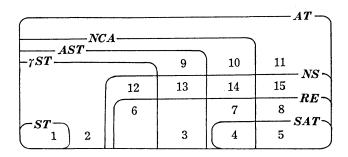
ON A CLASSIFICATION OF ARONSZAJN TREES II

By

Masazumi HANAZAWA

§ 1. Introduction.

In the former paper [3], we considered the classification of Aronszajn trees by the notions of Souslin trees, ω_1 -trees with property γ , almost-Souslin trees, ω_1 -trees with no club antichain, special Aronszajn trees and R-embeddable trees. As we remarked in its last section, there is another interesting notion. It is the notion of non-Souslin trees which had been introduced by Baumgartner [1]. The classification of Aronszajn trees by this notion together with the previous ones is shown by the following:



where ST=the class of Souslin trees,

 γST =the class of ω_1 -trees with property γ ,

AST=the class of almost-Souslin trees,

NCA=the class of ω_1 -trees with no club anti-chain,

SAT=the class of special Aronszajn tree,

RE=the class of R-embeddable ω_1 -trees,

NS=the class of non-Souslin trees,

AT=the class of Aronszajn trees.

Under ZFC alone, none of the categories but Category 5 can be proved to be non-void. In the former paper we proved that if V=L, Categories $1\sim11$ are all non-void (note that the trees constructed in Theorems 9, 10 and 11 [3], are the elements of Categories 9, 10 and 11 respectively). In this paper we shall prove that if V=L, remaining Categories $12\sim15$ are also non-void. It is shown as a

Received May 29, 1980. Revised December 2, 1980.

by-product that \diamondsuit suffices for the existence of non-Souslin trees which are not R-embeddable.

§ 2. Preliminaries.

Most of the notions and the notations which are used here are described in the former paper. It is assumed that the reader knows them. Let $T = \langle T, <_T \rangle$ be a tree. $\langle X, <_T \rangle$ is called a subtree of T if $X \subset T$. $\langle X, <_T \rangle$ is called a transitive subtree of T if it is a subtree of T such that $(\forall x \in X \ \forall y \in T) [y <_T x \rightarrow y \in X]$ (in the paper [3], we called a transitive subtree a subtree). When $X \subset T$, we use

 \widetilde{X} to denote $\langle X, <_T \rangle$,

 $ht_X(x)$ to denote the height of x in \tilde{X} ,

 \widetilde{X}_{α} to denote the set $\{x \in X : ht_{X}(x) = \alpha\}$,

 $\widetilde{X} \upharpoonright \alpha$ to denote the set $\{x \in X : ht_X(x) < \alpha\}$.

But \widetilde{T} , $ht_T(x)$ \widetilde{T}_{α} , $\widetilde{T} \upharpoonright \alpha$ will exceptionally be written as T, ht(x), T_{α} , $T \upharpoonright \alpha$ respectively. If $S \subset \omega_1$, $T \upharpoonright S$ is the set $\{x \in T : ht(x) \in S\}$. Recall that Ω is the set of all limit ordinals $<\omega_1$. In this paper ω_1 -trees are assumed to have only one minimal element (a root).

Before introducing more special notions, we shall raise well-known facts.

LEMMA 1. If T is an R-embeddable tree with $ht(T) \leq \omega_1$, then the tree $\langle T \upharpoonright (\omega_1 \backslash \Omega), <_T \rangle$ is Q-embeddable.

PROOF. With each $x \in T \upharpoonright (\omega_1 \backslash \Omega)$, associate a $q \in Q$ such that e(x') < q < e(x), where $e: T \to R$ is the embedding and x' means the immediate predecessor of x.

LEMMA 2. If T is a Q-embeddable uncountable tree, then T contains an uncountable anti-chain.

PROOF. Let e embed T in Q. Clearly $\{x \in T : e(x) = q\}$ is an anti-chain and is uncountable for some $q \in Q$.

LEMMA 3. Let T be an R-embeddable tree. If X is an uncountable subset of T, then X contains an uncountable anti-chain of T.

PROOF. \widetilde{X} is clearly R-embeddable. If \widetilde{X}_{α} is uncountable for some α , then $\widetilde{X}_{\alpha}(\subset X)$ is an uncountable anti-chain of \widetilde{X} and hence an uncountable anti-chain of T. If \widetilde{X}_{α} is countable for all α , then $\widetilde{X} \upharpoonright (\omega_1 \backslash \Omega)$ is uncountable. Since

 $\langle \widetilde{X} \upharpoonright (\omega_1 \backslash \Omega), <_T \rangle$ is **Q**-embeddable by Lemma 1, there is an uncountable anti-chain $\subset \widetilde{X} \upharpoonright (\omega_1 \backslash \Omega) \subset X$ by Lemma 2.

LEMMA 4. Let T be a tree with height ω_1 . If T_{α} is finite for uncountably many α , then T has a confinal branch.

PROOF. Put $T^*=\{x\in T: x \text{ has an extension in every higher level } T_\alpha\}$. It is easy to see by the assumption that the transitive subtree $\langle T^*, <_T \rangle$ of T has height ω_1 . Pick a branch b of \tilde{T}^* . We shall show that the order type, say λ , of b is ω_1 . Suppose $\lambda < \omega_1$. Pick $\alpha < \omega_1$ such that $\lambda < \alpha$ and T_α is finite. Put $Y_x=\{y\in T_\alpha\; ;\; x<_T y\}$ for each $x\in b$. Then $\bigcap\{Y_x:x\in b\}$ is non-empty, since (1) $Y_x\neq\emptyset$, (2) $x<_T y\rightarrow Y_x\supseteq Y_y$ and (3) Y_x is finite. Pick $y\in\bigcap\{Y_x:x\in b\}$. Then $b\subset \hat{y}$, this contradicts the assumption that b is a branch (a maximal linearly ordered subset of T),

Now recall that \mathfrak{T} is the tree $\bigcup_{\alpha<\omega_1} \mathbf{R}^{\alpha+1}$ with the ordering defined by $x<_T y$ $\leftrightarrow x\subset y$ and that if $x\in\mathfrak{T}$, m(x) is the real number x(ht(x)). When $x\in\mathfrak{T}$ and a limit ordinal λ is in dom(x), we write $\lim_{\xi\to\lambda} x(\xi)=r$ instead of $(\forall q< r\ \exists \alpha<\lambda\ \forall \beta<\lambda)$ $[\alpha<\beta\to q< x(\beta)\leq r]$. Now we define a transitive subtree \mathfrak{T}_P of \mathfrak{T} as follows:

$$\mathfrak{T}_{P} = \{ x \in \mathfrak{T} : P(x) \}$$

where P(x) is the conjunction of the following three:

- (1) $x(\alpha) \ge 0$ for all $\alpha \in \text{dom}(x)$;
- (2) $x(\alpha) < x(\alpha+1)$ for all α with $\alpha+1 \in \text{dom}(x)$;
- (3) for all limit ordinals $\lambda \in \text{dom}(x)$,

$$(\forall r > 0) [\lim_{\xi \to \lambda} x(\xi) = r \leftrightarrow x(\lambda) = r].$$

For a transitive subtree T of \mathfrak{T}_P , we put

$$T^0 = \{x \in T : m(x) = 0\}.$$

We shall write

$$x \rightleftharpoons_T y$$
 instead of $x \lessdot_T y \& (x, y] \cap T^0 = \emptyset$.

LEMMA 5. Let T be a transitive subtree of \mathfrak{T}_P . Then for every $x, y \in T$:

- (1) $m(x) \ge 0$;
- (2) $x \rightleftharpoons_T y \rightarrow m(x) < m(y)$;
- (3) the function m increases monotonously on [x, y) if $(x, y) \cap T^0 = \emptyset$;
- (4) $m(x) > 0 \rightarrow \exists y [y \rightleftharpoons_T x];$
- (5) $\lambda \in \Omega \& x, y \in T_{\lambda} \& \hat{x} = \hat{y} \rightarrow x = y$;
- (6) $m(x)=0 \rightarrow ht(x) \in \Omega$;

(7) if $ht(y) \in \Omega$, then for every r > 0,

$$\lim_{z \to y} m(z) = r \quad \text{iff } m(y) = r,$$

where $\lim_{z\to y} m(z) = r$ means

$$(\forall \varepsilon > 0)(\exists z <_T y)(\forall w \in [z, y))[m(w) > r - \varepsilon];$$

$$(8) \quad y <_T x \& x \in T^0 \& q \in \mathbf{Q} \rightarrow (\exists z) [y \overrightarrow{<}_T z <_T x \& m(z) > q].$$

PROOF. The first seven statements are easily checked. To show the last one, suppose that $y <_T x \in T^0$ and $q \in Q$. Let w be the least of those elements z that $y <_T z \leq_T x$ and m(z) = 0. By (3), the function m increases monotonously on [y, w), since $(y, w) \cap T^0 = \emptyset$. Hence w increases monotonously on [ht(y), ht(w)). Hence $\lim_{\xi \to ht(w)} w(\xi) = \infty$ because of (7) and w(ht(w)) = 0. Pick ζ so that $ht(y) < \zeta < ht(w)$ and $w(\zeta) > q$. Put $z = w \upharpoonright (\zeta + 1)$. Then

$$y \stackrel{\rightarrow}{<}_T z <_T w \stackrel{\leq}{\leq}_T x$$
 & $m(z) = z(h t(z)) = w(\zeta) > q$, q. e. d.

If a transitive subtree of \mathfrak{T}_P is an ω_1 -tree, we call it a P-tree. Recall that an ω_1 -tree T is called a non-Souslin tree if every uncountable subset of T contains an uncountable anti-chain. By NS, we denote the class of all non-Souslin trees.

LEMMA 6. Let T be an Aronszajn P-tree. If

$$\{\alpha: T_{\alpha} \cap T^{\circ} \text{ is finite}\}$$

is a stationary set, then

- (i) if X is an uncountable subset of T^0 , \widetilde{X}_{α} is uncountable for some $\alpha < \omega_1$,
- (ii) $T \in NS$.

PROOF. (i) Let X be an uncountable subset of T^0 and suppose that \widetilde{X}_{α} is countable for all $\alpha < \omega_1$. Put:

$$C = \{ \lambda \in \Omega : \widetilde{X} \upharpoonright \lambda \subseteq T \upharpoonright \lambda \}.$$

C is a club set since $\widetilde{X} \upharpoonright \alpha$ is countable for all $\alpha < \omega_1$. Hence by the assumption of the lemma, the set

$$E = \{ \lambda \in C : T_{\lambda} \cap T^{0} \text{ is finite} \}$$

is stationary and hence uncountable. Put:

$$Y = \{ y \in T : y \leq_T x \text{ for some } x \in X \}.$$

CLAIM. If $\lambda \in E$, then \widetilde{Y}_{λ} is a subset of $T^{0} \cap T_{\lambda}$.

PROOF OF CLAIM. Since \tilde{Y} is a transitive subtree of T, $\tilde{Y}_{\lambda} \subseteq T_{\lambda}$. Let $y \in \tilde{Y}_{\lambda}$. Let $x \in X$ be a minimal element of $\{x \in X : y \leq_T x\}$. Then $ht_X(x) = \lambda$. (The reason: In general $ht_X(z) \leq ht(z)$. Hence by the minimality of x, $ht_X(x) \leq \lambda$. If $ht_X(x) < \lambda$ then $ht(x) < \lambda$ because $\lambda \in C$; this contradicts $y \leq_T x$. Now suppose $y \in T^0$. Then we can pick $w \not>_T y$ by Lemma 5-(4). Pick β so that $ht(w) < \beta < \lambda$ and pick $z \in X$ so that $ht_X(z) = \beta$ and $z <_T x$. Then $ht(w) < \beta = ht_X(z) \leq ht(z) < ht(y) = \lambda$ and so $w <_T z <_T y \leq_T x$. Thus $z \in (w, y] \cap T^0$, a contradiction. Claim is thus proved. Thus \tilde{Y}_{λ} is finite for all $\lambda \in E$. By Lemma 4, \tilde{Y} has a cofinal branch which is also a cofinal branch of T. This is absurd since $T \in AT$.

(ii) Let X be an uncountable subset of T. For each $z \in T^0$, put:

$$X_{(z)} = \{x \in X : z \overrightarrow{\leq}_T x\},$$

$$Z = \{z \in T^0: X_{(z)} \neq \emptyset\}.$$

Case 1. Z is uncountable. By (i), we can find an uncountable subset Y (i. e. \widetilde{Z}_{α} for some α) of Z such that Y is an anti-chain of T. With each $y \in Y$ associate an element, say x(y), of $X_{(y)}$. Then the subset $\{x(y): y \in Y\}$ of X is clearly an uncountable anti-chain of T.

Case 2. Z is countable. Since the uncountable set X is the union of $\{X_{(z)}: z \in Z\}$, we can find $z \in Z$ such that $X_{(z)}$ is uncountable. Note that $\widetilde{X}_{(z)}$ is an R-embeddable tree by Lemma 5-(3). By Lemma 3, $\widetilde{X}_{(z)}$ contains an uncountable anti-chain which is also an antichain of T and is contained in X. Lemma 6 is thus proved.

COROLLARY 7. Let T be an Aronszajn P-tree. If the set

$$\{\alpha < \omega_1 : m(x) > 0 \text{ for all } x \in T_\alpha\}$$

is stationary, then $T \in NS$.

Though this corollary assumes a rather strong condition, it suffices for our purpose. In this sense Lemma 6 is redundant. Lemma 6 stands because of its own interest.

Recall that a $\diamondsuit_{\mathfrak{x}}$ -sequence $\langle Z_{\alpha} : \alpha < \omega_1 \rangle$ has the following properties: If T is an ω_1 -tree and is a transitive subtree of \mathfrak{T} , then

(1) if X is a subset of T, then the set

$$\{\alpha < \omega_1: X \cap T \upharpoonright \alpha = Z_\alpha\}$$
 is stationary;

(2) if e is a function which embeds T in R, then

$$\{\alpha < \omega_1 : e \upharpoonright (T \upharpoonright \alpha) = Z_\alpha\}$$
 is a stationary set.

Recall that a $\diamondsuit_{\mathfrak{T}}^*$ -sequence $\langle \{W_i^{\alpha}: i \in \omega\} : \alpha < \omega_1 \rangle$ has the following properties: If T is an ω_1 -tree and is a transitive subtree of \mathfrak{T} , then

(1) if X is a subset of T, then

 $\{\alpha < \omega_1 : X \cap T \upharpoonright \alpha = W_i^{\alpha} \text{ for some } i < \omega\}$ contains a club set.

(2) if e is a function which embeds T in R, then $\{\alpha < \omega_1 : e \upharpoonright (T \upharpoonright \alpha) = W_i^{\alpha} \text{ for some } i < \omega\} \text{ contains a club set.}$

LEMMA 8. (1) (\diamondsuit) There exists a \diamondsuit_x -sequence.

(2) (\diamondsuit^*) There exists a $\diamondsuit^*_{\mathfrak{A}}$ -sequence.

LEMMA 9. Let T be a P-tree and $\langle Z_{\alpha} : \alpha < \omega_1 \rangle$ a $\diamondsuit_{\mathfrak{X}}$ -sequence. If for every $\lambda \in \Omega$ $(\forall x \in T_{\lambda})[Z_{\lambda} \neq \hat{x}]$ holds, then $T \in AT$.

PROOF. Suppose that X were a cofinal branch of T. Then there is a $\lambda \in \Omega$ such that $Z_{\lambda} = X \cap T \upharpoonright \lambda$. Let x be the unique element of $X \cap T_{\lambda}$. Then $Z_{\lambda} = X \cap T \upharpoonright \lambda = \hat{x}$, a contradiction.

LEMMA 10. Let T be a P-tree and $\langle Z_{\alpha}: \alpha < \omega_1 \rangle$ a $\diamondsuit_{\mathfrak{T}}$ -sequence. Let T satisfy the following condition:

(1) if $\lambda \in \Omega$ and Z_{λ} is a function which embeds $T \upharpoonright \lambda$ in [0, 1), then there is an $x \in T_{\lambda}$ such that

(*)
$$(\forall n \exists y <_T x) [Z_{\lambda}^{\text{sup}}(y) - 1/n < Z_{\lambda}(y)],$$

where $Z_{\lambda}^{\sup}(y) = \sup \{Z_{\lambda}(z) : y <_T z \in T \upharpoonright \lambda\}$.

Then T is not R-embeddable.

PROOF. Let e embed T in R. We may assume ran $(e) \subset [0, 1)$. Put:

$$C = \{ \lambda \in \Omega : (\exists y \in T) [x <_T y \& q < e(y)] \to (\exists y \in T \upharpoonright \lambda) [x <_T y \& q < e(y)]$$
 for every $q \in Q$ and every $x \in T \upharpoonright \lambda \}$.

Clearly C is club and hence we can pick $\lambda \in C$ such that $e \upharpoonright (T \upharpoonright \lambda) = Z_{\lambda}$. Then Z_{λ} embeds $T \upharpoonright \lambda$ in [0, 1). So, by the assumption, we can take $x \in T_{\lambda}$ which satisfies (*). Let x' be one of the immediate successors of x. Pick n so that 1/n < e(x') - e(x). Pick $y <_T x$ so that $Z_{\lambda}^{\sup}(y) - 1/n < Z_{\lambda}(y)$. Since $\lambda \in C$, $e(x') \le \sup\{e(z): y <_T z \in T\} = \sup\{e(z): y <_T z \in T \upharpoonright \lambda\} = Z_{\lambda}^{\sup}(y)$. It follows that $1/n < e(x') - e(x) < Z_{\lambda}^{\sup}(y) - e(y) < 1/n$, a contradiction.

LEMMA 11. Let $\langle \{W_i^\alpha: i < \omega\} : \alpha < \omega_1 \rangle$ be a \diamondsuit_x^* -sequence. Let T be a P-tree which satisfies the following condition:

(1) whenever $\lambda \in \Omega$ and W_i^{λ} is an anti-chain of $T \upharpoonright \lambda$ and $x \in T_{\lambda}$, one of the following conditions holds:

(a)
$$(\exists y <_T x)(\forall z \in T \upharpoonright \lambda)[y <_T z \to z \notin W_i^{\lambda}],$$

(b)
$$(\exists y \overrightarrow{>}_T x \exists q > 0) [m(x) \le m(y) + q \& (\forall z \in W_i^{\lambda}) [y \overrightarrow{>}_T z \rightarrow m(z) \ge m(y) + 2q]].$$

Then T has property γ .

The proof of this lemma is given separately in a later section, since it is rather long.

Finally we define for two ω_1 -trees $(T, <_0)$ and $(T', <_1)$ an ω_1 -tree $T \dotplus T'$ as follows: The field of $T \dotplus T'$ is $T \times \{0\} \cup T' \times \{1\} \setminus \{\langle 0_1, 1 \rangle\}$, where 0_0 , 0_1 are the roots of T, T' respectively; The ordering $<_T$ of $T \dotplus T'$ is defined by

$$\langle x, 0 \rangle <_T \langle y, 0 \rangle$$
 if $x, y \in T$ and $x <_0 y$, $\langle x, 1 \rangle <_T \langle y, 1 \rangle$ if $x, y \in T' \setminus \{0_1\}$ and $x <_1 y$, $\langle 0_0, 0 \rangle <_T \langle y, 1 \rangle$ if $y \in T' \setminus \{0_1\}$.

§ 3. Theorems.

Theorem 12 (\diamondsuit *). $(NS \backslash RE) \cap \gamma ST \neq \emptyset$.

PROOF. Let $\langle Z_{\alpha} : \alpha < \omega_1 \rangle$ be a $\diamondsuit_{\mathfrak{X}}$ -sequence and $\langle \{W_i^{\alpha} : i < \omega\} : \alpha < \omega_1 \rangle$ a $\diamondsuit_{\mathfrak{X}}^*$ -sequence. We define a P-tree T by induction on levels so that T satisfies the following:

(1) if $\alpha < \beta < \omega_1$ and $x \in T_\alpha$ and $q \in Q \cap (m(x), \infty)$, there is a $y \in T_\beta$ such that $x \rightleftharpoons_T y$ and m(y) < q.

Set
$$T_0 = \{0_T\}$$
;
$$T_{\alpha+1} = \{x \cup \{\langle q, \alpha+1 \rangle\} : x \in T_\alpha \& m(x) < q \in \mathbf{Q}\}.$$

Let $\lambda \in \Omega$ and suppose $T \upharpoonright \lambda$ has been defined so that (1) holds. Fix an increasing sequence $\langle \lambda_n : n < \omega \rangle$ such that $\lim_{n \in \omega} \lambda_n = \lambda$. For each $x \in T \upharpoonright \lambda$ and each positive rational q, we define $t_{\lambda}(x, q)$ as follows: Let $x \in T \upharpoonright \lambda$ and $0 < q \in Q$. We pick x_n , $x_n^* \in T \upharpoonright \lambda$, q_n , $q_n^* > 0$ inductively so that:

- (a) $x_0 = x$ and $q_0 = q$;
- (b) if W_n^{λ} is an anti-chain of $T \upharpoonright \lambda$ and

$$(\exists z \in T \upharpoonright \lambda) \lceil x_n \overrightarrow{\geq}_T z \in W_n^{\lambda} \& m(z) < m(x_n) + q_n \rceil$$

then

$$x_n \gtrsim_T x_n^* \in W_n^{\lambda} \& m(x_n^*) < m(x_n) + q_n \text{ and } q_n^* = m(x_n) + q_n - m(x_n^*);$$

otherwise, $x_n^* = x_n$ and $q_n^* = q_n/2;$

(c) $x_n^* \stackrel{>}{<}_T x_{n+1} & ht(x_{n+1}) > \lambda_n & m(x_{n+1}) < m(x_n^*) + q_n^*$ (this is possible by (1));

(d)
$$q_{n+1} = m(x_n^*) + q_n^* - m(x_{n+1}).$$

Put:
$$t_{\lambda}(x, q) = \bigcup_{n < \omega} x_n \cup \{\langle \sup_{n < \omega} m(x_n), \lambda \rangle\}.$$

Notice that $x \stackrel{\rightharpoonup}{<}_T t_{\lambda}(x, q)$ and $0 < m(t_{\lambda}(x, q)) \leq m(x) + q$. Now, we shall define T_{λ} .

Case 1. Z_{λ} is a cofinal branch of $T \upharpoonright \lambda$. For each $x \in T \upharpoonright \lambda$ and each positive rational q, pick $x^* \in T \upharpoonright \lambda$ and q^* so that:

$$x <_T x^* \in Z_{\lambda}$$
, $ht(x^*) = ht(x) + 1$, $m(x^*) < m(x) + q$ and $q^* = m(x) + q - m(x^*)$.

And put:

$$u_{\lambda}(x, q) = t_{\lambda}(x^*, q^*)$$
.

We set:

$$T_{\lambda} = \{u_{\lambda}(x, q): x \in T \mid \lambda, 0 < q \in Q\}.$$

Note that if $u=u_{\lambda}(x, q)$, then $Z_{\lambda} \neq \hat{u}$, $x \rightleftharpoons_{T} u$ and $0 < m(u) \leq m(x) + q$.

Case 2. Z_{λ} is a function which embeds $T \upharpoonright \lambda$ in [0, 1). Pick $y_n, y_n^* \in T \upharpoonright \lambda$ inductively as follows:

- (a) $y_0=0_T$;
- (b) if W_n^{λ} is an anti-chain of $T \upharpoonright \lambda$ and

$$(\exists z \in W_n^{\lambda}) [y_n <_T z \& Z_{\lambda}^{\text{sup}}(y_n) - 1/(n+1) < Z_{\lambda}(z)],$$

then

$$y_n <_T y_n^* \in W_n^{\lambda}$$
 and $Z_{\lambda}^{\sup}(y_n) - 1/(n+1) < Z_{\lambda}(y_n^*)$;

otherwise, $y_n <_T y_n^* \in T \upharpoonright \lambda$ and $Z_{\lambda}^{\text{sup}}(y_n) - 1/(n+1) < Z_{\lambda}(y_n^*)$;

(c) $y_{n+1} >_T y_n^* \& ht(y_{n+1}) > \lambda_n$;

(see Lemma 10 for the definition of $Z_{\lambda}^{\sup}(y_n)$).

Put:
$$s_{\lambda} = \bigcup_{n < \omega} y_n \cup \{\langle r, \lambda \rangle\},$$

where the real r is taken so that $s_{\lambda} \in \mathfrak{T}_{P}$ (such an r is unique).

We set:
$$T_{\lambda} = \{s_{\lambda}\} \cup \{t_{\lambda}(x, q) : x \in T \mid \lambda, 0 < q \in Q\}.$$

Case 3. Otherwise. We set:

$$T_{\lambda} = \{t_{\lambda}(x, q) : x \in T \upharpoonright \lambda, 0 < q \in Q\}.$$

 T_{λ} is thus defined. Now set:

$$T = \bigcup_{\alpha < \omega_1} T_{\alpha}$$
.

T is clearly a P-tree. We can easily check that $T \in AT$ by Lemma 9, $T \notin RE$ by Lemma 10, $T \in NS$ by Corollary 7, $T \in \gamma ST$ by Lemma 11, using the following facts:

(a) even when Z_{λ} is a cofinal branch of $T \upharpoonright \lambda$, $Z_{\lambda} \neq \hat{x}$ for every $x \in T_{\lambda}$;

- (b) if Z_{λ} is a function which embeds $T \upharpoonright \lambda$ in [0, 1), then for every $n < \omega$, $y_n <_T s_{\lambda} \in T_{\lambda}$ and $Z_{\lambda}^{\text{sup}}(y_n) 1/n \le Z_{\lambda}^{\text{sup}}(y_{n-1}) 1/n < Z_{\lambda}(y_n)$;
- (c) stationarily many ordinals $\in \Omega$ are put in Case 3 and for every such ordinal λ it holds that $(\forall x \in T_{\lambda})[m(x)>0]$;
- (d) if W_n^{λ} is an anti-chain of $T \upharpoonright \lambda$ and $t = t_{\lambda}(x, q)$, then the one of the following holds:
 - 1°. $x_n^* \in W_n^{\lambda} \cap \hat{t}$ and $(\forall z \in T \upharpoonright \lambda) [x_n^* <_T z \rightarrow z \in W_n^{\lambda}];$
 - 2°. $m(t) \leq m(x_n^*) + q_n^* \& \forall z [x_n^* \gtrsim_T z \in W_n^{\lambda} \rightarrow m(z) \geq m(x_n) + 2q_n^*];$
- (e) if W_n^{λ} is an anti-chain of $T \upharpoonright \lambda$, Z_{λ} is a function which embeds $T \upharpoonright \lambda$ in [0, 1) and $t = s_{\lambda}$, then one of the following holds:
 - 1°. $y_n^* \in W_n^{\lambda} \cap \hat{t}$ and hence $(\forall z \in T \upharpoonright \lambda) [y_n^* <_T z \to z \notin W_n^{\lambda}];$
- $2^{\circ}. \quad Z_{\lambda}^{\sup}(y_n) 1/(n+1) < Z_{\lambda}(y_{n+1}), \ \forall z [y_n <_T z \& Z_{\lambda}^{\sup}(y_n) 1/(n+1) < Z_{\lambda}(z) \rightarrow z \in W_n^{\lambda}] \text{ and hence } \forall z [y_{n+1} <_T z \rightarrow z \in W_n^{\lambda}].$

Theorem 12 is thus proved.

Theorem 13 (\diamondsuit *). $(NS \backslash RE) \cap (AST \backslash \gamma ST) \neq \emptyset$.

PROOF. Assume \diamondsuit^* . We can take $T \in (NS \setminus RE) \cap \gamma ST$ (Theorem 12) and $T' \in RE \cap (AST \setminus \gamma ST)$ (Devlin and Shelah [2, Theorem 4.4]). Then clearly $T \dotplus T' \in (NS \setminus RE) \cap (AST \setminus \gamma ST)$.

THEOREM 14 (\diamondsuit). $(NS \backslash RE) \cap (NCA \backslash AST) \neq \emptyset$.

PROOF. Let $\langle Z_{\alpha} : \alpha < \omega_1 \rangle$ be a $\diamondsuit_{\mathfrak{T}}$ -sequence. To define a *P*-tree, we construct each level T_{α} by induction on α ensuring that the following holds:

(1) if $\alpha < \beta < \omega_1$ & $x \in T_\alpha$ & $m(x) < q \in \mathbf{Q}$, there is a $y \in T_\beta$ such that $x \not\subset_T y$ & m(y) < q, and additionally if β is a successor ordinal, there is a $y' \in T_\beta$ such that $x \not\subset_T y'$ & m(y') = q.

Set:
$$T_0 = \{0_T\}$$
:

$$T_{\alpha+1} = \{x \cup \{\langle q, \alpha+1 \rangle\} : x \in T_{\alpha}, m(x) < q \in \mathbf{Q}\}.$$

Let $\lambda \in \Omega$ and suppose that $T \upharpoonright \lambda$ has been defined. Fix an increasing sequence $\langle \lambda_n \colon n < \omega \rangle$ such that $\sup_{n < \omega} \lambda_n = \lambda$. For each $x \in T \upharpoonright \lambda$ and each rational q < m(x), we shall define $t_\lambda(x, q)$ as follows: First take an increasing sequence $\langle q_n \colon n < \omega \rangle$ such that $\lim_{n < \omega} q_n = q$ and $m(x) < q_0$. Pick x_n for every $n < \omega$ by induction so that:

$$x_0 = x$$
;
 $x_n \rightleftharpoons_T x_{n+1} \& ht(x_{n+1}) > \lambda_n \& m(x_{n+1}) = q_n$,

(this is possible by (1)). We set:

$$t_{\lambda}(x, q) = \bigcup_{n < \omega} x_n \cup \{\langle q, \lambda \rangle\}.$$

Notice that $x \rightleftharpoons_T t_{\lambda}(x, q)$ and $m(t_{\lambda}(x, q)) = q$.

Now we shall define T_{λ} .

Case 1. Z_{λ} is an cofinal branch of $T \upharpoonright \lambda$. For each $x \in T \upharpoonright \lambda$ and each rational q > m(x), pick x^* so that $ht(x^*) = ht(x) + 1$, $x <_T x^*$, $m(x^*) < q$ and $x^* \notin Z_{\lambda}$. Put:

$$s_{\lambda}(x, q) = t_{\lambda}(x^*, q)$$
.

We set: $T_{\lambda} = \{ s_{\lambda}(x, q) : x \in T \upharpoonright \lambda, m(x) < q \in Q \}.$

Clearly $Z_{\lambda} \neq \{ y \in T \mid \lambda : y <_T s_{\lambda}(x, q) \}$.

Case 2. Z_{λ} is an anti-chain of $T \upharpoonright \lambda$. For each $x \in T \upharpoonright \lambda$ and each rational q > m(x), pick x^* and $q^* \in Q$ so that:

(a) if $(\exists w \in T \upharpoonright \lambda) [x \not\subseteq_T w \in Z_\lambda \& m(w) < q]$, then

$$x \rightleftharpoons_T x^* \in Z_{\lambda}$$
, $m(x^*) < q$ and $m(x^*) < q^* < q$;

(b) otherwise, $x^* = x$ and $m(x) < q^* < q$.

Put: $u_{\lambda}(x, q) = t_{\lambda}(x^*, q^*).$

We set: $T_{\lambda} = \{u_{\lambda}(x, q) : x \in T \mid \lambda, m(x) < q \in Q\}.$

Case 3. Z_{λ} is a function which embeds $T \upharpoonright \lambda$ in [0, 1). Pick y_n for each $n < \omega$ by induction so that:

$$y_0=0_T$$
;

$$y_{n+1} >_T y_n \& ht(y_{n+1}) > \lambda_n \& Z_{\lambda}^{\text{sup}}(y_n) - 1/(n+1) < Z_{\lambda}(y_{n+1}).$$

Put: $v_{\lambda} = \bigcup_{n < \omega} y_n \cup \{\langle r, \lambda \rangle\},$

where $r \in \mathbb{R}$ is taken so that $v_{\lambda} \in \mathfrak{T}_{P}$. We set:

$$T_1 = \{v_1\} \cup \{t_1(x, q): x \in T \mid \lambda, m(x) < q \in \mathbf{Q}\}.$$

Case 4. Otherwise. We set:

$$T_{\lambda} = \{t_{\lambda}(x, q) : x \in T \upharpoonright \lambda, m(x) < q \in Q\}.$$

 T_{λ} is thus defined. Now we set:

$$T = \bigcup_{\alpha < \omega_1} T_{\alpha}$$
.

Clearly T is P-tree. We can easily check that $T \in AT$ by Lemma 9, $T \notin RE$ by Lemma 10 and $T \in NS$ by Corollary 7, using the following:

(a) $Z_{\lambda} \neq \hat{x}$ for every $x \in T_{\lambda}$, even if Z_{λ} is a cofinal branch of $T \upharpoonright \lambda$;

(b) if Z_{λ} embeds $T \upharpoonright \lambda$ in [0, 1), then $y_n < v_{\lambda}$ and

$$Z_{\lambda}^{\text{sup}}(y_n) - 1/n \leq Z_{\lambda}^{\text{sup}}(y_{n-1}) - 1/n < Z_{\lambda}(y_n);$$

(c) stationarily many limit ordinals are put in Case 4, and for such an ordinal λ m(x)>0 for all $x \in T_{\lambda}$.

To see that $T \in NCA$, suppose that there were a club anti-chain X of T. Put: $C_1 = \{\lambda \in \Omega : (\forall x \in T \upharpoonright \lambda \forall q \in Q) [(\exists w \in T) R(x, w, X, q) \rightarrow (\exists w \in T \upharpoonright \lambda) R(x, w, X, q)] \}$, where R(x, w, X, q) stands for $x \not\subset_T w \in X \& m(w) < q$. Clearly C_1 is a club set. Hence so is $C = C_1 \cap \{ht(x) : x \in X\}$. So we can pick $\lambda \in \Omega$ so that $\lambda \in C \cap \{\alpha < \omega_1 : X \cap T \upharpoonright \alpha = Z_\alpha\}$. Then we can pick $t \in X \cap T_\lambda$ since $\lambda \in \{ht(t) : t \in X\}$. Since $X \cap T \upharpoonright \lambda = Z_\lambda$, Z_λ is an anti-chain of $T \upharpoonright \lambda$ and so we can take $x \in T \upharpoonright \lambda$ and $q \in Q$ so that $t = u_\lambda(x, q)$. Then $m(t) = q^* < q$. Thus R(x, t, X, q) and hence $(\exists w \in T \upharpoonright \lambda) R(x, w, X, q)$ because $\lambda \in C_1$. Since $X \cap T \upharpoonright \lambda = Z_\lambda$, this implies that $x^* \in Z_\lambda$. Thus, x^* , $t \in X$ and $x^* <_T t$. This is absurd since X is an anti-chain. $T \in NCA$ is thus shown.

On the other hand, it can be easily checked that the set $\{t_{\lambda}(0_T, 1): \lambda \text{ is a limit ordinal ordinal put in Case 4}\}$ is a stationary anti-chain and hence $T \in AST$, q. e. d.

Theorem 15 (\diamondsuit) . $(NS \backslash RE) \backslash NCA \neq \emptyset$.

PROOF. Assume \diamondsuit . We can take $T \in (NS \backslash RE) \cap (NCA \backslash AST)$ (by Theorem 14) and $T' \in SAT \backslash NCA$ ([3, Theorem 5]). Then clearly $T \dotplus T' \in (NS \backslash RE) \backslash NCA$.

§ 4. Proof of Lemma 11.

Let X be an uncountable anti-chain of T. Put:

$$C_0 = \{ \alpha < \omega_1 : X \cap T \upharpoonright \alpha = W_i^{\alpha} \text{ for some } i \in \omega \},$$

$$C_1 = \{ \lambda \in \Omega : (\forall y \in T \upharpoonright \lambda) [(\exists x \in X)[y <_T x] \rightarrow (\exists z \in X \cap T \upharpoonright \lambda)[y <_T z]] \},$$

$$C_2 \! = \! \{ \lambda \! \in \! \varOmega : (\exists x \! \in \! X) [y \! \rightleftarrows_T \! x \And m(x) \! < \! q] \! \rightarrow \! (\exists z \! \in \! X \! \cap \! T \upharpoonright \lambda) [y \! \rightleftarrows_T \! z \And m(z) \! < \! q]] \text{ ,}$$

for every $y \in T \upharpoonright \lambda$ and every $q \in Q$.

Let C be a club set such that $C \subseteq C_0 \cap C_1 \cap C_2$.

CLAIM 1. $X \cap T_{\lambda} = \emptyset$ for every $\lambda \in C$.

PROOF. Suppose $\lambda \in C$ and $x \in X \cap T_{\lambda}$. Pick $i \in \omega$ so that $X \cap T \upharpoonright \lambda = W_i^{\lambda}$. Since X is an anti-chain, W_i^{λ} is an anti-chain of $T \upharpoonright \lambda$. Hence by the assumption of the lemma, (a) or (b) must hold.

Case 1. (a) holds. Pick $y <_T x$ so that $(\forall z \in T \upharpoonright \lambda) [y <_T z \to z \in W_i^{\lambda}]$. Since $W_i^{\lambda} = X \cap T \upharpoonright \lambda$ and $\lambda \in C_1$, $\neg (\exists x \in X) [y <_T x]$. This contradicts " $y <_T x \in X$ ".

Case 2. (b) holds. Pick $y \rightleftharpoons_T x$ and q > 0 so that:

$$m(x) \leq m(y) + q$$
 and $(\forall z \in W_i) [y \gtrsim_T z \rightarrow m(z) \geq m(y) + 2q]$.

Since $X \cap T \upharpoonright \lambda = W_i^{\lambda}$ and $\lambda \in C_2$, $\neg (\exists x \in X) [y \rightleftarrows_T x \& m(x) < m(y) + 2q]$. This contradicts " $x \in X \& y \rightleftarrows_T x \& m(x) \le m(y) + q$ ". Claim 1 is thus proved.

Let $\langle \lambda_{\xi} : \xi < \omega_1 \rangle$ be the monotone enumeration of $C \cup \{0\}$. Let $\langle x_n^{\xi} : n < \omega \rangle$ be an enumeration of $X \cap T \upharpoonright (\lambda_{\xi+1} \setminus \lambda_{\xi})$ such that $x_n^{\xi} \neq x_m^{\xi}$ if $n \neq m$, for each $\xi < \omega_1$.

We shall define w_n^{ξ} for each $\xi < \omega_1$ and each $n < \omega$.

Case 1. $ht(x_n^{\xi}) \in \Omega$. w_n^{ξ} is taken so that $(w_n^{\xi}, x_n^{\xi}]$ is a singleton set, i.e. w_n^{ξ} is the immediate predecessor of x_n^{ξ} .

Case 2. $ht(x_n^{\xi}) \in \Omega$. First note that there is a $y <_T x_n^{\xi}$ such that $(y, x_n^{\xi}] \cap \bigcup_{j < n} \hat{x}_j^{\xi}$ =0. (To see this, suppose not. Then $\hat{x}_n^{\xi} \subset \bigcup_{j < n} \hat{x}_j^{\xi}$ and hence $\hat{x}_n^{\xi} \subset \hat{x}_j^{\xi}$ for some j < n, which implies $x_n^{\xi} \leq_T x_j^{\xi}$ (Lemma 5-(5)). But it is absurd since $x_n^{\xi} \neq x_j^{\xi}$ and X is an anti-chain).

Subcase 2.1. $m(x_n^{\xi})=0$. Take y_n^{ξ} so that:

$$\lambda_{\xi} < ht(y_n^{\xi}), \quad y_n^{\xi} <_T x_n^{\xi} \quad \text{and} \quad (y_n^{\xi}, x_n^{\xi}] \cap \bigcup_{j < n} \hat{x}_j^{\xi} = 0.$$

 w_n^{ξ} is taken so that

$$y_n^{\xi} \overrightarrow{\gtrsim}_T w_n^{\xi} <_T x_n^{\xi}$$
 and $m(w_n^{\xi}) > m(y_n^{\xi}) + 1$,

(this is possible by Lemma 5-(8)).

Subcase 2.2. $m(x_n^{\xi}) > 0$. We can take y_n^{ξ} so that:

$$ht(y_n^{\xi}) > \lambda_{\xi}, \quad (y_n^{\xi}, x_n^{\xi}] \cap \bigcup_{j < n} \hat{x}_j^{\xi} = \emptyset \quad \text{and} \quad y_n^{\xi} \overrightarrow{>}_T x_n^{\xi}.$$

Then w_n^{ξ} is taken so that

$$y_n^{\xi} \overrightarrow{\gtrsim}_T w_n^{\xi} \overrightarrow{\gtrsim}_T x_n^{\xi}$$
 and $m(x_n^{\xi}) - m(w_n^{\xi}) < m(w_n^{\xi}) - m(y_n^{\xi})$,

(this is possible by Lemma 5-(7)).

 w_n^{ξ} is thus defined. Now put:

$$U = \bigcup \{(w_n^{\xi}, x_n^{\xi}] : \xi < \omega_1, n < \omega\}.$$

This is a nbd of X.

Finally we shall define a nbd V of $T \upharpoonright C$ such that $U \cap V = \emptyset$. For this purpose, we shall define v^* for every $v \in T \upharpoonright C$. Let $v \in T \upharpoonright C$ and put $\lambda = ht(v)$. Let i be the number such that $W_i^{\lambda} = X \cap T \upharpoonright \lambda$. W_i^{λ} is clearly an anti-chain of $T \upharpoonright \lambda$. So by the assumption of the lemma, Condition (a) or (b) must hold for v (substituted for x).

Case 1. (a) holds. Then we can take $v^* <_T v$ so that

$$(\forall z \in T \upharpoonright \lambda) \lceil v^* <_T z \rightarrow z \notin W_i^{\lambda} \rceil$$
.

Case 2. (b) holds. Take $u \in T \upharpoonright \lambda$ and q > 0 so that $u \rightleftharpoons_T v$ and

$$m(v) \leq m(u) + q$$
 and $(\forall z \in W_i^{\lambda}) [u \neq_T z \rightarrow m(z) \geq m(u) + 2q]$.

We may assume that m(u) > m(v) - 1. (If not so, by Lemma 5-(7), there is u' such that $u \rightleftharpoons_T u' \rightleftharpoons_T v$ and m(u') > m(v) - 1. Then take u' and m(u) + q - m(u') instead of u and q.)

CLAIM 2. For at most only one pair $\langle \xi, n \rangle$, $(u, v] \cap (w_n^{\xi}, x_n^{\xi}] \neq \emptyset$.

$$m(t) - m(y_n^{\xi}) > m(w_n^{\xi}) - m(y_n^{\xi}) > m(x_n^{\xi}) - m(w_n^{\xi}) > m(x_n^{\xi}) - m(v)$$

$$> (2q + m(u)) - (m(u) + q) = q \ge m(v) - m(u) > m(t) - m(u),$$

which mean $y_n^{\xi} <_T u$. In both cases, $y_n^{\xi} <_T u$. Thus $(u, v] \cap (w_n^{\xi}, x_n^{\xi}] \neq \emptyset$ implies $u \in (y_n^{\xi}, x_n^{\xi}]$. The claim follows from this immediately. For, there is at most only one pair $\langle \xi, n \rangle$ which satisfies $u \in (y_n^{\xi}, x_n^{\xi}]$, since the intervals $(y_n^{\xi}, x_n^{\xi}]$, $\xi < \omega_1$ and $n < \omega$, have been taken so as to be mutually disjoint. Claim 2 is thus proved.

By this claim we can take v^* so that:

$$v^* <_T v$$
 and $(\forall \xi < \omega_1, \forall n < \omega) [(v^*, v] \cap (w_n^{\xi}, x_n^{\xi}] = \emptyset]$.

 v^* is thus defined for all $v \in T \upharpoonright C$. Clearly $(v^*, v] \cap U = \emptyset$. We set:

$$V = \bigcup \{(v^*, v] : v \in T \upharpoonright C\}.$$

Then V is a nbd of T
ightharpoonup C such that $U
ightharpoonup V = \emptyset$. This completes the proof of

Lemma 11.

§ 5. Remark on Lemma 6.

First note that every ω_1 -tree is isomorphic to some P-tree. Concerning Lemma 6 and Corollary 7, it would be natural to ask whether the former is essentially more general than the latter: i.e. whether the following condition (C1) is strictly weaker than (C2) for Aronszajn trees T:

(C1) there is a P-tree T' isomorphic to T such that

$$\{\alpha < \omega_1: T'_{\alpha} \cap (T')^0 \text{ is finite}\}\$$
is stationary;

(C2) there is a P-tree T'' isomorphic to T such that

$$\{\alpha < \omega_1: T''_{\alpha} \cap (T'')^0 = \emptyset\}$$
 is stationary.

The answer is affimative: i.e. the following holds:

PROPOSITION (\diamondsuit *). There is an Aronszajn tree which satisfies (C1) but does not (C2).

PROOF. Let $\langle \{W_i^\alpha: i<\omega\}: \alpha<\omega_1\rangle$ be a $\diamondsuit_{\mathfrak{X}}^*$ -sequence and $\langle Z_\alpha: \alpha<\omega_1\rangle$ be a $\diamondsuit_{\mathfrak{X}}$ -sequence. We construct a P-tree T such that $T_\lambda \cap T^0$ has at most one element for every $\lambda \in \Omega$ but (C2) does not hold. We define T_α for $\alpha<\omega_1$ inductively ensuring that:

(1) if $\alpha < \beta < \omega_1$ and $x \in T_{\alpha}$ and $m(x) < q \in \mathbf{Q}$, then there is a $y \in T_{\beta}$ such that $x \rightleftharpoons_T y$ and m(y) < q.

Put $T_0 = \{0_T\}$ and $T_{\alpha+1} = \{x \cup \{\langle q, \alpha+1 \rangle\} : x \in T_\alpha, m(x) < q \in Q\}$. Let $\lambda \in \Omega$ and suppose that $T \upharpoonright \lambda$ has been defined. Let $\langle \lambda_n : n < \omega \rangle$ be a sequence such that $\lim_{n < \omega} \lambda_n = \lambda$. For each $x \in T \upharpoonright \lambda$ and each rational q > m(x), we pick x_n inductively so that:

(a) if Z_{λ} is a cofinal branch of $T \upharpoonright \lambda$, then $x \rightleftharpoons_T x_0$ and $x_0 \notin Z_{\lambda}$ and $m(x_0) < q$; otherwise, $x_0 = x$;

(b)
$$x_{n+1} > T x_n$$
, $ht(x_{n+1}) > \lambda_n$ and $m(x_{n+1}) < q$.

Put:

$$t_{\lambda}(x, q) = \bigcup_{n < \omega} x_n \cup \{\langle \sup_{n < \omega} m(x_n), \lambda \rangle\}.$$

Let K(n) mean the number such that $n=2^m(2\cdot K(n)+1)-1$ for some $m\in\omega$. Now, we shall define y_n by induction as follows:

I. if Z_{λ} is a cofinal branch of $T \upharpoonright \lambda$ then y_0 is taken so that $y_0 \notin Z_{\lambda}$; other-

wise, $y_0 = 0_T$;

- II. (a) if $W_{K(n)}^{\lambda}$ is a function from $T \upharpoonright \lambda$ to $[0, \infty)$, then y_{n+1} is taken so that $y_{n+1} >_T y_n$ and $ht(y_{n+1}) > \lambda_n$ and one of the following holds:
 - 1°. $W_{K(n)}^{\lambda}(y_{n+1}) \geq n$,
 - 2°. $W_{K(n)}^{\lambda}(y_{n+1}) > \sup\{W_{K(n)}^{\lambda}(y): y_n <_T y \in T \mid \lambda, ht(y) > \lambda_n\} 1/n;$
- (b) otherwise, y_{n+1} is taken so that $y_{n+1} >_T y_n$ and $ht(y_{n+1}) > \lambda_n$. Put:

$$u_{\lambda} = \bigcup_{n < \omega} y_n \cup \{\langle r, \lambda \rangle\},$$

where r is taken so that $u_{\lambda} \in \mathfrak{T}_{P}$. We set:

$$T_{\lambda} = \{u_{\lambda}\} \cup \{t_{\lambda}(x, q) : x \in T \upharpoonright \lambda, m(x) < q \in \mathbf{Q}\}.$$

Then the tree $T = \bigcup_{\alpha < \omega_1} T_{\alpha}$ is as required. To see that (C2) is false, take arbitrarily an isomorphic P-tree T' and an isomorphism f from T to T'. Define a function $e: T \to \mathbb{R}$ by e(x) = m(f(x)). Take club sets $C_0 = \{\lambda \in \Omega : (\forall x \in T \upharpoonright \lambda \forall q \in \mathbb{Q}) [(\exists y \in T) \upharpoonright (x <_T y \& e(y) > q] \to (\exists y \in T \upharpoonright \lambda) [x <_T y \& e(y) > q]] \}$ and $C_1 \subseteq \{\lambda \in \Omega : W_i^{\lambda} = e \upharpoonright (T \upharpoonright \lambda) \}$ for some i.

CLAIM. $e(u_{\lambda})=0$ for every $\lambda \in C_0 \cap C_1$.

PROOF. Suppose $e(u_{\lambda}) > 0$ and $\lambda \in C_0 \cap C_1$. Pick $i \in \omega$ so that $W_i^{\lambda} = e \upharpoonright (T \upharpoonright \lambda)$. Then we can take a $v <_T u_{\lambda}$ such that $f(v) \underset{T'}{\nearrow} f(u_{\lambda})$. Let t be an immediate successor of u_{λ} . Pick $n \in \omega$ so that: $\lambda_n > ht(v)$, $n > e(u_{\lambda})$, $e(t) - e(u_{\lambda}) > 1/n$ and K(n) = i. Recall y_{n+1} in the definition of u_{λ} . Then 1° or 2° must hold. First notice that $f(v) \underset{T'}{\nearrow} f(y_{n+1}) \underset{T'}{\nearrow} f(u_{\lambda})$, since $ht(v) < \lambda_n < ht(y_{n+1})$, $f(v) \underset{T'}{\nearrow} f(u_{\lambda})$ and $f(y_{n+1}) < f(u_{\lambda})$. And so $e(v) < e(y_{n+1}) < e(u_{\lambda}) < n$.

Case 1. 1° holds. Then $e(y_{n+1})=W_{K(n)}^{\lambda}(y_{n+1})\geq n$. This is absurd by the above notice.

Case 2. 2° holds. By $\lambda \in C_0$, $e(u_\lambda) > e(y_{n+1}) > \sup\{e(y): y_n < y \in T \mid \lambda\} - 1/n$ = $\sup\{e(y): y_n < y \in T\} - 1/n \ge e(t) - 1/n$. This is absurd since $e(t) - e(u_\lambda) > 1/n$. Claim is thus proved.

It is obvious by the claim that T does not have property (C2). Proposition is thus proved.

References

- [1] Baumgartner, J.E., Decompositions and embeddings of trees, Notices A.M.S. 17 (1970), 967.
- [2] Devlin, K. J. and Shelah, S., Souslin properties and tree topologies, Proc. London

Math. Soc. 39 (1979), 237-252.
[3] Hanazawa, M., On a classification of Aronszajn trees, to appear.

Department of Mathematics Faculty of Science Saitama University Urawa, Saitama 338 Japan