TSUKUBA J. MATH.
Vol. 5 No. 1 (1981). 117—132

ON A CLASSIFICATION OF ARONSZAJN TREES 11
By
Masazumi HANAZAWA

§1. Introduction.

In the former paper [3], we considered the classification of Aronszajn trees
by the notions of Souslin trees, w,-trees with property 7, almost-Souslin trees, w,;-
trees with no club antichain, special Aronszajn trees and R-embeddable trees.
As we remarked in its last section, there is another interesting notion. It is the
notion of non-Souslin trees which had been introduced by Baumgartner [1]. The
classification of Aronszajn trees by this notion together with the previous ones
is shown by the following:
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where S7T=the class of Souslin trees,
yST=the class of w,-trees with property 7,
AST=the class of almost-Souslin trees,
NCA=the class of w;-trees with no club anti-chain,
SAT=the class of special Aronszajn tree,
RFE—=the class of R-embeddable w;-trees,
NS=the class of non-Souslin trees,
AT=the class of Aronszajn trees.
Under ZFC alone, none of the categories but Category 5 can be proved to be
non-void. In the former paper we proved that if V=L, Categories 1~11 are all
non-void (note that the trees constructed in Theorems 9, 10 and 11 [3], are the
elements of Categories 9, 10 and 11 respectively). In this paper we shall prove
that if V=L, remaining Categories 12~15 are also non-void. It is shown as a
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by-product that > suffices for the existence of non-Souslin trees which are not
R-embeddable.

§ 2. Preliminaries.

Most of the notions and the notations which are used here are described in the
former paper. It is assumed that the reader knows them. Let T=<T, <> be a
tree. <X, <r»> is called a subtree of T if XCT. <X, <> is called a transitive
subtree of T if it is a subtree of T such that (VxeX VyeT)[y<rx—y&X] (in
the paper [3], we called a transitive subtree a subtree). When XCT, we use

X to denote <X, <r),

ht x(x) to denote the height of x in X s

X, to denote the set {x&X: htx(x)=a},
X I« to denote the set {xeX: hty(x)<a}.

But 7, hir(x) T., Tla will exceptionally be written as T, ht(x), To, T [
respectively. If SCw,, T 1S is the set {x&T : ht(x)eS}. Recall that £2 is the
set of all limit ordinals <w,. In this paper w;-trees are assumed to have only

one minimal element (a root).
Before introducing more special notions, we shall raise well-known facts.

LEMMA 1. If T is an R-embeddable tree with ht(T)Sw,, then the tree
(T | (0,\R2), <r> is Q-embeddable.

PrROOF. With each x=T | (w,\f2), associate a g=Q such that e(x")<g<e(x),
where ¢: T—R is the embedding and x’ means the immediate predecessor of x.

LEMMA 2. If T is a Q-embeddable uncountable tree, then T contains an un-

countable anti-chain.

PrOOF. Let ¢ embed T in Q. Clearly {xT:e(x)=q} is an anti-chain and
is uncountable for some ¢g=Q.

LEMMA 3. Let T be an R-embeddable tree. If X is an uncountable subset of

T, then X contains an uncountable anti-chain of T.

Proor. X is clearly R-embeddable. If X, is uncountable for some a, then
X, (CX) is an uncountable anti-chain of X and hence an uncountable anti-chain
of T. If X, is countable for all a, then X M (w,\2) is uncountable. Since
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X Pw\2), <r> is @-embeddable by Lemma 1, there is an uncountable anti-chain
cX | (@,\2)CX by Lemma 2.

LEMMA 4. Let T be a tree with height w,. If T4 is finite for uncountably
many a, then T has a confinal branch.

PrROOF. Put T*={x<T : x has an extension in every higher level T,}. It
is easy to see by the assumption that the transitive subtree <(T*, <r> of T has
height w;. Pick a branch b of T* We shall show that the order type, say 4,
of b is w;. Suppose A<w;. Pick a<w; such that A<a and T, is finite. Put
Y,={yeT,; x<ry} for each x€b. Then N{Y,: x=b} is non-empty, since (1)
Y.#0, 2) x<ry—Y,2Y, and (3) Y, is finite. Pick yen{Y,: xb}. Then
bC 9, this contradicts the assumption that & is a branch (a maximal linearly
ordered subset of T), g.e.d.

Now recall that ¥ is the tree U R**' with the ordering defined by x<ry

alwy

o xCy and that if x€%, m(x) is the real number x(ht(x)). When x=% and a
limit ordinal A is in dom (x), we write ;II}I x(&)=r instead of (Vg<r Ja< VB<A)

La<B—¢<x(B)=r]. Now we define a transitive subtree T, of T as follows:

Tp={x€I: P(x)},

where P(x) is the conjunction of the following three:
(1) x(a)=0 for all a=dom (x);
(2) x(a)<x(a+1) for all « with a+1ledom(x);
(3) for all limit ordinals A=dom (x),

(V7'>0)[;igl x(&)=rex(A)=r].

For a transitive subtree T of Tp, we put

T°={xeT: m(x)=0}.
We shall write
x<Zry instead of x<;y & (x, yINT°=0.

LEMMA 5. Let T be a transitive subtree of Tp. Then for every x, yeT :
L m(x)z0; |

@) xZry—m(x)<m(y);

(3) the function m increases monotonously on [x, y) if (x, yY)N\T°=0;

@ m(x)>0-3y[y2rx];

(5) 2€eR & x, yeT; & 2=95—x=y;

6) mx)=0—ht(x)eR;
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(7) if ht(y)E R, then for every r>0,

lim m(z)=r uf m(y)=r,
-y
where lim m(z)=r means

zZ2=y

(Ve>0)Fz<ry)Vwelz, y)Im(w)>r—el;

®) y<rx & x€T° & q=Q—32)[yZrz<rx & m(2)>q].

PROOF. The first seven statements are easily checked. To show the last
one, suppose that y<rx<T° and q=Q. Let w be the least of those elements z
that y<7z<rx and m(2)=0. By (3), the function m increases monotonously on
Ly, w), since (y, w)N\T°=0. Hence w increases monotonously on [At(y), ht(w)).
Hence lim w(£)=co because of (7) and w(ht(w))=0. Pick { so that At(y)<{<

§-ht(w)
ht(w) and w({{)>q. Put z=w [ ({+1). Then
ylrz<rw=rx & m(z)=zht(2)=w)>q, q.e.d.

If a transitive subtree of T, is an w,-tree, we call it a P-tree. Recall that
an w;-tree T is called a non-Souslin tree if every uncountable subset of 7 con-
tains an uncountable anti-chain. By NS, we denote the class of all non-Souslin

trees.

LEMMA 6. Let T be an Aronszajn P-tree. If
{a: ToNT? is finite}

1S a stationary set, then
(1) if X is an uncountable subset of T°, X, is uncountable for some a<w,

(i) TeNS.

Proor. (i) Let X be an uncountable subset of 7° and suppose that )?,, is
countable for all a<w,. Put:
C={1€Q: X 12Tt 2.

C is a club set since X | a is countable for all a<w,. Hence by the assumption

of the lemma, the set
E={2€C: T;NT° is finite}

is stationary and hence uncountable. Put:

Y={yeT: y=rx for some x&X}.

CrLaM. If A€ E, then )7; is a subset of T°"\T;.
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PROOF OF CLAIM. Since ¥ is a transitive subtree of T, ¥;<T,. Let ye¥;.
Let x be a minimal element of {xeX: y=ryx}. Then Atx(x)=A4. (The reason:
In general hty(2)<ht(z). Hence by the minimality of x, At x(x)=4. If hix(x)<2a
then ht(x)<2A because A<C; this contradicts y=<grx). Now suppose ye&T".
Then we can pick w=ry by Lemma 5-(4). Pick S so that ht(w)<S<A4 and pick
zeX so that htx(z)=p and z<rx. Then ht(w)<B=htx(2)Sht(z)<ht(y)=4 and
0 w<rz<ry<rx. Thus ze(w, yJN\T°, a contradiction. Claim is thus proved.
Thus Y, is finite for all A= E. By Lemma 4, Y has a cofinal branch which is
also a cofinal branch of T. This is absurd since T AT.

(ii) Let X be an uncountable subset of 7. For each z€T", put:

X(z): {XEX: ZZ)T-X})

Z=A{z€T": X, +0}.

Case 1. Z is uncountable. By (i), we can find an uncountable subset Y (i.e.
ZNa for some a) of Z such that Y is an anti-chain of 7. With each y&Y asso-
ciate an element, say x(y), of X(,. Then the subset {x(y): y€Y} of X is
clearly an uncountable anti-chain of 7.

Case 2. Z is countable. Since the uncountable set X is the union of
{Xe : z€Z}, we can find zeZ such that X, is uncountable. Note that )?m is
an R-embeddable tree by Lemma 5-(3). By Lemma 3, X, contains an uncount-
able anti-chain which is also an antichain of 7 and is contained in X. Lemma 6

is thus proved.

COROLLARY 7. Let T be an Aronszajn P-tree. If the set
{a<w,: m(x)>0 for all x=T .}
is stationary, then T € NS.

Though this corollary assumes a rather strong condition, it suffices for our
purpose. In this sense Lemma 6 is redundant. Lemma 6 stands because of its

own interest.
Recall that a Og-sequence {Z,: a<w,> has the following properties: If T is

an w;-tree and is a transitive subtree of ¥, then
(1) if X is a subset of T, then the set

{a<w,: XNT ! a=Z,} is stationary ;
(2) if e is a function which embeds T in R, then

{a<w,: e} (T I a)=Z,} is a stationary set.
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Recall that a O¥-sequence <{W¢: i€w} : a<w,> has the following properties: If
T is an w,-tree and is a transitive subtree of ¥, then
(1) if X is a subset of T, then

{a<w,: XN\T [ a=W ¢ for some :<w} contains a club set.
(2) if e is a function which embeds T in R, then

{a<w,: e | (T | a)=W ¢ for some :<w} contains a club set.

LEMMA 8. (1) () There exists a Og-sequence.
(2) (O*) There exists a O¥-sequence.

LEMMA 9. Let T be a P-tree and {Z,: a<w,) a {g-sequence. If for every
A€ (VxeTHLZ,+£] holds, then T AT.

PROOF. Suppose that X were a cofinal branch of 7. Then there is a 1€
such that Z;=X~\T [ A. Let x be the unique element of X\7T;. Then Z,=
XNT | A=4%, a contradiction.

LEMMA 10. Let T be a P-tree and <{Z,: a<w,y a <sz-sequence. Let T
satisfy the following condition :

(1) if 282 and Z; is a function which embeds T | 2 in [0, 1), then there is
an x€T; such that

™) (VnIy <rx)LZ3*(y)—1/n<Z:(3)],

where Z3°(y)=sup{Z;(2): y<rzT | 4}.
Then T is not R-embeddable.

PROOF. Let ¢ embed T in R. We may assume ran(e)c[0, 1). Put:

C={2€Q:AyeD)[x<ry & ¢g<e(y)]—FyeT | Dx<ry & g<e(y)]
for every ¢=@Q and every xT [ 4}.

Clearly C is club and hence we can pick A=C such that ¢ [ (T | 2)=Z;. Then Z;
embeds 7 ' 2 in [0, 1). So, by the assumption, we can take x 7T ; which satisfies
(*). Let x’ be one of the immediate successors of x. Pick n so that 1/n<e(x’)
—e(x). Pick y<rx so that Z3°(y)—1/n<Z;(y). Since 2€C, e(x’)<sup{e(z):
y<rzeT}=suple(z): y<rpzeT | A} =Z3*(y). It follows that 1/n<e(x")—e(x)<
Z3*(y)—e(y)<1/n, a contradiction.

LEMMA 11. Let <{W¢: i<w}: a<w,> be a O¥-sequence. Let T be a P-tree
which satisfies the following condition :
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(1) whenever 22 and W?% is an anti-chain of T | 2 and x< T, one of the
following conditions holds:

(a) Ay <px)VzeT ' Dly<rz—z&EW{],
() FyZrxAg>0OIm(x)=m(y)+q & VzeWHlyZrz—m(2)Zzm(y)+2¢]1]1.

Then T has property 7.

The proof of this lemma is given separately in a later section, since it is
rather long.

Finally we define for two w;-trees (T, <,) and (T’, <;) an w;-tree T+7T’ as
follows: The field of T+ 7T’ is TX {0} UT’Xx {1}\ {04, 1>}, where 0, 0, are the
roots of T, T’ respectively; The ordering <r of T+T’ is defined by

{x, OO <2<y, 0> if x, yeT and x<,y,
<x, <<y, I if x, yeT'\{0} and x<,y,
00, 0><7<y, 1> if yT'\{0,}.

§ 3. Theorems.

THEOREM 12 (O*). (NS\RE)NyST+0.

PrROOF. Let <{Z,: a<w,> be a {g-sequence and {({W¢: i<w}: a<wy a
O%-sequence. We define a P-tree T by induction on levels so that T satisfies the
following :

(1) if a<f<w; and x&T, and ¢=QN\(m(x), o), thereis a y&T such that
x=Zry and m(y)<q.

Set T={07};

Tari={x\Y {<q, a+} o xeT, & m(x)<qEQ}.

Let 2= and suppose T | A has been defined so that (1) holds. Fix an in-
creasing sequence <{4,: n<w) such that limA,=A. For each x=T [ 1 and each
new

positive rational g, we define ¢;(x, q) as follows: Let xT [ 2and 0<qgeQ. We
pick x,, x¥=T [ 2, qn, g¥>0 inductively .so that:
(@) xo=x and ¢,=¢q;
(b) if W4 is an anti-chain of 7' 1 and
FzeT | Dx.ZrzeWi & m(z2)<m(xa)+gn],
then

X rxEEWE & m(xg)<m(xn)+q, and gr=m(x,)+qn—m(x%);

otherwise, x¥=x, and ¢f=q¢./2;
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(©) x3<rXns1 & ht(Xns1)>An & M(xp4r)<m(x¥)-+g¥ (this is possible by (1));
(d) qn+1=M(x’7'i)+q§—m(xn+1)-

Put: ta(x, q)=nK<J xnU{<§llép m(xz), D}.
Notice that xZrta(x, ¢) and 0<m(¢:(x, ¢))<m(x)+q. Now, we shall define T;.
Case 1. Z; is a cofinal branch of T [ 4. For each x&T | 1 and each positive
rational g, pick x*7T ' 2 and ¢* so that:
x<gpx*&€ Zy, ht(x*)=ht(x)+1, m(x*)<m(x)+q and g*=m(x)+qg—m(x*).
And put: ui(x, @)=t(x* ¢%).
We set: Ti={uix, @: x€T 12, 0<qeq}.

Note that if u=u,(x, ¢), then Z;#4, xZru and 0<m(u)<m(x)+q.

Case 2. Z; is a function which embeds T | 2 in [0, 1). Pick y,, y¥<T |2
inductively as follows :

(@) »0=0r;

(b) if W# is an anti-chain of T ' 1 and

FzeWhlya<rz & Z¥(y.)—1/(n+1)< Z3(2)],
then
Ya<ryREWEL and Z3%(y,)—1/(n+1)<Z;(y%) ;

otherwise, y,<ry¥e€T ' 2 and Z§*(y,)—1/(n+1)< Z;(y¥);

(C) yn+1>Ty>7': & ht(yn+l)>2n,
(see Lemma 10 for the definition of Z3»(y,)).

Put: s;=n\<JwynU{<7’, D},
where the real r is taken so that s;=%p (such an r is unique).
We set: T:={s:a}Y{txx, @: xT 1, 0<q=q)}.
Case 3. Otherwise. We set:
T:={tixlx,q): x€T 14 0<q=q}.

T, is thus defined. Now set:
T=9UT,.

alw]

T is clearly a P-tree. We can easily check that T€ AT by Lemma 9, T« RE by
Lemma 10, TeNS by Corollary 7, TeyST by Lemma 11, using the following
facts :

(a) even when Z,; is a cofinal branch of T 2, Z;# % for every x&T;;



On a classification of Aronszajn trees II 125

(b) if Z; is a function which embeds 7 [ 2 in [0, 1), then for every n<ow,
Yu<r$2ET; and Z3™(y,)—1/n=Z3%(Yn-1)—1/0<Z;(y2);

(c) stationarily many ordinals § are put in Case 3 and for every such
ordinal A it holds that (Vx&T;)[m(x)>0];

(d) if W% is an anti-chain of T [ 2 and ¢t=1¢;(x, q), then the one of the fol-
lowing holds:

1°. x*eWint and (VzeT | Dlxi<rz—zeWi];

2°. m(t)=m(x¥)+qk & V[x32rzeWi—-m(z)=m(x.)+2¢%];

(e) if W4 is an anti-chain of T | A, Z; is a function which embeds T I 1 in
[0, 1) and ¢#=s;, then one of the following holds:

1°. y*eWint and hence (VzeT [ D[ yX<rz—z&EW2i];

2°. Z3(ya)—1/(n+D<Zi(yn+1), VeLya<rz & Z3(y,)—1/(n+1)<Zi(2)—
z&EW?1] and hence Vz[y, 1 <gpz—z&EW2i].
Theorem 12 is thus proved.

THEOREM 13 (O*). (NS\RE)N(AST\yST)+0.

PROOF. Assume $*. We can take T(WNS\RE)NyST (Theorem 12) and
T'e RE~N(AST\yST) (Devlin and Shelah [2, Theorem 4.4]). Then clearly T+ T’
e(NS\RE)N(AST\yST).

THEOREM 14 (). (NS\RE)N(NCA\AST)+0.

PrROOF. Let {Z,: a<w;> be a {g-sequence. To define a P-tree, we construct
each level T, by induction on « ensuring that the following holds:

(1) if a<p<w, & x=T, & m(x)<qeQ, there is a y=T; such that xZry
& m(y)<g, and additionally if B is a successor ordinal, there is a y’€T; such
that x27yv" & m(y)=q.

Set : To= {07} ;

Tori={xV{{g, a+D}: x€T,, mx)<qgsq}.

Let A= and suppose that T [ A has been defined. Fix an increasing sequence
{An: n<w) such that supA,=A. For each x=T | 2 and each rational ¢<m(x),

nlw
we shall define #,(x, ¢) as follows: First take an increasing sequence {g,: n<wy
such that lim ¢,=¢q and m(x)<gq, Pick x, for every n<w by induction so that:
n<w
Xo=—X;

anTan & ht(xns)>2n & m(xnﬂ):CIn:
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(this is possible by (1)). We set:
talx, q)=n\<wanU{<q, D).

Notice that xZrti(x, ¢) and m(t:(x, q))=q.

Now we shall define T;.

Case 1. Z; is an cofinal branch of T [ . For each x=T | 1 and each rational
g>m(x), pick x* so that At(x*)=ht(x)+1, x<rx* m(x*)<q and x*«¢Z,. Put:

salx, @=tai(x* q).
We set: Ti={s:x,q): x€T 12, m(x)<qgeq@}.

Clearly Z;#{yeT [ 2: y<grsilx, q)}.

Case 2. Z; is an anti-chain of T ' 2. For each xT [ 1 and each rational
g>m(x), pick x* and ¢*€Q so that:

(a) if QuweT [ DA[xZrweZ; & m(w)<q], then

xZpx*eZ;, m(x*)<qg and m(x*)<qg*<gq;
(b) otherwise, x*=x and m(x)<g*<q.
Put : u(x, @)=t(x*, g% .
We set: Ti={uilx, q): x€T A m(x)<qgeq@}.

Case 3. Z; is a function which embeds 7 [ 4 in [0, 1). Pick y, for each
n<w by induction so that:

¥o=0r;
Vr+1217Vn & ht(yn+1)>2n & Zi“"(yn)—1/(n+1)<Zx(yn+1)-
Put: V= \<J ya\J K, D},

where re R is taken so that v, €%, We set:
Ti={w}Y{tix, q): x€T 12, m(x)<qgeq}.
Case 4. Otherwise. We set:
T,={tix,q): x€T 1A m(x)<qeq}.
T, is thus defined. Now we set:

T= U T,.

alwy
Clearly T is P-tree. We can easily check that T€ AT by Lemma 9, T& RE

by Lemma 10 and T NS by Corollary 7, using the following :
(@) Z,# % for every xT,, even if Z; is a cofinal branch of 7 [ Z;
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(b) if Z; embeds T [ 2 in [0, 1), then y,<v; and
ZEP(yn)—1/n=Z3P%(Yn-1)—1/n<Z3(y4) ;

(c) stationarily many limit ordinals are put in Case 4, and for such an ordinal
A m(x)>0 for all xT;.

To see that T NCA, suppose that there were a club anti-chain X of T. Put:
C;={2€2:(VxeT ' NqeQ)[LAweT)R(x, w, X, ¢)—AweT ! DR(x, w, X, ¢)1},
where R(x, w, X, q) stands for xZr,weX & m(w)<g. Clearly C; is a club set.
Hence so is C=C,n\{ht(x): xX}. So we can pick A€ £ so that ieCn{a<w;:
XNT ta=Z,}). Then we can pick teXNT,; since i {ht(t): t€X}. Since
XNT Y 2=Z,, Z, is an anti-chain of T | 1 and so we can take x&T 1 and ¢€@
so that ¢ =wu(x,¢q). Then m(t)=g*<q. Thus R(x, t, X, g and hence
AweT  HYR(x, w, X, q) because A=C,. Since XNT | 1=Z,, this implies that
x*eZ,. Thus, x* t€X and x*<yt. This is absurd since X is an anti-chain.

TeNCA is thus shown.

On the other hand, it can be easily checked that the set {f;(0r, 1): 1 is a
limit ordinal ordinal put in Case 4} is a stationary anti-chain and hence 7T & AST,
q.e.d.

THEOREM 15 (). (NS\RE)\NCA+9.

PrRoOOF. Assume <. We can take Te(NS\RE)N(INCA\AST) (by Theorem
14) and T’eSAT\NCA ([3, Theorem 5]). Then clearly T+ T’'(NS\RE)\NCA.

§4. Proof of Lemma 11.
Let X be an uncountable anti-chain of T. Put:
Co={a<w;: XN\T I a=W§¢ for some icw},
C,={A€2: WyeT ' D[AxeX)y<rx]—@zeXNT ' D[y<rz]l},
C={2€Q: @xeX)[y2rx & mx)<ql—EzeXNT ' HyZrz & m(z)<ql],
for every yeT I 1 and every q=@Q}.
Let C be a club set such that CcCon\CiNCs.

CLamm 1. XNT ;=0 for every A1<C.

PROOF. Suppose 2=C and x€ XN\T,. Pick icw so that X\T rl=W§. Since
X is an anti-chain, W? is an anti-chain of T | 4. Hence by the assumption of the
lemma, (a) or (b) must hold.
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Case 1. (a) holds. Pick y<rx so that (Vze€T POy <rz—z&EW?E]. Since
W3i=X~T ! 2 and 2€C,, 7@xeX)[y<rx]. This contradicts “y<rx€X”.
Case 2. (b) holds. Pick yZrx and ¢>0 so that:

m(x)<m(y)+q and (VzeWH[yZrz—m(z2)zm(y)+2q].

Since XA\T | 2=W? and 2€C,, 7Ax€X)[yZrx & m(x)<m(y)+2q¢]. This con-
tradicts “x=X & y=Zrx & m(x)<m(y)+¢”. Claim 1 is thus proved.

Let <2:: £<w,> be the monotone enumeration of CU{0}. Let <x%: n<w)> be
an enumeration of XN\T | (Ae+:1\Ae) such that x%#x§, if n#m, for each £{<cw:.

We shall define w$ for each £<w, and each n<w.

Case 1. ht(x$)e . wh is taken so that (w$, x4] is a singleton set, i.e. wé,
is the immediate predecessor of x§.

Case 2. ht(x$)e . First note that there is a y <rx% such that (y, xi]f\jgz %5
=0. (To see this, suppose not. Then ﬁicjg £% and hence £5C £ for some j<n,
which implies x%=<rx$ (Lemma 5-(5)). But it is absurd since x4+ x% and X isan
anti-chain).

Subcase 2.1. m(x$)=0. Take y% so that:

2:<ht(35), ¥h<rxh and (3% x8IN\J £5=0.

w$, is taken so that

Y Zrwi<rx§ and m(wh)>m(y%)+1,

(this is possible by Lemma 5-(8)).
Subcase 2.2. m(x§)>0. We can take y% so that:

ht(y8)> 2, (3%, xi]r\jy #=0 and y,Zrx%.
n

Then w$, is taken so that
YeZrwh=Zrxh and  m(x§)—m(wh) <m(wh)—m(y%),

(this is possible by Lemma 5-(7)).
wt, is thus defined. Now put:

U=\U{(ws, x5]: <y, n<ow}.
This is a nbd of X.

Finally we shall define a nbd V of T | C such that UnV=0. For this pur-
pose, we shall define v* for every veT [ C. LetveT [ C and put A=ht(v). Let
i be the number such that Wi=X~T | . W1 is clearly an anti-chain of T | A.
So by the assumption of the lemma, Condition (a) or (b) must hold for v (sub-
stituted for x).
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Case 1. (a) holds. Then we can take v*<,v so that
VzeT [ Av*<pz—zeEWE].
Case 2. (b) holds. Take u<T 2 and ¢>0 so that u=;v and
mw)<m(u)+q and (VzeWHluZrz—m(z2)=m(u)+2q].

We may assume that m(u)>m(v)—1. (If not so, by Lemma 5-(7), there is «’ such
that «Zru’Zrv and m(u’)>m(v)—1. Then take u’ and m(u)+g—m(u’) instead
of u and ¢.)

CLAIM 2. For at most only one pair <&, n), (u, vIN\(w$, x51+0.

PROOF. We show first that (u, v]~\(wi, x§]#0 implies that (1) ht(x$)<2
and (2) ht(x4)e 2. To show (1), suppose not. Then by choice of w$, ht(x%)>
ht(wn,)=A:=2. Hence (u, vIN(w$, x51=0 which contradicts the assumption. To
show (2), suppose not. Then (w$, x4]={x%}. Hence x%ie(u, v], so uZrxé.
Note x5, W3 (For, x,€XNT | 2by (1) and Wi=X~T | 2 by choice of i.) Hence
by the property of ¢, m(x%)=m(u)+2q>m(u)+g=m(v). This is absurd since
x5=rv. Next we show that (u, v]"\(w}, x5]+0 implies that u=(y§, x$], where
y§ is as given in the definition of w. (Note that ht(x%)f by the above.)
Suppose that there is te(u, v]JN\(wh, x5]. Then uZ7tZrv and yE=rwi<rt.
So, u and y% are comparable. It suffices to show that y§<rpu. If m(x§)=0,
then m(y%)<m(ws)—1<m(t)—1<m@w)—1<m(u) and so y5<rpu. If m(x$)>0, then
¥5 2rwhZrxh. Hence uZrx$, since u27t v and w27t =Zrx%. So, by the pro-
perty of q. m(x%)=m(u)+2¢ and hence

m($)—m(y%)>m(wh)—m(y%) >m(x5) —m(wh)>m(x§)—m(v)
> (2g+m(u))—(m(uw)+g)=g=mw)—m(u)>m(t)—mu),

which mean y4<7u. In both cases, y5<ru. Thus (u, vJN\(wh, x5]#0 implies
ue(ys, x5]. The claim follows from this immediately. For, there is at most
only one pair <&, n)> which satisfies u €(y%, x%], since the intervals (y%, x4, é<w:
and n<w, have been taken so as to be mutually disjoint. Claim 2 is thus proved.
By this claim we can take v* so that:
v¥*<v and (VE<w, Vn<o)[@* vINnws, x$]1=0].

v* is thus defined for all veT I'C. Clearly (v*, v]mU 0. We set:

V=U{(* v]: veT 1 C}. | |

Then V is a nbd of T [ C such that UnV=0. This completes the proof of
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Lemma 11.

§5. Remark on Lemma 6.

First note that every w;-tree is isomorphic to some P-tree. Concerning
Lemma 6 and Corollary 7, it would be natural to ask whether the former is
essentially more general than the latter: i.e. whether the following condition
(Cl) is strictly weaker than (C2) for Aronszajn trees T :

(Cl) there is a P-tree T’ isomorphic to T such that

{a<w,: THZn\(T’) is finite} is stationary;
(C2) there is a P-tree T” isomorphic to T such that
{a<w,: TiN(T”)°=0} is stationary.

The answer is affimative: i.e. the following holds:

PROPOSITION (O*).  There is an Aronszajn tree which satisfies (Cl) but does
not (C2).

PrROOF. Let ({W2:i<w}: a<w,) be a {¥-sequence and <Z,:a<w,> be a
Og-sequence. We construct a P-tree T such that T;\7T° has at most one ele-
ment for every A< but (C2) does not hold. We define T, for a <w, inductively
ensuring that:

(1) if a<p<w, and xT, and m(x)<g<Q, then there is a yeT, such that
x<Zry and m(y)<gq.

Put T.={07} and Tai.={x\J{{g a+1D}: xeT,, m(x)<geQ}. Let 2€L
and suppose that T ' 2 has been defined. Let <1,: n<w) be a sequence such that
lim 2,=A. For each xT [ A and each rational ¢>m(x), we pick x, inductively

nlw

so that:
(a) if Z; is a cofinal branch of T I A, then xZrx, and x,& Z; and m(x,)<q;
otherwise, x,—x;

(b) Xn+1>> 17X 0, ht(xn+1)>1n and m(xn+l)<q-

Put:
ta(x, q)=n\<wanU {<§gg m(xn), ).

Let K(n) mean the number such that n=2™(2- K(n)+1)—1 for some mew. Now,
we shall define y, by induction as follows:
I. if Z; is a cofinal branch of 7 ' A then y, is taken so that y,& Z; ; other-
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wise, y,=0r;

Il. (a) if Wkcay is a function from 7 [ 2 to [0, o), then y,.; is taken so
that y,4:>7ry» and ht(yn+1)>2, and one of the following holds:

1°. Wiy (e,

2% Wik (Yne)>Sup (Wi (3): 32 <ry €T [ 2, ht(y)>2a} —1/n;

(b) otherwise, y,.; is taken so that y,+;>7y. and At(¥p+1)> An.
Put :

uj—'_—ng ynu {<7’, 2>} ’

where » is taken so that u, €%, We set:
Tiy={u;}\Ylta(x, ¢): x€T [ 2, m(x)<q=qQ}.

Then the tree T= \U T, is as required. To see that (C2) is false, take arbitrarily

alwy
an isomorphic P-tree T’ and an isomorphism f from T to T’. Define a function

e: T—R by e(x)=m(f(x)). Take club sets Co={2€R:(VxT ' 2VgeQ)[(AyeT)
[x<ry & e(»)>q]-3yeT I Dx<ry & e(3)>¢]]} and C;S A€ Q: Wi=e [ (T 1 D)

for some i}.

CLAIM. e(u;)=0 for every 2€C,NC;.

PROOF. Suppose e(u;)>0 and 2€C,N\C,. Pick icw so that Wi=e | (T | A).
Then we can take a v<ru; such that f(v)Z7.f(uz). Let ¢ be an immediate suc-
cessor of u;. Pick n€w so that: 1,>htw), n>e(u;), elt)—e(u;)>1/n and K(n)
=1. Recall y,;; in the definition of u;. Then 1° or 2° must hold. First notice
that f(0) 27 f(Yr+) < f(u2), since AtW)<2Ap<ht(yp+r), fO)2rf(uwr) and F(Yasy)
<p.f(uz). And so e(w)<e(yni)<e(u;)<n.

Case 1. 1° holds. Then e(yn+1))=Wkn(¥rs1)=n. This is absurd by the
above notice.

Case 2. 2° holds. By 2€C,, e(ui)>e(ypr1)>sup{e(y): yv,<yeT [} —1/n
=supf{e(y): y.<yeT}—1/n=e(t)—1/n. This is absurd since e(t)—e(u;)>1/n.
Claim is thus proved.

It is obvious by the claim that 7 does not have property (C2). Proposition
is thus proved.
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