COVERINGS OF GENERALIZED CHEVALLEY GROUPS ASSOCIATED WITH AFFINE LIE ALGEBRAS

By

Jun Morita

R. Steinberg [21] has given a presentation of a simply connected Chevalley group (=the group of k-rational points of a split, semisimple, simply connected algebraic group defined over a field k) and has constructed the (homological) universal covering of the group. In this note, we will consider an analogy for a certain family of groups associated with affine Lie algebras.

1. Chevalley groups, Steinberg groups and the functor $K_2(\Phi, \cdot)$.

Let Φ be a reduced irreducible root system in a Euclidean space \mathbb{R}^n with an inner product (\cdot, \cdot) (cf. [4], [6]). We denote by Φ^+ (resp. Φ^-) the positive (resp. negative) root system of Φ with respect to a fixed simple root system $H = \{\alpha_1, \dots, \alpha_n\}$. We suppose that α_1 is a long root (for convenience' sake). Let α_{n+1} be the negative highest root of Φ . Set $a_{ij} = 2(\alpha_i, \alpha_j)/(\alpha_j, \alpha_j)$ for each $i, j = 1, 2, \dots, n+1$. The matrices $A = (a_{ij})_{1 \le i, j \le n}$ and $\widetilde{A} = (a_{ij})_{1 \le i, j \le n+1}$ are called a Cartan matrix of Φ and the affine Cartan matrix associated with A respectively (cf. [4], [5], [6]).

Let $G(\Phi,\cdot)$ be a Chevalley-Demazure group scheme of type Φ (cf. [1], [20]). For a commutative ring R, with 1, we call $G(\Phi,R)$ a Chevalley group over R. For each $\alpha \in \Phi$, there is a group isomorphism—"exponential map"—of the additive group of R into $G(\Phi,R):t\longmapsto x_{\alpha}(t)$. The elementary subgroup $E(\Phi,R)$ of $G(\Phi,R)$ is defined to be the subgroup generated by $x_{\alpha}(t)$ for all $\alpha \in \Phi$ and $t \in R$. We use the notation $G_1(\Phi,\cdot)$ and $E_1(\Phi,\cdot)$ (resp. $G_0(\Phi,\cdot)$ and $E_0(\Phi,\cdot)$) if $G(\Phi,\cdot)$ is simply connected (resp. of adjoint type). It is well-known that $G_1(\Phi,R)=E_1(\Phi,R)$ if R is a Euclidean domain (cf. [22, Theorem 18/Corollary 3]).

Let $St(\Phi,R)$ be the group generated by the symbols $\hat{x}_{\alpha}(t)$ for all $\alpha \in \Phi$ and $t \in R$ with the defining relations

- (A) $\hat{x}_{\alpha}(s)\hat{x}_{\alpha}(t) = \hat{x}_{\alpha}(s+t)$,
- (B) $[\hat{x}_{\alpha}(s), \hat{x}_{\beta}(t)] = \prod \hat{x}_{i\alpha+j\beta}(N_{\alpha,\beta,i,j} s^{i}t^{j}),$
- (B)' $\hat{w}_{\alpha}(u)\hat{x}_{\alpha}(t)\hat{w}_{\alpha}(-u) = \hat{x}_{-\alpha}(-u^{-2}t)$

for all $\alpha, \beta \in \Phi(\alpha + \beta \neq 0)$, $s, t \in R$ and $u \in R^*$, the units of R, where $\hat{w}_{\alpha}(u) = \hat{x}_{\alpha}(u)\hat{x}_{-\alpha}(-1)$

Received March 11, 1981.

 u^{-1}) $\hat{x}_{\alpha}(u)$ (cf. [20]). We call $St(\Phi, R)$ a Steinberg group over R.

Since the relations corresponding to (A), (B), (B)' hold in $E_1(\Phi, R)$, there is a homomorphism θ of $St(\Phi, R)$ onto $E_1(\Phi, R)$ such that $\theta(\hat{x}_{\alpha}(t)) = x_{\alpha}(t)$ for all $\alpha \in \Phi$ and $t \in R$. Put $K_2(\Phi, \cdot) = Ker[St(\Phi, \cdot) \xrightarrow{\theta} E_1(\Phi, \cdot)]$, i. e., $1 \longrightarrow K_2(\Phi, \cdot) \longrightarrow St(\Phi, \cdot) \xrightarrow{\theta} E_1(\Phi, \cdot) \longrightarrow 1$ is exact. For each $\alpha \in \Phi$ and $u, v \in R^*$, we set $\{u, v\}_{\alpha} = \hat{h}_{\alpha}(uv)\hat{h}_{\alpha}(u)^{-1}$, called a Steinberg symbol, where $\hat{h}_{\alpha}(u) = \hat{w}_{\alpha}(u)\hat{w}_{\alpha}(-1)$. Let $\hat{K} = \langle \{u, v\}_{\alpha} | \alpha \in \Phi, u, v \in R^* \rangle$. Then $\hat{K} \subseteq K_2(\Phi, R) \cap Cent(St(\Phi, R))$.

Definition. R is called universal for Φ if $K_2(\Phi, R) = \hat{K}$.

Let $E_u(\Phi, R) = St(\Phi, R)/\hat{K}$. Then the homomorphism θ induces a homomorphism $\bar{\theta}$ of $E_u(\Phi, R)$ onto $E_1(\Phi, R)$. We see:

"R is universal for Φ " \Leftrightarrow " $\bar{\theta}$ is an isomorphism" \Rightarrow " θ is a central extension."

EXAMPLE 1 (cf. [20], [21], [22]). Let k be a field.

- (1) $St(\Phi, k)$ is connected if $(\Phi, |k|) \neq (A_1, 2)$, $(B_2, 2)$, $(G_2, 2)$ and $(A_1, 3)$.
- (2) k is universal for each Φ .
- (3) $St(\Phi, k)$ is a universal covering of $E_1(\Phi, k)$ with a few exceptions.

2. The case of Laurent polynomial rings.

Let k[T] be the ring of polynomials in T with coefficients in a field k, and \mathfrak{M} the maximal ideal of k[T] generated by T. Let $k[T, T^{-1}]$ be the ring of Laurent polynomials in T and T^{-1} with coefficients in k. We identify k[T] with a subring of $k[T, T^{-1}]$ naturally. Set

$$U = \langle x_{\alpha}(f), x_{\beta}(g) | \alpha \in \Phi^{+}, \ \beta \in \Phi^{-}, \ f \in k[T], \ g \in \mathfrak{M} \rangle,$$
 $N = \langle w_{\alpha}(tT^{m}) | \alpha \in \Phi, \ t \in k^{*}, \ m \in \mathbb{Z} \rangle,$
 $H = \langle h_{\alpha}(t) | \alpha \in \Phi, \ t \in k^{*} \rangle, \text{ and}$
 $B = \langle U, H \rangle$

as subgroups of $E(\Phi, k[T, T^{-1}])$, where $w_{\alpha}(u) = x_{\alpha}(u)x_{-\alpha}(-u^{-1})x_{\alpha}(u)$ and $h_{\alpha}(u) = w_{\alpha}(u)$ $w_{\alpha}(-1)$.

Тнеокем 2 ([17]).

- (1) $B \cap N = H$.
- (2) $(E(\Phi, k[T, T^{-1}]), B, N)$ is a Tits system.

COROLLARY 3.

- (1) The canonical homomorphism $\psi: E_1(\Phi, k[T, T^{-1}]) \longrightarrow E_0(\Phi, k[T, T^{-1}])$ is a central extension.
- (2) $\operatorname{Ker} \phi = \{\prod_{i=1}^{n} h_{\alpha_i}(t_i) | \prod_{i=1}^{n} t_i^{\langle \beta, \alpha_i \rangle} = 1 \text{ for all } \beta \in \emptyset \}, \text{ where } \langle \beta, \alpha_i \rangle = 2(\beta, \alpha_i) / (\alpha_i, \alpha_i), \text{ and } \beta \in \emptyset \}$ $t_i \in k^*$.

We define the subgroups \hat{U} , \hat{N} , \hat{H} , \hat{B} of $St(\Phi, k[T, T^{-1}])$:

$$\begin{split} \hat{U} &= \langle \hat{x}_{\alpha}(f), \ \hat{x}_{\beta}(g) | \alpha \in \Phi^{+}, \ \beta \in \Phi^{-}, \ f \in k[T], \ g \in \mathfrak{M} \rangle, \\ \hat{N} &= \langle \hat{w}_{\alpha}(tT^{m}) | \alpha \in \Phi, \ t \in k^{*}, \ m \in \mathbb{Z} \rangle, \\ \hat{H} &= \langle \hat{h}_{\alpha}(t) | \alpha \in \Phi, \ t \in k^{*} \rangle \hat{K}, \\ \hat{B} &= \langle \hat{U}, \hat{H} \rangle \end{split}$$

We denote by U_u, N_u, H_u and B_u the canonical images of $\hat{U}, \hat{N}, \hat{H}$ and \hat{B} in $E_u(\Phi, k[T, T^{-1}])$ respectively. Then $(E_u(\Phi, k[T, T^{-1}]), B_u, N_u)$ and $(St(\Phi, k[T, T^{-1}]), B_u, N_u)$ (\hat{B}, \hat{N}) are Tits systems, which is established by using the same technique as in [17].

THEOREM 4.

- (1) $G_1(\Phi, k[T])$ is presented by the generators $\tilde{x}_r(f)$ and $\tilde{w}_a(t)$ for all $\alpha \in \Pi$, $\gamma \in \Phi^+$, $f \in k[T]$ and $t \in k^*$, and the defining relations (R1)—(R9):
 - (R1) $\tilde{x}_r(f)\tilde{x}_r(g) = \tilde{x}_r(f+g),$
 - (R2) $\tilde{w}_{\alpha}(t)^{-1} = \tilde{w}_{\alpha}(-t)$,
 - (R3) $\widetilde{w}_{\alpha}(t)\widetilde{x}_{\alpha}(u)\widetilde{w}_{\alpha}(-t) = \widetilde{x}_{\alpha}(-t^{2}u^{-1})\widetilde{w}_{\alpha}(t^{2}u^{-1})\widetilde{x}_{\alpha}(-t^{2}u^{-1})$
 - $(\mathbf{R4}) \quad [\tilde{x}_{r}(f), \ \tilde{x}_{\delta}(g)] = \prod \ \tilde{x}_{i_{r}+j_{\delta}} (N_{r,\delta,i_{r},j_{\delta}} f^{i_{g}j}),$
 - (R5) $\tilde{h}_{\alpha}(t)\tilde{h}_{\alpha}(u) = \tilde{h}_{\alpha}(tu)$,
 - $(R6) \quad \underbrace{\tilde{w}_{\alpha}(t)\tilde{w}_{\beta}(u)\tilde{w}_{\alpha}(t)\cdots}_{q} = \underbrace{\tilde{w}_{\beta}(u)\tilde{w}_{\alpha}(t)\tilde{w}_{\beta}(u)\cdots}_{q},$ $(R7) \quad \tilde{w}_{\alpha}(t)\tilde{x}_{\rho}(f)\tilde{w}_{\alpha}(-t) = \tilde{x}_{\rho'}(ct^{-\langle \rho, \alpha \rangle}f),$

 - (R8) $\tilde{h}_{\alpha}(t)\tilde{x}_{\alpha}(f)\tilde{h}_{\alpha}(t^{-1}) = \tilde{x}_{\alpha}(t^{2}f),$
 - (R9) $\tilde{w}_{\alpha}(t)\tilde{h}_{\beta}(u)\tilde{w}_{\alpha}(-t) = \tilde{h}_{\beta}(u)\tilde{h}_{\alpha}(u^{-\langle \alpha,\beta \rangle})$

for all $\alpha, \beta \in \Pi(\alpha \neq \beta)$, $\gamma, \delta \in \Phi^+$, $\rho \in \Phi^+ - \{\alpha\}$, $f, g \in k[T]$ and $t, u \in k^*$, where $\tilde{h}_{\alpha}(t) = \tilde{w}_{\alpha}(t)$ $\tilde{w}_a(-1)$, and $N_{r,\delta,i,j}$ and c are as in [20] or [22], and each side of the equation in (R6) is the product of q symbols, and q=2,3,4 or 6 if $(\mathbf{R}\alpha+\mathbf{R}\beta)\cap \Phi$ is of type $A_1 \times A_1$, A_2 , B_2 or G_2 respectively, and $\langle \gamma, \alpha \rangle = 2(\gamma, \alpha)/(\alpha, \alpha)$ and $\rho' = \rho - \langle \rho, \alpha \rangle \alpha$.

(2) k[T] is universal for each root system Φ .

Proof. (1) One can get this presentation of $G_1(\Phi, k[T])$ by using the same argument as in [23], [24] and [25]. (2) It follows from (1) that k[T] is universal. (By using an amalgamated free product decomposition of $G_1(\Phi, k[T])$ which is described in [26], Rehmann [19] has given a different proof of the statement (2) from ours.) q. e. d.

THEOREM 5. $k[T, T^{-1}]$ is universal for each root system Φ .

PROOF. In the following commutative diagram:

we have $Ker \bar{\theta} \subseteq B_u$. On the other hand, $B_u \simeq B_1$ by the universality of k[T]. Therefore $\bar{\theta}$ is an isomorphism. q. e. d.

By taking T=1, the sequence $0\rightarrow k\rightarrow k[T,T^{-1}]$ splits, so $K_2(\Phi,k)$ is a direct summand of $K_2(\Phi,k[T,T^{-1}])$. Then:

Тнеокем 6 ([2]).

- (1) $K_2(A_1, k[T, T^{-1}]) = K_2(A_1, k) \oplus S$, where $S = \langle \{T, t\}_{\alpha} | t \in k^* \rangle$ and α is a fixed root.
- (2) $S \simeq k^*$ if $k^2 = k$ (i. e. k is a square root closed field).

COROLLARY 7 (cf. [2], [12], [13]).

- (1) $K_2(\Phi, k[T, T^{-1}]) = K_2(\Phi, k) \oplus S$, where $S = \langle \{T, t\}_{\alpha} | t \in k^* \rangle$ and α is a fixed long root.
- (2) S is isomorphic to a factor group of k^* if $\phi \neq C_n$ $(n \geq 1)$.
- (3) S is isomorphic to a factor group of k^* if $k^2 = k$.

PROOF. (1) and (3) follow from Theorem 6. If $\phi \neq C_n$ $(n \geq 1)$, then A_2 can be embedded in the long roots of ϕ . By Matsumoto's theorem, one sees (2). q. e. d.

REMARK 8. The statements of Theorem 5, Theorem 6 and Corollary 7 have been confirmed by Hurrelbrink [7] in the case when $\Phi \neq G_2$. He has directly calculated the relations of $G_1(\Phi, k[T, T^{-1}])$ of type $\Phi = A_1, A_2$, and B_2 , and by using this has proved Theorem 5 for $\Phi \neq G_2$. Our proof of Theorem 5 is different from his, and contains the case of type G_2 .

As an application of [20, (5.3) Theorem/Remarks] and Theorem 5, we can establish the following theorem.

THEOREM 9. If char k=0, then $St(\Phi, k[T, T^{-1}])$ is a universal covering of $E_0(\Phi, k[T, T^{-1}])$.

3. Kac-Moody Lie algebras and generalized Chevalley groups.

An $l \times l$ integral matrix $C = (c_{ij})$ is called a generalized Cartan matrix if (i) $c_{ii} = 2$, (ii) $i \neq j \Rightarrow c_{ij} \leq 0$, and (iii) $c_{ij} = 0 \iff c_{ji} = 0$. From now on, we suppose char k = 0. We denote by $L_1 = L_1(C)$ the Lie algebra over k generated by the 3l generators $e_1, \dots, e_l, h_1, \dots, h_l, f_1, \dots, f_l$ with the defining relations $[h_i, h_j] = 0$, $[e_i, f_j] = \delta_{ij}h_i$, $[h_i, e_j] = c_{ji}e_j$, $[h_i, f_j] = -c_{ji}f_j$ for all $1 \leq i, j \leq l$, and $(ad\ e_i)^{-c_{ji+1}}e_j = 0$, $(ad\ f_i)^{-c_{ji+1}}f_j = 0$ for all $1 \leq i \neq j \leq l$. Then the generators $e_1, \dots, e_l, h_1, \dots, h_l, f_1, \dots, f_l$ are linearly independent in L_1 . We view L_1 as a Z^l -graded Lie algebra defined by $deg(e_i) = (0, \dots, 0, 1, 0, \dots, 0)$, $deg(h_1) = (0, \dots, 0)$ and $deg(f_i) = (0, \dots, 0, -1, 0, \dots, 0)$, where ± 1 are in the i-th position. Then there is the maximal homogeneous ideal $R_1 = R_1(C)$ of L_1 such that $R_1 \cap (\sum_{i=1}^l kh_1 + \dots + kh_l) = 0$. Set $L = L(C) = L_1/R_1$, called the Kac-Moody Lie algebra over k associated with a generalized Cartan matrix C (cf. [3], [5], [8], [10], [14]). The algebra L is also Z^l -graded. For each l-tuple $(n_1, \dots, n_l) \in Z^l$, we let $L(n_1, \dots, n_l)$ denote the homogeneous subspace of degree (n_1, \dots, n_l) in L. We identify e_i, h_i, f_i with their images in L. Then:

Proposition 10.

- (1) $L(n_1, \dots, n_l)$ is the subspace of L spanned by the elements $[e_{i_1}, [e_{i_2}, \dots, [e_{i_{r-1}}, e_{i_r}] \dots]]$ (resp. $[f_{i_1}, [f_{i_2}, \dots, [f_{i_{r-1}}, f_{i_r}] \dots]]$), where e_j (resp. f_j) occurs $|n_j|$ times, if (n_1, \dots, n_l) belongs to $(\mathbf{Z}_+)^l \{0\}$ (resp. $(\mathbf{Z}_-)^l \{0\}$).
- (2) $L(0, \dots, 0) = kh_1 + \dots + kh_l$.
- (3) $L(n_1, \dots, n_l) = 0$ otherwise.

Put $L_0 = L_0(C) = kh_1 + \cdots + kh_l$. For each $i = 1, \dots, l$, we define a degree derivation D_i on L such that $D_i(x) = n_i x$ for all $x \in L(n_1, \dots, n_l)$. Set $D_0 = kD_1 + \dots + kD_l$, viewed as an abelian Lie algebra of dimension l. For a subspace $D \subseteq D_0$, let $L^e = L(C)^e = D \times L$ (semidirect product) and $(L_0)^e = D \times L_0$ (direct product). For each $j = 1, \dots, l$, let γ_j be an element of $((L_0)^e)^*$, the dual of $(L_0)^e$, such that $[h, e_j] = \gamma_j(h)e_j$ for all $h \in (L_0)^e$. We note that $\gamma_j(h_i) = c_{ji}$ for all $i, j = 1, \dots, l$. We will choose and fix a subspace D of D_0 such that $\gamma_1, \dots, \gamma_l$ are linearly independent in $((L_0)^e)^*$. This is possible, since $\gamma_i(D_j) = \delta_{ij}$. Set $L^r = \{x \in L | [h, x] = \gamma(h)x$ for all $h \in (L_0)^e\}$ for each $\gamma \in ((L_0)^e)^*$. It is easily seen that $L^{n_1r_1 + \dots + n_lr_l} = L(n_1, \dots, n_l)$ for all $(n_1, \dots, n_l) \in \mathbb{Z}^l$. In particular, $L^{r_i} = ke_i$, $L^0 = L_0$ and $L^{-r_i} = kf_i$.

Let $\Delta = \Delta(C) = \{ \gamma \in ((L_0)^e)^* | L^r \neq 0 \}$, called the root system of L. Set $\Gamma = \sum_{i=1}^l \mathbf{Z} \gamma_i$, a free \mathbf{Z} -submodule of $((L_0)^e)^*$. The Weyl group W = W(C) is defined to be the subgroup of $GL(((L_0)^e)^*)$ generated by w_i for all $i=1,\dots,l$, where w_i is an endomorphism of $((L_0)^e)^*$ such that $w_i(\gamma) = \gamma - \gamma(h_i)\gamma_i$. Then Δ and Γ are W-stable. Also W acts on L_0 naturally: $w_i(h_j) = h_j - c_{ij}h_i$. Hence we see $(w_i\gamma)(w_i) = \gamma(h_i)$ for

all $w \in W$, $\gamma \in ((L_0)^e)^*$ and $h \in L_0$.

Let $F_0(C, k)$ be the subgroup of Aut(L) generated by \exp ad te_i and \exp ad tf_i for all $t \in k$ and $i = 1, \dots, l$. Let V be a standard L^e -module with a highest weight $\lambda, \neq 0$ (cf. [5], [10]). We let $F_V(C, k)$ denote the subgroup of GL(V) generated by $\exp te_i$ and $\exp tf_i$ for all $t \in k$ and $i = 1, \dots, l$. These groups $F_0(C, k)$ and $F_V(C, k)$ have Tits systems respectively (cf. [11], [16]). Then there is a homomorphisms ν of $F_V(C, k)$ onto $F_0(C, k)$ such that $\nu(\exp te_i) = \exp$ ad te_i and $\nu(\exp tf_i) = \exp$ ad tf_i for all $t \in k$ and $i = 1, \dots, l$ (cf. [11]), and ν is central (cf. [18]).

4. The affine case.

Let Φ , A and \widetilde{A} be as in § 1. Then we can regard L(A) as a subalgebra of $L(\widetilde{A})$ naturally. We note that $R_1(A) = R_1(\widetilde{A}) = 0$, and that $\Delta(A) \approx \Phi \cup \{0\}$ and $\Delta(\widetilde{A}) \approx \Delta(A) \times \mathbb{Z}$ (cf. [5], [9], [15]). Also we identify W(A) with a subgroup of $W(\widetilde{A})$. Therefore we have the following commutative diagram.

$$W(A) \times L_0(A) \longrightarrow L_0(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$W(\tilde{A}) \times L_0(\tilde{A}) \longrightarrow L_0(\tilde{A})$$

We take an element σ of W(A) such that $\sigma(\alpha_1) = \alpha_{n+1}$. Put $h_0 = \sigma(h_1)$ and $h_{\xi} = h_{n+1} - h_0$. Then $\gamma_i(h_0) = \gamma_i(\sigma h_1) = (\sigma^{-1}\gamma_i)(h_1) = \langle \sigma^{-1}\alpha_i, \alpha_1 \rangle = \langle \alpha_i, \alpha_{n+1} \rangle = a_{i,n+1}$ and $\gamma_i(h_{\xi}) = 0$. Therefore $\mathcal{Z} = kh_{\xi}$ is the center of $L(\widetilde{A})$, and we have an exact sequence of Lie algebras over k (cf. [5], [8], [15]):

$$0 \longrightarrow \mathcal{Z} \longrightarrow L(\widetilde{A}) \stackrel{\pi}{\longrightarrow} k[T, T^{-1}] \underset{k}{\bigotimes} L(A) \longrightarrow 0.$$

Hence the map π induces an isomorphism $\tilde{\pi}$ of $F_0(\tilde{A}, k)$ onto $E_0(\Phi, k[T, T^{-1}])$ such that

$$\begin{split} &\tilde{\pi}(\text{exp ad }te_i) = x_{\alpha_i}(t) & \text{for all } 1 \leq i \leq n, \\ &\tilde{\pi}(\text{exp ad }te_{n+1}) = x_{\alpha_{n+1}}(tT), \\ &\tilde{\pi}(\text{exp ad }tf_i) = x_{-\alpha_i}(t) & \text{for all } 1 \leq i \leq n, \\ &\tilde{\pi}(\text{exp ad }tf_{n+1}) = x_{-\alpha_{n+1}}(tT^{-1}). \end{split}$$

Since $St(\Phi, k[T, T^{-1}])$ is a universal covering of $E_0(\Phi, k[T, T^{-1}])$ (cf. Theorem 9), there is a unique homomorphism, denoted by ϕ , of $St(\Phi, k[T, T^{-1}])$ into $F_v(\widetilde{A}, k)$ such that the following diagram is commutative.

$$F_{\nu}(\widetilde{A}, k) \xrightarrow{\nu} F_{0}(\widetilde{A}, k)$$

$$\downarrow \phi \qquad \qquad \downarrow \chi \widetilde{\pi}$$

$$St(\Phi, k[T, T^{-1}]) \xrightarrow{\theta} E_{1}(\Phi, k[T, T^{-1}]) \xrightarrow{\psi} E_{0}(\Phi, k[T, T^{-1}])$$

Then, by the relation $\hat{h}_{\alpha}(t)\hat{x}_{\alpha}(a)\hat{h}_{\alpha}(t)^{-1} = \hat{x}_{\alpha}(t^{2}a)$, we see

$$\begin{split} \phi(\hat{x}_{\alpha_i}(a)) &= \exp ae_i & \text{for all } 1 \leq i \leq n, \\ \phi(\hat{x}_{\alpha_{n+1}}(aT)) &= \exp ae_{n+1}, \\ \phi(x_{-\alpha_i}(a)) &= \exp af_i & \text{for all } 1 \leq i \leq n, \\ \phi(x_{-\alpha_{n+1}}(aT^{-1})) &= \exp af_{n+1}, \\ \phi(\hat{w}_{\alpha_i}(t)) &= w_i(t) & \text{for all } 1 \leq i \leq n, \\ \phi(\hat{w}_{\alpha_n+1}(tT)) &= w_{n+1}(t), \\ \phi(\hat{h}_{\alpha_i}(t)) &= h_i(t) & \text{for all } 1 \leq i \leq n, \\ \phi(\{T, t\}_{\alpha_{n+1}} \hat{h}_{\alpha_{n+1}}(t)) &= h_{n+1}(t), \end{split}$$

where $w_i(t) = (\exp te_i) (\exp -t^{-1}f_i) (\exp te_i)$ and $h_i(t) = w_i(t)w_i(-1)$ for each $i = 1, 2, \dots, n+1$, and $a \in k$ and $t \in k^*$. In particular, ϕ is an epimorphism. Thus:

THEOREM 11. $St(\Phi, k[T, T^{-1}])$ is a universal covering of $F_v(\tilde{A}, k)$.

Finally in this note, we will discuss the kernel of ϕ . Since $\ker \phi \subseteq \ker \phi \subseteq \ker (\theta \phi)$, an element x of $\ker \phi$ can be written as $\prod_{i=1}^n \hat{h}_{\alpha_i}(t_i) \prod_p \{a_p, b_p\}_{a_1}^{r_p} \prod_{j=1}^q \{T, c_j\}_{a_{n+1}}^{s_j}$, where $t_i, a_p, b_p, c_j \in \mathbb{Z}_+$ and $r_p, s_j \in \mathbb{Z}_+$. Then $\phi(\{T, c_j\}_{\alpha_{n+1}}) = h_{n+1}(c_j)\sigma h_1(c_j)^{-1}\sigma^{-1}$. On each weight space V_μ of V (cf. [5], [10]), $\phi(x) = \prod_{i=1}^n t_i^{\mu(h_i)} \prod_{j=1}^q c_j^{\mu(h_{n+1})s_j} c^{-(\sigma^{-1}\mu)(h_1)s_j} = \prod_{i=1}^n t_i^{\mu(h_i)} \prod_{j=1}^q c_j^{\mu(h_{n+1})s_j} c_j^{-\mu(h_0)s_j} = \prod_{i=1}^n t_i^{\mu(h_i)} \prod_{j=1}^q c_j^{\mu(h_0)s_j}$. Therefore:

$$\phi(x) = 1$$

$$\Leftrightarrow \prod_{i=1}^{n} t_i^{\mu(h_i)} \prod_{j=1}^{q} c_j^{\mu(h_{\xi})s_j} = 1 \quad \text{for all weight } \mu.$$

Put $P=\langle \prod_{i=1}^n \hat{\mathbf{h}}_{\alpha_i}(t_i) \prod_{j=1}^q \{T, c_j\}_{\alpha_{n+1}}^{s_j} | \prod_{i=1}^n t_i^{\mu(h_i)} \prod_{j=1}^q c_j^{\mu(h_{\xi})s_j} = 1$ for all weight μ of $V \rangle$.

THEOREM 12. Ker $\phi = K_2(\Phi, k) \oplus P$.

Acknowledgment. The author wishes to thank Professor Eiichi Abe for his valuable advice.

References

- [1] Abe, E., Chevalley groups over local rings, Tōhoku Math. J., 21 (1969), 474-494.
- [2] Alperin, R. and Wright, D., $K_2(2, k[T, T^{-1}])$ is generated by "symbols," J. Algebra, 59 (1979), 39-46.
- [3] Berman, S., On the construction of simple Lie algebras, J. Algebra, 29 (1973), 158-183.
- [4] Bourbaki, N., "Groupes et algèbres de Lie," Chap. 4-6, Hermann, Paris, 1968.
- [5] Garland, H., The arithmetic theory of loop algebras, J. Algebra, 53 (1978), 480-551.
- [6] Humphreys, J. E., "Introduction to Lie algebras and representation theory," Springer, Berlin, 1972.
- [7] Hurrelbrink, J., Endlich präsentierte arithmetiche Gruppen und K_2 über Laurent-Polynomringen, Math. Ann., 225 (1977), 123-129.

- [8] Kac, V.G., Simple irreducible graded Lie algebras of finite growth, Math. U.S.S.R.-Izv., 2 (1968), 211-230.
- [9] ——, Infinite-dimensional Lie algebras and Dedekind's η -function, Functional Anal. Appl., 8 (1974), 68-70.
- [10] Lepowsky, J., "Lectures on Kac-Moody Lie algebras," Paris University, 1978.
- [11] Marcuson, R., Tits' systems in generalized nonadjoint Chevalley groups, J. Algebra, 34 (1975), 84-96.
- [12] Matsumoto, H., Sur les sous-groupes arithmétiques des groupes semi-simple déployés, Ann. Scient. Ec. Norm. Sup., (4) 2 (1969), 1-62.
- [13] Milnor, J., "Introduction to algebraic K-theory," Ann. of Math. Studies, Princeton University Press, Princeton, 1971.
- [14] Moody, R. V., A new class of Lie algebras, J. Algebra, 10 (1968), 211-230.
- [15] —, Euclidean Lie algebras, Canad. J. Math., 21 (1969), 1432-1454.
- [16] ——— and Teo, K.L., Tits' systems with crystallographic Weyl groups, J. Algebra, 21 (1972), 178-190.
- [17] Morita, J., Tits' systems in Chevalley groups over Laurent polynomial rings, Tsukuba J. Math., (2) 3 (1979), 41-51.
- [18] ———, Moody-Teo's groups and Marcuson's groups, preprint.
- [19] Rehmann, U., Präsentationen von Chevalley-Gruppen über k[T], preprint (Bielefeld, 1975).
- [20] Stein, M. R., Generators, relations and coverings of Chevalley groups over commutative rings, Amer, J. Math., 93 (1971), 969-1004.
- [21] Steinberg, R., Générateurs, relations et revêtements de groupes algébriques, "Colloque sur la théorie de groups algébriques," Bruxelles, 1962.
- [22] ——, "Lectures on Chevalley groups," Yale University Lecture notes, 1967/68.
- [23] Behr, H., Eine endliche Präsentation der symplektischen Gruppe $Sp_4(\mathbf{Z})$, Math, Z., 141 (1975), 47-56.
- [24] ———, Explizite Präsentation von Chevalleygruppen über Z, Math., 141 (1975), 235-241.
- [25] Hurrelbrink, J. and Rehmann, U., Eine endliche Präsentation der Gruppe $G_2(\mathbf{Z})$, Math. Z., 141 (1975), 234-251.
- [26] Soulé, C., Chevalley groups over polynomial rings, London Math. Soc. Lecture Notes Series, **36** (1979), 359-368.

Institute of Mathematics University of Tsukuba Sakura-mura, Niihari-gun Ibaraki, 305 Japan

Note added in proof. Recently H. Garland [Publ. IHES 52 (1980), 181-312] has constructed a subgroup F_1 of Aut(V) containing $F_V(\tilde{A}, k)$, and has shown that $St(\Phi, k((T)))$ is a universal covering of F_1 , where k((T)) is the T-adic completion of $k[T, T^{-1}]$. Then the composite map $St(\Phi, k[T, T^{-1}]) \rightarrow St(\Phi, k((T))) \rightarrow F_1$ coinsides with the covering map of $F_V(\tilde{A}, k)$