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COVERINGS OF GENERALIZED CHEVALLEY GROUPS
ASSOCIATED WITH AFFINE LIE ALGEBRAS

By

Jun MoriTA

R. Steinberg has given a presentation of a simply connected Chevalley
group (=the group of k-rational points of a split, semisimple, simply connected
algebraic group defined over a field &) and has constructed the (homological) uni-
versal covering of the group. In this note, we will consider an analogy for a
certain family of groups associated with affine Lie algebras.

1. Chevalley groups, Steinberg groups and the functor K,(9, -).

Let @ be a reduced irreducible root system in a Euclidean space R™ with an
inner product (-, -) (cf. [4] [6). We denote by @* (resp. ®) the positive (resp.
negative) root system of @ with respect to a fixed simple root system /7 ={ay, -,
az}. We suppose that a; is a long root (for convenience’ sake). Let a,.: be the
negative highest root of @. Set a:;=2(ai, a;)/(a;, ;) for each i,j=1,2,---, n+1.
The matrices A=(ai;)<i, j<n and ﬁz(aij)lsi, je<n+1 are called a Cartan matrix of @
and the affine Cartan matrix associated with A respectively (cf. [6).

Let G(®@,-) be a Chevalley-Demazure group scheme of type @ (cf. [207.
For a commutative ring R, with 1, we call G(®@, R) a Chevalley group over R.
For each ae®, there is a group isomorphism—*exponential map”—of the additive
group of R into G(®, R):t——x,.(¢). The elementary subgroup E(®, R) of G(®, R)
is defined to be the subgroup generated by xz.(f) for all ae® and teR. We use
the notation G(®@, -) and Ei(®@, -) (resp. Go(@, -) and E (@, -)) if G(@,-) is simply
connected (resp. of adjoint type). It is well-known that G,(®, R)=FE,(®, R) if R is
a Euclidean domain (cf. [22, Theorem 18/Corollary 3]).

Let St(@, R) be the group generated by the symbols #.(¢) for all ae® and teR
with the defining relations

(A)  Ba(8)Za(t) =Zu(s+1),

(B)  [2a(s), 2s()1=TI Zia+js(Na,p.5.5 57,

(BY  @.(6)2(8)0o(—t)=2_o(—u"?t)
for all a, Be@(a+p=0), s,teR and ueR*, the units of R, where @,(%)=2,(4)%_.(—
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u ")z (u) (cf. [20]). We call S®, R) a Steinberg group over R.

Since the relations corresponding to (A), (B), (B) hold in E\(®, R), there is a
homomorphism ¢ of S{®@, R) onto E\(®, R) such that #(£.(2))=x.(¢) for all ae® and
teR. Put Ky(®, )=Ker[SK®, ) — E\®, )], ie, 1— Ky®,-)—> SO, ) —>
E(®,-) —> 1 is exact. For each ac® and u,veR*, we set {«,v}.=h(uv)h(0)"*
h.(v)7!, called a Steinberg symbol, where A.(u)=w.()®.(—1). Let K ={{u, v}.|ac®,
u,veR*y. Then K S Ky(®, R)NCent(St(®, R)).

Definition. R is called universal for @ if Ky(@, R)=K.
Let E.(®, R)=St(®, R)/K. Then the homomorphism ¢ induces a homomorphism

6 of E.(®, R) onto E\(®, R). We see:
“R is universal for @”
& “@ is an isomorphism”

> ‘“0 is a central extension.”

ExampLE 1 (cf. [20], [21], [22])). Let & be a field.
(1) Si@, k) is connected if (@, |k|)=(A4,2), (B:, 2), (G2, 2) and (A4, 3).
(2) k is universal for each @.
(3) St(@,k) is a universal covering of E(®, k) with a few exceptions.

2. The case of Laurent polynomial rings.

Let £[7] be the ring of polynomials in 7" with coefficients in a field &, and M
the maximal ideal of k[T'] generated by 7. Let k[T, T-!] be the ring of Laurent
polynomials in 7 and 7! with coefficients in 2 We identify (7] with a subring
of k[T, T-'] naturally. Set

U=<xzo(f), zolg)|lae®”, fe@”, fek(T], geM),
N=(w.(tT™)|ac®, tek*, meZ),
H={h,(t)lac®, tek*, and

B=(U, H)

as subgroups of E(@, k[T, T']), where w,(u)=x,(u)x_.(—u ")z 0t) and ’h.(u)=w.(u)
w.(—1).

Tueorem 2 [17).
(1) BNN=H.
(2) (E@,k[T,T7']), B,N) is a Tits system.
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CoroLLARY 3.
(1) The canonical homomorphism O ENQ, k[T, T7']) —> Eo(@, k[T, T']) is a cen-
tral extension.

) Ker ¢={T1%1 ha;(t)| [17=1 P2 =1 for all Bed}, where {8, a;>=2(8, as)/(as, a;), and
fin*.

We define the subgroups U, N, H, B of SK®, KT, T)):

U=(2.f), 2g)lac®*, Bed~, FekT], gy,
N=@.tT™)|ac®d, tek*, meZ>,
H={h(0|acd, tek*>R,
B=U, A>
We denote by Uy, Nu, H, and B, the canonical images of U, N ,H and B in
EW(®, k[T, T~']) respectively. Then (Ek@, k[T, T')), By, N,) and (SHD, k[T, T,
B, 1\7) are Tits systems, which is established by using the same technique as in

THEOREM 4.

(1) Gu(@, [T is presented by the generators Z,(f) and @W.(¢) for all ae/l, redt,
fek[T] and tek*, and the defining relations (R1)—(R9):

RL) z.(/)x,(9)=%,(f +9),
R2) W)~ =Wa(—0),
(R3) W.()Z () Wo(—12) = Zo(— Pu Yo (Pu ) B (— Py,
RY) [Z,(F), ZLDI=TT Biyiss (N, 5.1, ; fig),
(R5)  ha(t)ha(st) = hia(tu),
(R6) o)) a(2)-+ =105()0 o () 5(28) -,
q q
R?)  Ba()B,(f)Wal— 1) =&, (ct=*F),
(R8)  Au(DF(F)halt™) =282 1),
(RY)  Wa()hs()a(— 1) = Frg(t0)h(ts= =)

for all @, Bell(a=p), 1,0e¢d*, pe®*—{a}, f,9€k[T] and ¢, uek* where ho(t) =4 (2)
Wa(—1), and N, ; and ¢ are as in or [22] and each side of the equation in
(R6) is the product of g symbols, and ¢=2,3,4 or 6 if (Ra+RBN® is of type
Ay XAy, Ay, B, or G; respectively, and <y a>=2(y, a)/(a, @) and o' =p—<p, ada.

(2) K[T] is universal for each root system @.

Proor. (1) One can get this presentation of G:(@,k[T]) by using the same
argument as in [23], [24] and [25]. (2) It follows from (1) that A[T] is universal.
(By using an amalgamated free product decomposition of G;(@, E[T]) which is
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described in Rehmann has given a different proof of the statement (2)
from ours.) q.e.d.

TuEOREM 5. k[T, T-'] is universal for each root system @.

Proor. In the following commutative diagram:

7]
BuNuBu=Eu(®, k[T, T™')) — E«(®, k[T, T™'))=BiN,B;

I~
EJ®, K T)———E(D,KT])2B:

we have Ker6cB.. On the other hand, B,=B; by the universality of A[T]
Therefore 6 is an isomorphism. q.e.d.

By taking T=1, the sequence 0—k—k[T, T-'] splits, so K,(®,k) is a direct
summand of K,(®, k[T, T~ '])). Then:

TueoreM 6 [2).
(1) KAy, k[T, T'))=Kx(As, )DS, where S=T, t}.|tek*> and « is a fixed root.
(2) S=k* if k*=Fk (i.e. k is a square root closed field).

CoroLLARY 7 (cf. [2], [12], [13]).
(1) K@, k[T, T ')=K:®, b)®S, where S={T, t}.|tek*> and a is a fixed long

root.
(2) S is isomorphic to a factor group of k* if @xC, (n=>1).
(3) S is isomorphic to a factor group of k* if k2=k.

Proor. (1) and (3) follow from Theorem 6. If ?xC, (n>1), then A, can be
embedded in the long roots of @. By Matsumoto’s theorem, one sees (2). q.e.d.

ReMARK 8. The statements of Theorem 5, Theorem 6 and Corollary 7 have
been confirmed by Hurrelbrink [7] in the case when 0xG.. He has directly
calculated the relations of G(®, k[T, T']) of type ®=A,, A,, and B;, and by using
this has proved Theorem 5 for ®%G,. Our proof of Theorem 5 is different from

his, and contains the case of type G..

As an application of [20, (5.3) Theorem/Remarks] and we can

establish the following theorem.

TueoreM 9. If char £=0, then SH®, k[T, T"']) is a universal covering of
E@, kLT, T7')).
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3. Kac-Moody Lie algebras and generalized Chevalley groups.

An [X! integral matrix C=(c;;) is called a generalized Cartan matrix if (i)
cii=2, (ii) i¥j>¢i;<0, and (iii) ¢;;=0&=c;=0. From now on, we suppose char &
=0. We denote by L,=L,(C) the Lie algebra over & generated by the 3/ genera-
tors ey, -+, e, s, oo+, Iy, f1, -+, i with the defining relations [4;, £;1=0, (e, fi1=0i;h:,
(%, e51=ciej, (i, f51=—cuf; for all 1<i,7</, and (ad e;)~7i*'e;=0, (ad f;)~7i*! f;=0
for all 1<i=j</. Then the generators ey, -, e, A1, -+, fu, f1, -++, f; are linearly inde-
pendent in L,., We view L, as a Z'-graded Lie algebra defined by deg(e;)=(0, ---,
0,1,0,--,0), deg(%)=(0, ---,0) and deg(f:)=(,---,0, —1,0,---,0), where +1 are in
the i-th position. Then there is the maximal homogeneous ideal R;=R,(C) of L,
such that RN (XL, kA4 +kA)=0. Set L=L(C)=L,/R,, called the Kac-Moody
Lie algebra over k associated with a generalized Cartan matrix C (cf. [3],[5] [8],
[10],[14]). The algebra L is also Z!graded. For each /-tuple (s, ---, m)eZ! we
let L(n,, ---,7;) denote the homogeneous subspace of degree (#,,:--,7,) in L. We
identify ey, A, f; with their images in L. Then:

ProrosiTiON 10.
(1) L(n, -+, m) is the subspace of L spanned by the elements Le:,, [eiy, -, (€1, _y,
ei,)---11 (resp. [ fi,, [ figs =+, [ fiy_y, fi, - 1)), where e; (resp. f;) occurs |n;| times, if
(m1, --+, ;) belongs to (Z.)'—{0} (resp. (Z_)'—{0}).
(2) L@,--,0)=Fkh+---+Ekh,.
(3) L(nmi, -+, m)=0 otherwise.

Put Lo=L.(C)=Fkh,+---+kh. For each i=1, .-/, we define a degree deriva-
tion D; on L such that Di(x)=wnx for all xeL(ni, -+, n;). Set Dy=kD,+---+EkD,
viewed as an abelian Lie algebra of dimension /. For a subspace DcD,, let
L*=L(C)y’=Dx L (semidirect product) and (L,)*=DXx L, (direct product). For each
7=1,---,1, let 7; be an element of ((L,)*)*, the dual of (L,)°, such that [#, ejl=rih)e;
for all #e(L,)*. We note that y;(k)=c; for all i,j=1,---,/. We will choose and
fix a subspace D of D, such that i, ---y; are linearly independent in ((Lo)¥)*. This
is possible, since ri(Dj)=0:;;. Set L'={xeLl|[h, x]=y(k)x for all ke(L,)?} for each
7€((Lo)?*. It is easily seen that Lmn++mn=[(n,, .-, n,) for all (n,,---,n)eZ'. In
particular, Li=ke;, L°=L, and L"i=Fkf;.

Let 4=4(C)={re((Lo)*)*|L"x0}, called the root system of L. Set I'=3t_, Zyi,
a free Z-submodule of ((L,)*)*. The Weyl group W=W(C) is defined to be the
subgroup of GL(((L,)*)*) generated by w; for all i=1,---,/, where w; is an endo-
morphism of ((Lo)*)* such that wy(y)=y—y(h)y:. Then 4 and I" are W-stable.
Also W acts on L, naturally: wi(h;)=h;—cijh:.. Hence we see (wy)(wh)=y(h) for
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all weW, re((Lo)%)* and keL,.

Let Fo(C, k) be the subgroup of Awu#(L) generated by exp ad fe; and exp ad f;
for all tek and i=1,---,/. Let V be a standard L°-module with a highest weight
4 %0 (cf. [5] [10). We let Fy(C, k) denote the subgroup of GL(V) generated by
expte; and exptf; for all tek and i=1,---,/. These groups Fy(C, k) and Fy(C, k)
have Tits systems respectively (cf. [11], [I6]). Then there is a homomorphisms v
of Fy(C, k) onto Fy(C, k) such that v(exp te;)=exp ad fe; and v(exp #fi)=exp ad #f; for
all ek and i=1, -,/ (cf. [II), and v is central (cf. [18).

4. The affine case.

Let @, A and A be as in §1. Then we can regard L(A) as a subalgebra of
L(A) naturally. We note that Ri(A)=Ry(A)=0, and that 4(A)=@U{0} and 4(A)~
MJAYXZ (cf. [5],[9),[15)). Also we identify W(A) with a subgroup of W(A).
Therefore we have the following commutative diagram.

W(A) X Lo(A) —> Lo(A)

l l

W(A) X Lo(A) —> Lo(A)

We take an element ¢ of W(A) such that ¢(a:)=an1. Put hy=0(k) and k.=
hBni1—ho. Then )’i(ko)=T'i(0'k1)=(0—17'i>(hl):<0—lais a1) ={As, Qn+1) =qi,ns1 and Ti(h£)=0-
Therefore & =kh. is the center of L(A), and we have an exact sequence of Lie

algebras over k (cf. 81 5] :

0—> % —> L(A) =, KT, T %L(A) —0.

Hence the map = induces an isomorphism 7 of Fo(ﬁ, k) onto Eo(®, k[T, T ']) such
that

#(exp ad te;) =x.,(t) for all 1<i<n,

#(exp ad ten+1) = Lay, . ,(¢T),

#(exp ad tfi) =z _a;(2) for all 1<i<n,

#(exp ad tfn+1) =T—ay . T 7).
Since S{®, k[T, T-']) is a universal covering of Eo(@, k[T, T™']) (cf. [Theorem 9),
there is a unique homomorphism, denoted by ¢, of SH®,k[T,T™']) into FV(/Nl, k)
such that the following diagram is commutative.

v

Fy(A k) ————— Fo(A, k)
6 7 N
4 iz
St(@, kT, T"])/——* E«(®, k[T, T ') —¢‘> Eo(@, k[T, T™))
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Then, by the relation 7%.(t)Z.(@)h.(t)"' =2.(f2a), we see

P(2.,(@)) =€Xxp ae; for all 1<i<n,
(]5(.’3“"“((17‘)) =€XP @€n+1,

H(x_o (@) =€XD afi for all 1<i<n,
P Z—ay,(@T 1)) =€XD af ps1,

P(W. (1) =wi(?) for all 1<i<n,
P @ap,,ET)) =wr11(2),

G (hay()) =a(2) for all 1<i<un,

¢({T1 t}"n+1 ;tanJrl(t)) :kn+l(t)y

where w;(¢)=(exp te;) (exp —¢~'f;) (€xp te;) and () =w;()wi(—1) for each i=1,2, -,
n+1, and aek and tek*. In particular, ¢ is an epimorphism. Thus:

THEOREM 11. SH®, k[T, T-']) is a universal covering of Fy(ﬁ, k).

Finally in this note, we will discuss the kernel of ¢. Since Ker ¢ < Ker (6¢),
an element x of Ker¢ can be written as []%-1 k., (t:) [1s{as, boYp 13- T, c}8h., 0
where i, ap, by, c;ek* and vy, s5;€Z.. Then ¢UT, cilay,,) =Anii(c))oli(c;) 'a”'. On
each weight space V, of V (cf. [5] [10]), ¢(x)=T17-124% [[% clfPn+08j o= 0P85 =
[1%-1 850 TT9-1 ¢4 Pn+v55 c50n085 = [17_, 24 T]9., ¢4*®%s.  Therefore :

$(x)=1
& [ 84% 3. c5®%5=1  for all weight p.

Put P=<I1%~1ha;(ts) [1%1 (T, cited | T13=1 8™ []§-0 c5*0%i =1 for all weight x of V).

THEOREM 12. Ker ¢ =K,(®, R)DP.

Acknowledgment. The author wishes to thank Professor Eiichi Abe for his
valuable advice.
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Note added in proof. Recently H. Garland [Publ. ITHES 52 (1980), 181-312] has con-

structed a subgroup F; of Au#(V) containing Fv(ff, k), and has shown that SK@, &(T))) is
a universal covering of F,, where k((T)) is the T-adic completion of A[T, T-1]. Then the
composite map SK@, k[T, T ~1])—>SH®, k(T )))—F, coinsides with the covering map of Fv(ff, k)
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