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ABSTRACT. We introduce the notion of D-sets ( $D^{*}$-sets) and establish the Un-
knotting Theorem for D-sets in a manifold modeled on $R^{\infty}=dir\lim R^{n}$ or $Q^{\infty}=$

dir $\lim Q^{n}$ , where $Q$ is the Hilbert cube. This yields equality of D-sets, $D^{*}$ -sets
and infinite ( $i$ . $e.,$

$R^{\infty_{-}}$ or $Q^{\infty}-$ ) deficient sets. Our Theorem corresponds to a weak
version of the Unknotting Theorem for infinite deficient sets proved by V.T. Liem.
However our proof is elementary and short. And we give an alternative proof
of the Infinite Deficient Embedding Approximation Theorem due to Liem. Using
Anderson-McCharen’s trick, this Approximation Theorem strengthens our Unknot-
ting Theorem in the strong form. Moreover, we show that the union of two $R^{\infty_{-}}$

(or $Q^{\infty_{-}}$ ) manifolds meeting in an $R^{\infty}-$ (or $Q^{\infty_{-}}$ ) manifold is also an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ )
manifold, and that for any space $X,$ $X\times R$ is an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifold if and only
if so is $X\times I$.

0. Introduction.

Separable paracompact manifolds modeled on $R^{\infty}=dir\lim R^{n}$ and $Q^{\infty}=dir\lim Q^{n}$ ,
where $Q$ is the Hilbert cube, are called $R^{\infty}$-manifolds and $Q^{\infty}$-manifolds, respectively.
These manifolds have been studied by R. E. Heisey, V.T. Liem, et al. (cf. References
of [11]). In the previous paper [11], we gave a characterization of these manifolds
and elementary short proofs of the Open Embedding Theorem, the Stability
Theorem, the Classification Theorem, etc. This paper is a sequel of [11].

The notions of D-sets and $D^{*}$-sets are introduced in Section 1, as generaliza-
tions of closed sets contained in collared sets, and the Unknotting Theorem for D-
sets in $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifolds is established in Section 2. Our theorem yields
characterizations of infinite deficiency in these manifolds, $i$ . $e.$ , the equality of D-
sets, $D^{*}$-sets and $R^{\infty_{-}}$ or $Q^{\infty}$-deficient sets (see Section 3), and some fundamental
properties of infinite deficient sets are easily derived, $e$ . $g.,$ $(i)$ a finite union of $R^{\infty_{-}}$

(or $Q^{\infty_{-}}$ ) deficient sets is also $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) deficient [7, Proposition 1.4] (or [5, Pro-
position 2]); (ii) locally $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) deficient closed set is also $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) deficient
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[7, Theorem 5.1 (or 5.3)]; (iii) a collared submanifold is $R^{\infty}-(orQ^{\infty}-)def\grave{\iota}cient[7$ ,

Theorem 3.3 (or 3.4)]. Using the result of Section 7 mentioned below, we have
a short proof of the converse of (iii) [6, Theorem 4.2] (or [4, Theorem 2.3]) $i$ . $e.$ ,

(iii)’ an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) deficient submanifold is collared. Thus we have an alterna-
tive proof of the Collaring Theorem. The Unknotting Theorem for intinite de-
ficient sets was established by Liem [7], [5], in the weak form for $R^{\infty}$-case $(i.e.$ ,

without an ambient isotopy). Our theorem corresponds to the weak version of
Liem’s theorem but our proof is elementary and short. In Section 4, using our
theorem, we give an easy proof of the Infinite Deficient Embedding (D-Embedding)

Approximation Theorem due to Liem [6], [4]. Using Anderson-McCharen’s trick
[1], this Approximation Theorem strengthens our Unknotting Theorerrt in the
strong form (see Section 5).

In [2], it is shown that for any space $X,$ $ X\times R\cong\sigma$ (resp. $\Sigma$ ) if and only if
$ X\times I\cong\sigma$ (resp. $\Sigma$ ), where the space $\sigma$ (resp. $\Sigma$ ) is a metric version of $R^{\infty}$ (resp. $Q^{\infty}$).

In Section 6, we show this valid equally to $R^{\infty}$ and $Q^{\infty}$ . From this, we can see
that a space $X$ containing an $R^{\infty}-$ (or $Q^{\infty_{-}}$ ) manifold $M$ as a dense open set is an
$R^{\infty_{-}}$ (or $Q^{\infty}-$ ) manifold if $X\backslash M$ is contained in a collared set in $X$.

Let $X_{1}$ and $X_{2}$ be closed subsets of a space $X$ with $X=X_{1}\cup X_{2}$ and $ X_{0}=X_{1}\cap$

$X_{2}$ . J. Mogilski [9] showed that if $X_{0},$ $X_{1}$ and $X_{2}$ are $l_{2}$-manifolds then $X^{\cdot}$ is also
an $l_{2}$ -manifold. In Section 7, we prove its $R^{\infty_{-}}$ (or $Q^{\infty}$) version. J. P. Henderson
and J.J. Walsh [2] constructed cell-like decompositions of $\sigma$ and $\Sigma$ whose de-
composition spaces are not homeomorphic to $\sigma$ and $\Sigma$ but the products with $R$ or
$I$ are homeomorphic to $\sigma$ and $\Sigma$ respectively. Their examples apply equally to $R^{\infty}$

and $Q^{\infty}$ , as mentioned in Section 7 of [2]. Then one should remark that the
Mogilski’s method in [9] cannot apply to the $R^{\infty}-(orQ^{\infty_{-}})$ version.

For undefined terms and notations, refer to the previous paper [11].

1. D-Sets and $D^{*}$-Sets.

Let $A$ be a closed subset of a space $X$ We call $A$ a D-set in $X$ if it satisfies
the following condition:

$(\mathcal{D})$ For each compact sets $C\supset C_{0}$ in $X$ and each open cover $cU$ of $2C$, there
exists an embedding $h:C\rightarrow X^{c}U$-near to the inclusion $C\subset X$ with $h|C_{0}$

$=id$ and $h(C\backslash C_{0})\subset X\backslash A$ .

And $A$ is a $D^{*}$ -set in $X$ if it satisfies the following:

$(\mathcal{D}^{*})$ For each closed set $X_{0}$ in $X$ and each open cover $cU$ of $X$, there exists
an embedding $f:X\rightarrow X^{c}U$-near to id with $f|X_{0}=id$ and $ f(X\backslash X_{0})\subset$

$X\backslash A$ .
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Clearly each $D^{*}$ -set is a D-set. These sets are generalizations of closed sets con-

tained in collared subsets of $X$ as seen below. In this section, we will observe

some properties of D-sets and $D^{*}$ -sets in general spaces. However those are not

required in the proof of the Unknotting Theorem for D-sets in an $R^{\infty}-$ (or $Q^{\infty_{-}}$ )

manifold (see Section 2).

We will start to prove the following lemma:

1-1 LEMMA: Let $\alpha:X\rightarrow[0, \infty$ ) be a map of a paracompact space $X$ and $cU$

a collection of open sets in $X\times R$ such that for each $x\in X$ there is a $U\in cU$ contain-
$ing\{x\}\times[0, \alpha(x)]$ . Then there exists a map $\beta:X\rightarrow(O, \infty)$ such that for each $x\in X$

there is a $U\in\subset U$ containing $\{x\}\times[-\beta(x), \alpha(x)+\beta(x)]$ .

PROOF: For each $x\in X$, choose an open neighborhood $U(x)$ of $x$ in $X$ and an
$\epsilon(x)>0$ so that $U(x)\times[-\epsilon(x), \alpha(x)+\epsilon(x)]$ is contained in some $U\in\subset U$ . The open

cover $\{U(x)|x\in X\}$ has a locally finite open refinement $\{V_{\lambda}|\lambda\in\Lambda\}$ . From normality

of $X$, there is an open cover $\{W_{\lambda}|\lambda\in\Lambda\}$ such that cl $W_{\lambda}\subset V_{\lambda}$ for each $\lambda\in\Lambda$ . For each
$\lambda\in\Lambda$ , choose $x_{I}\in X$ so that $V_{\lambda}\subset U(x_{\lambda})$ and take a Urysohn map $u_{\lambda}$ : $X\rightarrow I$ with
$u_{\lambda}(X\backslash V_{\lambda})=0$ and $u_{\lambda}(c1W_{\lambda})=1$ . Then we define $\beta:X\rightarrow(O, \infty)$ by

$\beta(x)=\sup\{\epsilon(x_{\lambda})u_{\lambda}(x)|\lambda\in\Lambda\}$

The continuity of $\beta$ follows from local finiteness of $\{V_{\lambda}|\lambda\in\Lambda\}$ . It is obvious that
$\beta$ has the required property. $\square $

1-2 PROPOSITION. Let $A$ be a closed subset of a paracompact perfectly normal

space X If $A$ is contained in some collared set in $X$, then $A$ is a $D^{*}$ -set in $X$,

hence a D-set in $X$

PROOF: Let $B$ be a collared set in $X$ with $A\subset B$ Then we have an open

embedding $k:B\times[0,1$ ) $\rightarrow X$ such that $k(x, O)=x$ for each $x\in B$. Let $X_{0}$ be a closed

set in $X$ and $cU$ an open cover of $X$ Now we will construct an embedding $f$ :
$X\rightarrow X^{c}U$-near to id with $f|X_{0}=id$ and $f(X\backslash X_{0})\subset X\backslash A$ . Let $W$ be an open set

in $X$ with $A\subset W\subset c1W\subset k(B\times[0,1))$ . Each $x\in(B\cap W)\backslash X_{0}$ has an open neigh-

borhood $V_{x}$ in $X$ which is contained in $W\backslash X_{0}$ and some $U\in cU$ From Lemma

1-1, we have a map $\beta:(B\cap W)\backslash X_{0}\rightarrow(0,1)$ such that each $\{x\}\times[0, \beta(x)]$ is contained

in some $k^{-1}(V_{x},)$ . Take a map $\gamma:B\rightarrow I$ with $\gamma^{-1}(0)=(B\backslash W)\cup(B\cap X_{0})$ and define

a map $\alpha:B\rightarrow[0,1$ ) by

$\alpha(x)=\left\{\begin{array}{l}\beta(x)\gamma(x) forx\in(B\cap W)\backslash X_{0},\\0 forx\in(B\backslash W)\cup(B\cap X_{0}).\end{array}\right.$

We define an embedding $h:B\times[0,1$ ) $\rightarrow B\times[0,1$ ) by
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$h(x, t)=\{_{(x,t}(x,\frac{1}{)^{2}}t+\frac{1}{2}\alpha(x))$
$otherwiseif0\leq t\leq\alpha(x)$

,

Observe that $h$ is $k^{-1}(cU)$-near to id and $h|(B\times[0,1)\backslash k^{-1}(W))\cup k^{-1}(X_{0})=id$ Then
$khk^{-1}$ extends to an embedding $f:X\rightarrow X$ with $f|X\backslash k(B\times[0,1))=id$ . Clearly $f$

is the desired embedding. $\square $

The following is trivial:

1-3 PROPOSITION: (1) Any closed subsed of a D-set (resp. $D^{*}$ -set) in an
arbitrary space $X$ is also a D-set (resp. $D^{*}$ -set) in $X$

(2) $A$ finite union of $D^{*}$ -sets of an arbitrary space $X$ is also a $D^{*}$ -set in $X$

(3) A discrete union of D-sets (resp. $D^{*}$ -sets) of a Hausdorff (resp. arbitrary)
space $X$ is also a D-set (resp. $D^{*}$ -set) in $X$

(4) $lf$ $A$ is a D-set in a Hausdorff space $X$, then for any open subset $U$ of
$X,$ $A\cap U$ is a D-set in $U$.

(5) $lf$ $A$ is a closed subset of a Hausdorff (resp. normal) space $X$ whlch is a
D-set (resp. $D^{*}$ -set) in an open subset of $X$, then $A$ is a D-set (resp. $D^{*}-$

set) in $X$

A closed subset $A$ of a space $X$ is a local D-set (resp. a local $D^{*}$ -set) $\ln X$ if
each $x\in A$ has an open neighborhood $U$ in $X$ such that $A\cap U$ is a D-set (resp.
$D^{*}- set)$ in $U$. Then using Michael’s theorem for local properties [8], $w\epsilon$ easily
obtain

1-4 PROPOSITION: Any local $D^{*}$-set in a paracompact space $X$ is a $D$“-set in
$X$

PROOF: Let $A$ be a local $D^{*}$ -set in $X$ By (1) and (5) in 1-3, each $x\in A$ has
a closed neighborhood in $A$ which is a $D^{*}$-set in $X$ Using [8, Theorem 5-5], the
result follows from (1), (2) and (3) in 1-3. $\square $

In the above proof, we only use the fact that each $x\in A$ has a neighborhood
$A_{x}$ in $A$ which is contained in some open subset $U$ of $X$ as a $D^{*}$-set in [ $\Gamma$. We
will call such a closed set $A$ a weakly local $D^{*}$ -set in $X$ Similarly a weakl local
D-set in $X$ is defined.

1-5 COROLLARY: Any locally compact set $A$ in an $R^{\infty}$ (or $Q^{\infty}-$ ) manifold $M$

is a $D^{*}$-set in $M$, hence a D-set in $M$.

PROOF: Because of similarity, we show only the $R^{\infty}$-case. Each $x\in A$ has a
compact $neightx$)$rhoodA_{x}$ in $A$ which is contained in an open subset $L^{\ulcorner}$ of $M$
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homeomorphic to an open set on $R^{\infty}$ . Since $R^{\infty}\cong I^{\infty}=dir\lim I^{n}$ , there is an open
embedding $g:U\rightarrow I^{\infty}$ . From compactness, $g(A_{x})\subset I^{n}$ for some $n$ . Hence $g(A_{x})$ is

contained in a collared set in $I^{\infty}$ , so $A_{x}$ is also contained in a collared set in $U$.
By Proposition 1-2, $A_{x}$ is a $D^{*}$ -set in $U$. Thus $A$ is a weakly local $D^{*}$ -set in $M$.
The above remark of Proposition 1-4 assure that $A$ is a $D^{*}$ -set in $X$ $\square $

2. Unknotting Theorem for D-sets.

An embetting $f:X\rightarrow Y$ of a space $X$ into a space $Y$ is called a D-embetting

if $f(X)$ is a D-set in $Y$. We prove the following Unknotting Theorem for D-

sets (D-embeddings) in an $R^{\infty_{-}}$ or $Q^{\infty}$-manifold.

2-1 UNKNOTTING THEOREM for D-sets: Let $M$ be an $R^{\infty}-$ or $Q^{\infty}$-manifold,

$f:A\rightarrow M$ a D-embedding of a D-set $A$ in $M$ and $cU,$ $\mathcal{V}$ open covers of M. If $f$

$is$ ,U-homotopic to the inclusion $A\subset M$, then $f$ extends to a homeomorphism $ f:M\rightarrow$

$M$ which is st $(qJ, \mathcal{V})$ -near to id.
The main lemma for our Unknotting Theorem is the following which is a

direct consequence of [11, Lemma 1-5] and the definition of D-sets.

2-2 LEMMA: Let $C$ be a D-set in an $R^{\infty}$-manifold (resp. a $Q^{\infty}$-manifold) $M$

and $f:B\rightarrow M$ a map from a finite dimensional compact metric space (resp. $a$

compact metric space) $B$ to $M$ that restricts to an embedding $f|A;A\rightarrow M$ on a
closed subset $A$ of B. Then for each open cover $cU$ of $M$, there exists an embedding

$g;B\rightarrow M$ such that $g|A=f|A,$ $g(B\backslash A)\subset M\backslash C$ and $g$ is $cU$-homotopic to $f$ station-
arily on $A$ .

It is easy to see that each $R^{\infty}-$ or $Q^{\infty}$-manifold is an ANE for compact metric

spaces, hence for countable direct limits of compact metric spaces. If $X$ is a
countable direct limit of compact metric spaces, then so are a closed subspace of
$X$ and the product space $X\times I$. We use the next Homotopy Entension Theorem

(cf. Proof of [3, Ch. IV, Theorem 2.2]).

2-3 HOMOTOPY EXTENSION THEOREM: Let $Y$ be an $ANE$ for $C$ and $cU$ an
open cover of $Y$, where $C$ is a closed hereditary ( $=weakly$ hereditary) class of
normal spaces such that $X\times l\in C$ for all $X\in C$ . $lfh:A\times l\rightarrow Y$ is a $cU$-homotopy

of a closed set $A$ in $X\in C$ such that $h_{0}$ extends to a map $f:X\rightarrow Y$, then $h$ extends

to a $cU$-homotopy $\tilde{h}:X\times l\rightarrow Y$ with $\tilde{h}_{0}=f$.

PROOF of THEOREM 2-1: Write $M=dir\lim X_{n}$ where each $X_{n}$ is a finite di-

mensional compact metric subspace (or compact metric subspace) of $X_{n+\iota}$ . From

paracompactness, $\mathcal{V}$ admits a sequence of open star-refinements
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$\mathcal{V}>*\mathcal{V}_{1}>*\mathcal{V}_{2}>*\mathcal{V}_{3}>*\ldots$

Inductively, we define open covers $cW_{0},$ $cW_{1},$ $cW_{2},$ $\cdots$ as follows.
$cW_{0}=cU$ and $cW_{n}=st(^{c}W_{n-1}, \mathcal{V}_{n})$ , $n=1,2,$ $\cdots$ .

Then each $cW_{n}$ refines st $(^{c}U, \mathcal{V})$ .
Put $n_{1}=1$ . From the Homotopy Extension Theorem, $f:A\rightarrow M$ extends to a

map $f_{1}^{\prime}$ : $M\rightarrow M$ $cW_{0}$-homotopic to id. Using Lemma 2-2, we have an embedding
$f_{1}$ : $X_{n_{1}}\rightarrow M$ such that

$f_{1}|X_{n_{1}}\cap A=f|X_{n_{1}}\cap A$ ,
$f_{1}(X_{n_{1}}\backslash A)\subset M\backslash f(A)$ and
$f_{1}\simeq \mathcal{V}_{1}f_{1}^{\prime}|X_{n_{1}}$

stationarily on $X_{n_{1}}\cap A$ .
Then $f_{1}$ extends to an embedding $f_{1}$ ; $x_{n_{1}}\cup A\rightarrow M$ with $f_{1}|A=f$. Clearly $f_{1}$ is
$\mathcal{V}_{1}$ -homotopic to $f_{1}^{\prime}|X_{n_{1}}\cup A$ stationarily on $A$ , hence $cW_{1}$ -homotopic to the inclusion
$X_{n_{1}}\cup A\subset M$.

Choose an $m_{1}\geq 1$ so that $f_{1}(X_{n_{1}})\subset X_{m_{1}}$ . Since $\tilde{f}_{1}^{-1}$ is $cW_{1}$ -homotopic to the in-
clusion $f_{1}(X_{n_{1}})\cup f(A)\subset M,$ $f_{1}^{-1}$ extends to a map $g_{1}^{\prime}$ : $M\rightarrow M\psi_{1}$ -homotopic to id by
the Homotopy Extension Theorem. From Lemma 2-2, we have an $eml\supset edding$

$g_{1}$ : $X_{m_{1}}\rightarrow M$ such that

$g_{1}|f_{1}(X_{n_{1}})\cup(X_{m_{1}}\cap f(A))=f_{1}-1|f_{1}(X_{n_{1}})\cup(X_{m_{1}}\cap f(A))$ ,
$g_{1}(X_{m_{1}}\backslash f(A))\subset M\backslash A$ and

$g_{1}\simeq \mathcal{V}_{2}g_{1}^{\prime}|X_{m_{1}}$

stationarily on $f_{1}(X_{n_{1}})\cup(X_{m_{1}}\cap f(A))$ .
Then $g_{1}|f_{1}(X_{n_{1}})=f_{1}^{-}$ and $q_{1}$ extends to an embedding $\tilde{g}_{1};X_{m_{1}}\cup f(A)\rightarrow\Lambda l$ with
$\tilde{g}_{1}|f(A)=f^{-1}$ which is $\mathcal{V}_{2}$ -homotopic to $g_{1}^{\prime}|X_{m_{1}}\cup f(A)$ stationarily on $f(A)$ , hence
$cW_{2}$ -homotopic to the inclusion $X_{m_{1}}\cup f(A)\subset M$.

Choose an $n_{2}>n_{1}$ so that $g_{1}(X_{m_{1}})\subset X_{n_{2}}$ . Similarly as above, using the Homotopy
Extension Theorem and Lemma 2-2, we have an embedding $f_{2}$ : $X_{n_{2}}\rightarrow X_{m_{2}},$ $m_{2}>m_{1}$ ,
such that $f_{2}|g_{1}(X_{m_{1}})=g_{1}^{-1}$ and $f_{2}$ extends to an embedding $f_{2}$ ; $x_{n_{2}}\cup A\rightarrow 1II$ with
$f_{2}|A=f$ which is $cW_{3}$-homotopic to the inclusion $X_{n_{2}}\cup A\subset M$.

Thus by induction, we have the following commutative diagram of embe($ldings$ :

$X_{n_{1}}\bigcup_{\cup}A$ $ X_{n_{2}}\cup A\cup$ $x_{n_{3}}\cup^{\cup A}$

$X_{n_{1}}$ $\subset$ $X_{n_{2}}$ $\subset$ $X_{n_{3}}$ $\subset$ . . .
$f_{1}|$ $/^{g_{1}\nearrow_{f_{2}}}|$ $/^{g_{2}\nearrow_{f_{3}}}|$ $/^{g_{3}\nearrow}$

$\downarrow$ / $\downarrow$ / $\downarrow$ /
$X_{m_{1}}$ $\subset$ $X_{m_{2}}$ $\subset$ $X_{m_{3}}$ $\subset$

$\cap$ $\cap$ $\cap$

$X_{m_{1}}\cup f(A)X_{m_{2}}\cup f(A)X_{m_{3}}\cup f(A)$ . . . ,
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where each $f_{i}$ extends to an embedding $f_{i}$ : $X_{n_{i}}\cup A\rightarrow X_{m_{i}}\cup f(A)\subset M$ with $f_{i}|A=f$

which is $cW_{2i-1}$ -homotopic to the inclusion $X_{n_{i}}\cup A\subset M$ and each $g_{i}$ extends to an
embedding $\tilde{g}_{i}$ : $X_{m_{i}}\cup f(A)\rightarrow X_{n_{i+1}}\cup A\subset M$ with $\tilde{g}_{i}|f(A)=f^{-1}$ which is $cW_{2l}$ -homotopic
to the inclusion $X_{m_{\iota}}\cup f(A)\subset M$. Then $f_{1},$ $f_{2},$ $\cdots$ induce a homeomorphism $f_{\infty}$ : $M$
$\rightarrow M$ which is st $(^{c}U, \mathcal{V})$ -near to id and extends $f$. $\square $

3. $R^{\infty_{-}}$ or $Q^{\infty}$-deficient Sets.

Let $E$ be a pointed space with the base point $O\in E$. A closed subset $A$ of a
space $X$ is said to be E-deficient in $X$ if there exists a homeomorphism $f:X\rightarrow X$

$\times E$ with $f(A)\subset X\times\{0\}$ . And $A$ is locally E-deficient in $X$ if each $x\in A$ admits an
open neighborhood $U$ in $X$ such that $A\cap U$ is E-deficient in $U$. Taking $(R^{\infty}, 0)$ ,

$(Q^{\infty}, 0)$ or (I, 0) as $(E, 0)$ , we obtain the notions of (local) $R^{\infty}$-deficiency, (local) $Q^{\infty_{-}}$

deficiency of (local) I-deficiency, respectively. For example, as easily seen, compact
sets in an $R^{\infty_{-}}$ or $Q^{\infty}$-manifold are $R^{\infty_{-}}$ or $Q^{\infty}$-deficient.

In the case that $(E\times E, (0, O))\cong(E, 0),$ $e$ . $g.,$ $(E, O)=(R^{\infty}, 0)$ or $(Q^{\infty}, 0)$ , for each
E-deficient set $A$ in a space $X$, there exists a homeomorphism $g:X\rightarrow X\times E$ such
that $g(x)=(x, 0)$ for each $x\in A$ . In fact, let $h:E\rightarrow E\times E$ and $f:X\rightarrow X\times E$ be
homeomorphisms such that $h(O)=(O, 0)$ and $f(A)\subset X\times\{0\}$ , then $ g=(f^{-1}\times id_{E})\circ$

$(id_{X}\times h)\circ f:X\rightarrow X\times E$ is the desired homeomorphism.
Using Theorem 2-1, we can obtain the following characterization of infinite

deficiency in an $R^{\infty}- orQ^{\infty}$-manifold.

3-1 THEOREM: Let $A$ be a closed subset of an $R^{\infty}-(orQ^{\infty_{-}})$ manifold $M$.
The followings are equivalent:

(i) $A$ is $R^{\infty_{-}}$ (or $Q^{\infty}-$ ) deficient in $M$.
(ii) $A$ is I-deficient in $M$.
(iii) $A$ is contained in a collared closed submanifold of $M$.
(iv) $A$ is contained in a collared set in $M$.
(v) $A$ is a $D^{*}$-set in $M$.
(vi) $A$ is a D-set in $M$.

PROOF: $(i)\rightarrow(ii)$ is derived from $(R^{\infty}\times I, (0, O))\cong(R^{\infty}, 0)$ or $(Q^{\infty}\times l, (0, O))\cong(Q^{\infty}, 0)$ .
$(ii)\rightarrow(iii)\rightarrow(iv)$ are trivial. $(iv)\rightarrow(v)$ is Proposition 1-2. $(v)\rightarrow(vi)$ is obvious. We
prove $(vi)\rightarrow(i)$ . By the Stability Theorem ( $e$ . $g.$ , see [11]), there is a homeomorphism
$h:M\times R^{\infty}\rightarrow M$ (or $h:M\times Q^{\infty}\rightarrow M$ ) homotopic to the projection. Let $ i:M\rightarrow M\times$

$\{O\}\subset M\times R^{\infty}$ (or $\subset M\times Q^{\infty}$) be the natural injection. Using $(i)\rightarrow(vi),$ $hi(A)$ is a D-

set in $M$, hence $hi|A$ is a D-embedding homotopic to the inclusion $A\subset M$. Then
$hi|A$ extends to a homeomorphism $g:M\rightarrow M$. Since $g^{-1}hi|A=id$ , that is, $h^{-1}g|A=$
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$i|A,$ $h^{-1}g:M\rightarrow M\times R^{\infty}$ (or $h^{-1}g;M\rightarrow M\times Q^{\infty}$) is a homeomorphism with $/|^{-1}g(A)=$

$A\times\{0\}$ . The proof of theorem is complete. $\square $

In the above proof of $(iv)\rightarrow(i)$ , a homeomorphism $g^{-1}h:M\times R^{\infty}\rightarrow M$ (or $g^{-1}h$ :
$M\times Q^{\infty}\rightarrow M)$ can be chosen arbitrarily close to the projection because $h$ can be so.
Thus we have

3-2 COROLLARY: Let $M$ be an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifold and $A$ a $D- se^{f}|$, in $M$.
Then for each open cover $cU$ of $M$, the projection $p:M\times R^{\infty}\rightarrow M$ (or $p;M\times\langle t^{\infty}\rightarrow M$ )
is $cU$-homotopic to a homeomorphism stationarily on $A\times\{0\}$ .

In the above corollary, we can replace $R^{\infty}$ or $Q^{\infty}$ by $I$ and $R$ because $ I\times R^{\infty}\cong$

$R\times R^{\infty}\cong R^{\infty}$ and $I\times Q^{\infty}\cong R\times Q^{\infty}\cong Q^{\infty}$ . This is used in Sections 4 and 5.
Using our characterization of infinite deficiency, one can easily oblain the

fundamental properties of infinite deficient sets in $R^{\infty_{-}}$ or $Q^{\infty}$-manifolds. For ex-
ample, the properties mentioned Introduction have been seen in Section 1 and
those proofs are fairly easy.

4. Approximation Theorems.

First, we prove the following Closed Embedding Approximation Theorem:

4-1 CLOSED EMBEDDING APPROXIMATION THEOREM: Let $M$ be an $R^{\infty_{-}}$ (or
$Q^{\infty_{-}})$ manifold, $X$ a countable direct limit of finite dimensional compac’ metric
spaces (or compact metric spaces) and $f:X\rightarrow M$ a map that restricts $t_{1}$ ? a D-
embedding on a closed subset $A$ of X Then for each open cover $cU$ of II, there
exists a closed embedding $g:X\rightarrow M$ such that $g|A=f|A$ and $g$ is $cU$-near to $f$

(moreover $g$ is $cU$-homotopic to $f$ stationarily on $A$).

We use the next easily observed lemma:

4-2 LEMMA: Let $f:X=dir\lim X_{n}\rightarrow Y=dir\lim Y_{n}$ be a map between $cc$ )$untable$

direct limits of compact metric spaces. If $f$ is injective and $f(X)\cap Y_{n}=f(\lrcorner Y_{n})$ for
each $n\in N$, then $f$ is a closed embedding.

PROOF of THEOREM 4-1: Write $X=dir\lim X_{n}$ and $M=dir\lim Y_{n}$ , where each
$X_{n}$ and $Y_{n}$ are finite dimensional compact metric (or compact metric) subspaces
of $X_{n_{Y}\iota}$ and $Y_{n+1}$ respectively. From paracompactness, $cU$ admits a $sequ_{\vee}^{\circ}nce$ of
open star-refinements

$ cU>*cU_{1}>*cU_{2}>*cU_{3}>*\ldots$ .

Inductively, we define open covers $\mathcal{V}_{1},$ $\mathcal{V}_{2},$ $\cdots$ as follows:
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$\mathcal{V}_{1}=cU_{1}$ and $\mathcal{V}_{n+1}=st(\mathcal{V}_{n}, (U_{n+1}),$ $n=1,2,$ $\cdots$ .
Then each $\mathcal{V}_{n}$ refines $cU$ .

Put $n_{1}=1$ . From Lemma 2-2, we have an embedding $q_{1}$ ; $X_{n_{1}}\rightarrow M$ such that

$g_{1}|A\cap X_{n_{1}}=f|A\cap X_{n_{1}}$ ,

$g_{1}(X_{n_{1}}\backslash A)\subset M\backslash f(A)$ and
$\mathcal{V}_{1}$

$ g_{1}\simeq$ $f|X_{n_{1}}$ stationarily on $A\cap X_{n_{1}}$ .
Then $g_{1}$ extends to an embedding $\tilde{g}_{1}$ : $X_{n_{1}}\cup A\rightarrow M$ with $\tilde{g}_{1}|A=f|A$ which is $\mathcal{V}_{1^{-}}$

homotopic to $f|X_{n_{1}}\cup A$ stationarily on $A$ . By the Homotopy Extension Theorem,
$\tilde{g}_{1}$ extends to a map $g_{1}^{\prime}$ : $X\rightarrow M\mathcal{V}_{1}$ -homotopic to $f$ stationarily on $A$ . Choose $m_{1}$

$\geq 1$ so that $g_{1}(X_{n_{1}})\subset Y_{m_{1}}$ and put

$X_{1}^{*}=X_{n_{1}}\cup(A\cap f^{-1}(Y_{m_{1}}))$ and $g_{1}^{*}=\tilde{g}_{1}|X_{1}^{*}:X_{1}^{*}\rightarrow Y_{m_{1}}$ .
Note that $x_{1}*is$ compact and $g_{1}^{*}$ is an embedding such that

$g_{1}^{*}|A\cap X_{1}^{*}=f|Anx_{1}*$ and
$\mathcal{V}_{1}$

$ g_{1}^{*}\simeq$ $f|X_{1}^{*}$ stationarily on $A\cap X_{1}^{*}$ .
Choose an $n_{2}>n_{1}$ so that $X_{1}^{*}\subset X_{n_{2}}$ . Since $Y_{m_{1}}$ is compact, $Y_{m_{1}}$ is a D-set in

$M$ from deficiency. Hence $f(A)\cup Y_{m_{1}}$ is also a D-set in $M$ by 1-3 with 3-1.
From Lemma 2-2, we have an embedding $g_{2}$ : $X_{n_{2}}\rightarrow M$ such that

$q_{2}|X_{n_{1}}\cup(A\cap X_{n_{2}})=g_{1}^{\prime}|X_{n_{1}}\cup(A\cap X_{n_{2}})$ ,
$q_{2}(X_{n_{2}}\backslash (X_{n_{1}}\cup A))\subset M\backslash (f(A)\cup Y_{m_{1}})$ and

$cU_{2}$

$ g_{2}\simeq$ $g_{1}^{\prime}|X_{n_{2}}$ stationarily on $X_{n_{1}}\cup(A\cap X_{n_{2}})$ .
Since $g_{2}|A\cap X_{n_{2}}=f|A\cap X_{n_{2}}$ and $g_{2}(X_{n_{2}}\backslash A)\subset M\backslash f(A),$ $g_{2}$ extends to an embedding
$\tilde{q}_{2}$ ; $X_{n_{2}}\cup A\rightarrow M$ with $\tilde{g}_{2}|A=f|A$ . Then $\tilde{g}_{2}$ is clearly $\subset U_{2}$ -homotopic to $g_{1}^{\prime}|X_{n_{2}}\cup A$

stationarily on $X_{n_{1}}\cup A$ . By the Homotopy Extension Theorem, $\tilde{g}_{2}$ extends to a
map $g_{2}^{\prime}$ : $X\rightarrow M$ which is $cU_{2}$-homotopic to $g_{1}^{\prime}$ stationarily on $X_{n_{1}}\cup A$ , hence $\mathcal{V}_{2^{-}}$

homotopic to $f$ stationarily on $A$ . Choose an $m_{2}>m_{1}$ so that $g_{2}(X_{n_{2}})\subset Y_{m_{2}}$ and put

$X_{2}^{*}=X_{n_{2}}\cup(A\cap f^{-1}(Y_{m_{2}}))$ and $q_{2}^{*}=\tilde{g}_{2}|X_{2}^{*};X_{2}^{*}\rightarrow Y_{m_{2}}$ .

Then $x_{2}*is$ compact and $g_{2}^{*}$ is an embedding such that

$g_{2}^{*}|X_{1}^{*}=g_{1}^{*}$ , $g_{2}^{*}|A\cap X_{2}^{*}=f|A\cap X_{2}^{*}$ ,

$g_{2}^{*}(X_{2}^{*}\backslash X_{1}^{*})\subset M\backslash Y_{m_{1}}$ and
$\mathcal{V}_{2}$

$ g_{2}^{*}\simeq$ $f|X_{2}^{*}$ stationarily on $A\cap X_{2}^{*}$ .

Thus inductively, we have integers $ 1=n_{1}<n_{2}<\cdots$ , $ 1\leq m_{1}<m_{2}<\cdots$ and
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embeddings $g_{i}^{*}:$ $X_{i}^{*}\rightarrow Y_{m}i$ of compact sets $X_{i}^{*}$ in $X,$ $i=1,2,$ $\cdots$ , such that

$X_{n}iii+1$
$g_{l}^{*}(X_{i}^{*}\backslash X_{j}^{*})\subset M\backslash Y_{m}j$ if $j<i$ , and

$\mathcal{V}_{i}$

$ g_{i}^{*}\simeq$ $f|X_{i^{*}}$ stationarily on $A\cap X_{i}^{*}$ .

Since $X=dir\lim X_{i^{*}}$ and $M=dir\lim Y_{m}i$ ’ embeddings $g_{1}^{*},$ $g_{2}^{*},$ $\cdots$ induce a map $g$ ;

$X\rightarrow M$ extending $f|A$ which is clearly injective and $cU$-near to $f$. By $L\epsilon mma4-$

$2,$ $g$ is a closed embedding.
For the additional statement, we can construct a $cU$-homotopy $betwee[]f$ and

$g$ since each $g_{l}^{\prime}$ is $cU_{i}$-homotopic to $g_{\acute{t}-1}$ stationarily on $X_{n}i\cup A$ (where $0_{0}^{\prime}=f$ and
$X_{n_{0}}=\emptyset)$ . 0therwise, if we assume by the Open Embedding Theorem that $M$ is
an open set in $R^{\infty}$ (or $Q^{\infty}$) and each element of $cU$ is convex, then the $a|3ditional$

statement is immediate. $\square $

The following Approximation Theorem has been proved by V.T. Liem, Using
Theorem 4-1 and Corollary 3-2, we give an easy alternative proof.

4-3 $D$-EMBEDDING APPROXIMATION THEOREM [4], [6]: Let $M$ be an $R^{\infty_{-}}$ (or
$Q^{\infty_{-}})$ manifold, $X$ a counlable direct limit of finite dimenisional compact metric (or

compact metric) spaces and $f:X\rightarrow M$ a map that restricts to a D-embedding on a
closed subsed $A$ of X Then for each open cover $cU$ of $M$, there $exi_{\backslash }^{^{\backslash }}ts$ a D-
embedding $g;X\rightarrow M$ such $t/latg|A=f|A$ and $g$ is $cU$ -homotopic to $fsta$,fionarily

on $A$ .

PROOF: By theorem 4-1, we may assume without loss of generality that $f$

is a closed embedding. From Corollary 3-2 (cf. its remark), the projection $ p:M\times$

$l\rightarrow M$ is $cU$-homotopic to a homeomorphism $h:M\times I\rightarrow M$ stationarily on $f(A)\times\{0\}$ .
Let $i:M\rightarrow M\times\{0\}\subset M\times I$ be the natural injection. The embedding $q=hif,$ $X\rightarrow M$

is the desired one. $\square $

For open embeddings, we can strengthen the Open Embedding Approx imation
Theorem [11]:

4-4 $0PEN$ EMBEDDING APPROXIMATION THEOREM (strong version): Let $M$

and $N$ be $R^{\infty_{-}}$ (or $Q^{\infty}-$ ) manifolds and $A$ an $R^{\infty_{-}}$ (or $Q^{\infty}-$ ) deficient set in M. Then
for any open cover $cU$ of $N$, any map $f:M\rightarrow N$ is $cU$ -homotopic to an open embed-
ding $g:M\rightarrow N$ such that $g(A)$ is an $R^{\infty_{-}}(or Q^{\infty_{-}})$ deficient set in N. $lff|A:A\rightarrow N$

is an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) deficient embedding, then $f$ and $g$ are $cU$-homotopic stationarily
on $A$ (of course $f|A=g|A$).
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PROOF: From Theorem 3-3, we may assume that $f|A:A\rightarrow N$ is an $R^{\infty_{-}}$ (or

$Q^{\infty}-)$ deficient embedding. Apply the proof of [11, Theorem 2-2] in which [11,

Lemma 1-5] is replaced with Lemma 2-2 in this paper (cf. Proof of Theorem 4-1).

$\square $

As an immediate consequence, we have a strong version of the Open Embed-

ding Theorem:

4-5 $0PEN$ EMBEDDING THEOREM (strong version): Let $M$ be an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ )

manifold and $A$ an $R^{\infty}-$ (or $Q^{\infty_{-}}$ ) deficient set in M. Then $M$ can be embedded in
$R^{\infty}$ (or $Q^{\infty}$) so that $M$ is open and $A$ is closed and $R^{\infty}-(orQ^{\infty_{-}})$ deficient in $R^{\infty}$

(or $Q^{\infty}$).

5. Unknotting Theorem (strong version).

Using Theorems 2-1, 4-3, Proposition 1-3 (with 3-1) and Corollary 3-2, we
can prove the following strong version of Theorem 2-1 by Anderson-McCharen’s
trick in [1].

5-1 UNKNOTTING THEOREM (strong version): Let $M$ be an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ )

manifold, $A$ a D-set in $M$ and $cU,$ $\mathcal{V}$ open covers of M. If a D-embedding $f:A$

$\rightarrow M$ is $cU$-homotopic to the inclusion $i:A\subset M$, then $f$ extends to a homeomorphism
$f$ : $M\rightarrow M$ which is ambiently invertibly st $(^{c}U, \mathcal{V})$-isotopic to id. Moreover if the

homotopy $\Phi:i\simeq f$ is stationary on a closed subset $A_{0}$ of $A$ and cl $\Phi((A\backslash A_{0})\times I)$ is
contained in an open subset $W$ of $M$, then the isotopy $\Psi:id\simeq f$ can be chosen to
be stationary on $A_{0}\cup(M\backslash W)$ .

For the sake of completeness, we include the details. First we prove the
below:

5-2 LEMMA: Let $\gamma:Y\rightarrow[0, \infty$ ) be a map of a paracompact space $Y,$ $W$ an
open set in $Y\times R$ and $cU$ an open cover of $Y\times R$ such that if $y\in c1(Y\backslash \gamma^{-1}(0))$

then $\{y\}\times[0, \gamma(y)]\subset W\cap U$ for some $U\in cU$ . Then there exists an ambient invertible
cU-isotopy $\theta;Y\times R\times I\rightarrow Y\times R$ stationary on $\gamma^{-1}(0)\times R\cup(Y\times R\backslash W)$ such that $\theta_{0}=$

id and $\theta_{1}(y, 0)=(y, \gamma(y))$ for each $y\in Y$.

PROOF: From Lemma 1-1, we have maps $\alpha,$ $\beta:Y\rightarrow R$ such that for each $y\in Y$,

$\alpha(y)<0\leq\gamma(y)<\beta(y)$ and $\{y\}\times[\alpha(y), \beta(y)]$ is contained in some $U\in cU$ , moreover if $ y\in$

cl $(Y\backslash \gamma^{-1}(0))$ then $\{y\}\times[\alpha(y), \beta(y)]\subset W$. Then the desired isotopy $\theta:Y\times R\times I\rightarrow Y\times$

$R$ is defined by
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$\theta(y, s, t)=\left\{\begin{array}{l}(y,\frac{\alpha(y)-l\gamma(y)}{\alpha(y)}s+l\gamma(y)) if\gamma(y)\neq 0and\alpha(y)\leq s\leq 0,\\(y,\frac{\beta(y)-l\gamma(y)}{\beta(y)}s+l\gamma(y)) if\gamma(y)\neq 0and0\leq s\leq\beta(y),\\(y,s) otherwise. \square \end{array}\right.$

PROOF of THEOREM 5-1: Let $\mathcal{V}^{\prime}$ be an open star-refinement of $\subset\ddagger/|$ and $W$

an open set in $M$ such that cl $\Phi((A\backslash A_{0})\times I)\subset W^{\prime}$ ccl $W^{\prime}\subset W$.
First, we will construct an ambient invertible $\mathcal{V}^{\prime}$ -isotopy $\Psi^{\prime}$ : $M\times I\rightarrow M$ station-

ary on $A_{0}\cup(M\backslash W)$ such that $\Psi_{0}^{\prime}=id$ and $\Psi_{1}^{\prime}(f(A\backslash A_{0}))\cap A=\emptyset$ . From Proposition
1-3 with Theorem 3-1, $A\cup f(A)$ is a D-set in $M$. Using Corollary 3–2 (cf. its
remark), we have a homeomorphism $h:M\times R\rightarrow M$ such that $h|(A\cup f(\lrcorner 4))\times\{0\}=$

$p|(A\cup f(A))\times\{0\}$ , where $p:M\times R\rightarrow M$ is the projection. Put $ W_{0}^{\prime}=p_{1^{\prime}}\backslash M\times\{0\}\cap$

$h^{-1}(W))$ . From Lemma 1-1, we have a map $\beta^{\prime}$ : $W^{\prime}\rightarrow(0,1$ ] such that for each $ x\in$

$W_{0}^{\prime}$ there is a $V^{\prime}\in \mathcal{V}^{\prime}$ with $\{x\}\times[0, \beta^{\prime}(x)]\subset h^{-1}(V^{\prime})\cap h^{-1}(W)$ . Choose an open set
$G$ in $M$ so that cl $f(A\backslash A_{0})=c1(f(A)\backslash A_{0})\subset G\subset c1G\subset W_{0}^{\prime}$ . Take a map $13^{\prime\prime}$ : $M\rightarrow l$

with $\beta^{\prime\prime-1}(0)=A_{0}\cup(M\backslash G)$ and define a map $\beta:M\rightarrow l$ by

$\beta(x)=\left\{\begin{array}{l}\beta^{\prime}(x)\beta^{\prime\prime}(x) ifx\in W_{0}^{\prime},\\0 ifx\not\in W_{0}^{\prime}.\end{array}\right.$

Then $A_{0}\subset\beta^{-1}(0),$ $f(A\backslash A_{0})\subset M\backslash \beta^{-1}(0)\subset G$ and for each $x\in W_{0}^{\prime}$ there $i_{3}\neg V^{\prime}\in \mathcal{V}^{\prime}$

with $\{x\}\times[0, \beta(x)]\subset h^{-1}(V^{\prime})\cap h^{-1}(W^{\prime})$ . Hence by Lemma 5-2, we have an ambient
invertible $h^{-1}(\mathcal{V}^{\prime})$-isotopy $\theta^{\prime}:M\times R\times l\rightarrow M\times R$ stationary on $A_{0}\times R\cup(M\times R\backslash $

$h^{-1}(W))$ such that $\theta_{0}^{\prime}=id$ and $\theta_{0}^{\prime}(x, 0)=(x, \beta(x))$ for each $x\epsilon M$. The desired isotopy
$\Psi^{\prime}$ : $M\times I\rightarrow M$ is defined by $\Psi^{\prime}(x, t)=h\theta^{\prime}(h^{-1}(x), t)$ .

Next, we will construct an ambient invertible $st^{2}(^{c}U, \mathcal{V}^{\prime})$-isotopy $\Psi^{\prime\prime}$ : $ M\times I\rightarrow$

$M$ stationary on $A_{0}\cup(M\backslash W)$ such that $\Psi_{0}^{\prime\prime}=id$ and $\Psi_{1}^{\prime\prime}|A=\Psi_{1}^{\prime}f$ . Using $\Phi:i\simeq f$

and $\Psi^{\prime}$ : $id\simeq\Psi_{1}^{\prime}$ , we can obtain a st $(\subseteq U, \mathcal{V}^{\prime})$-homotopy $\Phi^{\prime}$ : $A\times l\rightarrow M$ stationary on
$A_{0}$ such that $\Phi_{0}^{\prime}=i,$ $\Phi_{1}^{\prime}=\Psi_{1}^{\prime}f$ and $\Phi^{\prime}((A\backslash A_{0})\times l)\subset W^{\prime}$ . Let $\alpha:M\rightarrow l$ be a map with
$\alpha^{-1}(0)=A_{0}$ . Denote

$K=\{(x, 0, t)|x\in A, 0\leq t\leq\alpha(x)\}\subset M\times I\times R$ and
$L=$ {$(x,$ $0,$ $t)\in K|t=0$ or $t=\alpha(x)$ }.

Then $K$ is a D-set in $M\times I\times R$ because it is contained in a collared set (1-2).

Define a map $\Phi^{\prime\prime}$ : $K\rightarrow M$ by

$\Phi^{\prime\prime}(x, 0, t)=\{_{x}\Phi^{\prime}(x,$

$\frac{t}{\alpha(x)})$

$ififx\not\in Ax\in A_{0}^{0}’$

.
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Observe $\Phi^{\prime\prime}(x, 0, O)=x,$ $\Phi^{\prime\prime}(x, 0, \alpha(x))=\Psi_{1}^{\prime}(x)$ for each $x\in A$ and $\Phi^{\prime\prime}(L)=A\cup\Psi_{1}^{\prime}f(A)$ is
a $D$-set in $M$ (1-3 with 3-1). Since $\Psi_{1}^{\prime}f(A\backslash A_{0})\cap A=\emptyset,$ $\Phi^{\prime\prime}|L$ is a closed embedding,

so a D-embedding. Note that $\Phi^{\prime\prime}(K\backslash A_{0}\times\{0\}\times\{0\})\subset W^{\prime}$ . Let $W^{\prime}$ be an open set

in $M$ with cl $W^{\prime}\subset W^{\prime}\subset c1W^{\prime}\subset W$ and $\mathcal{V}^{\prime\prime}$ an open cover of $M$ which refines both

covers $\mathcal{V}^{\prime}$ and $\{W^{\prime}, M\backslash c1W\}$ . By Theorem 4-3, $\Phi^{\prime\prime}$ is $\mathcal{V}^{\prime\prime}$ -homotopic to a D-

embedding $\Phi^{\prime\prime\prime}$ : $K\rightarrow M$ stationary on $L$ . Then $\Phi^{\prime\prime\prime}$ is homotopic to $q|K$ because so
is $\Phi^{\prime\prime\prime}$ , where $q:M\times l\times R\rightarrow M$ is the projection. Since $q$ is a near homeomorphism

by the Stability Theorem, $\Phi^{\prime\prime\prime}$ is homotopic to the restriction of a homeomorphism

from $M\times I\times R$ onto $M$. Using Theorem 2-1, $\Phi^{\prime\prime\prime}$ extends to a homeomorphism
$g;M\times l\times R\rightarrow M$. For each $x\in A\backslash A_{0}$ , choose a $U\in q$] so that

$\Phi^{\prime\prime}(\{x\}\times\{0\}\times[0, \alpha(x)])=\Phi^{\prime}(\{x\}\times I)\subset st(U, \mathcal{V}^{\prime})\cap W$ .
Since $\Phi^{\prime\prime}$ and $\Phi^{\prime\prime\prime}$ are $\mathcal{V}^{\prime\prime}$-near,

$\Phi^{\prime\prime\prime}(\{x\}\times\{0\}\times[0, \alpha(x)])\subset st$ (st $(U,$ $\mathcal{V}^{\prime}),$ $\mathcal{V}^{\prime}$ ) $\cap W^{\prime}$

$=st^{2}(U, \mathcal{V}^{\prime})\cap W^{\prime}$ .

Hence
$\{x\}\times\{0\}\times[0, \alpha(x)]\subset g^{-1}(st^{2}(U, \mathcal{V}^{\prime})\cap W^{\prime})$ .

Let $W^{\prime\prime}$ be an open set in $M$ with cl $W^{\prime}\subset W^{\prime\prime}\subset c1W^{\prime}‘\subset W$. For each $x\in c1(A\backslash A_{0})$

there is some $U\in cU$ such that

$\{x\}\times\{0\}\times[0, \alpha(x)]\subset g^{-1}(st^{2}(U, \mathcal{V}^{\prime}))\cap g^{-1}(W^{\prime\prime})$ .
Let $N$ be an open neighborhood of cl $(A\backslash A_{0})\times\{0\}$ in $M\times I$ such that if $y\in N$ then

$\{y\}\times[0, \alpha r(y)]\subset g^{-1}(st^{2}(U, \mathcal{V}^{\prime}))\cap g^{-1}(W^{\prime\prime\prime})$

for some $U\in\subseteq U$ , where $r:M\times I\rightarrow M$ is the projection. Take a Urysohn map $k$ :
$M\times I\rightarrow I$ with $k(M\times l\backslash N)=0$ and $k(c1(A\backslash A_{0})\times\{0\})=1$ and define a map $\gamma:M\times l$

$\rightarrow I$ by $\gamma(y)=k(y)\cdot\alpha r(y)$ . Then observe that $\gamma|A\times\{0\}=\alpha r|A\times\{0\}$ and for each $ y\in$

cl $(M\times I\backslash \gamma^{-1}(0))$ , there is a $U\in\subset U$ such that

$\{y\}\times[0, \gamma(y)]\subset g^{-1}(st^{2}(U, \mathcal{V}^{\prime}))\cap g^{-1}(W)$ .

Hence by Lemma 5-2, we have an ambient invertible $g^{-1}(st^{2}(^{c}U, \mathcal{V}^{\prime}))$ -isotopy $\theta$“ :
$M\times I\times R\times l\rightarrow M\times I\times R$ stationary on $A_{0}\times I\times R\cup(M\times I\times R\backslash g^{-1}(W))$ such that
$\theta_{0}^{\prime\prime}=id$ and $\theta_{1}^{\prime\prime}(x, 0, O)=(x, 0, \gamma(x, 0))=(x, 0, \alpha(x))$ for each $x\in M$. Recall that for each
$x\in A,$ $g(x, 0, O)=x$ and $g(x, 0, \alpha(x))=\Psi_{1}^{\prime}f(x)$ . Then the desired isotopy $\Psi^{\prime\prime}$ : $ M\times l\rightarrow$

$M$ is defined by $\Psi^{\prime\prime}(x, t)=g\theta^{\prime\prime}(g^{-1}(x), t)$ .
Finally, we define an ambient invertible isotopy $\Psi:M\times I\rightarrow M$ by $\Psi_{t}=\Psi_{l^{-1}}^{\prime}\Psi_{l}^{\prime\prime}$ ,

$t\epsilon I$. This isotopy is stationarily on $A_{0}\cup(M\backslash W)$ . And it is a st $(^{c}U, \mathcal{V})$ -isotopy
because
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st (st2 $(^{c}U,$ $\mathcal{V}^{\prime}),$ $\mathcal{V}^{\prime}$ ) $=st$ (st (st $(q],$ $\mathcal{V}^{\prime}),$ $\mathcal{V}^{\prime}),$ $\mathcal{V}^{\prime}$ )
$=st$ ( $\subset U$ , st $\mathcal{V}^{\prime}$ )

$<st(cU, \mathcal{V})$ . $\square $

6. Enlargement of Manifolds.

In previous paper [11], we gave a characterization of $R^{\infty_{-}}$ or $Q^{\infty}$-manifolds.
The following is its variation as mentioned after Lemma 1-5 in [11].

6-1 THEOREM: (a) A countable direct limit $X$ of finite dimentional compact
metric spaces is an $R^{\infty}$-manifold if and only if $X$ is an $ANE$ for (finite dimentional)
compact metric spaces and it has the following property:

$(d_{f}^{\prime})$ Let $f:B\rightarrow X$ be a map from a finite dimensional compact met$|ric$ space
$B$ into $X$ that restricts to an embedding on a closed subset $A$ of $B$.
Then there exists an embedding $g;B\rightarrow X$ such that $f|A=g|A$ .

(b) A countable direct limit $X$ of compact metric spaces is a $Q^{\infty}$-manifold if
and only if $X$ is an $ANE$ for compact metric spaces and it has the $prop\ell!rty(d^{\prime})$

that is the above property $(d_{f}^{\prime})$ with the phase “ finite dimensional” deleted.
Using the above characterization, we prove the following $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) version

of [2, Theorem 3].

6-2 THEOREM: For any space $X,$ $X\times R$ is an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) $manifol\ell f$ if and
only if so is $X\times[0, \infty]$ , hence if and only if so is $X\times I$.

PROOF. The ” if” part is trivial since $X\times R$ can be embedded in $\lrcorner Y\times[0, \infty$ )

as an open set. We must prove the “ only if” part. Because of simila,rity, we
show only $R^{\infty}$-case.

First, we note that $ X\times[0, \infty$ ) is an ANE for compact metric spaces which is
a countable direct limit of finite dimensional compact metric spaces, since so is
$X\times R$ . Then we may prove that $ X\times[0, \infty$ ) has property $(A^{r_{f}})$ . Let $ f:B\rightarrow X\times$

$[0, \infty)$ be a map from a finite dimensional compact metric space $B$ into $\lrcorner r\times[0, \infty$ )

that restricts to an embedding on a closed subset $A$ of $B$. From Corollary 1-5,
$pf(A)\times R$ is a D-set in an $R^{\infty}$-manifold $X\times R$ , where $p:X\times R\rightarrow X$ is the projec-
tion. Using Lemma 2-2, we have an embedding $g:B\rightarrow X\times R$ such that $\{’|A=f|A$

and $g(B\backslash A)\subset X\times R\backslash pf(A)\times R$ . If we can construct a homeomorphism $h:X\times R$

$\rightarrow X\times R$ so that $h|pf(A)\times R=id$ and $h(g(B))\subset X\times[0, \infty)$ , then $ hg:B\rightarrow X\times[0, \infty$) is
an embedding with $hg|A=f|A$ , so $ X\times[0, \infty$ ) has property $(_{c}t_{f}^{\prime})$ .

Now, we will construct such a homeomorphism. From compactness of $g(B)$ ,

we may assume that $ g(B)\subset X\times$ ( $-1$ , oo). For each $n\in N$, put
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$D_{n}=p(g(B)\cap X\times(-\infty, -2^{-n}])$ .

Then each $D_{n}$ is a closed set in $X$ missing $pf(A)$ . Let $k_{n}$ : $X\rightarrow I$ be a map with
$k_{n}(pf(A))=0$ and $k_{n}(D_{n})=1$ . Define a map $k:X\rightarrow I$ by

$k(x)=\Sigma_{n\Rightarrow 1}^{\infty}2^{-n}k_{n}(x)$ for each $x\in X$

Then clearly $k(pf(A))=0$ and $x\in D_{n}$ implies $k(x)\geq 2^{-(n-1)}$ . It follows that

$g(B)\subset\{(x, t)\in X\times R|t\geq-k(x)\}$

because if $g(y)=(x, t)\in X\times(-2^{-(n-1)}, -2^{-n}$] then $x\in D_{n}$ so $t>-2^{-(n-1)}\geq-k(x)$ . The
desired homeomorphism $h:X\times R\rightarrow X\times R$ is defined by

$h(x, t)=(x, t+k(x))$ for each $(x, t)\in X\times R$ .

For the additional statement, the “ if “ part is trivial and the “ only if” part
follows from $X\times l=X\times[0,1$ ) $\cup X\times(0,1$ ]. $\square $

H. Toru\’{n}czyk [12] showed that if a complete ANR $X$ contains an $l_{2}$-manifold
whose complement is a Z-set in $X$ then $X$ is necessarily an $l_{2}$ -manifold. For $\sigma-$ or
$\Sigma$-manifolds, the similar statement holds (see [12, Theorem 5.2]). For $R^{\infty_{-}}$ or $Q^{\infty_{-}}$

manifolds, we have the following:

6-3 PROPOSITION: Let $M$ be an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifold which is embedded in
a space $X$ as a dense set. If $X\backslash M$ is contained in a union $\bigcup_{\lambda\in A}A_{\lambda}$ of collared
sets $A_{\lambda},$ $\lambda\in\Lambda$ , in $X$ and $X\backslash M$ or $\bigcup_{\lambda\in\Lambda}A_{\lambda}$ is closed in $X$, then $X$ is an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$)

manifold.

PROOF: For each $\lambda\epsilon\Lambda$ , let $k_{\lambda}$ : $A_{\lambda}\times[0,1$ ) $\rightarrow X$ be an open embedding such that
$k_{\lambda}(x, O)=x$ for each $x\in A_{\lambda}$ . Since $k_{\lambda}(A_{l}\times(0,1))$ is an open subset of $M,$ $A_{\lambda}\times(O, 1)$

is an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifold, hence so is $A_{\lambda}\times[0,1$ ). Note if $\bigcup_{\lambda\in A}A_{i}$ is closed in $X$

then $X\backslash \bigcup_{i\epsilon A}A_{\lambda}$ is an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifold because it is an open subset of $M$.
Thus

$\{k_{\lambda}(A_{\lambda}\times[0,1))|\lambda\in\Lambda\}\cup\{M\}$ or $\{k_{\lambda}(A_{\lambda}\times[0,1))|\lambda\in\Lambda\}\cup\{X\backslash \bigcup_{\lambda\epsilon A}A_{i}\}$

is an open cover of $X$ all whose member is an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifold. Hence $X$

is an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifold. $\square $

In Section 1, we introduced D-sets and $D^{*}$-sets as generalizations of closed
sets contained in collared sets. One should notice that Z-sets in an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ )

manifold are not necessarily infinite deficient, hence not contained in collared sets
[5], whereas Z-sets in an $l_{2^{-}}$ (or $\sigma-$ or $\Sigma-$ ) manifold are infinite deficient, hence con-
tained in collared sets.
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6-4 PROBLEM: Let $X$ be an ANE for compact metric spaces which is a
coutable direct limit of finite dimensional compact metric (or compact metric)

spaces. If $X$ contains an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifold whose complement is a D-set in
$X$, then is an $R^{\infty}-(orQ^{\infty_{-}})$ manifold ?

7. Union of Two $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$) Manifolds.

In this section, we prove the following theorem:

7-1 THEOREM: Let $X_{1}$ and $X_{2}$ be closed subsets of a space $X$ with $ X=X_{1}\cup$

$X_{2}$ and $X_{0}=X_{1}\cap X_{2}$ . $lfX_{0},$ $X_{1}$ and $X_{2}$ are $R^{\infty}-(orQ^{\infty}-)$ manifolds then so is $X$

Although this is the $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) version of the Mogilski’s result [9], his
method cannot apply as mentioned in Introduction. We use the characterization
of $R^{\infty}$-and $Q^{\infty}$-manifolds, $i$ . $e.$ , Theorem 6-1. To prove the theorem, we first show
the following lemma:

7-2 LEMMA: Let $Y$ and $Z$ be closed subspaces of a space $X$ with $X=Y\cup Z$.
If $Y=dir\lim Y_{n}$ and $Z=dir\lim Z_{n}$ where each $Y_{n}$ and $Z_{n}$ are closed in $1^{r_{n+\iota}}$ and
$Z_{n+1}$ respectively, then $X=dir\lim(Y_{n}\cup Z_{n})$ .

PROOF: Let $A\subset X$ Assume that $A\cap(Y_{n}\cup Z_{n})$ is closed in $Y_{n}\cup Z_{n}$ for each
$n\in N$. Since $A\cap Y_{n}$ is closed in $Y_{n}$ for each $n\in N,$ $A\cap Y$ is closed in $Y$, hence it
is closed in $X$ Similarly $A\cap Z$ is closed in $X$ Therefore $A$ is closed in $l_{L}^{\prime}$ . Since
$X=\bigcup_{n\in N}(Y_{n}\cup Z_{n})$ , this implies $X=dir\lim(Y_{n}\cup Z_{n})$ . $\square $

PROOF of THEOREM 7-1: Because of similarity, we proove only $R^{\infty}$-case. From
the above lemma, $X$ is a countable direct limit of finite dimensional compact metric
spaces. Note that $X$ is an ANE for compact metric spaces. Therefore we may
show that $X$ has property $(d_{f}^{\prime})$ in Theorem 6-1. Let $f:B\rightarrow X$ be a map from a
finite dimensional compact metric space $B$ into $X$ that restricts to an enibedding

on a closed subset $A$ of $B$. Put $B_{v}=f^{-1}(X_{i})$ and $A_{i}=A\cap \mathcal{B}$ for $i=0,1,2$ . First
using [11, Lemma 1-5], we replace $f|B_{0}$ with an embedding $g_{0}$ : $B_{0}\rightarrow X_{0}$ such that
$g_{0}|A_{0}=f|A_{0}$ and $g_{0}$ is homotopic to $f|B_{0}$ stationarily on $A_{0}$ . Then $g_{0}$ extends to an
embedding $g_{0}^{\prime}$ : $B_{0}\cup A_{1}\rightarrow X_{1}$ which is homotopic to $f|B_{0}\cup A_{1}$ stationarily on $A_{1}$ . By the
Homotopy Extension Theorem, $g_{0}^{\prime}$ extends to a map $g_{0}^{\prime\prime}$ : $B_{1}\rightarrow X_{1}$ which is homotopic

to $f|B_{1}$ stationarily on $A_{1}$ . Using again [11, Lemma 1-5], we have an embedding
$g_{1}$ ; $B_{1}\rightarrow X_{1}$ such that $g_{1}|B_{0}\cup A_{1}=g_{0}^{\prime}$ , hence $g_{1}|B_{0}=g_{0}$ and $g_{1}|A_{1}=f|A_{1}$ . From com-
pactness, $g_{1}(B_{1})\cap X_{2}$ is a D-set in $X_{2}(1-5)$ . Similarly as above, but using Lemma
2-2, we have an embedding $g_{2}$ ; $B_{2}\rightarrow X_{2}$ such that $g_{2}|B_{0}=g_{0},$ $g_{2}|A_{2}=f|A_{2}ar\square d$ more-
over $ g_{2}(B_{2}\backslash B_{0})\cap g_{1}(B_{1})=\emptyset$ . Then we can define an embedding $g;B\rightarrow X$ by $g|B_{1}=$
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$g_{1}$ and $g|B_{2}=g_{2}$ . Clearly $g|A=f|A$ . $\square $

Since examples of Henderson-Walsh [2] apply equally to $R^{\infty}$ and $Q^{\infty}$, as men-
tioned in Section 7 of [2], we have spaces $Y$ and $Z$ such that $Y\not\cong R^{\infty}$ and $Z\not\subset Q^{\infty}$

but $Y\times I\cong Y\times R\cong R^{\infty}$ and $Z\times I\cong Z\times R\cong Q^{\infty}$ (cf. Theorem 6-2). Let $X_{1}=Y\times[0,1]$

(or $Z\times[0,1]$ ) and $X_{2}=Y\times[1,2]$ (or $z\times[1,2]$ ). Then $X=X_{1}\cup X_{2}\cong X_{1}\cong X_{2}\cong R^{\infty}$ (or
$Q^{\infty})$ but $X_{0}=X_{1}\cap X_{2}\not\subset R^{\infty}$ (or $Q^{\infty}$), so the assumption in Theorem 7-1 that $X_{0}$ is an
$R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifold is not essential.

Because of examples of Henderson-Walsh [2], Mogilski’s method in [9] cannot
apply to the $\sigma-(or\Sigma-)$ version of Theorem 7-1. However, using Mogilski’s char-
acterization of $\sigma-$ and $\Sigma$-manifolds [10], this can be proved similarly as Theorem
7-1.

As an application, we prove the following Collaring Theorem due to Liem:

7-3 COLLARING THEOREM [7, Theorems 3-3 and 3-4]: Let $N$ be a closed $R^{\infty_{-}}$

(or $Q^{\infty_{-}}$ ) submanifold of an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) manifold M. Then $N$ is $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ )

deficient in $M$ if and only if $N$ is collared in $M$.

PROOF: The ” if” part is follows from Theorem 3-1. To prove the ” only

if” part, put $L=M\times\{0\}\cup N\chi l$ . From Theorem 7-1, $L$ is an $R^{\infty_{-}}$ (or $Q^{\infty_{-}}$ ) mani-
fold. The projection $p:L\rightarrow M$ is a fine homotopy equivalence, so a near homeo-
morphism ( $e$ . $g.$ , see [11, Theorem 2-3]). Using Theorem 2-1, we have a homeo-
morphism $h:L\rightarrow M$ such that $h(x, 1)=x$ for each $x\in L$ . Then $N$ is collared in
M. $\square $
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