$ are both parallel by the same
discussion as that developed in the previous sections, and moreover the operators
$F^{\prime},$ $p^{\prime}$ and $f^{\prime}$ are also so. These properties imply that the distribution $ F^{\prime}\emptyset$

defined by $p\rightarrow F^{\prime}N_{p}$ is parallel with respect to the normal connection and $\dim F^{\prime}\emptyset$

$=n$ , and furthermore the first normal space $N_{p^{1}}$ is the subspace of $F^{\prime}N_{p}$ . By means
of the reduction theorem of Erbacher [4], it yields that there exists a totally
geodesic $S^{2n+1}$ of $S^{2m+1}$ in which $N$ is totally real (Proposition 3.3.). The restric-
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tion of the Hopf fibration to $S^{2n+1}$ gives a complete totally geodesic Kaehlerian
submanifold $M_{0}=\pi(S^{2n+1})$ of $P_{m}C$. Hence $M_{0}$ is the complex projective space
$P_{n}C$ and $M$ is totally real in $M_{0}$

Thus the proof is complete.
The authors would like to express their thanks to the referee by whom some

improvements were made out of the original manuscript.
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