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ON THE FOURIER COEFFICIENTS OF HILBERT
MODULAR FORMS OF HALF-INTEGRAL WEIGHT OVER
ARBITRARY ALGEBRAIC NUMBER FIELDS

By

Hisashi Koyma

Abstract. In Theorem 2.5 in previous paper [4], we determined the
Fourier coefficients of the image of Shimura correspondence of
modular forms f of half integral weight over arbitrary algebraic
number fields in terms of those of f. It seems that there is a gap
in the proof. We give a correct proof of Theorem 2.5 in [4].
Moreover, we deduce useful formulas between the product of Fourier
coefficients of f and the central value of quadratic twisted L-series
associated with the image of Shimura correspondence of f.

Introduction

Shimura [7] proved that the square of Fourier coefficients of a holomor-
phic Hilbert modular form of half-integral weight over a totally real number
field gives essentially the critical value of the zeta function of the corresponding
form of integral weight, which generalizes a previous result of Waldspurger [9]
in the elliptic modular case. In [3] and [4], we extended Shimura [6] and [7] in
the case of Hilbert modular forms of half-integral weight over arbitrary alge-
braic number fields. It seems that there is a gap in the proof of Theorem 2.5
in [4].

The purpose of this note is to deduce another useful formula between the
product of Fourier coefficients of a modular form f of half-integral weight over
an arbitrary algebraic number field and the central value of quadratic twisted
L-series associated with the image of Shimura correspondence of f. In the last
section, we shall give a correct proof of Theorem 2.5 in [4].
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§1. Fourier Coefficients of Modular Forms of Half-Integral Weight

Our notation follows closely that of [2], [4], [5] and [7]. Let ¢ € Ga (resp.
C") be the element (resp. set) given in [4, pp. 29-30]. Take axe GNUs™!,
for U a sufficiently small open subgroup of C”. Let f be an element of
=%¢+(1/2)ur,,w(b,b’;¢), where <9’m+(1/2)ur17w(b,b';lp) is the space given in [4, p. 31]
and [5, (2)]. Then define the inversion f* of f by

(11) f* = lp(g).f”er(l/Z)urlCx'

Here 0 and f||m+(1/2)u,.1°‘ are _given in [4, p. 30] and [4, (1.16)]. We see that f*
belongs to %,,Hl/z)ur“w(b',b;t//) (cf. [2, (4.19)]). Take a f € «Vm+(1/2)u,],w(b,b/;lﬂ)-
Let 7 be an element of F* such that 7> 0, b = q?r with a fractional ideal q
and a square free integral ideal r. From [4, Lemma 1.2], we find an element
he ymﬂl/z)ur_w(o,rbb’; @) such that

(1.2) (&, m) = g (€, () m)

for every & e F* and fractional ideal m in F, where ¢ = e, with the Hecke
character ¢, associated with the quadratic extension F(y/7)/F. Let D be the set
given in [4, (1.9)]. Define a function g, ;(w) =¥, ,(f)(w) on D by

(1.3) Cyos(w) = Jr O i 32" dy

for every we D, where C = il"m2l+n=—"r+m(1/y/27)%¢, (1/2)N(xc), T\ and
O(3,w;7,) are given in [4, p. 39]. We deduced the following theorem [4,
(2.33)].

THEOREM 0.1. Let f be an element of 56,,+(1/2)u,,],w(b,b’;np). Then

(L4) Yo (N =Nu/xY > N g, (D" (r/tm)

m Jegfr-lm

r

X :uf(T’ (fQ)_lm)ex(l%(z))e(,(lu) H C(sgn([(’)))

=1
x exp(—27lS(z) ) vKy, (47| |v),

where m runs over all integral ideals, | runs over t;x~'m under the condition
—1 1 _ _ _ _
(7' m e re) =1, w=(21,. ., 20,3, 105 3n0n)s 2= (Zlievs2n)s 3 =
. . _ _ 71 _
ur1+i+]”i'|+i (1 <1 SVZ), u= (ul‘]+la"'7ur|+l‘g)7 U= (Ul‘]+1)"'7vl’1+i'z)7 lm -

TI (90" and |1 =TT, [10+)),
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We shall give a correct proof of Theorem 0.1, that is, Theorem 2.5 in [4] in
Section 2.
We showed the following in [4, pp. 47-48].

THEOREM 0.2. Let f be an element of ,gjﬂ(l/z)u”,w(b,b';lp). Suppose that | is
a common eigenform of T, for each veh, ie.,

(L.5) 1T, = y()N'f  for each veh.

Then there exists the normalized eigenform g belonging to yg,,m,(Z’lc,xﬁz)
attached to y such that

(1‘6) /lf(‘[,q_1>g= (g‘f,la"'7gf,l€);

where & = (0,...,0,4w,41 4+ 3,...,40r4r, +3) with ©=(0,...,0,0,+1,...,

a)m +ry )

Let g be the above element of 5”2,,,,(;,(2’%, mﬁ) in Theorem 0.2. Take the

matrix 7 = ( (5(2)5 ’01) with s € F7 such that so = 2-1¢. Define

(1.7) (J-1.9)(p) = Y (det p)'g(pn) for every pe Gy

Then J, 1.g belongs to %, 5(2 ¢,y %). We put g* = J, 1.(9) = (9}).
Here we assume the following condition.

(1.8) (i) a(x) = (sgn x,)"|xs| “[xc|* (x € FY), where (sgn(x,))” =
1ysen(a)™, el =TI bl ™ (v = (vi,0o) € B,

|xc|2i/1 = Hzril |xrl+i|2\/j’ur]+i (xc’ = (xl‘l-‘r] yee 7x"1+"2) € FC)7 (117 s ’)”Vn
Pyyits sty i) €ERTand D00 A+ 302 1,4 = 0.

(i) r divide b, where l) is the conductor of ¢.

(iii) If v is a common prime of 2 and r, then ¢, satisfies either
(a) (rc), =b, =4r, and ¢,(1 +4x) = ¢,(1 +4x?) for every x € p,, or
(b) (rc), # b, = 4r,.

(iv) If f" € Lui(1/2u,.0(0,0'54) and f'|T, = N x(v)f" for every
v¥h7're, then /7 is a constant times f.

We shall deduce the following theorem.
THEOREM 1. Let femer(l/Z)u,.l,w(bvbl;l//) be an eigenform of all Hecke

operators T, satisfying f|T, = N 'x(v)f. Suppose that f, v, b, ¢, ¥ and ¢ satisfy
the condition (1.8), and g and g* are the elements in Theorem 0.2. Then
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(1.9) w(t,a b S (a7 s f50)<g, 9> /<S>

=0 Y e (N 'D(O0,g" 9. t7'h"x0),
ootoi
where D(0,g*,¢,t ') 7"xr¢) is given in [4, p. 37), Q=2(n/A-{m3n—lg—{m}
l2e 22, (2) " N () (@) helor s (0%) T (m)T (v + 1/2)T (—v + 1)2), I7e|? =
12 [ 012, e =TI )™, i=Tl,p (plre,p4b) and T'(m)['(v+1/2)
x T'(=v+1/2) is given in [4].

Let # be an element in [4, p. 38]. Put A(3) = <O, p:n),9(p)>, where
O(3, p;7n) is the function given in [4, (2.4)] and g is the function given in Theorem
0.2. By [7, Proposition 5.8] and [2, Theorem 5.2 and the arguments in p. 440], we
have

(1.10) h(3) = Ah(3)

with a constant 4 under the assumption (1.8), where A(3) is the function given in

(1.2). Since <h,hy =P 2, PN (qu) 71 <f, f> and

(1.11) Cuy(v,q7g(p) = L®(37p;f7)h(3)y’”+“/2>“f'l w? dj,

we obtain

(112) A= if{m}21+r17r2+{m}(1/ /271')”(0(1(1/2)‘[;(”1+(1/2>m]>|Tc|73

y N(qr*c)<g,gous(t,q7")
vol(T[20~ !, 2-1rd\D){f, f>

with @, A, C as in [4, p. 39]. As shown at [7, p. 540], Ah(3) = <O, p;n),9(p)>
implies that

(1.13) Ah*(3) = <0G, p;0),9"(p)) = >_<OG,w;0,), ¢} (w)),
A

where a; (resp. ©(3, p;0)) is the symbol given in [7, (6.2)] (resp. [4, (2.4)]).

Given a function /" on D and o= ( ) ;) in G, we put
(1.14) Sllne3) = (eaz +do) "1 (a(3)),
where 3= (21,...,2,3, 0151 3r4n)> 2= (21,...,2,) and 3, ;= zZ, i + jwy 4.

Let T =T, b (cf. [4, p. 29]). We put
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(115) E((’), s; l—~) _ Z @a(da)(p*(dam;I)N(ma)hysu,l+(i).7m)/2w2xu,2+i/z||m0(
2R

C(37 S, r) = Lxh(zsa (p)E(37 AN r)

Here R is a set of representatives for P\(GN PaD[x, b)), for « € R, we define
A, by writing o = pw with p e P, and we D(x,h), and setting 2, = d,0. We
put

(1.16) Ly(s,0) = Y ¢ (m)N(m)™,

m+xh=o

We obtain the following proposition.

PrOPOSITION 2. Let T'=T[27'h v, 2h] and let §(3) be the function in [4,
(4.1)]. Then

(1.17) J \ h*(3)9G)E (3,5 + 1/2;T) y"+ (122 g3
r\Dp

= D P21 e ey (1) (2) 2 g 2y e (/2
% \/ﬁrz (27[) 7su,.l+(1/2)il7(1/2){m}1—~/(s + (m _ ll)/2)
x T'(2suy, — i+ (1/2)uy, — V)T (2504, — it + (1/2) 14y, + v)

x T (2suy, — ipt+ uy,) " Zﬂf*(fv q~'bm)N (m) .

m

By (1.13) and Proposition 2, we see that A times the integral in (1.17) is equal
to

(1.18) Z<L\D 9(3)0(3, w;07)E(3,5 + 1/2; 1) p 1/ 2 2 da,gg<m)>.
A

By the same method as that of [7, pp. 543—544], we have the following equation
(cf. [4, (4.19)]).

(119) AN(qr) *127r1/2723r17{/11}274514,27(3/2)u,2 ‘T(7|T§1/2)Uq lku(f)n"‘/zn”/z
x T'(2suy, — ip+ (1/2)uy, — v)T' (2505, — ipe + (1/2)uty, +v)

x T (2sty, — ipt 4 t,) "' T (s 4 (m — id) /)T (s + (1 +m — 2i)/2) "
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x T (2suy, — ipt + uy,) 12727 Z”f" (z,q "bm)N (m) >

m

—Z<Z(ﬂ (Ap)N(Ap) > S (w, 5), g (w )>
A peB

where B is determined by GNPAD[27'h e, 2] = [Igcp PAT. The ideals 2y
are as in (1.15), and run through a set of representatives for the ideal class group
of F. Here

(120) S/M w, S Zo.) yé 'uﬁ ]ﬂn|[é7m]/}7(m)|723u,1 Uy, +m—il

o ?>7m}/«m>

where [, x| and 7(x) are symbols given in [4, (2.3)] and the sum is over the pairs
(E,b) e V x g/o* such that £#0 and deté=—b*> with V ={e My(F)]|
tr ¢ = 0}. Furthermore, we have chosen y € F;* such that yo = 2y and y, =1 for
vlre. By [7, 7.14a, 7.14b], we have the following.

72(25ur2 +itr, i)

)

PROPOSITION 3. Let q range through a set of representatives for 2~ t;xcl/t;xch
and let T* =T[2t;'9 ", t;xch]. Then there exist functions Ty;(w,s) such that

s 1 0
(1.21) Spi(w, 5) = (—1)! }212Tm(w,S)llzm(q 1)
q
> 6T (Up)N(Up) * Ty (w, s — 1/2) = N2 t;xch)* C(w, 5; T4 E(w, 5 T%)
peB

By Proposition 3, we find that the expression of (1.19) is equal to the value at
s=1t of

(122) (=122 3 (N ) OG5+ 12T EG, T+ 1/2T7%),95()).

The equality (1.22) becomes

(1.23) (=124 vol(T[2p ", 27 'xeh\D) ' Y N (27 1yxehy) !
A

XJA Crs+ 1/ THEG i+ 1/2: T g™ d3
TA\D
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The integral appeared in (1.23) is equal to

(1.24) j  CGs+ UBTHEG i+ /3 T)g,(G)™ d
r\D

= Z ¢a(da)@*(dxm;1)N(g[“)2t+l

aed
« J gjc (S)Wyru+(u+3mfi/l)/2W2(t+1/2)ur2 —iu d37
v

where W7 = PNal*a"\D, g% =g}l and C*3) = C(3,5+ 1/2;T4)],0".
By [7, Lemma 3.8], we have

(125) gi(3) = 0, (d) 0" (d2,") Y (&9, sgn(8): 7)1 g
0£Ee, A2, E>0

X es(ER(2))e (Eu) exp(—2nES(z) )wKy, (47| E|w)
and
%(da)(ﬂ* (dam“—l )N(Q[o') *2‘\'*ly7Su7(ufmfii)/zw*2(3‘+1/2>”r2 +iﬂéi‘(3)

= ch(2S + 1, §7)) + 2r2D;~1/ZMN([))_l Z ,u(t)@*(t)N(f) —25—1

0ot>2h 7 lre

XD NWZD 0 (b)N(b) Fp,(h)p" (hhdy)e,(—bhR(=))
n h,b

x E(y,w,bhysu+ (u+m+id)/2,5u+ (u—m—+il)/2,2(5+ 1/2) + in),

where c¢(m,o;g*) is given in [4, (1.36) and (1.37)] and [2, p. 409] for a fractional
ideal m and a signature oe {*1}", and &E(y,w,bh;su+ (u+m+il)/2,
Su+ (u—m-+id)/2,2(s+1/2) +iu) is given in [4, (3.21)].

We note the formula (cf. [1, p. 334]),

o0

r I+s'+s5"+1 r I—s'+s5"+1 r I+s'—s5"+1 r I—s'—s"+1
(126) J lev’(y)Ky”(y) dy _ 2172 ( 2 ) ( 2 ) ( 2 ) ( 2 )
0 T+ 1)

(R(I+1) > [R(s")] + R(s")])

By the same method as that of [4, p. 59], we see that the integral (1.24) is equal
to
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(127)  7(p)2”NQ2uh "> ZN D7 (et N () P IN ()

t,y

X Z Z clat;' A%, sgn a; g*)N(a)™ "N (b) >

aeF*\(0%)? a>»0 bh=a

(47T) —Ury +(2S721)ur2
225142—1'/1

(ﬂ* (abilI)DI)) (27_[) r222tur27i‘u72ur2
X T (uy,s + it 4 1) " T'((t = )y, + v+ (1/2)u,)
x T'((t = 8)uy, — v+ (1/2)u, )T’ Qtuty, — izt + uy,) ™"
< T/((t+ )y, + v+ (1/2)uy, — ip)
x T'((t + s)uyp, — i — v+ (1/2)u,, ) M (s, 1),

where

M(s, t) = J exp(—2ny)E(y, 1;5uy, + (ty, +m~+il) /2, 5uy, + (u,, —m~+i1)/2)
>0

x ySn i Tt gy (e [4, p. 59]).

Here &(y, 150, ) is the function in [7, p. 530]. Therefore we find that the equality
(1.23) is equal to

(128) (=129 vol(T2d~", 2ved]\D) " 12 r(9) [0

X NN TN T YD g (N

0>1t52h e

X Z c(t™ ' Tramn, u; g*)N () o ()N (m)* T M (s, 1) (27)"

mn

—+ X
—
o
X
~—
W

(472:) —Upy +(25=2t)ur, |

X 22tu,-27i/172ur2 i
2 2314,.2 —iu

' (2suy, — in+ uy,)~
X T'((t = S)up, + v+ (1/2)ur, )T (( = s)ttr, — v+ (1/2)uy,)
X T2y, — it + 1) T (1 + 8)ttr, + v+ (1/2)ur, — ipt)
< T((t+ )ur, — v+ (1/2)up, — i),

where  u=(l,...,1). Put Yi(s,) =3 ., c(t™ ' remn, u; g* )N () "
p*(m)N(m)""
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We note that

lim Yi(s,s) = D(0,g", p,t"'bre)

s+ o0
and
M(s,s) = i 2= 2ns—mb+i2 1 () (2 1= 0 (2 =120
x 2 (VRN 230 A s (o — i7) [2)T (54 (1 m = i) /2)

(cf. [7, (4.18)]).
Therefore, by (1.12), (1.19) and (1.28), we have

(1.29) i~ tman=ntlm (1 /\/amy g (1/2)e; "2 1, 2 N () ' <g, )

x gt (t,q 1) vol(T[20 7", 27 eed\D) <, /> N (ar’c)

> 27r1/27{m}27(3/2)u,2 TC|T§1/2)"‘V1 lpa(,L_)ﬂ:rl/27[1‘3/221‘122@14

X Z,uf*(r, q 'bm)N(m)~*

= (1) 24 vol(T[2d7 1, 27 xed)\ D) ' he2"y(p)[0% : (0%)7)

XN ) ST uOF ON) T Vs, $)(2m) 7272 (4r) 2

u:>t:>2h’lrc
« l—-l(v + 1/2)1—-/(_V + 1/2)1'{'7’}27{'”}”)"1"’(m)

x (2m)" 7 (2) (/2 g = (/2 )ik
Letting s tend to +oo we deduce our Theorem 1.

§2. A Correct Proof of Theorem 0.1
We use the notation in [4] and [5]. The changes of [4] are as follows:

(1) [4, (2.15)] should read

ee(—cu) = [ el-2RE )], e 2/2) = He )z, )
i=1

(2) [4, (2.24)] should read
This proposition implies that
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B R)) "I (B (3), tu, 1(By)) i (1d (By) /2)
x e(V=1() S (BB (3))) " /4) exp(=n(lfo) w(Br(B~' (3)) ")
< S(B )P By, B 3) (BT ()P R(BT ()
=G B3I BT ) T Ty B
X a3 1) pe (1 () /2)j (7' B3 "
x e,(V=1(7)*3(3") "' /4) exp(—n(|to)*w(3) " h(y ')

x S E) P w( B(),

(3) The line 11 in [4, p. 44]:
¢r((ld(ﬂy)/2)¢rt(ay") = (prc(tdﬁ/z)'
should read
(0tt<td(ﬂy)/2)(orc(ay’l) = (prc(tdﬁ/z)'

(4) [4, (2.25)] should read

()" 0rc 1/ 2) 8 (3" 1) (B, B~ B)"H(B(3))

x es(V=1()3(G) 7 /) (0w)? exp(=a(|do) w(z) )3

(5) The element / in [4, (2.33)] runs over #;x~'m under the condition that
(lm~'x/t;,vc) = 1.

We sketch a correct proof of Theorem 0.1. Let f be an element of
%Hl/z)url,w(b,b’;w). Since f is holomorphic with respect to zi,...,z,, the

function g, ,(w) in [4, (2.11)] is holomorphic with respect to zi,...,z, , where

W= (2,213 4152 3n4m,) (ef [2, p. 406], [4, (2.14)] and [5, (12)]) To
determine the Fourier coefficients of g, ,(w), it is sufficient to calculate g, ;(w)
for zy=iyj,....z;, =iy, (y1>0,...,y, >0). We put hy =0,...,h, =0 in
(4, (2.15) and (2.16)]. By [6, pp. 772-777], [6, pp. 783-785], [8, pp. 1015-1024],
[8, Theorem 1.2] and [8, Proposition 1.3], we can prove the proposition 2.3 in [4]
in the case of (h,...,h,) =(0,...,0). We note [5, (6), (7), (8) and (9)]. By the
same method as that of [4], we deduce



On the Fourier coefficients of Hilbert modular forms 11

Yo () w) = N6/ Y N I oy (D" (e/tm)uy (<, (xa)~'m)

m Jeyr—lm

x e.(lu) ﬁc(sgn(l”))) exp(—27l3(z) ) vKy, (47| |v),
i1

— (v VAN / , . IR
for w = (lyl7""lyr|73r1+l""73r1+r2)’ where m runs over all integral ideals, /
runs over #;r~'m under the condition (/m~'v/1;,v¢0) =1, 3/ ., =ul .+ jol ., z =

. . m— [ i—1
(ly{7"'7lyll‘1) U= (y;1+17---’”;1+;~2)> U= (Ull‘1+l7""vl{1+r2)7 1 ! :HZ’IZ](I(I)>"1
and |/| = [[2, |/"*9)|. Therefore we deduce Theorem 0.1.
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