NOTE ON LEFT SERIAL ALGEBRAS

By

Manabu HARADA

(Dedicated to the memory of Professor Akira HATTORI)

Let R be a left and right artinian ring with identity. We have studied the condition (*, n): every maximal submodule of direct sum of arbitrary n R-hollow modules is also a direct sum of hollow modules [1].

We shall study, in this short note, some left serial rings satisfying (*, 1) for right R-module, and give a characterization of such a left serial algebra with $J^4=0$.

§1. Algebras of right local type

Let R be a left and right artinian ring with identity. We assume that every R-module is a unitary right R-module and we denote the Jacobson radical and the socle of an R-module M by J(M) and Soc (M), respectively. We put J=J(R), and |M| means the length of a composition series of M. Following H. Tachikawa [5], R is called a ring of right local type, if every finitely generated right R-module is a direct sum of local (hollow) modules. We are sometimes interested in an algebra R over a field K with the following condition:

- (A) eRe/eJe = eK + eJe for each primitive idempotent e, (Condition II" in [1], e.g., K is an algebraically closed field).
 - T. Sumioka found the following remarkable result for a left serial ring R [4]:
- LEMMA 1. ([4], Corollary 4.2). Let R be a left serial ring, then eJ^i is a direct sum of hollow modules as right R-modules for any i.

On the other hand, if R satisfies (*, 1), then eJ^i has the same structure from the definition (cf. [3], §1). Further we obtained

- LEMMA 2. ([3], Theorem 4). Let R be a right artinian ring. Then R satisfies (*, 1) for any hollow module if and only if the following two conditions are fulfilled:
 - 1) $eJ = \sum_{i=1}^{n(e)} \bigoplus A_i$, where e is any primitive idempotent in R and the A_i are hollow.
 - 2) Let $C_i \supset D_i$ be two submodules of A_i such that C_i/D_i is simple. If $f: C_i/D_i \approx C_j/D_j$ for $i \neq j$, f or f^{-1} is extendible to an element in $\operatorname{Hom}_R(A_i/D_i, A_j/D_j)$ or $\operatorname{Hom}_R(A_j/D_i, A_j/D_j)$.

We shall study a relationship between those lemmas in the next section.

LEMMA 3. Let R be a left serial algebra with (A), and $eJ^i = \sum_{j=1}^{n_i} \bigoplus A_{ij}$ with A_{ij} hollow (from Lemma 1). Then $\bar{A}_{ij} \neq \bar{A}_{ii'}$ for $j \neq j'$, where $\bar{A}_{ij} = A_{ij}/A_{ii}J$.

PROOF. Assume $\bar{A}_{i1} \approx \bar{A}_{i2} \approx fR/fJ$: f is a primitive idempotent. Then $A_{ij} = a_{ij}R$; $a_{ij}f = a_{ij}(j=1, 2)$. Since Rf is uniserial, there exists x in eRe such that $a_{i1} = xa_{i2}$ (or $a_{i2} = xa_{i1}$). If $x \in eJe$, $a_{i1} \in eJ^{i+1}$. Hence $x \notin eJe$, and x = ek + j; $k \in K$, $j \in eJe$ from (A). $a_{i1} = (ek + j)a_{i2} = eka_{i2} + ja_{i2} \equiv a_{i2}k$ (mod eJ^{i+1}), contradiction.

THEOREM 1. Assume that R is a left serial algebra with (A). Then the following are equivalent:

- 1) R is of right local type.
- 2) R satisfies (*, 2) and $|eJ/eJ^2| \le 2$ for each e.
- 3) R satisfies (*, 3).

PROOF. This is clear from Lemma 3, [3], Theorem 7 and [5].

THEOREM 2. Let R be an algebra over a field. Assume that R is a left serial algebra. Then the following are equivalent:

- 1) R is of right local type.
- 2) R satisfies (*, 3).

PROOF. This is clear from [1], Theorem 1, [2], Remark 2 and [5]. We give an example for Theorem 1, 2.

$$R = \left(\begin{array}{cccc} K & K & \cdots & K \\ & K & & \\ 0 & & \ddots & 0 \\ & & & K \end{array}\right)$$

is a left serial algebra with (*, 2) and $|eJ/eJ^2| = n$.

We study, in this section, some left serial rings satisfying (*, 1). First we give

THEOREM 3. Let R be a left serial ring. Then R satisfies (*, 1) if eI is a direct sum of uniserial modules for each primitive idempotent e.

PROOF. Let $C_i \supset D_i$ be submodules of A_i such that C_i/D_i is simple and \bar{h} : $C_1/D_1 \approx C_2/D_2$. Since C_i is hollow, $C_1 = x_1 R$ and $C_2 = h(x_1)R$, where $h(x_1)$ is a representation of $\bar{h}(x_1)$. We may assume that $x_1 f = x_1$ and $h(x_1) f = h(x_1)$ for a primitive idempotent f, since C_i is hollow. Rf being uniserial, there exists g in R such that $g = yh(x_1)$ or $g = h(x_1) + yh(x_2)$. Since $g = h(x_1) + yh(x_2)$ is

an isomorphism, we may assume $h(x_1) = yx_1$, and $y \in eRe$. For any element d in D_1 , $d = x_1r$; $r \in R$. Then $yd = yx_1r = h(x_1)r \in C_2$. Hence $h(x_1)r + D_2 = \bar{h}(x_1)r +$

THEOREM 4. Let R be a left serial algebra with (A) and put $J(eR) = \sum_{i=1}^{n(e)} \bigoplus A_i$, $J(A_i) = \sum_{j=1}^{n_i} \bigoplus B_{ij}$, where the A_i and B_{ij} are hollow. Assume that $J^4 = 0$. Then the following are equivalent:

- 1) R satisfies (*, 1).
- 2) eR has the following structure: If $\bar{B}_{ij} \approx C_{i'j'}$, then $B_{i'j'}$ is unierial, where $\bar{B}_{ij} = B_{ij}/B_{ij}/B_{ij}/B_{ij}/B_{ij}/B_{ij}$ and $C_{i'j'}$ is a simple submodule in $J(B_{i'j'})$, $(i \neq i')$.

PROOF. Assume that R satisfies (*, 1) and $\bar{B}_{11} \approx C_{21} \subset eJ^3$. Put $D_1^* = J(B_{11}) \oplus B_{12} \oplus \cdots \oplus B_{1n_1}$. Then $f: J(A_1)/D_1^* \approx \bar{B}_{11} \approx C_{21}$. Assume that f is extended to $g' \in \operatorname{Hom}_R(A_2, A_1/D_1^*)$. Since $A_2J^2 \supseteq C_{21}$, $\bar{B}_{11} = f(C_{21}) = v'(C_{21}) \subseteq (A_1/D_1^*)J^2 = 0$. Hence f is extendible to g in $\operatorname{Hom}_R(A_1/D_1^*, A_2)$ by Lemma 2. Now, since A_1/D_1^* is uniserial and $g(\operatorname{Soc}(A_1/D_1^*)) = C_{21}$, g is a monomorphism, and so $g(A_1/D_1^*)$ is a uniserial submodule of $J(A_2)$ which contains C_{21} , and $|g(A_1/D_1^*)| = 2$. However $g(A_1/D_1^*)$ is a direct sum of two simple modules from the structure of $J(A_2)/C_{21}$ and the fact that $g(A/D_1^*)/C_{21}$ is simple, provided that B_{21} is not uniserial. Therefore B_{21} is uniserial. Conversely, if 1) is satisfied, then (*, 1) is trivially satisfied. Assume that 2 and 3 and 3 are submodules in 3 and 3 and 3 and 4 and 4

(#)
$$b_i f \in eI^3$$
 for $j \neq 1$ (actually $b_i f = 0$ except one j').

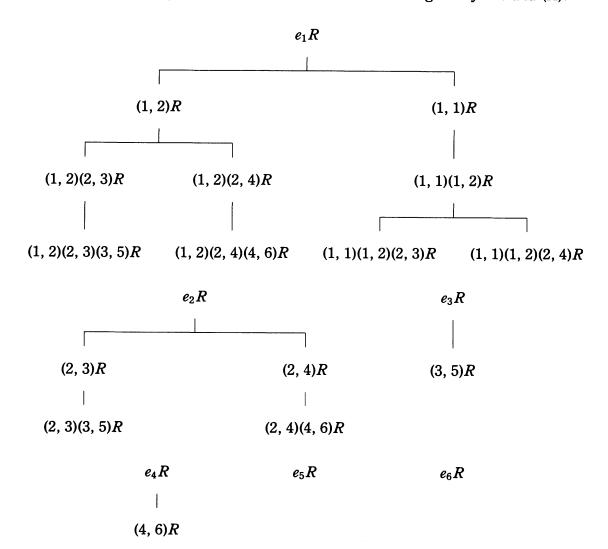
Let x_2' be a representation of $h(\bar{x}_1)$ such that $x_2'f = x_2'$. Put $x_2' = b_1' + \cdots + b_{n_2}'$; $b_i' \in B_{2i}$. If some b_i' is in $B_{2i} - J(B_{21})$, $\bar{B}_{11} = B_{11}/J(B_{11}) = \bar{b}_1 R \approx \bar{b}_i' R = \bar{B}_{2i}$, which is a contradiction by Lemma 3. Hence $b_i' \in J(B_{2i})$ for all i, and so $x_2' = b_i'$ for some t by Lemma 3 (cf. (#)). Then B_{2t} is uniserial from the assumption. Now $C_2 = x_2' R \oplus D_2$, since $x_2' R = \bar{x}_2' R$ is a simple submodule of C_2 and there exists d in eJe such that $x_2' = dx_1$. Being d in eJe, $dA_1 \subset eJ^2$. By p_2 we denote the projection of eJ^2 to B_{2t} and put $g = p_2 d_1 | A_1 \in \operatorname{Hom}_R(A_1, A_2)$. We shall show $g(D_1) = 0$. Assume contrarily $g(D_1) \neq 0$. Take an element z in D_1 such that $g(z) \neq 0$; $z = b_1'' + \cdots + b_{n_1}''$; $b_i'' \in B_{1i}$. If $b_1'' \in eJ^3$, $0 \neq p_2 dz = p_2 (db_2'' + \cdots + db_{n_1}'')$ implies that, for some j, $0 \neq p_2 db_j'' \in \operatorname{Soc}(B_{2t}) = x_2' R(j \geqslant 2)$, since B_{2t} is uniserial. Further $b_j'' \notin J(B_{1j}) \subset eJ^3$ for $p_2 db_j'' \neq 0$. Hence $B_{1i}/B_{1i}J \approx x_2'R$, and so $B_{11}/B_{11}J \approx B_{1i}/B_{1i}J$, a contradiction. Accordingly, being

 $b_1''R = B_{11}(b_1'' \notin eJ^3)$, there exists r in R such that $b_1 = b_1''r$. Put $x_1' = x_1 - zr = b_2''' + \cdots + b_{n_1}''$ ($\in C_1$). Then \bar{x}_1' is a generator of C_1/D_1 . Further $x_1'f = b_2'''f + \cdots + b_{n_1}''f$ is in eJ^3 from (#). Hence $x_1'fR$ is a semisimple submodule of A_1 . $x_1'fRf \neq 0$ implies that $x_1'fR$ contains a simple submodule isomorphic to $x_2'R$, a contradiction. Therefore $g(D_1) = 0$, and so g induces an element in $\text{Hom}_R(A_1/D_1, A_2/D_2)$, which is an extension of h.

COROLLARY. Let R be a left serial algebra with (A). If $J^3 = 0$, then (*, 1) is satisfied.

Finally we give a left serial algebra with $J^4=0$ but (*, 1) is not satisfied.

Let R be a vector space over K with basis $\{e_1, (1, 2), (1, 2)(2, 3) \cdots\}$ given in the below, we define the product among the basis, $e_i e_j = e_i \delta_{ij}$, $e_i(k, s) e_j = (k, s) \delta_{ik} \delta_{sj}$ and products of any four elements (k, s) are zero. Then R is a left serial ring with $J^4 = 0$ and (A).



Put $A_1 = (1, 2)R$, $D_1 = (1, 2)(2, 4)K \oplus (1, 2)(2, 3)(3, 5)K \oplus (1, 2)(2, 4)(4, 6)K$, $C_1 = (1, 2)(2, 3)K \oplus D_1$. $C_2 = (1, 1)(1, 2)(2, 3)K$ and $D_2 = 0$. Then $h: C_1/D_1 \approx C_2$. However $B_2 = (1, 1)(1, 2)R$ is not uniserial. Hence R does not satisfy (*, 1).

References

- [1] Harada, M., On maximal submodules of a finite direct sum of hollow modules III, Osaka J. Math. **22** (1985) 81–98.
- [2] Asashiba, H. and Harada, M., · · · V, to appear.
- [3] Harada, M., Generalizations of Nakayama ring III, to appear.
- [4] Sumioka, T., Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 21 (1984) 624-648.
- [5] Tachikawa, H., On rings for which every indecomposable right module has a unique maximal submodule, Math (1959) 200-222.

Department of Mathematics Osaka City University Sugimoto 3, Sumiyoshi-Ku Osaka 558 Japan