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DISTANCE BETWEEN METRIC MEASURE SPACES
AND DISTANCE MATRIX DISTRIBUTIONS

By

Ryunosuke Ozawa

Abstract. We study the Prohorov distance between the distance
matrix distributions of two metric measure spaces. We prove that it
is not smaller than 1-box distance between two metric measure
spaces and also prove that it is not larger than 0-box distance
between two metric measure spaces.

1. Introduction

In this paper, we consider the relation between the box distance function and
the distance matrix distribution. Here, a metric measure space X := (X, dy, uy)
is a complete separable metric space (X,dy) equipped with a Borel probability
measure uy. The box distance function [],, which was introduced by Gromov
[5], is a natural distance function between two metric measure spaces for any
> 0. Define the distance map KX from X" to M,(R), the set of all real square
matrices of order r with Z,,-norm || - ||, by KX (x1,..., %) := (dy (X, %1))g =1
The r-dimensional distance matrix distribution g is the push-forward measure of

the r-times product measure of uy by KX. u*

is a Borel probability measure on
M,(R). We denote by Z the set of isomorphism classes of metric measure spaces.

Gromov [5] developed a theory of convergence of metric measure spaces in %

X

He proved that the infinite-dimensional distance matrix distribution u3 is a

complete invariant of metric measure spaces (see Theorem 2.3). On the other
hand, Greven-Pfaffelhuber-Winter [4] developed a theory of convergence of metric
measure spaces and the probabilistic theory on %, independently of Gromov’s
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work. They introduced the Gromov-Prohorov metric dgp, and proved that the
topology of dgp; is compatible with the weak convergence of infinite-dimensional
distance matrix distributions (see Theorem 2.12). After that, Lohr [7] showed that
O, (4> 0) and dgp; are bi-Lipschitz equivalent to each other (see Theorem 2.16).
Thus, the topology of the box distance function [J, (4 > 0) is compatible with
the weak convergence of infinite-dimensional distance matrix distributions.
Our purpose is to estimate the box distance between two metric measure spaces
X and Y by its the distance matrix distributions x¥ and xY. In this paper, we
consider the distance between two distance matrix distributions % and u) of two
metric measure spaces X and Y. Moreover, we interpret it as a new metric on Z.

DrriNiTION 1.1, Let X, Y € . We define the distance dj, p(X,Y) to be
the Prohorov distance between u% and ) with respect to the /,-norm on
My (R).

ReMARK 1.2. (1) Symmetry and triangle inequality of Prohorov metric (see
Proposition 2.5) and Theorem 2.3 imply that d;, .p, is a metric on 2.
(2) The /,-norm || - may take the value oo on M, (R) but the set of
Borel probability measures on M, (R) equipped with the Prohorov metric

[

with respect to the /,-norm is a metric space.
(3) di,p(X,Y) <1 for any two mm-spaces X and Y.

We study the relation between the box distance [J,(X, Y) and d, p:(X, Y).
Our main result is stated as follows.

THeEOREM 1.3. Let X,Y € . We have

Ql(Xa Y) < dlx,-Pl‘(X) Y) < Qo(Xv Y)
We next compare the topologies induced from [], and dj, p;.

ProposiTiON 1.4, Let X :=({p1},0y,) and X,:= ({plap2}7d{p1,p2}a
(1 =n"10y, +n715,,), where di, ,\(p1,p2):=1. We denote by &, the Dirac
measure at p; (i =1,2). Then O,(X,, X) = n~" but dy, p:( Xy, X) = O, (Xs, X) =1
for any n > 2.

This proposition means that /_lg" converges to ,_g weakly as n — oo but the

)(Il

Prohorov distance between p5’

and ﬁfﬁ is one for any n > 2 and implies the next
corollary.
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COROLLARY 1.5. (%,d), .p;) and (#,(1,) are not homeomorphic to each other
by the identity map.

Corollary 1.5 seems not to fit to the fact that the topology of the Prohorov
metric is compatible with the weak convergence of probability measures on the
complete separable metric space (see Theorem 2.7). Since (M (R), | -|,) is
not separable, Corollary 1.5 does not contradictory. We do not know if the
topology generated by [, coincides with the topology induced from dj, p;
or not.

2. Preliminaries

2.1. Metric Measure Space. Let (X, 0yx) be a topological space. We denote
by #(X) the Borel g-algebra and .#(X) the set of all Borel probability measures
on X. Let 4 be a Borel probability measure on X. Recall that the support of u,
supp(u), is the smallest closed set supp(u) = X such that u(X\supp(x)) = 0. The
push forward of u by a measurable map ¢ from X into another topological space
(Y,0y) is the Borel probability measure ¢, i€ .#(Y) defined by

p.u(A) = u(p~"(A4)),

for all 4 e 4(Y).

DerINITION 2.1 (Metric measure space). A triple X := (X, dy, y) is called
a metric measure space (or mm-space) if (X,dy) is a complete separable metric
space and if u, is a Borel probability measure on X. Two mm-spaces (X, dx, ity )
and (Y,dy,uy) are isomorphic if there exists an isometry ¢ between the supports
of uy on (X,dy) and of uy, on (Y,dy) such that u, = ¢, u,. We write Z by the
set of isomorphism classes of mm-spaces.

Let M, (R) be the set of all real square matrices of infinite order equipped
with the coarsest topology such that the natural projection pr,, ,: M, (R) —
M,(R) is continuous for any r e R.

DeriNiTION 2.2 (Distance matrix distribution). Let X = (X, dy, uy) € 2 and
reNU{ow}. Define a map KX : X" — M,(R) by

[(rx(xlv e 7xr) = (dX(xk>x/))k,l:1,4..,r7
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and the r-dimensional distance matrix distribution ﬁf( of X by

/,(3( = (KVX)*:ug?r’

where ,u?’ is the r times product measure of .

THEOREM 2.3 (mm-Reconstruction theorem, [5, Section 31.5, Section 31.7],
[8, Section 2, Theorem], [6, Theorem 2.1]). Let X,Y € 2. The following (1), (2),
and (3) are equivalent to each other.

(1) X and Y are isomorphic to each other.

(2) w) =uY for all reN.
(3) ui = u

This theorem means that the infinite-dimensional distance matrix distribution
is a complete invariant of mm-spaces.

2.2. Gromov-Prohorov Metric. Let (X,dy) be a metric space. For a real
number r > 0 and a subset 4 = X, we set B,(A4) := {x € X |dx(x,4) < r}, where
dy(x,A) :=1infy e 4 dy(x,x).

DEFINITION 2.4 (Prohorov metric). Define the Prohorov metric dlgf’d’() on
AM(X) by

A5 (u,v) == inf{e > 0| u(A) < v(B,(A)) +e&, for all AeB(X)}
for u,ve 4 (X).

X,dy)
T

Note that dlg
on X.

(u,v) <1 for any two Borel probability measures u and v

ProposiTION 2.5 ([2, Lemma 3.1.1)). (%(X),dlgf’d”) is a metric space.

DEFINITION 2.6 (Weak convergence). We say that a sequence {u,}, of
Borel probability measures on X converges weakly to a Borel probability measure
i oon X and write y, — p weakly as n — oo if

im [ ) diy = | 10 d

n—oo

for any bounded continuous function f : X — R.
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THEOREM 2.7 (|2, Theorem 3.3.1]). Let (X,dx) be a separable metric space,
{1}, a sequence of Borel probability measures on X, and u a Borel probability
measure on X. Then

lim  dy, ™ (s, 1) = 0

n— o0

if and only if
W, — 1 weakly as n — co.

For u,ve #(X), we say u<v if u(4) <v(A4) for any 4 € #(X). A finite
Borel measure 7 on X x X is called a partial transport plan from ue #(X) to
ve #(X) if (pr)),n < and (pry),m < v, where pr; : X x X — X, i = 1,2, are the
projections defined by pr,(x,x’) = x, pry(x,x’) = x’. For a partial transport plan

7 from u to v, we define the deficiency def = of = by def n:=1— n(X x X). For
& > 0, the partial transport plan n is called an e-transport plan from p to v if

supp(n) = X (&) := {(x,x") € X x X |dy(x,x") <&}

DrrFINITION 2.8 (Transportation distance). Let u,ve .#(X). Define the

(X, dx

Transportation distance Tra ) between u and v by

Tra™ %) (pu,v) := inf{e > 0| there exists an e-transport plan ©
from u to v satisfying def n < e}.

THEOREM 2.9 (Strassen’s theorem, [9, Corollary 1.28]). Let (X,dy) be a
complete separable metric space. For any u,ve 4 (X), we have

di ™ (e, v) = Tra™ ) ().
Next, we define the Gromov-Prohorov metric on Z.

DEFINITION 2.10 (Gromov-Prohorov metric, [4]). Let X = (X,dy,uy), ¥ =
(Y,dy,uy) be two mm-spaces. Define the Gromov-Prohorov metric dgp: on 2 by

. .d
dope(X,Y) = inf _ di ((py),aax, (0y).ty),
((ﬂX‘(ﬂYvZ)

where the infimum is taken over all isometric embeddings ¢, and ¢, from
supp(uy) and supp(uy), respectively, into some common metric space (Z,dz).
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Note that dgp(X,Y) <1 for any two mm-spaces X and Y.
THEOREM 2.11 ([4, Theorem 1]). (4,dgp:) is a metric space.

THEOREM 2.12 ([4, Theorem 5|). Let X, X, X,... € 2. Then

lim dGPr(XmX) =0

n—oo

if and only if

,u;f” — ,ui weakly as n — oo.

2.3. Gromov’s Box Distance. We denote by ¥ the Lebesgue measure on
[0,1]. For any mm-space X there exists a Borel measurable map py : [0,1] - X
with (px),¥ = py (see [1, Theorem 9.4.7]). We call such a map px a parameter
of X. Note that a parameter of X is not unique in general. For a parameter
px of X, we define a function (py)*dy :[0,1] x [0,1] = R by (px) dx(s,s’) :=
dx(px(s), px(s')).

DrerFINITION 2.13 (Box distance, [5]). Let A >0, and X = (X, dy,uy), ¥ =

(Y,dy,uy) € Z. Define the box distance between X and Y by

0, X,Y):= ( inf ){8 > 0| there exists T, € #([0,1]) such that L(T,)>1-Je
Px,Py

and |(px)“dx(s,s") — (py)“dy(s,s")| < e for all s,s" € T,},
where the infimum is taken over all parameters py :[0,1] — X and py : [0, 1]

— Y.

Note that [J,(X,Y) <1/ for any two mm-spaces X, Y, and 1> 0.

THEOREM 2.14 ([5, Section 31.6], [3, Theorem 3.1.8]). (#,0,) is a metric

space for any A > 0.

It is easy to see that [, for all 1> 0 are bi-Lipschitz equivalent to each
other and [, < [J,.

ProposITION 2.15 ([5, Section 31.10]). Ler (X,dx) be a complete separable
metric space and u,v e M (X). Then we have

O, (X, dy, 1), (X, dy, v)) < d55%) (u, v).
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Finally, we consider the relation between the Gromov-Prohorov metric and
the box distance function.

THEOREM 2.16 ([7, Corollary 6]). For any X,Y € Z, we have
(2.1) dep(X,Y) < O,(X,Y) < 2dgp(X, Y).
Moreover, (Z',dgp;) and (¥,[1,) are homeomorphic to each other.
REMARK 2.17. (1) Léhr [7] proved that dgpr =5, pon. This implies the
inequality (2.1).
(2) Theorem 2.12 and Theorem 2.16 imply that X, [J,-converges X as
n — oo if and only if Ho{" converses weakly to EO{ as n — oo. The proof
of this statement is omitted in the original article (see [5, Section 31.14]).

3. Box Distance and Distance Matrix Distribution

In this section, we give the proof of Theorem 1.3.
Let r,r" e NU{oo} with r > r'. Define the projection pr, ., : M,(R) — M,/(R)
by

prr,r’((akl)k,lzl,.‘.,r) = (akl)k71:1,4..7r/-

LemMA 3.1 ([6, Lemma 2.2]). Let X € 2 and r e N. We have (pr,, ). 1%, =
)t and (pro, ) pu5 = k.

LemmA 3.2. Let X,YeXZ. Then d}()iw"(R)’H'H“;)(Erx,ﬁf) is monotone non-

decreasing in r € N. In particular,

M, (R), |||, . M,R), ||l
sup d}(’ (R), || ,)(&’{(’EVY) :ran% d}gr (R), || ))(ﬁr{(’ﬁrY)'

r
reN

PrROOF. Let &> 0 satisfy dlgfl’“(R)'lHl‘*)(;_z,ﬁl, i) < e By the definition of

Prohorov metric, we get % | (A4) < u%(B.(A)) + ¢ for all A € B(M,,(R)). Since
pr, . (4') € B(M,;1(R)) for any 4’ e #(M,(R)), we have

Er/‘:rl (Prrlll.r(A/)) < E;‘);I(Bé‘(prrjrll,r(A/))) +e.
Obviously, B(pr. ), .(4")) = pr,}} ,(B.(4")). Therefore,

1 (prly (A7) < k(o (Bu(A)) + e
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By Lemma 3.1, this means

1w (A) < 1} (BL(A)) + e,

then we obtain d
M,( M, (R), |,
d( R), [l )(E;Yvﬁr ) <d 1(R), [| HV)(ﬁ;\jrl’ﬁr};l)' [

(M"(RMHI“)(uf(,/_er) <e. By the arbitrariness of ¢ we have

LemMmA 3.3. Let X,Y eXZ. Then we have

di, (X, Y) = lim @2 ™) (X 7y,

r— o0

Proor. The inequality

(3.1) lim d “'H*)(urx,ﬂry) <d, p(X,Y)
r—o0 ==
is obtained in the same way as in the proof of Lemma 3.2.
Next, we prove the inequality

(3.2) (X, V) < sup dyg" T )

by Lemma 3.2. Let ¢ >0 satisfy dlgfl"(m““”%)(

and A’ € #(M,(R)). By the definition of Prohorov metric, Lemma 3.1 and
pr..,(By(4)) = By(pr,.,(4)) for any A A(M,(R)), we get

X, uY) <& for any reN,

1o (pro, (pros (A1) < g (Bor(pro) (pr (A7) + .

Using the continuity of measure for {("),_, pr;',(pr, ,(4")}Z,, we have

(33) lim o (pr, (pr., (47)) = ik (4')
and
(3.4) lim p) (B (pry! (pro (4)))) = u) (B (A)).

(3.3) and (3.4) lead to uX(A') < pul(B.(A'))+¢'. Then this means
dlx—Pr(X; Y) <é.

We obtain (3.2).
Combining two inequalities (3.1) and (3.2), we have the lemma. N

To prove Theorem 1.3, we need a uniformly distributed sequence.
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DEFINITION 3.4 (Uniformly distributed sequence). Let X € 2 and {x;} 2, = X.
{x;}2, is called a uniformly distributed sequence of X if

1 n
— E Ox, — Uy weakly as n — oo,
n

i=1

where J,, is the Dirac measure at x;. We write Ey by the set of all uniformly
distributed sequences of X.

Consider Ey as a subset of XN. The next lemma means that there are many
uniformly distributed sequences of X.

LemmA 3.5 ([6, Lemma 2.4]). Let X € Z. We have u$™(Ex) =1 and in
particular, (KX (Ex)) = 1.

Finally, we prove the main theorem.

PrOOF oOF TueoreM 1.3. We first prove the inequality [J,(X,Y) <
di,p(X,Y). This is trivial in the case of dj, .p(X,Y) =1. Let 0 < ¢ < 1 satisfy
di,p(X,Y) <& We apply the definition of dj, p, for 4 =KZX(Ey) and use
Lemma 3.5 to have

ur (Bo(KX(Ex))) = 1—¢>0.

By uX(KY(Ey)) =1, we have B,(K; (Ex))NKZX(Ey) # &. Then there exist two
sequences {x;}.-, € Ex and {y;}2, € Ey such that

|dx (i, x;) —dy (yi, yj)| <e
for all i, j € N. Define mm-spaces X, and Y, by

Xn = (X,dx,%i(%.), Yn = <Y,dy,%i(5,[>.
i=1 i=1

From the definition of uniformly distributed sequence and Proposition 2.15, for any
0 > 0, there exists a number 79 € N such that [J,(X,, X) <J and [J,(Y,, ¥Y) <9
for any n > ng. Define two parameters py, and py, of X, and Y, by

SRR
ifse[l ,i),izl,...,n,
n

X
pr,(s) =4 " n
Xp if s=1,
1
Vi lfse|:l 71)71.:1)""”’
Py, (s) == n 'n
Yo i s=1
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We then have
(px,)"dx(s,s") = (py,)"dy(s,s)| <&
for any s,s" € [0,1]. This implies [J,(X,, Y,) <e. Thus, we have
0,(X, Y) < 0,(X, X,) + 0, (X, Y,) + 0,(Y,, ¥)
<20+e.

By the arbitrariness of ¢ and &, we have [J,(X,Y) <d), p(X,Y).

We next prove the inequality dj, p(X,Y) < [,(X,Y). Let &> 0 satisfy
O,(X,Y) <e. From the definition of box distance, there exist two parameters
px, py of X, Y and a Borel set 7, on [0,1] such that #(T,) =1 and

[(px)"dx(s,s") — (py)dy(s,s")| <e
for all s,s" € T,. Define the map &, : (T.)" — M,(R) x M,(R) by
fr(sh e 7Sr) = (KrX(PX(Sl% e 7pX(s"))7KrY(pY<S1)’ tee ’pY(SV)))'

We set 7, := (&), 2®". This belongs to .#(M,(R) x M,(R)). We will prove that
7, is an e-transportation from X to uY and def 7, < e Obviously,

supp(n,) = & ((T:)") = M (R)(e).

Define two projections pr; : M,(R) x M,(R) — M,(R), pr,: M,(R) x M,(R) —
M. (R) by pri((az), (by)) := (a;), pra((ay), (by)) := (bj). Then for all Ae
#(M,(R)),

(pry), 7 (4) = (pry 0 &), L¥(4)
= 27 (&  (pry ' (4)))
= Z9(& (4 x M, (R)))
= Z9{(s1,-,5) € (T)" | KX (px(s1),-., px(sy)) € 4})
=12 ({(x1y. ) € XT| KX (x1,. .., x,) € A))
= p' (4).

This leads to (pr;), 7. = ;. In the same way, we get (pr,), 7 = ). Then =,
is an e-transportation from g¥ to Y and def 7, =0 <e¢ This means that
Tra™®:H) (X 1Y) <o We get d), p(X,Y) < O,(X,Y) by Theorem 2.9,
the arbitrariness of ¢, and Lemma 3.3.

Combining these two inequalities, we obtain the theorem. O
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PROOF OF PrOPOSITION 1.4. First, we prove [J,(X,, X) =n"'. For any pa-
rameter py, of X,, Z(py'({p1})) = 1—n"". Then we have d,, ,,,(px,(s), px,(s"))
=0 for any s,5" € py'({p1}). This means that [J,(X,,X)=n"".

It is obvious that [J,(X,,X) =1 for any n > 2.

Next, we prove d;_p:(X,, X) =1 for any n > 2. We set the Borel set 4, on
M,.(R) by

A, = {(a;;) € M.(R) | there exist k,l€{l,...,r} such that ajy = 1}.

Then we have

1 (Ar) = ug (s 0) € X (o) # (i pi)y 1= 1,23

It is obvious that ¥ (4,) =0 and 1" (B)_,+_(1_,-17(4,)) =0 for any neN. Let
&> 0. We have 4 (4,) <} (B.(A,)) +eifand only if e>1—n"— (1 —n"")".
This means that dlgf/["(m'l"l“)(gf’,gf(") >1—-n"—=(1-n"" For any n > 2, we
get dj_pe(Xy, X) =1 by Lemma 3.3. O
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