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DISTANCE BETWEEN METRIC MEASURE SPACES

AND DISTANCE MATRIX DISTRIBUTIONS

By

Ryunosuke Ozawa

Abstract. We study the Prohorov distance between the distance

matrix distributions of two metric measure spaces. We prove that it

is not smaller than 1-box distance between two metric measure

spaces and also prove that it is not larger than 0-box distance

between two metric measure spaces.

1. Introduction

In this paper, we consider the relation between the box distance function and

the distance matrix distribution. Here, a metric measure space X :¼ ðX ; dX ; mX Þ
is a complete separable metric space ðX ; dX Þ equipped with a Borel probability

measure mX . The box distance function k
l
, which was introduced by Gromov

[5], is a natural distance function between two metric measure spaces for any

lb 0. Define the distance map KX
r from X r to MrðRÞ, the set of all real square

matrices of order r with ly-norm k � ky, by KX
r ðx1; . . . ; xrÞ :¼ ðdX ðxk; xlÞÞk; l¼1;...; r.

The r-dimensional distance matrix distribution mX
r is the push-forward measure of

the r-times product measure of mX by KX
r . mX

r is a Borel probability measure on

MrðRÞ. We denote by X the set of isomorphism classes of metric measure spaces.

Gromov [5] developed a theory of convergence of metric measure spaces in X.

He proved that the infinite-dimensional distance matrix distribution mX
y is a

complete invariant of metric measure spaces (see Theorem 2.3). On the other

hand, Greven-Pfa¤elhuber-Winter [4] developed a theory of convergence of metric

measure spaces and the probabilistic theory on X, independently of Gromov’s
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work. They introduced the Gromov-Prohorov metric dGPr and proved that the

topology of dGPr is compatible with the weak convergence of infinite-dimensional

distance matrix distributions (see Theorem 2.12). After that, Löhr [7] showed that

k
l
ðl > 0Þ and dGPr are bi-Lipschitz equivalent to each other (see Theorem 2.16).

Thus, the topology of the box distance function k
l
ðl > 0Þ is compatible with

the weak convergence of infinite-dimensional distance matrix distributions.

Our purpose is to estimate the box distance between two metric measure spaces

X and Y by its the distance matrix distributions mX
y and mY

y. In this paper, we

consider the distance between two distance matrix distributions mX
y and mY

y of two

metric measure spaces X and Y . Moreover, we interpret it as a new metric on X.

Definition 1.1. Let X ;Y A X. We define the distance dly-PrðX ;YÞ to be

the Prohorov distance between mX
y and mY

y with respect to the ly-norm on

MyðRÞ.

Remark 1.2. (1) Symmetry and triangle inequality of Prohorov metric (see

Proposition 2.5) and Theorem 2.3 imply that dly-Pr is a metric on X.

(2) The ly-norm k � ky may take the value y on MyðRÞ but the set of

Borel probability measures on MyðRÞ equipped with the Prohorov metric

with respect to the ly-norm is a metric space.

(3) dly-PrðX ;YÞa 1 for any two mm-spaces X and Y .

We study the relation between the box distance k
l
ðX ;Y Þ and dly-PrðX ;YÞ.

Our main result is stated as follows.

Theorem 1.3. Let X ;Y A X. We have

k
1
ðX ;YÞa dly-PrðX ;Y Þak

0
ðX ;YÞ:

We next compare the topologies induced from k
1
and dly-Pr.

Proposition 1.4. Let X :¼ ðfp1g; dp1Þ and Xn :¼ ðfp1; p2g; dfp1;p2g;
ð1� n�1Þdp1 þ n�1dp2Þ, where dfp1;p2gðp1; p2Þ :¼ 1. We denote by dpi the Dirac

measure at pi ði ¼ 1; 2Þ. Then k
1
ðXn;XÞ ¼ n�1 but dly-PrðXn;XÞ ¼ k

0
ðXn;X Þ ¼ 1

for any nb 2.

This proposition means that mXn
y converges to mX

y weakly as n ! y but the

Prohorov distance between mXn
y and mX

y is one for any nb 2 and implies the next

corollary.
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Corollary 1.5. ðX; dly-PrÞ and ðX;k
1
Þ are not homeomorphic to each other

by the identity map.

Corollary 1.5 seems not to fit to the fact that the topology of the Prohorov

metric is compatible with the weak convergence of probability measures on the

complete separable metric space (see Theorem 2.7). Since ðMyðRÞ; k � kyÞ is

not separable, Corollary 1.5 does not contradictory. We do not know if the

topology generated by k
0

coincides with the topology induced from dly-Pr

or not.

2. Preliminaries

2.1. Metric Measure Space. Let ðX ;OX Þ be a topological space. We denote

by BðXÞ the Borel s-algebra and MðXÞ the set of all Borel probability measures

on X . Let m be a Borel probability measure on X . Recall that the support of m,

suppðmÞ, is the smallest closed set suppðmÞHX such that mðXnsuppðmÞÞ ¼ 0. The

push forward of m by a measurable map j from X into another topological space

ðY ;OY Þ is the Borel probability measure j�m A MðYÞ defined by

j�mðAÞ :¼ mðj�1ðAÞÞ;

for all A A BðY Þ.

Definition 2.1 (Metric measure space). A triple X :¼ ðX ; dX ; mX Þ is called

a metric measure space (or mm-space) if ðX ; dX Þ is a complete separable metric

space and if mX is a Borel probability measure on X . Two mm-spaces ðX ; dX ; mX Þ
and ðY ; dY ; mY Þ are isomorphic if there exists an isometry j between the supports

of mX on ðX ; dX Þ and of mY on ðY ; dY Þ such that mY ¼ j�mX . We write X by the

set of isomorphism classes of mm-spaces.

Let MyðRÞ be the set of all real square matrices of infinite order equipped

with the coarsest topology such that the natural projection pry; r : MyðRÞ !
MrðRÞ is continuous for any r A R.

Definition 2.2 (Distance matrix distribution). Let X ¼ ðX ; dX ; mX Þ A X and

r A NU fyg. Define a map KX
r : X r ! MrðRÞ by

KX
r ðx1; . . . ; xrÞ :¼ ðdX ðxk; xlÞÞk; l¼1;...; r;
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and the r-dimensional distance matrix distribution mX
r of X by

mX
r :¼ ðKX

r Þ�m
nr
X ;

where mnr
X is the r times product measure of mX .

Theorem 2.3 (mm-Reconstruction theorem, [5, Section 312.5, Section 312.7],

[8, Section 2, Theorem], [6, Theorem 2.1]). Let X ;Y A X. The following (1), (2),

and (3) are equivalent to each other.

(1) X and Y are isomorphic to each other.

(2) mX
r ¼ mY

r for all r A N.

(3) mX
y ¼ mY

y.

This theorem means that the infinite-dimensional distance matrix distribution

is a complete invariant of mm-spaces.

2.2. Gromov-Prohorov Metric. Let ðX ; dX Þ be a metric space. For a real

number r > 0 and a subset AHX , we set BrðAÞ :¼ fx A X j dX ðx;AÞ < rg, where
dX ðx;AÞ :¼ infx 0 AA dX ðx; x 0Þ.

Definition 2.4 (Prohorov metric). Define the Prohorov metric d
ðX ;dX Þ
Pr on

MðX Þ by

d
ðX ;dX Þ
Pr ðm; nÞ :¼ inffe > 0 j mðAÞa nðBeðAÞÞ þ e; for all A A BðX Þg

for m; n A MðX Þ.

Note that d
ðX ;dX Þ
Pr ðm; nÞa 1 for any two Borel probability measures m and n

on X .

Proposition 2.5 ([2, Lemma 3.1.1]). ðMðXÞ; d ðX ;dX Þ
Pr Þ is a metric space.

Definition 2.6 (Weak convergence). We say that a sequence fmng
y
n¼1 of

Borel probability measures on X converges weakly to a Borel probability measure

m on X and write mn ! m weakly as n ! y if

lim
n!y

ð
X

f ðxÞ dmn ¼
ð
X

f ðxÞ dm

for any bounded continuous function f : X ! R.
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Theorem 2.7 ([2, Theorem 3.3.1]). Let ðX ; dX Þ be a separable metric space,

fmng
y
n¼1 a sequence of Borel probability measures on X, and m a Borel probability

measure on X. Then

lim
n!y

d
ðX ;dX Þ
Pr ðmn; mÞ ¼ 0

if and only if

mn ! m weakly as n ! y:

For m; n A MðXÞ, we say ma n if mðAÞa nðAÞ for any A A BðXÞ. A finite

Borel measure p on X � X is called a partial transport plan from m A MðX Þ to

n A MðXÞ if ðpr1Þ�pa m and ðpr2Þ�pa n, where pri : X � X ! X , i ¼ 1; 2, are the

projections defined by pr1ðx; x 0Þ ¼ x, pr2ðx; x 0Þ ¼ x 0. For a partial transport plan

p from m to n, we define the deficiency def p of p by def p :¼ 1� pðX � X Þ. For
eb 0, the partial transport plan p is called an e-transport plan from m to n if

suppðpÞHXðeÞ :¼ fðx; x 0Þ A X � X j dX ðx; x 0Þa eg:

Definition 2.8 (Transportation distance). Let m; n A MðXÞ. Define the

Transportation distance TraðX ;dX Þ between m and n by

TraðX ;dX Þðm; nÞ :¼ inffe > 0 j there exists an e-transport plan p

from m to n satisfying def pa eg:

Theorem 2.9 (Strassen’s theorem, [9, Corollary 1.28]). Let ðX ; dX Þ be a

complete separable metric space. For any m; n A MðX Þ, we have

d
ðX ;dX Þ
Pr ðm; nÞ ¼ TraðX ;dX Þðm; nÞ:

Next, we define the Gromov-Prohorov metric on X.

Definition 2.10 (Gromov-Prohorov metric, [4]). Let X ¼ ðX ; dX ; mX Þ, Y ¼
ðY ; dY ; mY Þ be two mm-spaces. Define the Gromov-Prohorov metric dGPr on X by

dGPrðX ;YÞ :¼ inf
ðjX ;jY ;ZÞ

d
ðZ;dZÞ
Pr ððjX Þ�mX ; ðjY Þ�mY Þ;

where the infimum is taken over all isometric embeddings jX and jY from

suppðmX Þ and suppðmY Þ, respectively, into some common metric space ðZ; dZÞ.
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Note that dGPrðX ;Y Þa 1 for any two mm-spaces X and Y .

Theorem 2.11 ([4, Theorem 1]). ðX; dGPrÞ is a metric space.

Theorem 2.12 ([4, Theorem 5]). Let X ;X1;X2; . . . A X. Then

lim
n!y

dGPrðXn;XÞ ¼ 0

if and only if

mXn
y ! mX

y weakly as n ! y:

2.3. Gromov’s Box Distance. We denote by L the Lebesgue measure on

½0; 1�. For any mm-space X there exists a Borel measurable map pX : ½0; 1� ! X

with ðpX Þ�L ¼ mX (see [1, Theorem 9.4.7]). We call such a map pX a parameter

of X . Note that a parameter of X is not unique in general. For a parameter

pX of X , we define a function ðpX Þ�dX : ½0; 1� � ½0; 1� ! R by ðpX Þ�dX ðs; s 0Þ :¼
dX ðpX ðsÞ; pX ðs 0ÞÞ.

Definition 2.13 (Box distance, [5]). Let lb 0, and X ¼ ðX ; dX ; mX Þ, Y ¼
ðY ; dY ; mY Þ A X. Define the box distance between X and Y by

k
l
ðX ;Y Þ :¼ inf

ð pX ;pY Þ
fe > 0 j there exists Te A Bð½0; 1�Þ such that LðTeÞb 1� le

and jðpX Þ�dX ðs; s 0Þ � ðpY Þ�dY ðs; s 0Þja e for all s; s 0 A Teg;

where the infimum is taken over all parameters pX : ½0; 1� ! X and pY : ½0; 1�
! Y .

Note that k
l
ðX ;Y Þa 1=l for any two mm-spaces X , Y , and l > 0.

Theorem 2.14 ([5, Section 312.6], [3, Theorem 3.1.8]). ðX;k
l
Þ is a metric

space for any lb 0.

It is easy to see that k
l
for all l > 0 are bi-Lipschitz equivalent to each

other and k
1
ak

0
.

Proposition 2.15 ([5, Section 312.10]). Let ðX ; dX Þ be a complete separable

metric space and m; n A MðX Þ. Then we have

k
1
ððX ; dX ; mÞ; ðX ; dX ; nÞÞa d

ðX ;dX Þ
Pr ðm; nÞ:

164 Ryunosuke Ozawa



Finally, we consider the relation between the Gromov-Prohorov metric and

the box distance function.

Theorem 2.16 ([7, Corollary 6]). For any X ;Y A X, we have

dGPrðX ;YÞak
1
ðX ;Y Þa 2dGPrðX ;YÞ:ð2:1Þ

Moreover, ðX; dGPrÞ and ðX;k
1
Þ are homeomorphic to each other.

Remark 2.17. (1) Löhr [7] proved that dGPr ¼ 1
2k1=2

on X. This implies the

inequality (2.1).

(2) Theorem 2.12 and Theorem 2.16 imply that Xn k
1
-converges X as

n ! y if and only if mXn
y converses weakly to mX

y as n ! y. The proof

of this statement is omitted in the original article (see [5, Section 312.14]).

3. Box Distance and Distance Matrix Distribution

In this section, we give the proof of Theorem 1.3.

Let r; r 0 A NU fyg with rb r 0. Define the projection prr; r 0 : MrðRÞ ! Mr 0 ðRÞ
by

prr; r 0 ððaklÞk; l¼1;...; rÞ :¼ ðaklÞk; l¼1;...; r 0 :

Lemma 3.1 ([6, Lemma 2.2]). Let X A X and r A N. We have ðprrþ1; rÞ�mX
rþ1 ¼

mX
r and ðpry; rÞ�mX

y ¼ mX
r .

Lemma 3.2. Let X ;Y A X. Then d
ðMrðRÞ;k�kyÞ
Pr ðmX

r ; m
Y
r Þ is monotone non-

decreasing in r A N. In particular,

sup
r AN

d
ðMrðRÞ;k�kyÞ
Pr ðmX

r ; m
Y
r Þ ¼ lim

r!y
d
ðMrðRÞ;k�kyÞ
Pr ðmX

r ; m
Y
r Þ:

Proof. Let e > 0 satisfy d
ðMrþ1ðRÞ;k�kyÞ
Pr ðmX

rþ1; m
Y
rþ1Þ < e. By the definition of

Prohorov metric, we get mX
rþ1ðAÞa mY

rþ1ðBeðAÞÞ þ e for all A A BðMrþ1ðRÞÞ. Since
pr�1

rþ1; rðA 0Þ A BðMrþ1ðRÞÞ for any A 0 A BðMrðRÞÞ, we have

mX
rþ1ðpr�1

rþ1; rðA 0ÞÞa mY
rþ1ðBeðpr�1

rþ1; rðA 0ÞÞÞ þ e:

Obviously, Beðpr�1
rþ1; rðA 0ÞÞ ¼ pr�1

rþ1; rðBeðA 0ÞÞ. Therefore,

mX
rþ1ðpr�1

rþ1; rðA 0ÞÞa mY
rþ1ðpr�1

rþ1; rðBeðA 0ÞÞÞ þ e:
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By Lemma 3.1, this means

mX
r ðA 0Þa mY

r ðBeðA 0ÞÞ þ e;

then we obtain d
ðMrðRÞ;k�kyÞ
Pr ðmX

r ; m
Y
r Þa e. By the arbitrariness of e, we have

d
ðMrðRÞ;k�kyÞ
Pr ðmX

r ; m
Y
r Þa d

ðMrþ1ðRÞ;k�kyÞ
Pr ðmX

rþ1; m
Y
rþ1Þ. r

Lemma 3.3. Let X ;Y A X. Then we have

dly-PrðX ;YÞ ¼ lim
r!y

d
ðMrðRÞ;k�kyÞ
Pr ðmX

r ; m
Y
r Þ:

Proof. The inequality

lim
r!y

d
ðMrðRÞ;k�kyÞ
Pr ðmX

r ; m
Y
r Þa dly-PrðX ;YÞð3:1Þ

is obtained in the same way as in the proof of Lemma 3.2.

Next, we prove the inequality

dly-PrðX ;Y Þa sup
r AN

d
ðMrðRÞ;k�kyÞ
Pr ðmX

r ; m
Y
r Þð3:2Þ

by Lemma 3.2. Let e 0 > 0 satisfy d
ðMrðRÞ;k�kyÞ
Pr ðmX

r ; m
Y
r Þ < e 0 for any r A N,

and A 0 A BðMyðRÞÞ. By the definition of Prohorov metric, Lemma 3.1 and

pr�1
y; rðBe 0 ðAÞÞ ¼ Be 0 ðpr�1

y; rðAÞÞ for any A A BðMrðRÞÞ, we get

mX
yðpr�1

y; rðpry; rðA 0ÞÞÞa mY
yðBe 0 ðpr�1

y; rðpry; rðA 0ÞÞÞÞ þ e 0:

Using the continuity of measure for f7r

n¼1
pr�1

y;nðpry;nðA 0ÞÞgyr¼1, we have

lim
r!y

mX
yðpr�1

y; rðpry; rðA 0ÞÞÞ ¼ mX
yðA 0Þð3:3Þ

and

lim
r!y

mY
yðBe 0 ðpr�1

y; rðpry; rðA 0ÞÞÞÞ ¼ mY
yðBe 0 ðA 0ÞÞ:ð3:4Þ

(3.3) and (3.4) lead to mX
yðA 0Þa mY

yðBe 0 ðA 0ÞÞ þ e 0. Then this means

dly-PrðX ;Y Þa e 0:

We obtain (3.2).

Combining two inequalities (3.1) and (3.2), we have the lemma. r

To prove Theorem 1.3, we need a uniformly distributed sequence.
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Definition 3.4 (Uniformly distributed sequence). Let X A X and fxigyi¼1HX .

fxigyi¼1 is called a uniformly distributed sequence of X if

1

n

Xn
i¼1

dxi ! mX weakly as n ! y;

where dxi is the Dirac measure at xi. We write EX by the set of all uniformly

distributed sequences of X .

Consider EX as a subset of X N. The next lemma means that there are many

uniformly distributed sequences of X .

Lemma 3.5 ([6, Lemma 2.4]). Let X A X. We have mnN
X ðEX Þ ¼ 1 and in

particular, mX
yðKX

yðEX ÞÞ ¼ 1.

Finally, we prove the main theorem.

Proof of Theorem 1.3. We first prove the inequality k
1
ðX ;YÞa

dly-PrðX ;Y Þ. This is trivial in the case of dly-PrðX ;YÞ ¼ 1. Let 0 < e < 1 satisfy

dly-PrðX ;Y Þ < e. We apply the definition of dly-Pr for A ¼ KX
yðEX Þ and use

Lemma 3.5 to have

mY
yðBeðKX

yðEX ÞÞÞb 1� e > 0:

By mY
yðKY

yðEY ÞÞ ¼ 1, we have BeðKX
yðEX ÞÞVKX

yðEY Þ0q. Then there exist two

sequences fxigyi¼1 A EX and fyigyi¼1 A EY such that

jdX ðxi; xjÞ � dY ðyi; yjÞj < e

for all i; j A N. Define mm-spaces Xn and Yn by

Xn :¼ X ; dX ;
1

n

Xn
i¼1

dxi

 !
; Yn :¼ Y ; dY ;

1

n

Xn
i¼1

dyi

 !
:

From the definition of uniformly distributed sequence and Proposition 2.15, for any

d > 0, there exists a number n0 A N such that k
1
ðXn;XÞ < d and k

1
ðYn;Y Þ < d

for any nb n0. Define two parameters pXn
and pYn

of Xn and Yn by

pXn
ðsÞ :¼ xi if s A

i � 1

n
;
i

n

� �
; i ¼ 1; . . . ; n;

xn if s ¼ 1;

8<
:

pYn
ðsÞ :¼ yi if s A

i � 1

n
;
i

n

� �
; i ¼ 1; . . . ; n;

yn if s ¼ 1:

8<
:
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We then have

jðpXn
Þ�dX ðs; s 0Þ � ðpYn

Þ�dY ðs; s 0Þja e

for any s; s 0 A ½0; 1�. This implies k
1
ðXn;YnÞ < e. Thus, we have

k
1
ðX ;Y Þak

1
ðX ;XnÞ þk

1
ðXn;YnÞ þk

1
ðYn;YÞ

< 2dþ e:

By the arbitrariness of d and e, we have k
1
ðX ;Y Þa dly-PrðX ;YÞ.

We next prove the inequality dly-PrðX ;Y Þak
0
ðX ;YÞ. Let e > 0 satisfy

k
0
ðX ;YÞ < e. From the definition of box distance, there exist two parameters

pX , pY of X , Y and a Borel set Te on ½0; 1� such that LðTeÞ ¼ 1 and

jðpX Þ�dX ðs; s 0Þ � ðpY Þ�dY ðs; s 0Þj < e

for all s; s 0 A Te. Define the map xr : ðTeÞr ! MrðRÞ �MrðRÞ by

xrðs1; . . . ; srÞ :¼ ðKX
r ðpX ðs1Þ; . . . ; pX ðsrÞÞ;KY

r ðpY ðs1Þ; . . . ; pY ðsrÞÞÞ:

We set pr :¼ ðxrÞ�Lnr. This belongs to MðMrðRÞ �MrðRÞÞ. We will prove that

pr is an e-transportation from mX
r to mY

r and def pr a e. Obviously,

suppðprÞH xrððTeÞrÞHMrðRÞðeÞ:

Define two projections pr1 : MrðRÞ �MrðRÞ ! MrðRÞ, pr2 : MrðRÞ �MrðRÞ !
MrðRÞ by pr1ððaijÞ; ðbijÞÞ :¼ ðaijÞ, pr2ððaijÞ; ðbijÞÞ :¼ ðbijÞ. Then for all A A

BðMrðRÞÞ,

ðpr1Þ�prðAÞ ¼ ðpr1 � xrÞ�LnrðAÞ

¼ Lnrðx�1
r ðpr�1

1 ðAÞÞÞ

¼ Lnrðx�1
r ðA�MrðRÞÞÞ

¼ Lnrðfðs1; . . . ; srÞ A ðTeÞr jKX
r ðpX ðs1Þ; . . . ; pX ðsrÞÞ A AgÞ

¼ mnr
X ðfðx1; . . . ; xrÞ A X r jKX

r ðx1; . . . ; xrÞ A AgÞ

¼ mX
r ðAÞ:

This leads to ðpr1Þ�pr ¼ mX
r . In the same way, we get ðpr2Þ�pr ¼ mY

r . Then pr

is an e-transportation from mX
r to mY

r and def pr ¼ 0a e. This means that

TraðMrðRÞ;k�kyÞðmX
r ; m

Y
r Þa e. We get dly-PrðX ;YÞak

0
ðX ;Y Þ by Theorem 2.9,

the arbitrariness of e, and Lemma 3.3.

Combining these two inequalities, we obtain the theorem. r
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Proof of Proposition 1.4. First, we prove k
1
ðXn;XÞ ¼ n�1. For any pa-

rameter pXn
of Xn, Lðp�1

Xn
ðfp1gÞÞ ¼ 1� n�1. Then we have df p1;p2gðpXn

ðsÞ; pXn
ðs 0ÞÞ

¼ 0 for any s; s 0 A p�1
Xn
ðfp1gÞ. This means that k

1
ðXn;XÞ ¼ n�1.

It is obvious that k
0
ðXn;XÞ ¼ 1 for any nb 2.

Next, we prove dly-PrðXn;X Þ ¼ 1 for any nb 2. We set the Borel set Ar on

MrðRÞ by

Ar :¼ fðaijÞ A MrðRÞ j there exist k; l A f1; . . . ; rg such that akl ¼ 1g:

Then we have

mXn
r ðArÞ ¼ mnr

Xn
ðfðx1; . . . ; xrÞ A X r

n j ðx1; . . . ; xrÞ0 ðpi; . . . ; piÞ; i ¼ 1; 2g

¼
Xr�1

k¼1

r

k

� �
n�kð1� n�1Þr�k

¼ 1� n�r � ð1� n�1Þr:

It is obvious that mX
r ðArÞ ¼ 0 and mX

r ðB1�n�r�ð1�n�1Þ rðArÞÞ ¼ 0 for any n A N. Let

e > 0. We have mXn
r ðArÞa mX

r ðBeðArÞÞ þ e if and only if eb 1� n�r � ð1� n�1Þr.
This means that d

ðMrðRÞ;k�kyÞ
Pr ðmX

r ; m
Xn
r Þb 1� n�r � ð1� n�1Þr. For any nb 2, we

get dly-PrðXn;XÞ ¼ 1 by Lemma 3.3. r
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