ASYMPTOTIC RISK COMPARISON OF IMPROVED ESTIMATORS FOR NORMAL COVARIANCE MATRIX By ## Nariaki Sugiura and Masahiro Fujimoto Asymptotic risks of the empirical Bayes estimators $\hat{\Sigma}_H$ by Haff [5] for a covariance matrix Σ in a p-dimensional normal distribution are computed and compared with that of James and Stein's minimax estimators $\hat{\Sigma}_{JS}$. For $p \geq 6$, it is shown that $\hat{\Sigma}_{JS}$ are always better than $\hat{\Sigma}_H$ asymptotically, though the leading terms are the same. New estimators which dominate $\hat{\Sigma}_{JS}$ for some Σ in any p asymptotically are proposed. Some numerical comparisons are given. Exact risks for ordinary estimators $\hat{\Sigma}_0$ and minimax estimators $\hat{\Sigma}_{JS}$ are also computed and compared with asymptotic ones for which the approximations are shown to be excellent. ## 1. Introduction Let S have a Wishart distribution with unknown scale matrix Σ and n degrees of freedom, for which we shall write $S: W_p(n, \Sigma)$ and assume n > p+1. Let $\hat{\Sigma}$ be an estimator of Σ . The loss function is taken to be (1.1) $$L_{1}(\hat{\Sigma}, \Sigma) = \operatorname{tr} \hat{\Sigma} \Sigma^{-1} - \log|\hat{\Sigma} \Sigma^{-1}| - p$$ or (1.2) $$L_2(\hat{\Sigma}, \Sigma) = \frac{1}{2} \operatorname{tr}(\hat{\Sigma} \Sigma^{-1} - I)^2.$$ The L_1 loss is equivalent to the likelihood ratio statistic for testing the hypothesis $\Sigma = \Sigma_0$ against all alternatives. The L_2 loss can also be used as a test statistic for the same problem as in Nagao [10]. The factor 1/2 in the L_2 loss is not essential. However we wish to retain it, since L_1 loss tends to $\operatorname{tr}(\hat{\Sigma}\Sigma^{-1}-I)^2/2$, when $\hat{\Sigma}$ is close to Σ . The risk function is given by $R_i(\hat{\Sigma}, \Sigma) = E[L_i(\hat{\Sigma}, \Sigma)]$ for i=1 or 2. Haff [5] proved that among the scalar multiples of S, the best estimator under L_1 is $\hat{\Sigma}_0^{(0)} = S/n$ and that under L_2 it is given by $\hat{\Sigma}_0^{(2)} = S/(n+p+1)$, which we call ordinary estimators. Then he considered the posterior mean of Σ for a prior distribution $W_p[n', (\gamma C)^{-1}]$ for Σ^{-1} with unknown scalar $\gamma > 0$ and known p. d. matrix C. It is given by $E[\Sigma|S,\gamma]=(S+\gamma C)/(n+n'-p-1)$. In the process of estimating γ by maximizing approximate marginal likelihood of S, he obtained ut(u) for $u=1/\text{tr}(S^{-1}C)$ as an estimator for γ , where $t(\cdot)$ is nonincreasing. He then proved that under L_1 the estimator for $0 \le t(u) \le 2(p-1)/n$, dominates $\hat{\Sigma}_0^{(i)} = S/n$ for any n > p+1 and under L_2 the estimator (1.4) $$\hat{\Sigma}_{H}^{(2)} = \frac{1}{n+p+1} (S + utC)$$ for $0 \le t \le 2(p-1)/(n-p+3)$, dominates $\hat{\Sigma}_0^{(2)} = S/(n+p+1)$ for any n > p+1. It was also shown that if t(u) in (1.3) is constant, the best choice of t(u) is (p-1)/n and that the best choice of t in (1.4) is (p-1)/(n-p+3). In this paper we always take these optimal values for t and call them Haff's estimators $\hat{\Sigma}_H^{(1)}$ and $\hat{\Sigma}_H^{(2)}$ respectively. A minimax estimator for Σ was earlier obtained by James and Stein [7], giving $$\hat{\Sigma}_{LS}^{(i)} = K\Delta^{(i)}K'$$ for the loss L_i (i=1 or 2), where the lower triangular matrix K with positive diagonal elements is obtained from S=KK' and $\Delta^{(i)}=diag[\Delta_1^{(i)},\cdots,\Delta_p^{(i)}]$. For the L_1 loss, they proved that $\Delta_j^{(i)}=1/(n+p+1-2j)$ and reported that they were unable to get explicit form of $\Delta_j^{(2)}$. Sharma [13] derived the linear equations for $\Delta_j^{(2)}$, from which numerical values are computed for given n and p. They were also obtained earlier by Selliah [12]. The primary purpose of this paper is to compare the asymptotic risk of Haff's estimator $\hat{\Sigma}_{H}^{(i)}$ with that of James and Stein's estimator $\hat{\Sigma}_{JS}^{(i)}$ under L_i for i=1 or 2. Under L_2 , we have derived an asymptotic form of $\Delta_{f}^{(i)}$ for large n. It is shown that the leading terms of the asymptotic risks for $\hat{\Sigma}_{H}^{(i)}$ and $\hat{\Sigma}_{JS}^{(i)}$ are the same and that the next term for $\hat{\Sigma}_{H}^{(i)}$ is less than that of $\hat{\Sigma}_{JS}^{(i)}$ only for $2 \leq p \leq 5$ and for some Σ . If $p \geq 6$, the second term of the asymptotic expansion of $R_i(\hat{\Sigma}_{H}^{(i)}, \Sigma)$ is always larger than that of $R_i(\hat{\Sigma}_{JS}^{(i)}, \Sigma)$ for all Σ . Secondly we shall propose new estimators for Σ by minimizing risks empirically, which are given by (1.6) $$\hat{\Sigma}^{(1)} = \frac{1}{n} \left[S + b \frac{\operatorname{tr} CS^{-1}}{\operatorname{tr} (CS^{-1})^2} C \right], \quad 0 \leq b \leq \frac{2(p-1)}{n}$$ for L_1 loss and (1.7) $$\hat{\Sigma}^{(2)} = \frac{1}{n+p+1} \left[S + b \frac{\operatorname{tr} CS^{-1}}{\operatorname{tr} (CS^{-1})^2} C \right], \quad 0 \le b \le \frac{2(p-1)}{n}$$ for L_2 loss. It is shown that our new estimator $\hat{\Sigma}^{(1)}$ dominates $\hat{\Sigma}^{(2)}_0$ for all n > p+1 and that $\hat{\Sigma}^{(2)}$ dominates $\hat{\Sigma}^{(2)}_0$ asymptotically. The result also holds for more general form of $\hat{\Sigma}^{(1)}$, that is, the constant b in (1.6) can be replaced by $t(\cdot)$ in (1.3) for $u = \text{tr } CS^{-1}/\text{tr}(CS^{-1})^2$. However we prefer to (1.6) to simplify later discussions. The leading term of the asymptotic risk is the same as that of $\hat{\Sigma}^{(i)}_{JS}$ and the second term is less than that of $\hat{\Sigma}^{(i)}_{JS}$ for some Σ and for all p>1. Eliminating the leading term, the range of $R_i(\hat{\Sigma}^{(i)}, \Sigma)$ is much wider below than $R_i(\hat{\Sigma}^{(i)}_H, \Sigma)$ asymptotically. However the absolute difference $R_i(\hat{\Sigma}^{(i)}, \Sigma) - R_i(\hat{\Sigma}^{(i)}_{JS}, \Sigma)$ or $R_i(\hat{\Sigma}^{(i)}_H, \Sigma) - R_i(\hat{\Sigma}^{(i)}_{JS}, \Sigma)$ is not so large. To get some idea for the errors of asymptotic approximations, the terms of order n^{-3} (third terms) are computed for $R_i(\hat{\Sigma}_H^{(i)}, \Sigma)$ and $R_i(\hat{\Sigma}^{(i)}, \Sigma)$. The exact risks of $\hat{\Sigma}_{JS}^{(i)}$ are computed and asymptotic values up to order n^{-3} are compared. For $2 \leq p \leq 6$ and $n \geq 16$, asymptotic values for $\hat{\Sigma}_{JS}^{(i)}$ are accurate for three (two) significant digits for L_1 (L_2) loss in most cases examined. The rates of the reduction of the risks of $\hat{\Sigma}_H^{(i)}(\hat{\Sigma}^{(i)})$ with respect to $\hat{\Sigma}_O^{(i)}$ are shown to be the highest 8%(20%) for i=1, $n\geq 16$ and 4%(11%) for i=2, $n\geq 32$ respectively within our examples computed in Tables. ### 2. Derivation of new estimators Since our goal is to find an estimator $\hat{\Sigma}$ which minimizes the risk, we shall look for a solution in a form $\hat{\Sigma}^{(1)} = (S + \gamma C)/n$ for L_1 or $\hat{\Sigma}^{(2)} = (S + \gamma C)/(n + p + 1)$ for L_2 . The risk for L_1 is given by (2.1) $$R_1(\hat{\Sigma}^{(1)}, \Sigma) = \frac{\gamma}{n} \operatorname{tr} C \Sigma^{-1} - E[\log |\frac{1}{n} (S + \gamma C) \Sigma^{-1}|].$$ Hence the derivative with respect to γ is (2.2) $$\frac{1}{n} \operatorname{tr} C \Sigma^{-1} - E[\operatorname{tr}(\gamma I + SC^{-1})^{-1}],$$ where the expectation is taken by S having $W_p(n, \Sigma)$ distribution. At $\gamma=0$, the derivative has a negative value -(p+1) tr $C\Sigma^{-1}/\{n(n-p-1)\}$, since $E(S^{-1})=\Sigma^{-1}/(n-p-1)$, by Kshirsagar [9], for example. This shows that the risk will be smaller if we take γ positive near zero. Assume that γ is small and put the derivative (2.2) equal to zero. We get an equation for γ , an approximate solution of which is given by which yields the estimator (1.6). The estimator (1.7) for L_2 is similarly derived. The constant factor b is restricted so that it dominates ordinary estimator $\hat{\Sigma}_{o}^{(i)}$, which will be discussed later. # 3. Risks of ordinary and James and Stein's minimax estimators Using the Bartlett's decomposition (Giri [3], page 126) of Wishart matrix S when $\Sigma = I$, we get (3.1) $$R_{1}(\hat{\Sigma}_{o}^{(1)}, \Sigma) = p \log n - \sum_{j=1}^{p} E[\log \chi_{n-j+1}^{2}],$$ where χ_m^2 denotes the χ^2 variate with m degrees of freedom. Using digamma function $\psi(x) = d \log \Gamma(x)/dx$, we can rewrite it $$p \log \frac{n}{2} - \sum_{j=1}^{p} \phi\left(\frac{n-j+1}{2}\right).$$ If n is an integer larger than one, we know that (3.3) $$\phi(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} - \gamma$$ for Euler's constant $\gamma = 0.57721$ 56649 01532 9... (Abramowitz and Stegun [1]). For half integer argument $(n \ge 1)$, (3.4) $$\phi\left(n + \frac{1}{2}\right) = -\gamma - 2\log 2 + 2\left(1 + \frac{1}{3} + \dots + \frac{1}{2n-1}\right).$$ These are sufficient for the computation of $R_1(\hat{\Sigma}_0^{(i)}, \Sigma)$. If n is large, an asymptotic formula for ψ is available, which is derived from Stirling's formula (Kendall [8], page 245) (3.5) $$\phi(x+h) = \log x + \frac{h-1/2}{x} + \sum_{r=1}^{n} \frac{(-1)^r B_{r+1}(h)}{x^{r+1}(r+1)} + O\left(\frac{1}{x^{n+2}}\right),$$ where $B_r(h)$ are the Bernoulli polynomials given by $B_2(h) = h^2 - h + 1/6$, $B_3(h) = h^3 - (3/2)h^2 + (1/2)h$. This yields (3.6) $$R_{1}(\widehat{\Sigma}_{O}^{(1)}, \Sigma) = \frac{p(p+1)}{2n} + \frac{p(2p^{2}+3p-1)}{12n^{2}} + \frac{p(p^{2}-1)(p+2)}{12n^{3}} + O(n^{-4}).$$ Some numerical values of $R_1(\hat{\Sigma}_0^{(1)}, \Sigma)$ are computed based on $(3.2)\sim(3.4)$ and compared with the asymptotic values (3.6) for $p=2\sim6$ and $n=8\sim128$. They are shown in Table 1. We can see that the asymptotic approximations are excellent, namely, for $n\geq16$ and $p\leq6$, the values are accurate with three significance digits. Under L_2 loss, Haff [5] noted that (3.7)
$$R_{2}(\hat{\Sigma}_{o}^{(2)}, \Sigma) = \frac{p(p+1)}{2(n+p+1)},$$ | | | n=8 | n=16 | n=32 | n=64 | n = 128 | |-----|-------------------------------------|----------------------------|-------------------------------|-------------------------------|----------------------------------|-------------------------------| | p=2 | $O(n^{-1}) \ O(n^{-2}) \ O(n^{-3})$ | .37500
.03385
.00391 | .187500
.008464
.000488 | .093750
.002116
.000061 | .046875
.000529
.000008 | .023438
.000132
.000001 | | | approx.
exact | .4128
.413314 | $.19645 \\ .196484$ | .095927 $.095929$ | $.047412 \\ .047412$ | .023571 $.023571$ | | p=3 | $O(n^{-1}) \ O(n^{-2}) \ O(n^{-8})$ | .75000
.10156
.01953 | .37500
.02539
.00244 | .187500
.006348
.000305 | .093750
.001587
.000038 | .046875
.000397
.000005 | | | approx.
exact | .871
.876824 | $.4028 \\ .403141$ | .19415
.194171 | . 095375
. 095376 | $.047276 \\ .047277$ | | p=4 | $O(n^{-1}) \ O(n^{-2}) \ O(n^{-3})$ | 1.2500
.2240
.0586 | .62500
.05599
.00732 | .312500
.013997
.000916 | .156250
.003499
.000114 | .078125
.000875
.000014 | | | approx.
exact | 1.533
1.559962 | .6883
.689672 | .32741
.327490 | .159864
.159868 | .079014
.079015 | | p=5 | $O(n^{-1}) \ O(n^{-2}) \ O(n^{-3})$ | 1.8750
.4167
.1367 | .9375
.1042
.0171 | .46875
.02604
.00214 | . 234375
. 006510
. 000267 | .117188
.001628
.000033 | | | approx.
exact | $2.43 \\ 2.52347$ | 1.059
1.06300 | .4969
.497161 | . 24115
. 241166 | .118848
.118849 | | p=6 | $O(n^{-1}) \ O(n^{-2}) \ O(n^{-3})$ | 2.6250
.6953
.2734 | 1.3125
.1738
.0342 | .65626
.04346
.00427 | .328125
.010864
.000534 | .164063
.002716
.000067 | | | approx.
exact | 3.59
3.87328 | 1.521
1.53134 | .7040
.704554 | .33952
.339557 | .166845
.166847 | Table 1. Values of $R_1(\hat{\Sigma}_0^{(1)}, \Sigma)$ which is asymptotically the same as $R_1(\hat{\Sigma}_O^{(1)}, \Sigma)$ for large n. This is the reason why we prefer multiplier 1/2 in the definition of L_2 loss in (1.2). Unlike the simple form of (3.7), the asymptotic approximations (3.8) $$R_2(\hat{\Sigma}_0^{(2)}, \Sigma) = \frac{p(p+1)}{2n} - \frac{p(p+1)^2}{2n^2} + \frac{p(p+1)^3}{2n^3} + O(n^{-4})$$ are not so excellent as $R_1(\hat{\Sigma}_O^{(1)}, \Sigma)$. For example, the exact value of $R_2(\hat{\Sigma}_O^{(2)}, \Sigma)$ in (3.7) for p=2 and n=16 is 0.15789, while the asymptotic value of (3.8) gives 0.15894 which is accurate for three significant digits. From Table 1, the corresponding exact value of $R_1(\hat{\Sigma}_O^{(1)}, \Sigma)$ is 0.19648 and the asymptotic value is 0.19645 which is accurate for one more digit than $R_2(\hat{\Sigma}_O^{(2)}, \Sigma)$. This is the case with other values of parameters n and p. Next we shall evaluate the risks of the minimax estimators by James and Stein [7]. By considering a best equivariant estimator $\phi(LSL')=L\phi(S)L'$ for the transformation group of lower triangular matrices L with positive diagonal elements, they obtained a minimax estimator of (1.5) under L_1 loss and derived (3.9) $$R_1(\hat{\mathcal{Z}}_{JS}^{(1)}, \Sigma) = \sum_{j=1}^p \log(n+p-2j+1) - \sum_{j=1}^p E[\log \chi_{n-j+1}^2].$$ Using digamma function $\psi(x)$, this can be simplified as (3.10) $$\sum_{j=1}^{p} \log \frac{1}{2} (n+p-2j+1) - \sum_{j=1}^{p} \psi \left(\frac{n-j+1}{2} \right),$$ which is useful for numerical computations. The asymptotic form of (3.10) is obtained by (3.5), giving $$(3.11) R_1(\hat{\Sigma}_{JS}^{(1)}, \Sigma) = \frac{p(p+1)}{2n} + \frac{p(3p+1)}{12n^2} + \frac{p(p^2-1)(p+2)}{12n^3} + O(n^{-4}).$$ In Table 2 exact and asymptotic values of $R_1(\hat{\Sigma}_{JS}^{(1)}, \Sigma)$ are compared. It is found that for $n \ge 16$ and $p \le 6$, the asymptotic values are accurate for three significant digits, which is the same conclusion as for $R_1(\hat{\Sigma}_O^{(1)}, \Sigma)$. Since equivariant estimators contain best scalar multiple of S, namely, $\hat{\Sigma}_O^{(1)}$, inequality $R_1(\hat{\Sigma}_{JS}^{(1)}, \Sigma) < R_1(\hat{\Sigma}_O^{(1)}, \Sigma)$ holds as a matter of fact. If we take difference of the risks by asymptotic form, we get (3.12) $$R_{1}(\hat{\Sigma}_{JS}^{(1)}, \Sigma) - R_{1}(\hat{\Sigma}_{O}^{(1)}, \Sigma) = -\frac{p(p^{2}-1)}{6n^{2}} + O(n^{-4}),$$ which is negative for $p \ge 2$, neglecting the higher order terms. This suggests the | | n=8 | n=16 | n=32 | n=64 | n=128 | |---|-----------------------|---------|---------|----------|----------| | $ \begin{array}{ccc} & D(n^{-1}) \\ & O(n^{-2}) \\ & O(n^{-3}) \end{array} $ | .37500 | .187500 | .093750 | . 046875 | .023438 | | | .01823 | .004557 | .001139 | . 000285 | .000071 | | | .00391 | .000488 | .000061 | . 000008 | .000001 | | approx. | .3971 | .19255 | .094950 | .047167 | .023510 | | exact | .39757 | .19257 | .094952 | .047168 | .023510 | | $ \begin{array}{ccc} p = 3 & O(n^{-1}) \\ & O(n^{-2}) \\ & O(n^{-3}) \end{array} $ | .75000 | .37500 | .187500 | .093750 | .046875 | | | .03906 | .00977 | .002441 | .000610 | .000153 | | | .01953 | .00244 | .000305 | .000038 | .000005 | | approx. | .809 | .3872 | .19025 | .094398 | 0.047033 | | exact | .81229 | .38739 | .190257 | .094399 | 0.047032 | | $p=4$ $O(n^{-1})$ $O(n^{-2})$ $O(n^{-3})$ | 1.2500 | .62500 | .312500 | .156250 | .078125 | | | .0677 | .01693 | .004232 | .001058 | .000265 | | | .0586 | .00732 | .000916 | .000114 | .000014 | | approx. | 1.376 | . 6493 | .31765 | .157422 | .078404 | | exact | 1.3927 | . 64997 | .31768 | .157425 | .078404 | | $ \begin{array}{ccc} p = 5 & O(n^{-1}) \\ & O(n^{-2}) \\ & O(n^{-3}) \end{array} $ | 1.8750 | .9375 | .46875 | . 234375 | .117188 | | | .1042 | .0260 | .00651 | . 001628 | .000407 | | | .1367 | .0171 | .00214 | . 000267 | .000033 | | approx. | 2.12 | .981 | .4774 | . 236270 | .117628 | | exact | 2.1713 | .98271 | .47750 | . 236275 | .117628 | | $ \begin{array}{ccc} p = 6 & O(n^{-1}) \\ & O(n^{-2}) \\ & O(n^{-3}) \end{array} $ | 2.6250 | 1.3125 | .65625 | .328125 | .164063 | | | .1484 | .0371 | .00928 | .002319 | .000580 | | | .2734 | .0342 | .00427 | .000534 | .000067 | | approx. | $\frac{3.05}{3.2107}$ | 1.384 | . 6698 | .33098 | .164709 | | exact | | 1.3889 | . 67003 | .330991 | .164710 | Table 2. Exact and asymptotic values of $R_1(\hat{\Sigma}_{JS}^{(1)}, \Sigma)$ validity of the asymptotic comparisons. Under L_2 loss, the exact $\Delta^{(2)}$ is not available. However Selliah [12] and Sharma [13] show that $\Delta = [\Delta_1^{(2)}, \dots, \Delta_p^{(2)}]'$, satisfies linear equations $A\Delta = b$, where $p \times p$ matrix A and p-vector b are given by $$A = \begin{pmatrix} (n+p-1)(n+p+1) & n+p-3 & \cdots & n-p+1 \\ n+p-3 & (n+p-3)(n+p-1) & \cdots & n-p+1 \\ \cdots & \cdots & \cdots & \cdots \\ n-p+1 & n-p+1 & \cdots & (n-p+1)(n-p+3) \end{pmatrix}$$ $$b = (n+p-1, n+p-3, \dots, n-p+1)'$$. With this Δ , the risk is given by (3.14) $$R_2(\hat{\Sigma}_{JS}^{(2)}, \Sigma) = \frac{1}{2} p - \frac{1}{2} \sum_{j=1}^{p} (n - 2j + p + 1) \Delta_j^{(2)}.$$ We can see by checking the exact values of $\Delta^{(1)}$ and $\Delta^{(2)}$ that the choice of $\Delta_f^{(1)}$ is always larger than $\Delta_f^{(2)}$ and the risks of $\hat{\Sigma}_{JS}^{(1)}$ are larger than that of $\hat{\Sigma}_{JS}^{(2)}$. The best scalar multiple 1/n for L_1 loss and 1/(n+p+1) for L_2 loss lie always smaller than the middle of $\Delta_1, \dots, \Delta_p$. Sharma [13] gives the values of $R_2(\hat{\Sigma}_{JS}^{(2)}, \Sigma)$ for p=2 and n=5(5)30. Using (3.13), we can evaluate Δ for large n, giving $$\Delta_{j}^{(2)} = \frac{1}{n} - \frac{2}{n^{2}} (p+1-j) + \frac{1}{n^{3}} [4(p+1)^{2} - (8p+9)j + 5j^{2}] + \frac{1}{3n^{4}} [-2(p+1)(11p^{2} + 22p + 12) + (66p^{2} + 150p + 85)j -3(28p+33)j^{2} + 38j^{3}] + O(n^{-5})$$ and $$(3.16) R_2(\hat{\Sigma}_{JS}^{(2)}, \Sigma) = \frac{p(p+1)}{2n} - \frac{p(p+1)(2p+1)}{3n^2} + \frac{p^2(p+1)^2}{n^3} + O(n^{-4}).$$ Note that optimal scalar multiplier for S is 1/n under L_1 loss and 1/(n+p+1) under L_2 loss. Asymptotic expansion of $\mathcal{L}_j^{(1)} = 1/(n+p+1-2j)$ replaced n by n+p+1 yields the same terms as in (3.15) up to order n^{-2} . The difference of the risks, $R_2(\hat{\Sigma}_{JS}^{(2)}, \Sigma) - R_2(\hat{\Sigma}_O^{(2)}, \Sigma)$ in the asymptotic form is exactly the same as (3.12) up to $O(n^{-2})$. In Table 3, exact and asymptotic values of $R_2(\hat{\Sigma}_{JS}^{(2)}, \Sigma)$ are shown based on (3.14) and (3.16). We can see that the asymptotic approximations are worse than $R_1(\hat{\Sigma}_{JS}^{(1)}, \Sigma)$ and are comparative for $R_2(\hat{\Sigma}_O^{(2)}, \Sigma)$. This suggests that the loss L_1 is favourable for the asymptotic approximations. The maximum rate of reduction of risks for $\hat{\Sigma}_{JS}^{(1)}$ with respect to $\hat{\Sigma}_O^{(1)}$ within Tables 1 and 2 is given by 17% for n=8 and p=6. However the corresponding rate for L_2 loss in Table 3 is only 5%. | | n=8 | n=16 | n=32 | n=64 | n = 128 | |--|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------| | $ \begin{array}{ccc} p = 2 & O(n^{-1}) \\ & O(n^{-2}) \\ & O(n^{-3}) \end{array} $ | .37500 | .18750 | .093750 | .046875 | .023438 | | | —.15625 | —.03906 | 009766 | —.002441 | 000610 | | | .07031 | .00879 | .001099 | .000137 | .000017 | | approx. | . 289 | .1572 | .0851 | .04457 | .022844 | | exact | . 26697 | .15559 | .084970 | .044563 | .022844 | | $ \begin{array}{ccc} p = 3 & O(n^{-1}) \\ & O(n^{-2}) \\ & O(n^{-3}) \end{array} $ | .75000 | .37500 | .18750 | .093750 | .046875 | | | 43750 | 10938 | 02734 | 006836 | —.001709 | | | .28125 | .03516 | .00440 | .000549 | .000069 | | approx. | .59
| .301 | .1646 | .08746 | .045235 | | exact | .48250 | .29211 | .16393 | .087422 | .045232 | | $ \begin{array}{ccc} p = 4 & O(n^{-1}) \\ & O(n^{-2}) \\ & O(n^{-3}) \end{array} $ | 1.2500 | .62500 | .31250 | .15625 | .078125 | | | 9375 | —.23438 | —.05859 | 01465 | —.003662 | | | .7813 | .09766 | .01221 | .00153 | .000191 | | approx. | 1.09 | .488 | . 266 | .1431 | .07465 | | exact | .73548 | .45918 | . 26397 | .14298 | .074644 | | $ \begin{array}{ccc} p = 5 & O(n^{-1}) \\ & O(n^{-2}) \\ & O(n^{-3}) \end{array} $ | 1.8750
—1.7188
1.7578 | .9375
— .4297
.2197 | .46875
—.10742
.02747 | .23438
02686
.00343 | 006714 000429 | | approx. | 1.9 | .73 | .389 | .2110 | .11090 | | exact | 1.0189 | .65233 | .38311 | .21056 | .11088 | | $ \begin{array}{ccc} p = 6 & O(n^{-1}) \\ & O(n^{-2}) \\ & O(n^{-3}) \end{array} $ | 2.625 | 1.3125 | .65625 | .32813 | .164063 | | | 2.844 | —.7109 | 17773 | —.04443 | 011108 | | | 3.445 | .4307 | .05383 | .00673 | .000841 | | approx. | 3.2 | 1.03 | .532 | . 2904 | .15380 | | exact | 1.3283 | .86807 | .51965 | . 28952 | .15374 | Table 3. Exact and asymptotic values of $R_2(\hat{\Sigma}_{JS}^{(2)}, \Sigma)$ ## 4. Risks under L_1 loss **4.1. Risk of Haff's estimator.** As Sharma [13] noted, the exact values of the risks of Haff's estimators are difficult to compute. Asymptotic evaluation of them gives some useful information. We shall put C=I in (1.3) without loss of generality and assume that t(u)=b=constant, namely, the estimator $$\hat{\Sigma}_{H}^{(1)} = \frac{1}{n} \left(S + \frac{b}{\operatorname{tr} S^{-1}} I \right)$$ is considered for L_1 loss. The difference of risks can be written by $$(4.2) R_{1}(\hat{\Sigma}_{H}^{(1)}, \Sigma) - R_{1}(\hat{\Sigma}_{O}^{(1)}, \Sigma)$$ $$= \frac{b}{n} E \left[\frac{\operatorname{tr} \Sigma^{-1}}{\operatorname{tr} S^{-1}} \right] - E \left[\log \left| I + \frac{b}{\operatorname{tr} S^{-1}} S^{-1} \right| \right],$$ which is bounded from above by (4.3) $$\frac{b}{n} E \left[\frac{\operatorname{tr} \Sigma^{-1}}{\operatorname{tr} S^{-1}} \right] - b + \frac{b^2}{2} E \left[\frac{\operatorname{tr} S^{-2}}{(\operatorname{tr} S^{-1})^2} \right].$$ By the Wishart identity due to Haff [5], we get (4.4) $$E\left[\frac{\operatorname{tr} \Sigma^{-1}}{\operatorname{tr} S^{-1}}\right] = n - p - 1 + 2E\left[\frac{\operatorname{tr} S^{-2}}{(\operatorname{tr} S^{-1})^2}\right].$$ This yields an upper bound of (4.2) $$(4.5) \qquad \frac{b}{n} \left(-p-1+2+\frac{nb}{2}\right),$$ which is negative if and only if $0 \le b \le 2(p-1)/n$, and the minimum value is attained by b = (p-1)/n. This is the special case of Theorem 4.3 by Haff [5]. We impose this restriction on b. Note that $b = O(n^{-1})$ and $Y = \sqrt{n}(S/n - \Sigma)$ converges in law to a p(p+1)/2 variate normal distribution with mean zero. We can evaluate (4.2) asymptotically as (4.6) $$\frac{b}{n} \left\{ E \left[\frac{\operatorname{tr} \Sigma^{-1}}{\operatorname{tr} S^{-1}} \right] - n + \frac{nb}{2} E \left[\frac{\operatorname{tr} S^{-2}}{(\operatorname{tr} S^{-1})^2} \right] - \frac{b^2 n}{3} \frac{\operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-1})^3} \right\} + O(n^{-4}).$$ In getting the last term of (4.6), we should take $E[\operatorname{tr} S^{-3}/(\operatorname{tr} S^{-1})^3]$, which can be evaluated by writing $S/n = \Sigma + Y/\sqrt{n}$ and noting that E(Y) = 0 and $Y = O_p(1)$, giving $\operatorname{tr} \Sigma^{-3}/(\operatorname{tr} \Sigma^{-1})^3 + O(n^{-1})$. Now we need the following lemma to complete our asymptotic expansion. Lemma 4.1. Let S have a Wishart distribution $W_p(n, \Sigma)$. Then (4.7) $$E\left[\frac{\operatorname{tr} S^{-2}}{(\operatorname{tr} S^{-1})^{2}}\right] = \frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} \Sigma^{-1})^{2}} + \frac{1}{n} \left\{ 6 \frac{(\operatorname{tr} \Sigma^{-2})^{2}}{(\operatorname{tr} \Sigma^{-1})^{4}} - 8 \frac{\operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-1})^{3}} + \frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} \Sigma^{-1})^{2}} + 1 \right\} + O(n^{-2}).$$ PROOF. From the Wishart identity, we get (4.8) $$E\left[\frac{\operatorname{tr} S^{-2}}{(\operatorname{tr}_{k} S^{-1})^{2}} \operatorname{tr} \Sigma^{-1}\right] = 4E\left[\frac{(\operatorname{tr} S^{-2})^{2}}{(\operatorname{tr} S^{-1})^{3}} - \frac{\operatorname{tr} S^{-3}}{(\operatorname{tr} S^{-1})^{2}}\right] + (n-p-1)E\left[\frac{\operatorname{tr} S^{-2}}{\operatorname{tr} S^{-1}}\right].$$ (4.9) $$E\left[\frac{\operatorname{tr} S^{-2}}{\operatorname{tr} S^{-1}} \operatorname{tr} \Sigma^{-1}\right] = 2E\left[\frac{(\operatorname{tr} S^{-2})^{2}}{(\operatorname{tr} S^{-1})^{2}} - 2\frac{\operatorname{tr} S^{-3}}{\operatorname{tr} S^{-1}}\right] + (n - p - 1)E[\operatorname{tr} S^{-2}].$$ By Haff [4], we know that (4.10) $$E[\operatorname{tr} S^{-2}] = \frac{(\operatorname{tr} \Sigma^{-1})^2}{(n-p)(n-p-1)(n-p-3)} + \frac{\operatorname{tr} \Sigma^{-2}}{(n-p)(n-p-3)}$$ $$= \frac{1}{n^2} \operatorname{tr} \Sigma^{-2} + \frac{2p+3}{n^3} \operatorname{tr} \Sigma^{-2} + \frac{1}{n^3} (\operatorname{tr} \Sigma^{-1})^2 + O(n^{-4}).$$ Combined with these formulas, we get the desired result (4.7). Substituting (4.4) and (4.7) into (4.6) and using (3.12) we get Theorem 4.1. An asymptotic expansion of the difference of risks between Haff's estimator $\hat{\Sigma}_{H}^{(1)}$ defined by (4.1) with b=(p-1)/n and James and Stein's minimax estimator $\hat{\Sigma}_{JS}^{(1)}$ for L_1 loss is given by $$R_{1}(\widehat{\Sigma}_{H}^{(1)}, \Sigma) - R_{1}(\widehat{\Sigma}_{JS}^{(1)}, \Sigma) = \frac{p-1}{6n^{2}} \left\{ (p+1)(p-6) + 3(p+3) \frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} \Sigma^{-1})^{2}} \right\}$$ $$+ \frac{(p-1)(p+3)}{2n^{3}} \left\{ 6 \frac{(\operatorname{tr} \Sigma^{-2})^{2}}{(\operatorname{tr} \Sigma^{-1})^{4}} - 8 \frac{\operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-1})^{3}} + \frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} \Sigma^{-1})^{2}} + 1 \right\}$$ $$- \frac{(p-1)^{3}}{3n^{3}} \frac{\operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-1})^{3}} + O(n^{-4}).$$ We can see that the term of $O(n^{-2})$ in (4.11) is always positive, if $p \ge 6$. This shows that the risk of $\hat{\Sigma}_H^{(1)}$ is always larger than that of $\hat{\Sigma}_{JS}^{(1)}$ asymptotically, if $p \ge 6$. Note that $$\frac{1}{p} \leq \frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} \Sigma^{-1})^2} \leq 1.$$ The lower and upper bounds of $O(n^{-2})$ in (4.11) are given by $$(4.13) \frac{1}{6}(p-1)\left(p^2-5p-3+\frac{9}{p}\right) \text{ and } \frac{1}{6}(p-1)\left(p^2-2p+3\right).$$ Some numerical values are given in the following: Ranges of $$O(n^{-2})$$ in (4.11). $p=2$ $p=3$ $p=4$ $p=5$ $p=6$ $\left(-\frac{3}{4}, \frac{1}{2}\right)$ $(-2, 2)$ $\left(-\frac{19}{8}, \frac{11}{2}\right)$ $\left(-\frac{4}{5}, 12\right)$ $\left(\frac{15}{4}, \frac{45}{2}\right)$ The risk is unchanged for any scalar multiple of Σ . Some numerical values based on (4.11) are given in Table 4. The term of $O(n^{-3})$ gives some idea for the error of our asymptotic approximation. For $\Sigma^{-1} = \lambda \operatorname{diag}(1,1,\cdots,1)$, the lower bound of (4.12) is attained and for $\Sigma^{-1} \to \lambda \operatorname{diag}(1,0,\cdots,0)$, the upper bound is approached. In Table 4 we write $\Sigma^{-1} = \lambda(1,\cdots,1)$ instead of $\Sigma^{-1} = \lambda \operatorname{diag}(1,\cdots,1)$ for abbreviation. Inspection of Table 4 shows that for $p \ge 6$, the risk differences are positive and that for p = 5 and $\Sigma^{-1} = \lambda \operatorname{diag}(1,\cdots,1)$, the values are positive for n = 8 and n = 16, while they are negative for $n \ge 32$. Precisely speaking they are positive for $n \le 21$ and negative for $n \ge 22$. Whether this is due to the poor accuracy of the asymptotic approximation for small n is not clear. For $p \le 4$ and $\Sigma^{-1} = \lambda \operatorname{diag}(1,\cdots,1)$, the values are all negative. Thus p = 5 is the boundary. $\widehat{\Sigma}_{H}^{(0)}$ is better than $\widehat{\Sigma}_{JS}^{(0)}$ for these type of Σ if $p \le 5$. For $0 \le b \le 2(p-1)/n$, inequality $R_1(\widehat{\Sigma}_{H}^{(0)}, \Sigma) < R_1(\widehat{\Sigma}_{O}^{(1)}, \Sigma)$ holds exactly. This can be verified also by the asymptotic consideration, namely, we have (4.14) $$R_{1}(\hat{\Sigma}_{H}^{(1)}, \Sigma) - R_{1}(\hat{\Sigma}_{O}^{(1)}, \Sigma)$$ $$= \frac{p-1}{n^{2}} \left[-(p+1) + \frac{1}{2} (p+3) \frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} \Sigma^{-1})^{2}} \right] + O(n^{-3}).$$ The term of $O(n^{-2})$ is always negative because of (4.12). This gives again a weak support as in (3.12) for the usefulness of the asymptotic comparison, when exact inequality between risks is not known. From Tables 1 and 4, we can compute the rates of the reduction of the risks of Haff's estimator $\hat{\Sigma}_H^{(1)}$ with respect to the Table 4. Asymptotic values of $R_1(\hat{\Sigma}_H^{(1)}, \Sigma) - R_1(\hat{\Sigma}_{JS}^{(1)}, \Sigma)$ | Σ^{-1} | | n=8 | n=16 | n=32 | n=64 | n = 128 | |------------------------------|---|-----------------------------|--|------------------------------|--|--| | $p=2$ $\lambda(1,1)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | 011719
.004720
0070 | 002930
.000590
00234 | 000732
.000074
000659 | 000183
.000009
000174 | 000046
.000001
000045 | | $\lambda(1,2)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | 009549
.003400
0061 | 002387
.000425
00196 | 000597
.000053
000544 | 000149
.000007
000143 | 000037
.000001
000036 | | $\lambda(1,10)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | .001356
000496
.00086 | .000339
000062
.000277 |
.000085
000008
.000077 | $\begin{array}{c} .000021 \\000001 \\ .000020 \end{array}$ | .000005
000000
.000005 | | $\lambda(1,0)$ | $\begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .007813
000651
.00716 | .001953
000081
.001872 | .000488
000010
.000478 | $\begin{array}{c} .000122 \\000001 \\ .000121 \end{array}$ | 000031 000000 $.000030$ | | $p=3 \qquad \lambda(1,1,1)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | 031250
.012442
019 | 007813
.001555
0063 | 001953
.000194
00176 | 000488
.000024
000464 | 000122
.000003
000119 | | $\lambda(1,2,3)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | 026042
.010417
016 | 006510
.001302
0052 | 001628
.000163
00146 | 000407
.000020
000387 | 000102
.000003
000099 | | $\lambda(1, 10, 10^2)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | .014358
003847
.0105 | .003590
000481
.00311 | .000897
000060
.000837 | 000224 000008 000217 | .000056
000001
.000055 | | $\lambda(1,0,0)$ | $\begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .031250
005208
.0260 | 007813 000651 00716 | .001953
000081
.001872 | $000488 \\000010 \\ .000478$ | $\begin{array}{c} .000122 \\000001 \\ .000121 \end{array}$ | | $p=4$ $\lambda(1,\cdots,1)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | 037109
.021973
015 | 009277
.002747
0065 | 002319
.000343
00198 | 000580
.000043
000537 | 000145
.000005
000140 | | $\lambda(1, 2, 3, 4)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | 028906
.019570
009 | 007227
.002446
0048 | 001807
.000306
00150 | $ \begin{array}{r}000452 \\ .000038 \\000413 \end{array} $ | 000113
.000005
000108 | | $\lambda(1, 10, 10^2, 10^3)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | .056135
012895
.043 | $ \begin{array}{r} .014034 \\001612 \\ .0124 \end{array} $ | .003508
000201
.00331 | .000877
000025
.000852 | 000219 000003 $.000216$ | | $\lambda(1, 0, 0, 0)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .085938
—.017578
.068 | $-021484 \\ -002197 \\ 0193$ | .005371
000275
.00510 | 001343 000034 001308 | .000336
000004
.000331 | | Σ-1 | | n=8 | n=16 | n=32 | n=64 | n = 128 | |-----------------------------|---|---------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------| | $p=5$ $\lambda(1,\cdots,1)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | 012500
.033333
.021 | 003125
.004167
.0010 | 000781
.000521
00026 | 000195
.000065
000130 | | | $\lambda(1,2,\cdots,5)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | 001389
.030648
.029 | 000347
.003831
.0035 | 000087
.000479
.00039 | 000022
.000060
.000038 | 000005
.000007
.000002 | | $\lambda(1,10,\cdots,10^4)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .142050
030504
.112 | .035512
003813
.0317 | .008878
000477
.00840 | .002220
000060
.002160 | | | λ(1, 0,, 0) | $ \begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array} $ | .187500
—.041667
.146 | .046875
—.005208
.0417 | .011719
—.000651
.01107 | .002930
000081
.002848 | 000010 | | $p=6$ $\lambda(1,\cdots,1)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | . 058594
. 046568
. 105 | . 014648
. 005821
. 0205 | .003662
.000728
.00439 | .000916
.000091
.001006 | .000011 | | $\lambda(1,2,\cdots,6)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | .072545
.043624
.116 | .018136
.005453
.0236 | .004534
·000682
.00522 | .001134
.000085
.001219 | .000283
.000011
.000294 | | $\lambda(1,10,\cdots,10^5)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | . 287643
— . 059523
. 228 | .071911
—.007440
.0645 | .017978
000930
.01705 | $-004494 \\ -000116 \\ 00438$ | | | $\lambda(1,0,\cdots,0)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .351563
—.081380
.270 | .087891
—.010173
.078 | .021973
—.001272
.0207 | .005493
000159
.00533 | 001373 000020 $.001353$ | Table 4. (continued) maximum likelihood estimator $\hat{\Sigma}_{o}^{\text{(i)}}$, namely $100 \times \{R_{1}(\hat{\Sigma}_{o}^{\text{(i)}}, \Sigma) - R_{1}(\hat{\Sigma}_{H}^{\text{(i)}}, \Sigma)\}/R_{1}(\hat{\Sigma}_{o}^{\text{(i)}}, \Sigma)$, which range above to 8% for $n \ge 16$. The rates of the reduction of the risks of $\hat{\Sigma}_{H}^{\text{(i)}}$ with respect to $\hat{\Sigma}_{JS}^{\text{(i)}}$ range only from -5.6% to 1.6% for $n \ge 16$ in Table 4. **4.2.** Risk of new estimator. Now we shall consider the risk of a new estimator $\hat{\mathcal{L}}^{(1)}$ given in (1.6). We can write the risk difference (4.15) $$R_{1}(\hat{\Sigma}^{(1)}, \Sigma) - R_{1}(\hat{\Sigma}^{(1)}_{0}, \Sigma) = \frac{b}{n} (\operatorname{tr} \Sigma^{-1}) E \left[\frac{\operatorname{tr} S^{-1}}{\operatorname{tr} S^{-2}} \right] - E \left[\log \left| I + \frac{b \operatorname{tr} S^{-1}}{\operatorname{tr} S^{-2}} S^{-1} \right| \right].$$ By the Wishart identity, we get (4.16) $$E\left[\frac{\operatorname{tr} S^{-1}}{\operatorname{tr} S^{-2}} \operatorname{tr} \Sigma^{-1}\right] = 4E\left[\frac{\operatorname{tr} S^{-3} \operatorname{tr} S^{-1}}{(\operatorname{tr} S^{-2})^{2}}\right] - 2$$ $$+ (n - p - 1)E\left[\frac{(\operatorname{tr} S^{-1})^{2}}{\operatorname{tr} S^{-2}}\right].$$ Using (4.16), the risk difference is bounded from above by $$(4.17) \qquad \frac{b}{n} \left\{ 4E \left[\frac{\operatorname{tr} S^{-3} \operatorname{tr} S^{-1}}{(\operatorname{tr} S^{-2})^2} \right] - 2 + \left(\frac{bn}{2} - p - 1 \right) E \left[\frac{(\operatorname{tr} S^{-1})^2}{\operatorname{tr} S^{-2}} \right] \right\}.$$ Note that $$(4.18) 2\frac{\operatorname{tr} S^{-3} \operatorname{tr} S^{-1}}{(\operatorname{tr} S^{-2})^2} \leq 1 + \frac{(\operatorname{tr} S^{-1})^2}{\operatorname{tr} S^{-2}},$$ where the equality holds if and only if $S^{-1} = \lambda \operatorname{diag}(1, 0, \dots, 0)$ except for permutation of the diagonal elements. The upper bound (4.17) is further simplified as $$(4.19) \qquad \frac{b}{n} \left(\frac{bn}{2} - p + 1\right) E\left[\frac{(\operatorname{tr} S^{-1})^2}{\operatorname{tr} S^{-2}}\right].$$ Hence $\hat{\Sigma}^{(1)}$ dominates $\hat{\Sigma}^{(1)}_0$ if $0 \le b \le 2(p-1)/n$ and the minimum of (4.19) is attained by b = (p-1)/n. The choice of b is the same as for the Haff's estimator. To get asymptotic expansion of the risk difference (4.15), we can rewrite it as in (4.6) by $$(4.20) \qquad \frac{b}{n} \left\{ \left(\frac{nb}{2} - p - 1 \right) E \left[\frac{(\operatorname{tr} S^{-1})^{2}}{\operatorname{tr} S^{-2}} \right] - 2 + 4E \left[\frac{\operatorname{tr} S^{-3} \operatorname{tr} S^{-1}}{(\operatorname{tr} S^{-2})^{2}} \right] \right\}$$ $$- \frac{b^{3}}{3} \frac{(\operatorname{tr} \Sigma^{-1})^{3} \operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-2})^{3}} + O(n^{-4}).$$ To evaluate each expectation asymptotically, we need the following lemma. LEMMA 4.2. Let S have a Wishart distribution $W_p(n, \Sigma)$. Then $$E\left[\frac{(\operatorname{tr} S^{-1})^{2}}{\operatorname{tr} S^{-2}}\right]$$ $$=\frac{(\operatorname{tr} \Sigma^{-1})^{2}}{\operatorname{tr} \Sigma^{-2}} + \frac{1}{n} \left[8 \frac{\operatorname{tr} \Sigma^{-4} (\operatorname{tr} \Sigma^{-1})^{2}}{(\operatorname{tr} \Sigma^{-2})^{3}} - \frac{(\operatorname{tr} \Sigma^{-1})^{4}}{(\operatorname{tr} \Sigma^{-2})^{2}}\right]$$ $$-8 \frac{\operatorname{tr} \Sigma^{-3} \operatorname{tr} \Sigma^{-1}}{(\operatorname{tr} \Sigma^{-2})^{2}} - \frac{(\operatorname{tr} \Sigma^{-1})^{2}}{\operatorname{tr} \Sigma^{-2}} + 2\right] + O(n^{-2}),$$ $$E\left[\frac{\operatorname{tr} S^{-1} \operatorname{tr} S^{-3}}{(\operatorname{tr} S^{-2})^{2}}\right]$$ $$=\frac{\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-2})^{2}} + \frac{1}{n} \left[24 \frac{\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3} \operatorname{tr} \Sigma^{-4}}{(\operatorname{tr} \Sigma^{-2})^{4}}\right]$$ $$-\frac{2}{(\operatorname{tr} \Sigma^{-2})^{3}} \{(\operatorname{tr} \Sigma^{-1})^{3} \operatorname{tr} \Sigma^{-3} + 12 \operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-5} + 4(\operatorname{tr} \Sigma^{-3})^{2}\} + \frac{1}{(\operatorname{tr} \Sigma^{-2})^{2}} \{\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3} + 6 \operatorname{tr} \Sigma^{-4}\}$$ $$+\frac{3(\operatorname{tr} \Sigma^{-1})^{2}}{\operatorname{tr} \Sigma^{-2}} + O(n^{-2}).$$ Unlike Lemma 4.1, it seems to be impossible to prove Lemma 4.2 from the Wishart identity only. We obtained it by another method used by Ito [6], Siotani [14], Okamoto [11], Sugiura [15], Fujikoshi [2] and others, that is, for analytic function f(S), it holds (4.23) $$E\left[f\left(\frac{1}{n}S\right)\right] = f(\Sigma) + \frac{1}{n}\operatorname{tr}(\Sigma\partial)^{2}f(\Lambda)|_{\Lambda=\Sigma} + O(n^{-2}),$$ where ∂ is a matrix of differential operators and its (i, j) element is given by $(1/2)(1+\delta_{ij})(\partial/\partial\lambda_{ij})$ for $\Lambda=(\lambda_{ij})$. The following lemma is useful for the repeated application of (4.23). LEMMA 4.3. Let E_{ij} $(i \neq j)$ be $p \times p$ matrix having 1/2 at the (i, j) and (j, i) positions and zero at other positions. Let E_{ii} be diagonal matrix having 1 at i-th diagonal and zero otherwise. Then for any symmetric matrices $A = (a_{ij})$ and $B = (b_{ij})$, $$\sum_{i,j} \lambda_i \lambda_j \operatorname{tr} A E_{ij} \operatorname{tr} B E_{ij} = \sum_{i,j} \lambda_i \lambda_j a_{ij} b_{ij}$$ $$\sum_{i,j}
\lambda_i \lambda_j \operatorname{tr} A E_{ij} B E_{ij} = \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j a_{ij} b_{ij} + \frac{1}{2} \sum_i \lambda_i a_{ii} \sum_j \lambda_j b_{jj}.$$ Applying Lemma 4.2 to (4.20), we get Theorem 4.2. An asymptotic expansion of the difference of risks between new estimator $\hat{\Sigma}^{(1)}$ defined by (1.6) with b=(p-1)/n and James and Stein's minimax estimator $\hat{\Sigma}^{(1)}_{JS}$ for L_1 loss is given by $$R_{1}(\hat{\Sigma}^{(1)}, \Sigma) - R_{1}(\hat{\Sigma}^{(1)}_{JS}, \Sigma) = \frac{p(p^{2}-1)}{6n^{2}} + \frac{p-1}{n^{2}} \left[-2 + 4 \frac{\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-2})^{2}} \right]$$ $$- \frac{p+3}{2} \frac{(\operatorname{tr} \Sigma^{-1})^{2}}{\operatorname{tr} \Sigma^{-2}} \right] + \frac{p-1}{n^{3}} \left[96 \frac{\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3} \operatorname{tr} \Sigma^{-4}}{(\operatorname{tr} \Sigma^{-2})^{4}} \right]$$ $$- \frac{1}{(\operatorname{tr} \Sigma^{-2})^{3}} \left\{ \left(8 + \frac{(p-1)^{2}}{3} \right) (\operatorname{tr} \Sigma^{-1})^{3} \operatorname{tr} \Sigma^{-3} + 96 \operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-5} \right.$$ $$+ 32 (\operatorname{tr} \Sigma^{-3})^{2} + 4(p+3) (\operatorname{tr} \Sigma^{-1})^{2} \operatorname{tr} \Sigma^{-4} \right\}$$ $$+ \frac{1}{(\operatorname{tr} \Sigma^{-2})^{2}} \left\{ 4(p+4) \operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3} + 24 \operatorname{tr} \Sigma^{-4} + \frac{p+3}{2} (\operatorname{tr} \Sigma^{-1})^{4} \right\}$$ $$+ \left(12 + \frac{p+3}{2} \right) \frac{(\operatorname{tr} \Sigma^{-1})^{2}}{\operatorname{tr} \Sigma^{-2}} - p - 3 \right] + O(n^{-4}).$$ By the inequalities (4.12) and (4.18), the term of $O(n^{-2})$ in (4.25) ranges from (4.26) $$-\frac{1}{3}(p-1)(p^2+4p-6) \text{ to } \frac{1}{6}(p-1)(p^2-2p+3).$$ The lower bound is obtained by noting that $(\operatorname{tr} \Sigma^{-1})^2/\operatorname{tr} \Sigma^{-2} \leq p$ and $\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3}/(\operatorname{tr} \Sigma^{-2})^2 \geq 1$, where both equalities are satisfied by $\Sigma^{-1} = \lambda I$. The upper bound is the same as for $\hat{\Sigma}_H^{(1)}$ given in (4.13), while the lower bound is smaller than that of $\hat{\Sigma}_H^{(1)}$, and is always negative. Some numerical values are given below. The lower bound is considerably smaller than (4.13). Ranges of $$O(n^{-2})$$ in (4.25). $p=2$ $p=3$ $p=4$ $p=5$ $p=6$ $\left(-2, \frac{1}{2}\right)$ $(-10, 2)$ $\left(-26, \frac{11}{2}\right)$ $(-52, 12)$ $\left(-90, \frac{45}{2}\right)$ The upper bound is approached as $\Sigma^{-1} \rightarrow \lambda \operatorname{diag}(1,0,\cdots,0)$ or any permutation of the diagonal elements of it. This shows that $\hat{\Sigma}^{(1)}$ is better than $\hat{\Sigma}^{(1)}_{JS}$ for $\Sigma^{-1} = \lambda I$ and worse for $\Sigma^{-1} = \lambda \operatorname{diag}(1,0,\cdots,0)$, which is the same conclusion as in Haff's estimator $\hat{\Sigma}^{(1)}_H$. However the lower bound is always negative for $\hat{\Sigma}^{(1)}$ and it is not dominated by $\hat{\Sigma}^{(1)}_{JS}$ for any p if n is large. Some numerical values based on Theorem 4.2 are given in Table 5, in contrast to Table 4. For n=8 and $\Sigma^{-1}=\lambda I$, the positive risk differences are observed, which is probably due to the error of asymptotic approximation for small n. It is found that for $\Sigma^{-1}=\lambda I$ and $\lambda \operatorname{diag}(1,2,\cdots,p)$, $\hat{\Sigma}^{(1)}$ is better than $\hat{\Sigma}_{H}^{(1)}$; for $\Sigma^{-1}=\lambda \operatorname{diag}(1,10,\cdots,10^{p-1})$, $\hat{\Sigma}^{(1)}$ is slightly worse than $\hat{\Sigma}_{H}^{(1)}$; for $\Sigma^{-1}=\lambda \operatorname{diag}(1,0,\cdots,0)$, the asymptotic differences are consistent up to $O(n^{-3})$. The last statement can be confirmed by putting $\Sigma^{-1}=\lambda \operatorname{diag}(1,0,\cdots,0)$ in Theorems 4.1 and 4.2. From Tables 1, 2 and 5, we can compute the rates of the reduction of the risks of $\hat{\Sigma}^{(1)}$ with respect to $\hat{\Sigma}_{0}^{(1)}$, namely, $100\times\{R_{1}(\hat{\Sigma}_{0}^{(1)},\Sigma)-R_{1}(\hat{\Sigma}^{(1)},\Sigma)\}/R_{1}(\hat{\Sigma}_{0}^{(1)},\Sigma)$ which range above to 20% for $n\geq 16$. This may be compared with 8% for $\hat{\Sigma}_{H}^{(1)}$. If we compare the rates of $\hat{\Sigma}^{(1)}$ | | Table 5. Asymptotic values of $R_1(2^{(1)}, 2) - R_1(2^{(2)}, 2)$ | | | | | | | | |-----|---|---|-----------------------------|-------------------------------|------------------------------|-----------------------------|------------------------------|--| | 2 | Σ-1 | | n=8 | n=16 | n=32 | n=64 | n = 128 | | | p=2 | λ(1, 1) | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 031250
.033854
.003 | 007813
.004232
0036 | 001953
.000529
00142 | 000488
.000066
000422 | .000008 | | | | $\lambda(1,2)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | 018438
.008778
0097 | 004609
.001097
0035 | 001152
.000137
00102 | 000288
.000017
000271 | 000072
.000002
000070 | | | | λ(1, 10) | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .005040
001753
.0033 | $-001260 \\ -000219 \\ 00104$ | .000315
000027
.000288 | 000003 | 000000 | | | | $\lambda(1,0)$ | $ \begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array} $ | .007813
000651
.00716 | 001953 000081 001872 | .000488
000010
.000478 | 000001 | .000031
000000
.000030 | | Table 5. Asymptotic values of $R_1(\hat{\Sigma}^{(1)}, \Sigma) - R_1(\hat{\Sigma}^{(1)}, \Sigma)$ Table 5. (continued) | Table 3. (continued) | | | | | | | | |------------------------------|---|-----------------------------|---|--|------------------------------|--|--| | ∑-1 | | n=8 | n=16 | n=32 | n=64 | n = 128 | | | $p=3$ $\lambda(1,1,1)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | 156250
.153646
003 | 039063
.019206
020 | 009766
.002401
0074 | 002441
.000300
00214 | 000610
.000038
000573 | | | $\lambda(1,2,3)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | 103316
.069561
034 | 025829
.008695
0171 | 006457
.001087
0054 | 001614
.000136
00148 | 000404
.000017
000387 | | | $\lambda(1, 10, 10^2)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .021771
009179
.0126 | 005443 001147 0043 | .001361
000143
.00122 | .000340
000018
.000322 | 000085 000002 000083 | | | λ(1, 0, 0) | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .031250
005208
.0260 | 007813 000651 00716 | 001953 000081 001872 | .000488
000010
.000478 | 000122 000001 000121 | | | $p=4$ $\lambda(1,\dots,1)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 406250
.404297
002 | 101563
.050537
051 | 025391
.006317
0191 | 006348
.000790
00556 | 001587
.000099
001488 | | | $\lambda(1, 2, 3, 4)$ | $ \begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array} $ | 276042
.204965
07 | $ \begin{array}{r}069010 \\ .025621 \\043 \end{array} $ | $ \begin{array}{r}017253 \\ .003203 \\0140 \end{array} $ | 004313
.000400
00391 | 001078
.000050
001208 | | | $\lambda(1, 10, 10^2, 10^3)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .066391
027263
.039 | 016598 -003408 0132 | 004149 -000426 00372 | .001037
000053
.000984 | .000259
000007
.000253 | | | λ(1, 0, 0, 0) | $ \begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array} $ | .085938
017578
.068 | $021484 \\002197 \\ .0193$ | .005371
000275
.00510 | 001343 -000034 001308 | $\begin{array}{c} .000336 \\000004 \\ .000331 \end{array}$ | | | $p=5$ $\lambda(1, \dots, 1)$ | $\begin{array}{ c c }\hline O(n^{-2})\\O(n^{-3})\\approx.\end{array}$ | 812500
.841667
.03 | 203125
.105208
10 | 050781
.013151
038 | 012695
.001644
0111 | 003174
.000205
00297 | | | $\lambda(1,2\cdots,5)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 556302
.435419
12 | 139075
.054427
085 | 034769
.006803
0280 | 008692
.000850
00784 | 002173
.000106
00207 | | | $\lambda(1,10,\cdots,10^4)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .154470 061226 $.093$ | 038618 -0.007653 0310 | .009654
000957
.00870 | $002414 \\ -000120 \\ 00229$ | .000603
000015
.000588 | | | $\lambda(1,0,\cdots,0)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | .187500
041667
.146 | .046875
005208
.0417 | .011719
000651
.01107 | .002930
000081
.002848 | 000732 000010 $.000722$ | | | $p=6$ $\lambda(1,\cdots,1)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | -1.406250
1.529948
.1 | 351563
.191243
16 | 087891
.023905
064 | 021973
.002988
0190 | 005493
.000374
00512 | | | $\lambda(1,2,\cdots,6)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 963619
.782396
18 | 240905
. 097799
143 | 060226
.012225
048 | 015057
.001528
0135 | 003764
.000191
00357 | | | $\lambda(1,10,\cdots,10^5)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .301591
—.116287
.19 | .075398
—.014536
.061 | .018849
001817
.0170 | $004712 \\ -000227 \\ 00449$ | .001178
000028
.001150 | | | λ(1, 0, …, 0) | $\begin{array}{c} O(n^{-2}) \\ O(n^{-8})
\\ \text{approx.} \end{array}$ | .351563
081380
.270 | .087891
—.010173
.078 | .021973
001272
.0207 | .005493
000159
.00533 | .001373
000020
.001353 | | with respect to $\hat{\Sigma}_{JS}^{(1)}$, we get the range from -5.6% to 12% in Table 5 for $n \ge 16$. The rates for $\hat{\Sigma}^{(1)}$ with respect to $\hat{\Sigma}_{H}^{(1)}$ range from -0.4% to 12% for $n \ge 16$. ## 5. Risks under L_2 loss # 5.1. Risk of Haff's estimator. We shall now consider the estimator (5.1) $$\hat{\Sigma}_{H}^{(2)} = \frac{1}{n+p+1} \left[S + \frac{b}{\operatorname{tr} S^{-1}} I \right]$$ proposed by Haff [5], where C is taken to be I in (1.4) without loss of generality. The loss function is given by (1.2), throughout Section 5. It is known by Haff [5] that the best scalar multiple of S is given by $\hat{\Sigma}_{O}^{(2)} = S/(n+p+1)$. The difference of risks can be written by (5.2) $$R_{2}(\hat{\Sigma}_{H}^{(2)}, \Sigma) - R_{2}(\hat{\Sigma}_{O}^{(2)}, \Sigma) = \frac{b}{2(n+p+1)^{2}} E\left[\frac{2}{\operatorname{tr} S^{-1}} \operatorname{tr}\{S\Sigma^{-2} - (n+p+1)\Sigma^{-1}\} + \frac{b \operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} S^{-1})^{2}}\right].$$ To evaluate each expectation, we need the following equations due to Haff [5] derived from the Wishart identity. (5.3) $$E\left[\frac{\operatorname{tr} S\Sigma^{-2}}{\operatorname{tr} S^{-1}}\right] = nE\left[\frac{\operatorname{tr} \Sigma^{-1}}{\operatorname{tr} S^{-1}}\right] + 2E\left[\frac{\operatorname{tr} S^{-1}\Sigma^{-1}}{(\operatorname{tr} S^{-1})^{2}}\right].$$ (5.4) $$E\left[\frac{\operatorname{tr} S^{-1} \Sigma^{-1}}{(\operatorname{tr} S^{-1})^2}\right] = (n - p - 2) E\left[\frac{\operatorname{tr} S^{-2}}{(\operatorname{tr} S^{-1})^2}\right] + 4 E\left[\frac{\operatorname{tr} S^{-3}}{(\operatorname{tr} S^{-1})^3}\right] - 1.$$ (5.5) $$E\left[\frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} S^{-1})^2}\right] = 4E\left[\frac{\operatorname{tr} S^{-2} \Sigma^{-1}}{(\operatorname{tr} S^{-1})^3}\right] + (n-p-1)E\left[\frac{\operatorname{tr} S^{-1} \Sigma^{-1}}{(\operatorname{tr} S^{-1})^2}\right].$$ Together with (4.4) and Lemma 4.1, we can rewrite (5.2) as $$\frac{b}{(n+p+1)^{2}} \left[-n(p+1) + \left\{ 2n - 4p - 4 - bn(p+1) + \frac{bn^{2}}{2} \right\} \frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} \Sigma^{-1})^{2}} + (p+1)^{2} - 8 \frac{\operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-1})^{3}} + 3(bn+4) \frac{(\operatorname{tr} \Sigma^{-2})^{2}}{(\operatorname{tr} \Sigma^{-1})^{4}} \right] + O(n^{-4}).$$ Assuming that b=O(1/n), the term of $O(n^{-2})$ in (5.6) is $$(5.7) -n(p+1) + 2n\left(1 + \frac{bn}{4}\right) \frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} \Sigma^{-1})^2} \leq -n(p+1) + 2n\left(1 + \frac{bn}{4}\right).$$ The condition that the R. H. S. of (5.7) is negative is given by $b \le 2(p-1)/n$ which is in contrast with the exact result $b \le 2(p-1)/(n-p+3)$ in Haff [5]. The equality in (5.7) is attained by $\Sigma^{-1} = \lambda \operatorname{diag}(1, 0, \dots, 0)$, for which the value of (5.6) is minimized by (5.8) $$b = \frac{(n-p+1)(p-1)}{n^2 - 2(p-2)n} = \frac{1}{n}(p-1)\left(1 + \frac{p-3}{n}\right) + O(n^{-3}).$$ Again the result is the same as the optimal choice b=(p-1)/(n-p+3) by Haff [5] asymptotically. Note that (5.9) $$R_{2}(\hat{\Sigma}_{JS}^{(2)}, \Sigma) - R_{2}(\hat{\Sigma}_{O}^{(2)}, \Sigma)$$ $$= -\frac{p(p^{2}-1)}{6n^{2}} + \frac{p(p+1)^{2}(p-1)}{2n^{3}} + O(n^{-4}).$$ We get Theorem 5.1. An asymptotic expansion of the difference of risks between Haff's estimator $\hat{\Sigma}_{H}^{(2)}$ defined by (5.1) and James and Stein's minimax estimator $\hat{\Sigma}_{JS}^{(2)}$ for L_2 loss is given by $$R_{2}(\hat{\Sigma}_{H}^{(2)}, \Sigma) - R_{2}(\hat{\Sigma}_{JS}^{(2)}, \Sigma) = \frac{p-1}{6n^{2}} \left[(p+1)(p-6) + 3(p+3) \frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} \Sigma^{-1})^{2}} \right]$$ $$+ \frac{p-1}{n^{3}} \left[\frac{1}{2} (p+1)^{2} (6-p) - \Delta(p+1) + 3(p+3) \frac{(\operatorname{tr} \Sigma^{-2})^{2}}{(\operatorname{tr} \Sigma^{-1})^{4}} \right]$$ $$+ (p+1)(\Delta - 2p-6) \frac{\operatorname{tr} \Sigma^{-2}}{(\operatorname{tr} \Sigma^{-1})^{2}} - 8 \frac{\operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-1})^{3}} + O(n^{-4}),$$ where $b = (p-1)(1+\Delta/n)/n$ and an optimal choice of Δ is p-3. The term of $O(n^{-2})$ in (5.10) is the same as that of $R_1(\hat{\Sigma}_H^{(1)}, \Sigma) - R_1(\hat{\Sigma}_{JS}^{(1)}, \Sigma)$ in Theorem 4.1. However the term of $O(n^{-3})$ is different which yields poor asymptotic approximations as can be seen in Table 6 compared with Table 4. For instance, when n=16, p=6 and $\Sigma^{-1}=\lambda I$, the approximate value of $R_2(\hat{\Sigma}_H^{(2)},\Sigma)$ $R_2(\hat{\Sigma}_{JS}^{(2)}, \Sigma)$ is equal to -0.032. However we can not say that this is negative, because of the error that may arise in the asymptotic approximations. The corresponding value for $\hat{\Sigma}_{H}^{(1)}$ is 0.0205 from Table 4 and we are certain that this is positive. One might think that an asymptotic expansion with respect to n+p+1is better for $\hat{\Sigma}_{H}^{(2)}$, because of (3.7). We can easily rewrite (5.10) in terms of powers of n+p+1 instead of n. For the above example we get the term of order $(n+p+1)^{-2}$ is equal to 0.007089 and the term of order $(n+p+1)^{-3}$ is equal to -0.011290. The approximate value is -0.004201, which is different from -0.032. However still the second term is larger than the first in absolute value. If we increase n=128 in this example, the approximate value is 0.000150, the corresponding value in Table 6 is 0.000138. Hence these values are reliable. The fact that the asymptotic approximations are better for L_1 loss than for L_2 loss, is ascertained again. From Tables 3 and 6, the rates of the reduction of the risks of $\hat{\Sigma}_H^{(2)}$ with respect to $\hat{\Sigma}_{0}^{(2)}$ can be computed, the range of which is given by $0\% \sim 4\%$ for $n \ge 32$ in Table 6. Table 6. Asymptotic values of $R_2(\hat{\Sigma}_H^{(2)}, \Sigma) - R_2(\hat{\Sigma}_{JS}^{(2)}, \Sigma)$ | | 1 | _ | | | | 400 | |------------------------------|---|-------------------------------|------------------------------|---|---|------------------------------| | Σ-1 | | n=8 | n=16 | n=32 | n=64 | n = 128 | | $p=2$ $\lambda(1,1)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | 011719
.012207
.0005 | 002930
.001526
0014 | $ \begin{array}{r}000732 \\ .000191 \\00054 \end{array} $ | 000183
.000024
000159 | 000046
.000003
000043 | | $\lambda(1,2)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 009549
.009042
0005 | 002387
.001130
0013 | $ \begin{array}{r}000597 \\ .000141 \\00046 \end{array} $ | $\begin{array}{c} -0.00149 \\ 0.00018 \\ -0.000132 \end{array}$ | 000037
.000002
000035 | | λ(1, 10) | $ \begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array} $ | .001356
—.004123
—.0028 | .000339
000515
00018 | .000085
000064
.000020 | $\begin{array}{c} .000021 \\000008 \\ .000013 \end{array}$ | 000005 000001 000004 | | λ(1, 0) | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .007813
009766
0020 | 001953 001221 0007 | $ \begin{array}{c} .000488 \\000153 \\ .00034 \end{array} $ | $\begin{array}{c} .000122 \\000019 \\ .000103 \end{array}$ | 000031 000002 $.000028$ | | $p=3$ $\lambda(1,1,1)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | 031250
.035590
.004 | 007813
.004449
0034 | 001953
.000556
00134 | 000488
.000070
000419 | 000122
.000009
000113 | | $\lambda(1,2,3)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-8})\\\text{approx.}\end{array}$ | 026042
.026259
.0002 | 006510 $.003282$ 0032 | $ \begin{array}{r}001628 \\ .000410 \\00122 \end{array} $ | 000407
.000051
000356 | 000102
.000006
000095 | | $\lambda(1, 10, 10^2)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 014358 -0.035581 -0.021 | 003590 004448 0009 | .000897
000556
.00034 | 000224 000069 000155 | 000056 000009 $.000047$ | | λ(1, 0, 0) | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .031250
054688
023 | 007813 006836 $.0010$ | .001953
000854
.00110 | 000488 000107 $.00038$ | 000122 000013 $.000109$ | | $p=4$ $\lambda(1,\dots,1)$ | $\begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 037109
.026733
010 | 009277
.003342
0059 | 002319
.000418
00190 | 000580
.000052
000528 | 000145
.000007
000138 | | $\lambda(1, 2, 3, 4)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 028906
.009316
0196 | 007227
.001165
0061 | 001807
.000146
00166 | 000452
.000018
000433 | 000113
.000002
000111 | | $\lambda(1, 10, 10^2, 10^3)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .056135
146300
09 | .014034
018288
004 | $-003508 \\ -002286 \\ 0012$ | .000877
000286
.00059 | 000219 000036 $.000184$ | | λ(1, 0, 0, 0) | $ \begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array} $ | .085938
187500
10 | 021484 -023438 -002 | 005371 002930 0024 | $\begin{array}{c} .001343 \\000366 \\ .00098 \end{array}$ | .000336
000046
.000290 | | $p=5$ $\lambda(1, \dots, 1)$ | $\begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 012500
079375
092 | 003125
009922
0130 | $ \begin{array}{r}000781 \\001240 \\0020 \end{array} $ | 000195
000155
00035 | 000049
000019
000068 | | $\lambda(1,2,\cdots,5)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | 001389
106505
11 |
000347
013313
014 | 000087
001664
0018 | 000022
000208
00023 | 000005
000026
000031 | | $\lambda(1,10,\cdots,10^4)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | .142050
410155
27 | .035512
—.051269
—.016 | .008878
006409
.0025 | $\begin{array}{c} .002220 \\000801 \\ .00142 \end{array}$ | 000555 000100 00046 | | λ(1, 0,, 0) | $\begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .187500
484375
30 | .046875
—.060547
—.014 | .011719
—.007568
.0042 | .002930
000946
.00198 | .000732
000118
.00061 | | Σ^{-1} | | n=8 | n=16 | n=32 | n=64 | n = 128 | |-----------------------------|---|-----------------------------|-----------------------------|-------------------------------|------------------------------|---| | $p=6$ $\lambda(1,\cdots,1)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .058594
—.370822
—.31 | 014648 -0.046353 -0.032 | .003662
—.005794
—.0021 | .000916
000724
.00019 | .000229
000091
.000138 | | $\lambda(1,2,\cdots,6)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | .072545
409160
38 | .018136
051145
033 | .004534
—.006393
—.0019 | 001134 -000799 00033 | $\begin{array}{c} .000283 \\000100 \\ .00018 \end{array}$ | | $\lambda(1,10,\cdots,10^5)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .287643
—.924538
—.64 | 071911 115567 04 | $017978 \\ -0.014446 \\ 004$ | .004494
001806
.0027 | $001124 \\000226 \\ .00090$ | | λ(1, 0,, 0) | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .351563
—1.044922
—.7 | .087891
—.130615
—.04 | .021973
—.016327
.006 | .005493
—.002041
.0035 | 001373 000255 00112 | Table 6. (continued) **5.2.** Risk of new estimator. Finally we shall consider the estimator (1.7) for C=I without loss of generality, namely, (5.11) $$\hat{\Sigma}^{(2)} = \frac{1}{n+p+1} \left(S + \frac{b \operatorname{tr} S^{-1}}{\operatorname{tr} S^{-2}} I \right).$$ The risk difference can be written by $$R_{2}(\hat{\Sigma}^{(2)}, \Sigma) - R_{2}(\hat{\Sigma}^{(2)}_{o}, \Sigma) = \frac{b}{(n+p+1)^{2}} E\left[\frac{\operatorname{tr} S^{-1}}{\operatorname{tr} S^{-2}} \operatorname{tr}\{S\Sigma^{-1} - (n+p+1)I\}\Sigma^{-1}\right] + \frac{b}{2}\left(\frac{\operatorname{tr} S^{-1}}{\operatorname{tr} S^{-2}}\right)^{2} \operatorname{tr} \Sigma^{-2}.$$ Each expectation can be computed by the following relations obtained from the Wishart identity in Haff [5]. (5.13) $$E\left[\frac{\operatorname{tr} S^{-1} \operatorname{tr} S^{-2} \Sigma^{-1}}{(\operatorname{tr} S^{-2})^{2}}\right] = 2E\left[4\frac{\operatorname{tr} S^{-1} \operatorname{tr} S^{-5}}{(\operatorname{tr} S^{-2})^{3}} - \frac{\operatorname{tr} S^{-4}}{(\operatorname{tr} S^{-2})^{2}}\right]$$ $$-2E\left[\frac{(\operatorname{tr} S^{-1})^{2}}{\operatorname{tr} S^{-2}}\right] + (n-p-3)E\left[\frac{\operatorname{tr} S^{-1} \operatorname{tr} S^{-3}}{(\operatorname{tr} S^{-2})^{2}}\right].$$ $$E\left[\frac{\operatorname{tr} S^{-1} \Sigma^{-1}}{\operatorname{tr} S^{-2}}\right] = n-p-2-E\left[\frac{(\operatorname{tr} S^{-1})^{2}}{\operatorname{tr} S^{-2}}\right] + 4E\left[\frac{\operatorname{tr} S^{-4}}{(\operatorname{tr} S^{-2})^{2}}\right].$$ (5.15) $$E\left[\frac{(\operatorname{tr} S^{-1})^{2}}{(\operatorname{tr} S^{-2})^{2}} \operatorname{tr} S^{-1} \Sigma^{-1}\right] = (n - p - 2) E\left[\frac{(\operatorname{tr} S^{-1})^{2}}{\operatorname{tr} S^{-2}}\right] - E\left[\frac{(\operatorname{tr} S^{-1})^{4}}{(\operatorname{tr} S^{-2})^{2}}\right] + 8E\left[\frac{(\operatorname{tr} S^{-1})^{2} \operatorname{tr} S^{-4}}{(\operatorname{tr} S^{-2})^{3}}\right] - 4E\left[\frac{\operatorname{tr} S^{-1} \operatorname{tr} S^{-3}}{(\operatorname{tr} S^{-2})^{2}}\right].$$ For example, the first term of the expectation in the R.H.S. of (5.12) can be expressed by the Whisart identity as $$nE\left[\frac{\operatorname{tr} S^{-1}}{\operatorname{tr} S^{-2}}\operatorname{tr} \Sigma^{-1}\right] - (n-p-1)(n+p+1)E\left[\frac{(\operatorname{tr} S^{-1})^{2}}{\operatorname{tr} S^{-2}}\right] + 4E\left[\frac{\operatorname{tr} S^{-1}\operatorname{tr} S^{-2}\Sigma^{-1}}{(\operatorname{tr} S^{-2})^{2}}\right] - 2E\left[\frac{\operatorname{tr} S^{-1}\Sigma^{-1}}{\operatorname{tr} S^{-2}}\right] - 4(n+p+1)E\left[\frac{\operatorname{tr} S^{-1}\operatorname{tr} S^{-3}}{(\operatorname{tr} S^{-2})^{2}}\right] + 2(n+p+1),$$ which can be reduced further by (5.13), (5.14) and (4.16). Assuming that $b = O(n^{-1})$, we can finally rewrite (5.12) as $$\frac{b}{(n+p+1)^{2}} \left[-2n + n \left(\frac{b}{2} n - p - 1 \right) E \left[\frac{(\operatorname{tr} S^{-1})^{2}}{\operatorname{tr} S^{-2}} \right] + 4n E \left[\frac{\operatorname{tr} S^{-1} \operatorname{tr} S^{-3}}{(\operatorname{tr} S^{-2})^{2}} \right] \right] \\ + 4p + 6 + \left[(p+1)^{2} - 6 - \frac{b}{2} n (2p+3) \right] \frac{(\operatorname{tr} \Sigma^{-1})^{2}}{\operatorname{tr} \Sigma^{-2}} - 16 \frac{\operatorname{tr} \Sigma^{-4}}{(\operatorname{tr} \Sigma^{-2})^{2}} \right] \\ - 4(bn + 2p + 4) \frac{\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-2})^{2}} + 32 \frac{\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-5}}{(\operatorname{tr} \Sigma^{-2})^{3}} \\ + 8bn \frac{(\operatorname{tr} \Sigma^{-1})^{2} \operatorname{tr} \Sigma^{-4}}{(\operatorname{tr} \Sigma^{-2})^{3}} - \frac{bn}{2} \frac{(\operatorname{tr} \Sigma^{-1})^{4}}{(\operatorname{tr} \Sigma^{-2})^{2}} \right] + O(n^{-4}).$$ By (4.18) the term of $O(n^{-2})$ in (5.16) is bounded from above by (5.17) $$\left\{ \frac{1}{2} b n^2 - n(p+1) + 2n \right\} \frac{(\operatorname{tr} \Sigma^{-1})^2}{\operatorname{tr} \Sigma^{-2}},$$ which is negative only if $b \le 2(p-1)/n$. The upper bound (5.17) is attained for $\Sigma^{-1} = \lambda \operatorname{diag}(1, 0, \dots, 0)$ or any permutation of the diagonal elements of it. For this Σ^{-1} , the risk difference (5.16) can be written by (5.18) $$\frac{b}{(n+p+1)^2} \left\{ \frac{1}{2} bn^2 - n(p-1) + (p-1)^2 - (p-2)bn \right\} + O(n^{-4}),$$ which is minimized by $b=(p-1)(1+\Delta/n)/n$ for $\Delta=p-3$ asymptotically. This optimal choice of b is the same as for $\hat{\Sigma}_{H}^{(2)}$. Using (5.9), we get Theorem 5.2. An asymptotic expansion of the difference of risks between estimator $\hat{\Sigma}^{(2)}$ defined by (5.11) with $b=(p-1)(1+\Delta/n)/n$ and James and Stein's estimator $\hat{\Sigma}^{(2)}_{JS}$ for L_2 loss is given by $$R_{2}(\hat{\Sigma}^{(2)}, \Sigma) - R_{2}(\hat{\Sigma}^{(2)}_{JS}, \Sigma)$$ $$= \frac{p-1}{6n^{2}} \left[(p-3)(p+4) - 3(p+3) \frac{(\operatorname{tr} \Sigma^{-1})^{2}}{\operatorname{tr} \Sigma^{-2}} + 24 \frac{\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-2})^{2}} \right]$$ $$+ \frac{p-1}{n^{3}} \left[-\frac{1}{2} (p+1)(p^{2}+p-14) - 2\Delta + (p^{2}+6p+13-2\Delta) \frac{(\operatorname{tr} \Sigma^{-1})^{2}}{\operatorname{tr} \Sigma^{-2}} \right]$$ $$+ 4(\Delta - 4p-1) \frac{\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3}}{(\operatorname{tr} \Sigma^{-2})^{2}} + 8 \frac{\operatorname{tr} \Sigma^{-4}}{(\operatorname{tr} \Sigma^{-2})^{2}} + 2 \frac{(\operatorname{tr} \Sigma^{-1})^{4}}{(\operatorname{tr} \Sigma^{-2})^{2}}$$ $$-\frac{4}{(\operatorname{tr} \Sigma^{-2})^3} \left\{ -(p-5)(\operatorname{tr} \Sigma^{-1})^2 \operatorname{tr} \Sigma^{-4} + 16 \operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-5} + 2(\operatorname{tr} \Sigma^{-1})^3 \operatorname{tr} \Sigma^{-3} + 8(\operatorname{tr} \Sigma^{-3})^2 \right\} + 96 \frac{\operatorname{tr} \Sigma^{-1} \operatorname{tr} \Sigma^{-3} \operatorname{tr} \Sigma^{-4}}{(\operatorname{tr} \Sigma^{-2})^4} + O(n^{-4}).$$ An optimal choice of Δ is given by p-3. Note that the term of $O(n^{-2})$ for $\hat{\Sigma}^{(2)}$ in (5.19) is the same as the corresponding term of Theorem 4.2 for $\hat{\Sigma}^{(1)}$. Also the term of $O(n^{-2})$ for $\hat{\Sigma}^{(2)}_H$ in Theorem 5.1 is the same as that of Theorem 4.1 for $\hat{\Sigma}^{(1)}_H$. Hence the ranges of $O(n^{-2})$ in (4.13) and (4.26) hold also for $\hat{\Sigma}^{(2)}_H$ and $\hat{\Sigma}^{(2)}$. Asymptotically, the range for $\hat{\Sigma}^{(2)}$ is wider below than that for $\hat{\Sigma}^{(2)}_H$. Some numerical values of the risk differences for $\hat{\Sigma}^{(2)}$ are shown in Table 7. Comparing with Table 6, we can see that for $\Sigma^{-1}=\lambda I$ and $\lambda \operatorname{diag}(1,2,\cdots,p), \hat{\Sigma}^{(2)}$ is better considerably; for $\Sigma^{-1}=\lambda \operatorname{diag}(1,10,\cdots,10^{p-1}), \hat{\Sigma}^{(2)}_H$ is better and for $\Sigma^{-1}=\lambda \operatorname{diag}(1,0,\cdots,0)$, they are the same. The last statement can be checked by putting $\Sigma^{-1}=\lambda \operatorname{diag}(1,0,\cdots,0)$ in (5.10) and (5.19). Comparing with Table 5, we can see that the asymptotic approximations are poor for $\hat{\Sigma}^{(2)}$. Again the positive values for $\Sigma^{-1}=\lambda I$ and negative values for $\Sigma^{-1}=\lambda I$ Table 7. Asymptotic values of $R_2(\hat{\Sigma}^{(2)}, \Sigma) - R_2(\hat{\Sigma}^{(2)}_{JS}, \Sigma)$ | | Σ^{-1} | | n=8 | n=16 | n=32 | n=64 | n = 128 | |-----|------------------------|---|---|------------------------------|------------------------------|------------------------------|--| | p=2 | λ(1, 1) | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | 031250
.039063
.008 | 007813
.004883
0029 | 001953
.000610
00134 | 000488
.000076
000412 | 000122
.000010
000113 | | |
$\lambda(1,2)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | 018438
.014372
004 | 004609 $.001796$ 0028 | 001152
.000225
00093 | 000288
.000028
000260 | 000072
.000004
000069 | | | λ(1, 10) | $O(n^{-2})$ $O(n^{-3})$ approx. | .005040
—.007077
—.0020 | $001260 \\ -000885 \\ 00038$ | 000315 000111 $.00020$ | .000079
000014
.000065 | 000020 000002 $.000018$ | | | $\lambda(1,0)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .007813
009766
0020 | 001953 001221 0007 | .000488
000153
.00034 | .000122
000019
.000103 | $\begin{array}{c} .000031 \\000002 \\ .000028 \end{array}$ | | p=3 | λ(1, 1, 1) | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | 156250
.236979
.08 | 039063
.029622
009 | 009766
.003703
0061 | 002441
.000463
00198 | 000610
.000058
000552 | | | $\lambda(1, 2, 3)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 103316
.128827
.26 | 025829
.016103
010 | 006457
.002013
0044 | 001614
.000252
00136 | 000404 $.000031$ 000372 | | | $\lambda(1, 10, 10^2)$ | $O(n^{-2})$ $O(n^{-3})$ approx. | $\begin{array}{c} .021771 \\042109 \\020 \end{array}$ | 005443 005264 0002 | $001361 \\ -000658 \\ 00070$ | 000340 000082 000258 | .000085
000010
.000075 | | | $\lambda(1,0,0)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 031250 054688 023 | .007813
006836
.0010 | .001953
000854
.00110 | 000488 000107 00038 | 000122 000013 000109 | Table 7. (continued) | Σ^{-1} | | n=8 | n=16 | n=32 | n=64 | n = 128 | | |------------------------------|---|---|------------------------------|---------------------------------|-------------------------------|-------------------------------|--| | $p=4$ $\lambda(1, \dots, 1)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | 406250
.708984
.30 | 101563
.088623
013 | 025391
.011078
014 | 006348
.001385
0050 | 001587
.000173
00141 | | | $\lambda(1,2,3,4)$ | $\begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 276042
.419957
.14 | 069010
.052495
017 | 017253
.006562
0107 | 004313
.000820
00349 | 001078
.000103
00098 | | | $\lambda(1, 10, 10^2, 10^3)$ | $ \begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array} $ | .066391
155830
09 | .016598
019479
003 | .004149
002435
.0017 | 001037 000304 00073 | .000259
000038
.000221 | | | λ(1, 0, 0, 0) | $ \begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array} $ | .085938
187500
10 | 021484 023438 002 | .005371
—.002930
.0024 | 001343 000366 00098 | 000336 000046 000290 | | | $p=5$ $\lambda(1, \dots, 1)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | 812500
1.590625
.8 | 203125
.198828
004 | $050781 \\ .024854 \\026$ | 012695
.003107
0096 | 003174
.000388
00279 | | | $\lambda(1,2,\cdots,5)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 556302
.968478
.41 | 139075
.121060
02 | 034769
.015132
020 | 008692
.001892
0068 | 002173
.000236
00194 | | | $\lambda(1,10,\cdots,10^4)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .154470
421797
27 | 038618 -0.052725 -0.014 | .009654
006591
.0031 | 002414 000824 00159 | 000603 000103 $.00050$ | | | λ(1, 0,, 0) | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .187500
484375
30 | .046875
—.060547
—.014 | 011719 -007568 0042 | .002930
—.000946
.00198 | 000732 000118 00061 | | | $p=6$ $\lambda(1,\dots,1)$ | $\begin{array}{c}O(n^{-2})\\O(n^{-3})\\\text{approx.}\end{array}$ | $ \begin{array}{c c} -1.406250 \\ 3.040365 \\ 1.6 \end{array} $ | 351563
.380046
.03 | 087891
.047506
040 | 021973
.005938
0160 | 005493
.000742
00475 | | | $\lambda(1,2,\cdots,6)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | 963619
1.865664
.9 | 240905
.233208
01 | 060226
.029151
031 | 015057
.003644
0114 | 003764
.000455
00331 | | | $\lambda(1,10,\cdots,10^5)$ | $\begin{array}{c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .301591
936962
64 | .075398
—.117120
—.04 | .018849
014640
.004 | .004712
001830
.0029 | $001178 \\ -000229 \\ 00095$ | | | $\lambda(1,0,\cdots,0)$ | $\begin{array}{c c} O(n^{-2}) \\ O(n^{-3}) \\ \text{approx.} \end{array}$ | .351563
—1.044922
—.7 | 087891 130615 04 | . 021973
— . 016327
. 006 | .005493
002041
.0035 | .001373
—.000255
.00112 | | $\lambda \, diag(1,0,\cdots,0)$ when $n\!=\!8$ or 16 in Table 7 are doubtful. From Tables 3 and 7, we can compute the rates of the reduction of the risks for $\hat{\mathcal{L}}^{(2)}$ with respect to $\hat{\mathcal{L}}_{O}^{(2)}$, which range above to 11% for $n\!\geq\!32$. This may be compared with 4% for $\hat{\mathcal{L}}_{H}^{(2)}$. Comparing the rates for $\hat{\mathcal{L}}^{(2)}$ with respect to $\hat{\mathcal{L}}_{H}^{(2)}$, the range is given by $-0.2\%\sim7\%$ for $n\!\geq\!32$ in Table 7. Also the rates for $\hat{\mathcal{L}}_{H}^{(2)}$ with respect to $\hat{\mathcal{L}}_{JS}^{(2)}$ range $-1.2\%\sim8\%$ while the rates for $\hat{\mathcal{L}}_{H}^{(2)}$ with respect to $\hat{\mathcal{L}}_{JS}^{(2)}$ range only $-1.2\%\sim0.8\%$ for $n\!\geq\!32$. **Acknowledgment.** The authors wish to express their gratitude to the referee for his careful reading the manuscript and useful comments. #### References - [1] Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions. NBS App. Math. Ser. 55 1964. - [2] Fujikoshi, Y., Asymptotic expansions of the distributions of test statistics in multivariate analysis. J. Sci. Hiroshima Univ. Ser. A-I 34 (1970) 73-144. - [3] Giri, N., Multivariate Statistical Inference. Academic, 1977. - [4] Haff, L.R., An identity for the Wishart distribution with applications. J. Multivariate Anal. 9 (1979) 531-544. - [5] Haff, L.R., Empirical Bayes estimation of the multivariate normal covariance matrix. Ann. Statist. 8 (1980) 586-597. - [6] Ito, K., Asymptotic formulae for the distribution of Hotelling's generalized T₀² statistic. Ann. Math. Statist. 27 (1956) 1091-1105. - [7] James, W. and Stein, C., Estimation with quadratic loss. Fourth Berkeley Symp. Math. Statist. Probability, Univ. California Press Berkeley 1961. - [8] Kendall, M.G. and Stuart, A., The Advanced Theory of Statistics. Vol. 2 3rd Edition, Griffin 1973. - [9] Kshirsagar, A.M., Multivariate Analysis. Marcel Dekker 1972. - [10] Nagao, H., On some test criteria for covariance matrix. Ann. Statist. 1 (1973) 700-709. - [11] Okamoto, M., An asymptotic expansion for the distribution of the linear discriminant function. Ann. Math. Statist. 34 (1963) 1286-1301. - [12] Selliah, J., Estimation and testing problems in a Wishart distribution. Ph. D. thesis, Dept. Statist. Stanford Univ. 1964. - [13] Sharma, D., An estimator of normal covariance matrix. Calcutta Statist. Assoc. Bulletin 29 (1980) 161-167. - [14] Siotani, M., On the distribution of the Hotelling's T²-statistic. Ann. Inst. Statist. Math. 8 (1957) 1-14. - [15] Sugiura, N., Derivatives of the characteristic root of a symmetric or a hermitian matrix with two applications in multivariate analysis. Commun. Statist. 1 (1973) 393-417. Institute of Mathematics University of Tsukuba Ibaraki 305 Japan