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ON THE REPRESENTATION TYPE OF
LOCALLY BOUNDED CATEGORIES
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Piotr DOWBOR and Andrzej SKOWROsSKI

0. Introduction

In [5,6,7] Drozd showed that the class of finite dimensional algebras over an
arbitrary algebraically closed field splits into two disjoint subclasses: representa-
tion-tame algebras whose indecomposable modules of arbitrary fixed finite dimension
may be parametrized by several discrete and several continuous parameters and
representation-wild algebras for which the classification of indecomposable finite
dimensional modules includes the classical unsolved problem on the canonical form
of pairs of matrices with respect to the simultaneous conjugacy. From this point
of view it would be interesting to have methods determining whether a given
algebra is representation-tame. In many cases the covering techniques, introduced
by Bongartz-Gabriel [3], Gabriel [ $ 8\rfloor$ , Green [10] and Riedtmann [14] for the research
of representation-finite algebras and developed recently by the authors [4] for the
investigation of arbitrary algebras, reduce the classification problem of indecom-
posables to the corresponding problem for locally bounded categories, being infinite
dimensional algebras without unity. Since the supports of finite dimensional re-
presentations of locally bounded categories form their finite subcategories it is
natural to ask about a connection between the representation types cf these cate-
gories.

In this paper we show that a locally bounded category is representation-tame
if and only if any its finite full subcategory is representation-tame. In particular
any locally bounded category is either representation-tame or representation-wild.
Moreover different equivalent definitions of representation-tamness are presented
here. These results have found some applications in $[4, 15]$ .

1. The representation type of locally bounded categories.

Throughout the paper $K$ will denote a fixed algebraically closed field. We
recall some basic definitions of [3]: A K-category $R$ is a category whose morphism
sets $R(x, y)$ are endowed with K-vector space structures such that the composition

Received September 17, 1984. Received July 9, 1985.



64 Piotr DOWBOR and Andrzej SKOWRONSKI

of maps is K-bilinear. A locally bounded category is a K-category $R$ satisfying
the following conditions:

(a) For each $x\in R$ , the endomorphism algebra $R(x, x)$ is local.
(b) Distinct objects of $R$ are not isomorphic.
(c) For each object $x$ of $R,\sum_{y\in R}\lceil R(x, y):K$] $<\infty$ and $\sum_{y\in R}[R(y, x);K]<\infty$ .

$ln$ the sequel $R$ denotes a fixed connected locally bounded category over $K$. An R-
module is a K-linear contravariant functor from $R$ to Mod $K$, where Mod $K$ is
the category of K-vector spaces. For any R-module $M$ we shall denote by $supp$

$M$ the support of $M$, that is, the full subcategory of $R$ formed by all objects $x$

such that $M(x)\neq 0$ . The dimension-vector of an R-module $M$ is the family $\underline{\dim}M$

$=(M(x):K)_{x\epsilon R}$ , and $\underline{\dim}M$ is finite if the dimension $\dim M=\sum_{x\in R}[M(x):K]$ is finite.
We denote by Mod $R$ the category of all R-modules and by $mod R$ (resp. ind $R$)

the full subcategory of Mod $R$ formed by all finite dimensional R-modules (resp.

finite dimensional indecomposable R-modules). For a finite dimension-vector $d$ in
$R$ we will denote by $ind_{d}R$ the full subcategory of ind $R$ formed by all modules
$M$ with $\underline{\dim}M=d$. In the paper we will use the analogous notation Mod $A$ , mod
$A$ , ind $A,$ $ind_{n}$ $A$ for a finitely generated K-algebra $A$ and $n\in N=\{1,2,3, \cdots\}$ .

A parametrizing triple $(A, B, Q)$ over $R$ consists of a finitely generated K-
algebra $A$ , a full subcategory $B$ of $mod$ $A$ and an A-R-bimodule $Q$ . The restriction
$-\bigotimes_{A}Q|_{B}$ : $B\rightarrow ModR$ of the functor $-\bigotimes_{A}Q:mod A\rightarrow ModR$ to $B$ is called the

parametrizing functor associated with $(A, B, Q)$ . Moreover, a full subcategory $D$

of $mod R$ is parametrized by a family of parametrizing triples $(A_{i}, B_{i}, Q_{i}),$ $i\in I$,

provided every module $M$ from $D$ is of the form $M=X_{i}\bigotimes_{4_{i}\wedge}Q_{i}$ for some $i\in I$ and $X_{i}$

from $B_{i}$ . A functor $F:C\rightarrow D$ is called strict (see [7, p. 244]) if $F(X)\cong F(Y)$

implies $X\cong Y$ for any objects $X$ and $Y$ from $C$. Finally, for a full subcategory $C$

of $R$ , we will denote by $\hat{C}$ the full subcategory of $R$ formed by all objects $x$ such
that $R(x, y)\neq 0$ or $R(y, x)\neq 0$ for some $y$ from $C$ (see $[4\rfloor$ ). Observe that if $C$ is
finite then $\hat{C}$ is so.

Following Drozd [5, 6,7] a locally bounded category $R$ is called representation-

wild if there exists a strict functor $F:mod K\langle x, y\rangle\rightarrow mod R$ , where $ K\langle x, y\rangle$ is
the free associative K-algebra in two non-commuting variables, satisfying the
following condition:

(1) $F=-\bigotimes_{K\langle x.V\rangle}Q$ , where $Q$ is a $K\langle x, y\rangle- R$-bimodule being a finitely generated

free left $ K\langle x, y\rangle$-module. From the Drozd’s proof of [6, Theorem 11 it follows
that a finite locally bounded K-category $R$ is representation-wild if and only if

there exists a strict functor $F:mod K\langle x, y\rangle\rightarrow mod R$ satisfying (1) and the
following stronger condition

(2) $F$ preserves indecomposables.
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Further, $R$ is called representation-tame if for any finite dimension-vector $d$ in $R$

the category $ind_{d}R$ is parametrized by a finite family of parametrizing triples
$(A_{i}, B_{i}, Q_{i}),$ $i=1,$ $\cdots,$ $n_{d}$ , such that $A_{i}$ are polynomial algebras $K[T]$ in one variable,
$Q_{i}$ are finitely generated free left $A_{i}$-modules and $B_{i}=ind_{1}K[T]$ are the categories
of all simple right $K[T]$ -modules. By a rational algebra we mean the localization
$K[T]_{h}$ of $K[T]$ with respect to powers of a polynomial $h$ in $K[T]$ .

The following proposition gives equivalent conditions for $R$ to be representa-

tion-tame.

PROPOSITION 1. Let $R$ be a locally bounded K-category and let $d$ be a finite
dimension-vector in R. The following equivalences hold:

(i) $ind_{l}(R$ is parametrized by a finite family of parametrizing triples $(A_{i}, B_{i}, Q_{i})$ ,

$i=1,$ $\cdots,$ $n_{1}$(’ where all $A_{i}$ are polynomial algebras $K[T]$ in one variable, $Q_{i}$ are
finitely generated free left $A_{i}$-modules and $B_{i}=ind_{1}A_{i}$ .

(ii) $ind_{d}R$ is parametrized by a finite family of parametrizing triples $(A_{i}, B_{i}, Q_{i})$ ,

$i=1,$ $\cdots,$ $u_{d}$ , such that $A_{i}$ are rational algebras $K[T]_{h_{i}},$ $Q_{i}$ are finitely generated left
$A_{i}$-modules and $B_{i}=indA_{i}$ .

(iii) $ind_{d}R$ is parametrized by a finite family ofparametrizing triples $(A_{i}, B_{i}, Q_{i})$ ,

$i=1,$ $\cdots,$
$t_{d}$ , such that $A_{i}=K[T]_{h_{i}},$ $Q_{i}$ are fmitely generated free left $A_{i}$-modules and

$B_{i}=indA_{i}$ .
(iv) $ind_{d}R$ is parametrized by a finite family of parametrizing triples $(A_{i}, B_{i}, Q_{i})$ ,

$i=1,$ $\cdots,$ $r_{d}$ , such that $A_{i}=K[T]_{h_{i}},$ $Q_{i}$ are finitely generated free left Ai-modules and
$B_{i}=ind_{1}A_{i}$ .

(v) $ind_{d}R$ is parametrized by a finite family of parametrizing triples $(A_{i}, B_{i}, Q_{i})$ ,

$i=1,$ $\cdots,$ $s_{d}$ , such that $A_{i}=K$ or $A_{i}=K[T]_{h_{i}},$ $Q_{i}$ are finitely generated free left $A_{i^{-}}$

modules, $B_{i}=ind_{1}A_{i}$ , and the parametrizing functors $F_{i}$ : $B_{i}\rightarrow mod R$ associated
to $(A_{i}, B_{i}, Q_{i})$ preserve indecomposables.

For the proof of this proposition we need some lemmas.

LEMMA 1. Let $A$ be a rational algebra $K[T]_{h}$ and let $m\in N$. Then there exists
an A-A-bimodule $P^{m}$ being a free left A-module of rank $m$ such that the restriction

of $-\bigotimes_{A}P^{m}$ : $mod A\rightarrow mod$ $A$ to $ind_{1}$ $A$ is a strict dense functor $ind_{1}A\rightarrow ind_{m}A$ .

PROOF. Let $P^{m}$ be the free left A-module $(_{A}A)^{m}$ endowed with the right A-
module structure such that the multiplication by $T$ is given by the right multipli-

cation by the following $mx$ m-matrix
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$(^{1}T$

$0T1$
$0_{i}T]$

It is not hard to see that $A/(p)\bigotimes_{A}P^{m}\cong A/(p^{m})$ for any prime element $p$ in $A$ and
we are done.

LEMMA 2. Let $A$ be a rational algebra $K[T]_{h}$ and let $Q$ be an A-R-bimodule
being a finitely generated left A-module. Then there exists an A-R-bimodule $Q^{\prime}$

which is a finitely generated free left A-module and the following condition holds:
for each finite dimension-vector $d$ in $R$ there exists only finitely many nonisomorphic

indecomposable R-modules of the form $X\bigotimes_{A}Q,$
$X\in indA$ , which are not isomorphic to

a module $Y\bigotimes_{A}Q^{\prime}$ for some $Y\in indA$ .

PROOF. First observe that the A-submodule $t(Q)$ of $AQ$ consisting of all A-
torsion elements of $AQ$ is an R-submodule of $Q_{R}$ , and consequently is an $A$-R-
subbimodule of $Q$ . Indeed, $t(Q)=\bigoplus_{x\in R}t(Q(x))$ and for any morphism $\mathcal{L}:x\rightarrow y$ in
$R,$ $Q(\mathcal{L}):Q(y)\rightarrow Q(x)$ is a homomorphism of left A-modules and then $Q(\mathcal{L})(t(Q(y)))$

is contained in $t(Q(x))$ . Put $Q^{\prime}=Q/l(Q)$ . Then $AQ^{\prime}$ is a finitely generated torsion-
free left $K[T]_{h}$-module, so it is a finitely generated free left $K[T]_{h}$-module and
$AQ=At(Q)\oplus_{A}Q^{\prime}$ . Hence for any indecomposable finite dimensional right A-module
$Y$ we have the following dimension formula $\underline{\dim}Y\bigotimes_{A}Q=\underline{\dim}Y\bigotimes_{A}t(Q)+m(r_{x})_{x\in R}$ , where
$Y=A/(p^{m})$ for some prime element $p\in A,$ $m\in N$, and $r_{x}$ is the rank of the left free
A-module $Q^{\prime}(x),$ $x\in R$ . Let $p_{1},$ $\cdots,$

$p_{s}$ be all prime elements of $A$ such that $A/(p_{i}^{m_{i}})$

is a direct summand of At$(Q)$ for some $m_{i}\in N$. Then for any $Y=A/(p^{m}),$ $p\neq p_{1},$ $\cdots$ ,
$p_{s},$ $m\in N$, holds $Y\bigotimes_{A}t(Q)=0$ and we have an isomorphism $Y\bigotimes_{A}Q\cong Y\bigotimes_{A}Q^{\prime}$ . Now let
$d$ be a finite dimension-vector in $R$ . We claim that there is only finitely many
right A-modules of the form $X=A/(p_{i}^{m}),$ $i=1,$ $\cdots,$ $s,$ $m\in N$, such that $\underline{\dim}X\bigotimes_{A}Q=d$.
Indeed, as a consequence of the above dimension formula, for any $x\in suppQ_{R}^{\prime}$ , we
get the inequality $d_{x}=\dim X\bigotimes_{A}Q(x)\geq mr_{x}$ which gives a bound for $m$ . The lemma
is proved.

LEMMA 3. Let $A$ be a rational algebra $K[T]_{h}$ and let $Q$ be an A-R-bimodule
being a finitely generated free left A-module. Then there exists a $K[T]- R$-bimodule
$Q^{\prime}$ being a finitely generated free left $K[T]$ -module such that for any left A-module
$Y$ the R-modules $Y\bigotimes_{A}Q$ and $Y\bigotimes_{K[T]}Q^{\prime}$ are isomorphic.

PROOF. We will use arguments due to Drozd [5, Remark 2, p. 109]. Let $Q^{\prime\prime}$
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be a $K[T]$ -submodule of the torsion-free left $K[T]$ -module $AQ$ generated over $K[T]$

by some choosen A-basis of $AQ$ . Denote by $Q^{\prime}$ the R-submodule of QR generated
by $Q^{\prime\prime}$ , that is, the R-module given by $Q^{\prime}(x)=\sum_{y\in R}\sum_{\mathcal{L}\in R(x,y)}Q(\mathcal{L})(Q(1_{y})Q^{\prime\prime}(y)),$

$x\in R$ .
Then $Q^{\prime}$ is again a finitely generated left $K[T]$ -module. Indeed, $Q$ is a finitely
generated free left A-module, so $suppQ$ is a finite locally bounded category and
$K[T]Q^{\prime}$ can be presented as a sum of $m$ finitely generated left K[T]-modules where
$m=\sum_{x,y\in\sup pQ}[R(x, y):K]$ . On the other hand, $K[T]Q^{\prime}$ is free as a submodule of the

torsion-free $K[T]$ -module $AQ$ . Consequently $Q^{\prime}$ is an $K[T]- R$-subbimodule of $K[T]Q_{R}$

being a finitely generated free left $K[T]$ -module. Finally the required isomorphisms
$Y\bigotimes_{A}Q\cong Y\bigotimes_{K[T]}Q^{\prime}$ are a consequence of the A-R-bimodule isomorphism $Q\cong A\bigotimes_{K[T]}Q^{\prime}$ .

Let $\Gamma=(\Gamma_{0}, \Gamma_{1})$ be a locally finite quiver, I an twosided ideal in the quiver
category $ K\Gamma$ [9] and $C=K\Gamma/I$ the corresponding bounded quiver category. For
any finite dimension-vector $d=(d_{x})_{x\in\Gamma_{0}}$ in $C$ we denote by $D_{C}(d)$ the closed subset
of the affine space

$(x\rightarrow y)\in\Gamma_{1}\sum_{\mathcal{L}}M_{d_{y}xtl_{x}}(K)$

, where $M_{d_{y}xd_{x}}(K)$ is the set of all $d_{y}xd_{x^{-}}$

matrices over $K$, formed by all tuples $(\lambda_{\mathcal{L}})_{\mathcal{L}\in\Gamma_{1}}$ such that for any element $\sum_{r=1}^{n}a_{r}\mathcal{L}_{j}^{(r_{r})}$

$\Leftrightarrow C_{j}^{(r_{1})}\in I(x, y)$ , the $d_{y}xd_{x}$-matrix $\sum_{r=1}^{n}a_{r}\lambda_{jr}^{(r)}\cdots\lambda_{j_{1}}^{(r)}$ is zero (see [2, 12]). In this case
$D_{C}(d)$ is called the variety of C-modules of dimension-vector $d$.

Let $A=K\{T_{1}, \cdots, T_{n}\}$ be a finitely generated K-algebra, considered as the cor-
responding bounded quiver algebra [9] of the quiver having one point and $n$ loops.
Let $Q$ be an A-R-bimodule being a finitely generated free left A-module and let
$r=(r_{x})_{x\in R}$ be the finite dimension-vector in $R$ such that $r_{x}$ is the rank of the free
left A-module $Q(x)$ . Then the functor $-\bigotimes_{A}Q:mod A\rightarrow mod R$ induces a family

of regular maps $q^{n}$ : $D_{A}(n)\rightarrow D_{R}(nr)$ . Indeed, fix for any $x\in R$ an A-basis of the
free left A-module $Q(x)$ . Then for any arrow $\mathcal{L};y\rightarrow x$ in the ordinary quiver
$Q_{R}^{*}$ of $R$ (see [9]), $Q(\mathcal{L}):Q(x)\rightarrow Q(y)$ is the right multiplication by the matrix
$(f_{ij}^{\mathcal{L}})\in M_{r_{x}xr_{y}}(A)$ , where $M_{r_{x}xr_{y}}(A)$ denotes the set of all $r_{x}xr_{y}$-matrices with co-
efficients in $A$ . Now if $\lambda=(\lambda_{1}, \cdots, \lambda_{n})$ is an element of $D_{A}(n)$ defining an A-module
$Y=(K^{n}, \lambda)$ , then for any arrow $\mathcal{L};y\rightarrow x$ in $Q_{R}^{*},$

$(Y\bigotimes_{A}Q)(\Leftrightarrow C):(K^{n})^{r_{x}}\rightarrow(K^{n})^{r_{y}}$ is
the right multiplication by the matrix $q_{\mathcal{L}}^{n}(\lambda)=(f_{ij}^{\mathcal{L}}(\lambda_{1}, \cdots, \lambda_{n}))$ . Thus the map $q^{n}$ :
$D_{A}(n)\rightarrow D_{R}(nr)$ given by the formula $q^{n}(\lambda)=(q_{\mathcal{L}}^{n}(\lambda))_{\mathcal{L}\in(Q_{R})_{1}}*$ , where $(Q_{R}^{*})_{1}$ the set of
arrows of $Q_{R}^{*}$ , is a regular map. For $n=1$ we will write $q$ instead of $q^{1}$ .

LEMMA 4. Let $A$ be a finitely generated commutative K-algebra without nilpo-
tents and let $d=(d_{x})_{x\in R}$ be a finite dimension-vector in R. Then for any regular
map $g:D_{A}(1)\rightarrow D_{R}(d)$ there exists an A-R-bimodule $Q$ being a finitely generated

free left A-module with $d_{x}=rankQ(x),$ $x\in R$ , such that $g$ is the map $q$ induced by $Q$ .
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PROOF. From Hilbert’s theorem [11, Corollary 1.4] $A$ is isomorphic to the
algebra $K[D_{A}(1)]$ of regular functions on $D_{A}(1)$ . We define the required $A$-R-
bimodule as follows: for any $x\in R$ we set $Q(x)=(AA)^{d_{t}}$ and, for any arrow $\mathcal{L}:y$

$\rightarrow x$ in $Q_{R}^{*}$ (the ordinary quiver of $R$), $Q(\mathcal{L}):Q(x)\rightarrow Q(y)$ is the right multipli-

cation by the matrix $(g_{ij}^{\mathcal{L}})M_{d_{x}xd_{y}}(K[D_{A}(1)])$ , where $g_{ij}^{I}$ are given by $g$ . Observe
that defined above representations of the quiver $Q_{R}^{*}$ are annihilated by the ideal
defining $R$ and hence $Q$ is an A-R-bimodule. The fact that $g$ is equal to the map
$q$ induced by $Q$ is an immediate consequence of the definitions of $Q$ and $q$ .

We have the following consequence of the above lemma.

COROLLARY 1. Let $V$ be an affine variety, $d$ a finite dimension-vector in $R$

and $g;V\rightarrow D_{R}(d)$ a regular map. Then there exists an A-R-bimodule $Q$ being a
finitely generated free left A-module with rank $Q(x)=d_{x}$ such that $g$ is the map $q$ :
$D_{K[V]}(1)\rightarrow D_{R}(d)$ induced by $Q$ .

LEMMA 5. Let $A$ be a rational algebra $K[T]_{h}$ and let $Q$ be an A-R-bimodule
being a finitely generated free left A-module. Assume also that the set $U$ of iso-
classes of all indecomposable R-modules of the form $S\otimes Q$ , for $S\in ind_{1}A$ , is infinite.
Then there exists an element $h^{\prime}$ in $A$ such that the $set^{A}of$ all isoclasses of R-modules

of the form $S^{\prime}\bigotimes_{A^{\prime}}Q^{\prime}$ for some $S^{\prime}\in ind_{1}A^{\prime}$ , where $A^{\prime}=A_{h^{\prime}}$ and $Q^{\prime}=A^{\prime}\bigotimes_{A}Q$ , coincides
with $U$.

PROOF. Denote by $d_{x}$ the rank of the free left A-module $Q(x)$ and by $M_{a_{x}}$

the variety of all $d_{x}\times d_{x}$-matrices with coefficients in $K$. Then $d=(d_{x})_{x\in R}$ is a finite
dimension-vector in $R$ and let $Z$ be the subset of $D_{R}(d)\times\prod_{x\in R}M_{d_{x}}$ consisting of all
pairs $(M, V)$ such that $V$ is an endomorphism of the R-module $M$ with properties
$V^{2}=V$ and $V\neq 1_{M},$ $0_{M}$ . Let $p:D_{R}(d)\times\prod_{x\in R}M_{d_{x}}\rightarrow D_{R}(d)$ be the canonical projection.

Since $Z$ is locally closed in Zariski topology, by Chevalley theorem [11, Chap. II,

p. 94, 3.18, 3.19] the subset $p(z)$ of $D_{R}(d)$ , consisting of all decomposable R-modules
with dimension-vector $d$, is constructible. Let $V(h)$ be the set of zeros of $h,$ $(K^{1})_{h}$

$=K^{1}\backslash V(h)$ , and $f:(K^{1})_{h}\rightarrow D_{R}(d)$ the regular map induced by $Q$ , where we
identify $D_{A}(1)$ with $(K^{1})_{h}$ . Since $f^{-1}(p(Z))$ is constructible and by our assumption
$(K^{1})_{h}\backslash f^{-1}(p(Z))$ is infinite, the set $f^{-1}(p(Z))$ is finite. Hence the polynomial $h^{\prime}=$

$t\in p1(p(Z))\prod_{-}(T-t)$ satisfies the required property.

REMARK 1. Let $M$ be a finite dimensional R-module and let $A$ be a finitely

generated K-algebra. Then the A-R-bimodule $Q=A\bigotimes_{K}M$ is a finitely generated
free left A-module and $M=S\bigotimes_{A}Q$ for any $S\in ind_{1}A$ .



On the representation type of locally bounded categories 69

PROOF OF PROPOSITION 1. The implication $(i)\rightarrow(ii)$ is obvious.
$(ii)\rightarrow(iii)$ . Assume that $ind_{d}R$ is parametrized by a finite family of parametrizing
triples $(A_{i}, B_{i}, Q_{i}),$ $1\leq i\leq n_{d}$ , such that $A_{i}$ are rational algebras $K[T]_{h_{i}},$ $Q_{i}$ are finitely
generated as left $A_{i}$-modules and $B_{i}=indA_{i}$ . By Lemma 2 there exists a finite
family of $K[T]- R$-bimodules $Q_{i}^{\prime},$ $1\leq i\leq r_{d},$ $r_{d}\leq n_{d}$ , such that all but a finite number
of nonisomorphic modules of $ind_{d}R$ are in the image of one of the parametrizing
functors $F_{i}$ : ind $K[T]\rightarrow mod R$ associated to the parametrizing triples $(K[T]$ ,

ind $K[T],$ $Q_{i}^{\prime}$), $i=1,$ $\cdots,$ $r_{d}$ . But from Remark 1 we can complete this set of triples
to a finite family of parametrizing triples satisfying (iii).

$(iii)\rightarrow(iv)$ . Let $(A_{i}, B_{i}, Q_{i}),$ $i=1,$ $\cdots,$
$t_{d}$ , be a finite family of parametrizing triples

satisfying (iii). For any $1\leq i\leq t_{d},$ $x\in R$ , denote by $r_{x}^{i}$ the rank of the left free $A_{i^{-}}$

module $Q_{i}(x)$ and put $r^{i}=(r_{x}^{i})_{x\in R}$ . Observe that if $Y_{i}\in ind_{n}A_{i}i$
’ then $\underline{\dim}Y_{i}\bigotimes_{A_{i}}Q_{i}=$

$n_{i}r^{i}=(n_{i}\mathscr{V}_{x})_{x\in R}$ . For any $i$ , let $m_{i}$ be the natural number satisfying the equality
$m_{i}r^{i}=d$ if such a number exists or $m_{i}=1$ in the opposite case. Then by Lemma
1, $ind_{d}R$ is parametrized by the family of triples $(A_{i}, ind_{1}A_{i}, P^{m_{i}}\bigotimes_{A_{i}}Q_{i}),$

$i=1,$ $\cdots,$
$t_{d}$ ,

satisfying (iv).
$(iv)\rightarrow(v)$ . Assume that $(A_{i}, B_{i}, Q_{i}),$ $i=1,$ $\cdots,$ $r_{d}$ , is a finite family of parametrizing
triples satisfying the condition (iv). Without loss of generality we can assume
that $(A_{i}, B_{i}, Q_{i}),$ $1\leq i\leq v_{d}$ , for some $v_{d}\leq r_{d}$ , form the set of all triples of our family
$(A_{i}, B_{i}, Q_{i}),$ $1\leq i\leq r_{l}$

(, for which the image of the associated parametrizing functor
$B_{i}\rightarrow mod R$ contains infinitely many nonisomorphic indecomposable modules.
Then by Lemma 5 one can construct a set of parametrizing triples $W=(A_{i}^{\prime},$ $ind_{1}A_{i}^{\prime}$ ,
$Q_{i}^{\prime});1\leq i\leq v_{d}$ such that the associated parametrizing functors

$-\bigotimes_{A_{i}}Q_{i}^{\prime}$

: $ind_{1}A_{i}^{\prime}\rightarrow$

$mod R$ preserve indecomposables and there is only a finite number of nonisomor-
phic R-modules $X_{1},$

$\cdots,$
$X_{n}$ from $ind_{d}R$ which are not in the image of one of

these functors. Thus the union $W\cup\{K, ind_{1}K, X_{j});j=1, \cdots, n\}$ forms the required
family of parametrizing triples.

The proof of $(v)\rightarrow(i)$ is an immediate consequence of Lemma 3 and Remark
1. Therefore the proposition is proved.

REMARK 2. Observe that Corollary 1 gives a possibility to express the defini-
tion of representation-tamness in terms of one parameter algebraic families of in-
decomposable modules (see [12]).

2. The main result

The main result of this paper is the following theorem.

THEOREM. Let $R$ be a locally bounded category over K. Then the following
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equivalences hold:
(i) $R$ is representation-tame if and only if any finite full subcategory $S$ of $R$

is representation-tame.
(ii) $R$ is representation-wild if and only if there exists a finite full subcategory

$S$ of $R$ which is representation-wild.

In particular $R$ is either representation-wild or representation-tame but not simulta-
neously.

In order to prove the theorem we need two lemmas.

LEMMA 6. Let $P$ be a full subcategory of a locally bounded category R. If $R$

is representation-tame then $P$ is so.

PROOF. Consider the restriction functor ${\rm Res}$ : Mod $R\rightarrow ModP$. It is well-
known $[1, 13]$ that ${\rm Res}$ admits the full and faithful right adjoint functor $H$ : Mod $P$

$\rightarrow ModR$ such that ${\rm Res}\circ H\cong id_{UodP}$ , given by $H(N)(x)=Hom_{P}({\rm Res}(R(-, x)),$ $N$ ),

for any P-module $N$ and object $x$ of $R$ . Now let $d=(d_{y})_{y\in P}$ be a finite dimension-
vector in $P$. We will prove that there exists only a finite number of dimension-
vectors $e=(e_{x})_{x\in R}$ in $R$ such that $e=\underline{\dim}H(N)$ for some indecomposable P-module
$N$ with $\underline{\dim}N=d$. It is enough to show the existence of a finite subcategory $S$

of $R$ and a natural number $m$ such that, for any indecomposable P-module $N$ with
$\underline{\dim}N=d,$ $suppH(N)$ is contained in $S$ and $\underline{\dim}H(N)\leq m$ . Let $N$ be an indecom-
posable P-module with $\underline{\dim}N=d$. Observe that if $H(N)(a)$ is nonzero then there
is an object $x\in suppN$ such that $R(x, a)\neq 0$ , and therefore $a$ belongs to $\hat{\sup}pN$.
But $suppN$ coincides with the full subcategory $D$ of $R$ formed by all objects $x$

such that $d_{x}\neq 0$ . Then it is easy to see that $S=\hat{D}$ and

$m=\sum_{y\in D,x\in S}d_{y}\cdot\dim_{K}R(y, x)$

have the required properties. Let $(K[T], ind_{1}K[T], Q_{i}),$ $i=1,$ $\cdots,$ $n$ , be a finite
family of parametrizing $ind_{e}R$ for all $e$ as above. Then $(K[T], ind_{1}K[T], {\rm Res}(Q_{i}))$ ,
$i=1,$ $\cdots,$ $n$ , is a finite family of parametrizing triples parametrizing $ind_{d}P$ and the
lemma is proved.

LEMMA 7. Let $P$ be a full subcategory of a locally bounded category R. If $P$

is representation-wild then $R$ is so.

PROOF. Let $F=-\bigotimes_{K\langle x.y\rangle}Q:mod K\langle x, y\rangle\rightarrow ModP$ be a strict functor satisfying
the conditions (1) and (2). Then $S=suppQ$ is a finite full subcategory of $P$ of
wild representation type. Denote by $I$ the ideal in $R$ generated by all objects of
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$R$ which do not belong to $\hat{S}$ , that is, the ideal of all morphisms $f\in R(a, b),$ $a,$ $b\in R$ ,

of the form $f=\sum_{j=1}^{n}h_{j}g_{j}$ , for some $g_{j}\in R(a, c_{j}),$ $h_{j}\in R(c_{j}, b)$ with $c_{j}\not\in\hat{S}$ . Then the quo-
tient category $R/I$ is equivalent to a finite locally bounded category and the
composition functor $L:S\rightarrow R/I$ of the canonical embedding functor $S\rightarrow R$ and
the projection functor $R\rightarrow R/I$ is full and faithful. Then by [6, Proposition 2],

[5, Theorem 2], and Lemma 6, $R/I$ is representation-wild. Hence $R$ is representa-

tion-wild and the lemma is proved.

PROOF OF THE THEOREM. (i) Assume that any finite full subcategory of $R$ is
representation-tame. We will show that $R$ is also representation-tame. Let $d=$

$(d_{x})_{x\in R}$ be an arbitrary finite dimension-vector in $R$ and denote by $P$ the full sub-
category of $R$ formed by all objects $x$ such that $d_{x}\neq 0$ . Let $e=(e_{y})_{y\in\hat{P}}$ be the di-
mension-vector in $\hat{P}$ defined by $e_{y}=d_{y}$ for any $y\in\hat{P}$ . Then by [4, Lemma 2] the
full subcategory of Mod $R$ formed by all modules with support $P$ (resp. with di-
mension-vector d) is equivalent to the full subcategory of Mod $\hat{P}$ formed by all
modules with support $P$ (resp. with dimension-vector $e$). Then $\hat{P}$ is finite and if
$(K[T], ind_{1}K[T], Q_{i}),$ $i=1,$ $\cdots,$ $n_{e}$ , is a finite family of parametrizing triples para-
metrizing $ind_{e}\hat{P}$ , then each $Q_{i}$ is a $K[T]- R$-bimodule and $(K[T], ind_{1}K[T], Q_{i})$ ,

$i=1,$ $\cdots,$ $n_{e}$ , is a finite family of parametrizing triples parametrizing $ind_{d}R$ . The
opposite implication in (i) follows from Lemma 6.

The statement (ii) follows directly from Lemma 7. Moreover, the last state-
ment of the theorem is now an immediate consequence of [5, Theorem 2] and [6,

Proposition 2].

COROLLARY 2. Let $R$ be a locally bounded category over K. Then $R$ is repre-
sentation-tame if and only if, for any finite dimension-vector $d$ in $R,$ $ind_{d}R$ is
parametrized by a finite family of parametrizing triples $(A_{i}, B_{i}, Q_{i}),$ $i=1,$ $\cdots,$ $n_{d}$ ,

over $R$ such that $A_{i}=K$ or $A_{i}=K[T]_{h_{i}},$ $B_{i}=ind_{1}A_{i},$ $Q_{i}$ are finitely generated free
left Ai-modules, and the associated parametrizing functors $F_{i}$ : $B_{i}\rightarrow mod R$ are
strict and preserve indecomposables.

PROOF. In [6, Corollary 12] Drozd proved that a finite locally bounded K-
category $R$ is representation-tame if and only if, for any finite dimension-vector
$d$ in $R,$ $ind_{d}R$ is parametrized by a finite family of parametrizing triples $(A_{i}, B_{i}, Q_{i})$ ,

$i=1,$ $\cdots,$ $S_{(}z$ , over $R$ such that $A_{i}=K$ or $A_{i}=K[T]_{h_{i}},$ $B_{i}=ind_{1}A_{i},$ $Q_{i}$ are finitely
generated free left $A_{i}$-modules and the associated parametrizing functors $-\otimes Q_{i}$ : $B_{i}$

$A_{t}$

$\rightarrow mod R$ are strict. Then the corollary is a consequence of the Theorem and
Lemma 5.
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